JPH0817678A - Ferroelectric material thin film - Google Patents

Ferroelectric material thin film

Info

Publication number
JPH0817678A
JPH0817678A JP6164863A JP16486394A JPH0817678A JP H0817678 A JPH0817678 A JP H0817678A JP 6164863 A JP6164863 A JP 6164863A JP 16486394 A JP16486394 A JP 16486394A JP H0817678 A JPH0817678 A JP H0817678A
Authority
JP
Japan
Prior art keywords
film
thin film
ferroelectric
ferroelectric material
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6164863A
Other languages
Japanese (ja)
Inventor
Yoshinori Yamaguchi
義紀 山口
Takehiro Niitsu
岳洋 新津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd filed Critical Fuji Xerox Co Ltd
Priority to JP6164863A priority Critical patent/JPH0817678A/en
Publication of JPH0817678A publication Critical patent/JPH0817678A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Memories (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To obtain a ferroelectric material thin film, which can bring out fully the intrinsic characteristics of a ferroelectric material film without restricing the film thickness of the ferroelectric material film and the condition of formation of the ferroelectric material film even in a film having a crack, a pinhole or the like and a film of a low specific resistance. CONSTITUTION:A ferroelectric material thin film layer 4 consisting of a thin film, which shows a ferroelectric property, is held between insulating thin films 3 and 5 consisting of a meterial having electrical insulation properties higher than those of this layer 4 to constitiute a ferroelectric material thin film and electrons from an electrode are prevented from being injected in the ferroelectric material thin film to keep an electric field in the layer 4 constant.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は強誘電体薄膜の構造に係
り、特に、誘電体を電極で挟んで構成されるサンドイッ
チ構造(MIM構造)のキャパシタを形成する場合に有
効な強誘電体薄膜に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a structure of a ferroelectric thin film, and particularly to a ferroelectric thin film effective in forming a capacitor having a sandwich structure (MIM structure) constituted by sandwiching a dielectric between electrodes. Regarding

【0002】[0002]

【従来の技術】強誘電体は、高誘電率、分極履歴現象、
圧電効果、焦電効果、電気光学効果といった特有の性質
を示すため、高機能性材料として大きな期待が寄せられ
ている。この強誘電体を薄膜化した強誘電体薄膜を得る
ことができれば、超高性能な電子デバイスへの応用が考
えられる。例えば、LSIにおいてキャパシタを高誘電
率な強誘電体薄膜で形成すれば、大容量高集積化DRA
Mを得ることができ、また、ゲ−ト酸化膜を強誘電体薄
膜により形成することにより不揮発性メモリが実現でき
る。更に、圧電効果を利用した圧電フィルタや振動子、
焦電効果を利用した赤外線センサ、電気光学効果を利用
した光スイッチ等、様々な素子に適用することが考えら
れる。
2. Description of the Related Art Ferroelectric materials have a high dielectric constant, a polarization history phenomenon,
Since it exhibits peculiar properties such as a piezoelectric effect, a pyroelectric effect, and an electro-optical effect, it is highly expected as a highly functional material. If a ferroelectric thin film obtained by thinning this ferroelectric can be obtained, application to an ultrahigh-performance electronic device is considered. For example, if a capacitor is formed of a ferroelectric thin film having a high dielectric constant in an LSI, a large capacity and highly integrated DRA
M can be obtained, and a non-volatile memory can be realized by forming the gate oxide film with a ferroelectric thin film. Furthermore, piezoelectric filters and vibrators that utilize the piezoelectric effect,
It can be considered to be applied to various elements such as an infrared sensor utilizing the pyroelectric effect and an optical switch utilizing the electro-optical effect.

【0003】しかし、強誘電体材料を成膜して薄膜化す
る際に、成膜不良による膜に生じるクラック、ピンホ−
ル等や膜自体の比抵抗が低いことに起因して、リ−ク電
流が大きくなり絶縁不良を引き起こすという問題点があ
る。これは、特にMIM構造のキャパシタを形成する際
に大きな影響を受け、強誘電体の本来の特性を十分に発
揮させることができなかった。
However, when a ferroelectric material is formed into a thin film, cracks and pinholes are generated in the film due to defective film formation.
Due to the low specific resistance of the film or the like and the film itself, there is a problem that the leak current increases and causes insulation failure. This is greatly affected particularly when forming a capacitor having an MIM structure, and the original characteristics of the ferroelectric could not be fully exhibited.

【0004】そこで、強誘電体薄膜の絶縁性を改善する
方法として、強誘電体材料を成膜するに際して、強誘電
体膜の膜厚を30〜150nmに限定し、且つ引続き行
なわれる熱処理においてアニ−ル温度及び時間を500
℃、1時間とし、これを2回以上繰り返して薄膜を積層
することにより所要の膜厚の強誘電体薄膜を得るもので
ある(特開平1−93089号公報参照)。強誘電体膜
の膜厚を30〜150nmとし、アニ−ル温度を500
℃としているのは、150nm以上にした場合あるいは
アニ−ル温度を500℃以上にした場合には、微細なク
ラックが膜に発生したり膜が剥離して強誘電体膜の絶縁
不良を引き起こすからである。
Therefore, as a method of improving the insulating property of the ferroelectric thin film, when the ferroelectric material is formed, the thickness of the ferroelectric film is limited to 30 to 150 nm, and the annealing is performed in the subsequent heat treatment. -500 temperature and time
The temperature is set to 1 hour, and this is repeated twice or more to stack thin films to obtain a ferroelectric thin film having a desired film thickness (see Japanese Patent Laid-Open No. 1-93089). The thickness of the ferroelectric film is set to 30 to 150 nm and the annealing temperature is set to 500.
The temperature is set to ° C because when the temperature is 150 nm or more or when the annealing temperature is 500 ° C or more, fine cracks are generated in the film or the film is peeled off to cause insulation failure of the ferroelectric film. Is.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記方
法によれば、例えば300nmの膜厚の強誘電体薄膜を
得る場合には、成膜及び熱処理の工程を複数回繰返す必
要があり、工程が煩雑になるとともに歩留りが低下する
という問題点があった。
However, according to the above method, when obtaining a ferroelectric thin film having a film thickness of 300 nm, for example, it is necessary to repeat the steps of film formation and heat treatment a plurality of times, and the steps are complicated. However, there is a problem in that the yield decreases as it becomes.

【0006】本発明は上記実情に鑑みてなされたもの
で、クラック、ピンホ−ル等がある膜や比抵抗の低い膜
においても、強誘電体膜の膜厚や作製条件を限定するこ
となく、強誘電体の本来の特性を十分に引き出せること
ができる強誘電体薄膜を提供することを目的とする。
The present invention has been made in view of the above circumstances, and does not limit the film thickness or manufacturing conditions of the ferroelectric film even in a film having cracks, pinholes, etc. or a film having a low specific resistance. An object of the present invention is to provide a ferroelectric thin film that can sufficiently bring out the original characteristics of the ferroelectric.

【0007】[0007]

【課題を解決するための手段】強誘電体の処女試料は、
図5に示すような多数の分域からなり、初期の状態では
各分域の分極方向の相互関係は全く乱雑であるため全体
としては自発分極を持たない。この試料に電界Eを印加
すると、前記電界Eが抗電界以上である場合には、電界
の向きにそれぞれの分極方向がそろうようになる。例え
ば、強誘電体試料としてチタン酸バリウムを用いた場
合、分極方向は反平行である180゜と直交する90゜
が生じやすい。すなわち、図6に示すように、電界Eの
方向と同じあるいは最も近い分極方向を示す分域はその
まま存在し、それと逆の分極を有する分域は自発双極子
モ−メントが180゜回転し、残りの分域では、自発双
極子モ−メントが90゜回転することにより、電界の方
向を向いた自発分極を持つ分域の体積が増加していき、
全体として大きな自発分極を示すようになる。このよう
に強誘電体に自発分極を効率良く発生させるためには、
抗電界以上の電界が膜中全体にわたり一定の方向に印加
されることが重要である。
[Means for Solving the Problems] The virgin sample of the ferroelectric substance is
It is composed of a large number of domains as shown in FIG. 5, and in the initial state, the mutual relation of the polarization directions of the domains is completely disordered, so that it does not have spontaneous polarization as a whole. When an electric field E is applied to this sample, when the electric field E is equal to or higher than the coercive electric field, the respective polarization directions are aligned with the direction of the electric field. For example, when barium titanate is used as the ferroelectric sample, the polarization direction is likely to be 90 ° which is orthogonal to 180 ° which is antiparallel. That is, as shown in FIG. 6, the domain showing the polarization direction that is the same as or closest to the direction of the electric field E is present as it is, and the domain having the opposite polarization is rotated by 180 ° in the spontaneous dipole moment. In the rest of the domains, the rotation of the spontaneous dipole moment by 90 ° increases the volume of the domains with spontaneous polarization in the direction of the electric field.
As a whole, it shows a large spontaneous polarization. As described above, in order to efficiently generate spontaneous polarization in the ferroelectric substance,
It is important that an electric field higher than the coercive electric field is applied in a constant direction throughout the film.

【0008】ところが強誘電体膜にクラックやピンホ−
ルがあり、上下の電極間でショ−トが発生すると、電極
間の電位差が無くなり強誘電体に所定の電界が印加され
なくなる。また、強誘電体膜中の結晶粒の界面において
は格子欠陥が発生し易く、上下の電極から注入された電
子はホッピング伝導により、その界面を自由に動き回
り、リ−ク電流として検出される。このような場合の等
価回路は、図7に示すような抵抗ネットワ−クであると
考えられ、その向き及び大きさはランダムである。従っ
て、多数からなる分域に印加される電界の向き及び大き
さは一様でなくなり、膜全体として一方向に向きのそろ
った分極を形成することができなくなる。
However, cracks and pinholes are formed in the ferroelectric film.
If a short occurs between the upper and lower electrodes, the potential difference between the electrodes disappears and the predetermined electric field is not applied to the ferroelectric substance. Further, lattice defects are likely to occur at the interface of crystal grains in the ferroelectric film, and the electrons injected from the upper and lower electrodes freely move around the interface due to hopping conduction and are detected as a leak current. The equivalent circuit in such a case is considered to be a resistor network as shown in FIG. 7, and its direction and size are random. Therefore, the direction and magnitude of the electric field applied to the large number of domains are not uniform, and it is not possible to form polarization in one direction in the film as a whole.

【0009】そこで本発明に係る強誘電体薄膜は、図8
に示すように、強誘電体性を示す薄膜から成る強誘電体
薄膜層を、この強誘電体薄膜層より電気絶縁性の高い材
料から成る薄膜で挟んで構成することを特徴としてい
る。
Therefore, the ferroelectric thin film according to the present invention is shown in FIG.
As shown in (1), it is characterized in that a ferroelectric thin film layer made of a thin film exhibiting ferroelectricity is sandwiched between thin films made of a material having higher electric insulation than the ferroelectric thin film layer.

【0010】[0010]

【作用】本発明によれば、電気絶縁性に優れた薄膜によ
り強誘電体薄層を挾みこむことにより、薄膜の外側に配
置される電極からの電子の注入を防ぎ、これにより強誘
電体薄層内における電界は一定となり、各分域に印加さ
れる電界は、大きさ及び方向ともに均一とすることがで
きる。
According to the present invention, the thin ferroelectric layer is sandwiched by the thin film having excellent electrical insulation properties to prevent the injection of electrons from the electrode arranged outside the thin film, thereby preventing the ferroelectric thin layer from being injected. The electric field in the layer is constant, and the electric field applied to each domain can be uniform in magnitude and direction.

【0011】[0011]

【実施例】以下、本発明の一実施例について図1を参照
しながら説明する。図1は、強誘電体薄膜を使用してM
IM構造のキャパシタを構成した例を示している。前記
強誘電体薄膜は、強誘電性を示す薄膜から成る強誘電体
薄膜層4を、この強誘電体薄膜層4より電気絶縁性の高
い材料から成る絶縁薄膜3,5で挟んで構成し、更に、
金属薄膜で形成された下部電極2,上部電極6で挟むこ
とによりMIM構造のキャパシタを構成している。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIG. Fig. 1 shows the M
The example which comprised the capacitor of IM structure is shown. The ferroelectric thin film is formed by sandwiching a ferroelectric thin film layer 4 made of a thin film exhibiting ferroelectricity between insulating thin films 3 and 5 made of a material having higher electric insulation than the ferroelectric thin film layer 4. Furthermore,
A capacitor having an MIM structure is formed by sandwiching the lower electrode 2 and the upper electrode 6 formed of a metal thin film.

【0012】次に、上記キャパシタの作製手順について
説明する。先ず、ガラスやSiウェハなどの基板1上
に、AuあるいはPt等の酸化されない金属膜を着膜し
て下部電極2を形成する。酸化されない金属膜としたの
は、後の工程において、焼成工程等の酸化雰囲気工程を
行なうことによる。金属膜の膜厚は、100〜400n
m程度である。次に、下部電極2上に電気絶縁性が優れ
比誘電率の大きいTa25 膜をスパッタ、ゾル−ゲ
ル、MOD等で着膜して絶縁薄膜3を形成する。絶縁薄
膜の膜厚は、耐圧を図るために必要な厚さ、剥離しない
程度の厚さを考慮し、300nm程度とした。比誘電率
はε=28程度であった。
Next, a procedure for manufacturing the above capacitor will be described. First, a lower electrode 2 is formed by depositing an unoxidized metal film such as Au or Pt on a substrate 1 such as glass or Si wafer. The reason why the metal film is not oxidized is that an oxidizing atmosphere process such as a firing process is performed in a later process. The thickness of the metal film is 100 to 400n
m. Next, a Ta 2 O 5 film having excellent electrical insulation and a large relative dielectric constant is deposited on the lower electrode 2 by sputtering, sol-gel, MOD or the like to form an insulating thin film 3. The film thickness of the insulating thin film is set to about 300 nm in consideration of the thickness required to withstand the voltage and the thickness at which peeling does not occur. The relative permittivity was about ε = 28.

【0013】スパッタにより着膜したTa25 膜のI
−V特性を図2に示す。絶縁薄膜の膜厚を300nm程
度とし、タ−ゲットとしてTa25 焼結体を用いた。
図2より、印加電圧10Vとしたときのリ−ク電流は、
10-8 A/cm程度と小さく抑えることができる。
I of the Ta 2 O 5 film deposited by sputtering
The -V characteristic is shown in FIG. The insulating thin film had a thickness of about 300 nm, and a Ta 2 O 5 sintered body was used as a target.
From FIG. 2, when the applied voltage is 10 V, the leak current is
It can be suppressed to as small as 10 −8 A / cm.

【0014】次に、絶縁薄膜3上にMOD法によりLi
NbO3 膜を着膜して強誘電体薄膜層4を形成する。本
実施例で強誘電体薄膜層4として使用したLiNbO3
膜は、強誘電体の中では比誘電率がε=30程度と小さ
いため、実効印加電圧が高く取れ、また透明であり光学
特性にも優れているという利点がある。LiNbO3
は、スパッタ、ゾル−ゲル、MOD、MOCVD等によ
り形成できる。スパッタやMOCVDによる場合には、
真空装置を使用するため緻密な膜が成膜可能となり耐圧
性に優れた膜を得ることができる。本実施例では上記し
たようにMOD法により形成した。これは、Li,Nb
の有機酸溶液をストイキオメトリになるように秤量し、
スピンナあるいは印刷により基板1上に成膜し、乾燥、
焼成工程を経て、均一膜を得る方法であり、工程が簡単
でコストが安いという利点がある。
Next, Li is deposited on the insulating thin film 3 by the MOD method.
A NbO 3 film is deposited to form the ferroelectric thin film layer 4. LiNbO 3 used as the ferroelectric thin film layer 4 in this example
Since the film has a small relative permittivity of about ε = 30 in the ferroelectric substance, it has advantages that the effective applied voltage can be made high, and the film is transparent and has excellent optical characteristics. The LiNbO 3 film can be formed by sputtering, sol-gel, MOD, MOCVD or the like. When using sputtering or MOCVD,
Since a vacuum device is used, a dense film can be formed and a film having excellent pressure resistance can be obtained. In this embodiment, it is formed by the MOD method as described above. This is Li, Nb
Weigh out the organic acid solution of to obtain stoichiometry,
A film is formed on the substrate 1 by a spinner or printing and dried,
This is a method of obtaining a uniform film through a firing step, and has the advantages of simple steps and low cost.

【0015】Auで形成された電極上にLiNbO3
を直接形成した場合のLiNbO3膜のI−V特性を図
3に示す。LiNbO3 膜の膜厚は約600nmとし
た。リ−ク特性は、図2に示したTa25 膜に比べ1
-4 程度悪い。これはLiNbO3 膜は2成分系であ
るため、組成制御が難しく、焼成後でストイキオメトリ
な膜が形成できず、酸素欠陥が生じているためである。
このような酸素欠陥が多い膜であると、電子が欠陥を生
じている場所をホッピング伝導により移動し、リ−ク電
流は大きくなる傾向にある。
[0015] showing an I-V characteristic of LiNbO 3 film when the LiNbO 3 film formed directly on the formed at Au electrodes in FIG. The thickness of the LiNbO 3 film was about 600 nm. The leak characteristics are 1 compared with the Ta 2 O 5 film shown in FIG.
0-4 is bad. This is because the LiNbO 3 film is a two-component system, so that composition control is difficult, a stoichiometric film cannot be formed after firing, and oxygen defects occur.
In the case of such a film having many oxygen defects, electrons move to a position where defects are generated by hopping conduction, and the leak current tends to increase.

【0016】LiNbO3 膜から成る強誘電体薄膜層4
上に、再びTa25 膜を絶縁薄膜5として前記と同一
の条件で着膜する。そして、絶縁薄膜5上にAuあるい
はPtを着膜して上部電極6を形成する。
Ferroelectric thin film layer 4 composed of LiNbO 3 film
A Ta 2 O 5 film is again deposited as an insulating thin film 5 under the same conditions as above. Then, Au or Pt is deposited on the insulating thin film 5 to form the upper electrode 6.

【0017】上記実施例で示したように、絶縁薄膜3,
強誘電体薄膜層4,絶縁薄膜5から成る積層構造による
強誘電体薄膜10によれば、強誘電体薄層4(LiNb
3膜)を絶縁薄膜5,6(Ta25 膜)で挟んだ構造
としたので、そのI−V特性は、図3に示したLiNb
3 膜の特性より図2に示したTa25 膜の特性にほ
ぼ近くなり、I−V特性が悪いLiNbO3 膜を使用し
てもリーク電流の減少を図ることができる。これは、電
気絶縁性に優れた絶縁薄膜(Ta25 膜)により強誘
電体薄層4(LiNbO3 膜)を挾みこむことにより、
電極側からの電子の注入を防ぐからである。
As shown in the above embodiment, the insulating thin film 3,
According to the ferroelectric thin film 10 having the laminated structure including the ferroelectric thin film layer 4 and the insulating thin film 5, the ferroelectric thin layer 4 (LiNb
(O 3 film) is sandwiched between insulating thin films 5 and 6 (Ta 2 O 5 film), the IV characteristics thereof are the same as those of LiNb shown in FIG.
The characteristics of the O 3 film are closer to the characteristics of the Ta 2 O 5 film shown in FIG. 2, and the leak current can be reduced even if a LiNbO 3 film having poor IV characteristics is used. This is because by sandwiching the ferroelectric thin layer 4 (LiNbO 3 film) with an insulating thin film (Ta 2 O 5 film) having excellent electrical insulation,
This is because the injection of electrons from the electrode side is prevented.

【0018】また、上記強誘電体薄膜10のヒステリシ
ス特性を測定したところ図4に示すループが得られた。
図4において、リサ−ジュ波形は観察されず、きれいな
ヒステリシスル−プを描き、残留分極Prは0.5μC
/cm2 、抗電界Ecは6kV/cmであった。このこ
とから、上記強誘電体薄膜10の構造によれば、リーク
電流特性が悪いLiNbO3 膜を使用しても、リサ−ジ
ュ波形は発生せずに、強誘電体本来の残留分極を引き出
すことができる。これは、電気絶縁性に優れた絶縁薄膜
(Ta25 膜)3,5により強誘電体薄層4(LiN
bO3 膜)を挾みこむことにより、電極からの電子の注
入を防いで強誘電体薄層4内における電界を一定とし、
強誘電体薄層4内の各分域に印加される電界を、大きさ
及び方向ともに均一とすることができるからである。
When the hysteresis characteristic of the ferroelectric thin film 10 was measured, the loop shown in FIG. 4 was obtained.
In FIG. 4, no Lissajous waveform is observed, a clean hysteresis loop is drawn, and the residual polarization Pr is 0.5 μC.
/ Cm 2 , and the coercive electric field Ec was 6 kV / cm. From this, according to the structure of the ferroelectric thin film 10, even if a LiNbO 3 film having a poor leakage current characteristic is used, a Lissajous waveform is not generated, and the residual dielectric polarization inherent in the ferroelectric is derived. You can This is because the ferroelectric thin layer 4 (LiN) is formed by the insulating thin films (Ta 2 O 5 films) 3 and 5 having excellent electric insulation.
(bO 3 film) to prevent the injection of electrons from the electrode and make the electric field in the ferroelectric thin layer 4 constant,
This is because the electric field applied to each domain in the ferroelectric thin layer 4 can be made uniform in magnitude and direction.

【0019】本実施例では、強誘電体薄層4としてLi
NbO3 膜を使用したが、LiTaO3 膜を使用しても
よく、また、チタン酸バリウム膜でもよい。また、絶縁
薄膜(Ta25 膜)3,5により電極側からの電子の
注入を防ぐ構造であるので、比抵抗の低い膜を強誘電体
薄層4として使用することもできる。
In this embodiment, the ferroelectric thin layer 4 is made of Li.
Although the NbO 3 film is used, a LiTaO 3 film may be used, or a barium titanate film may be used. Further, since the insulating thin films (Ta 2 O 5 films) 3 and 5 have a structure to prevent injection of electrons from the electrode side, a film having a low specific resistance can be used as the ferroelectric thin layer 4.

【0020】[0020]

【発明の効果】本発明によれば、絶縁性の薄膜により強
誘電体薄層を挾みこんで強誘電体薄膜としたので、絶縁
性の薄膜の外側に配置される電極からの電子の注入を絶
縁薄膜が防ぐことができ、クラック、ピンホ−ル等があ
る膜や比抵抗の低い膜においても、強誘電体薄膜の膜厚
や作製条件を限定することなく、強誘電体の本来の特性
を十分に引き出せることがきる。
According to the present invention, since the ferroelectric thin layer is sandwiched by the insulating thin film to form the ferroelectric thin film, the injection of electrons from the electrode arranged outside the insulating thin film is prevented. Even with a film that can be prevented by an insulating thin film and has cracks, pinholes, etc., or a film with a low specific resistance, the original characteristics of the ferroelectric substance can be maintained without limiting the film thickness and manufacturing conditions of the ferroelectric thin film. It can be pulled out enough.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の強誘電体薄膜を使用したMIM構造の
キャパシタを示す断面説明図である。
FIG. 1 is a cross-sectional explanatory view showing a capacitor having an MIM structure using a ferroelectric thin film of the present invention.

【図2】Ta25 膜のリーク電流特性を示すグラフ図
である。
FIG. 2 is a graph showing a leak current characteristic of a Ta 2 O 5 film.

【図3】LiNbO3 膜のリーク電流特性を示すグラフ
図である。
FIG. 3 is a graph showing a leak current characteristic of a LiNbO 3 film.

【図4】本発明の強誘電体薄膜のヒステリシス特性を示
すグラフ図である。
FIG. 4 is a graph showing the hysteresis characteristic of the ferroelectric thin film of the present invention.

【図5】強誘電体薄膜における初期状態の内部構造を説
明する模式図である。
FIG. 5 is a schematic diagram illustrating an internal structure of a ferroelectric thin film in an initial state.

【図6】強誘電体薄膜における電界が印加された状態の
内部構造を説明する模式図である。
FIG. 6 is a schematic diagram illustrating an internal structure of a ferroelectric thin film in a state where an electric field is applied.

【図7】強誘電体薄膜内の電流経路を説明する模式図で
ある。
FIG. 7 is a schematic diagram illustrating a current path in a ferroelectric thin film.

【図8】電界が印加された状態での本発明の強誘電体薄
膜の内部構造を説明する模式図である。
FIG. 8 is a schematic diagram illustrating an internal structure of the ferroelectric thin film of the present invention in a state where an electric field is applied.

【符号の説明】[Explanation of symbols]

1…基板、 2…下部電極、 3…絶縁薄膜、 4…強
誘電体薄層、 5…絶縁薄膜、 6…上部電極、 10
…強誘電体薄膜
DESCRIPTION OF SYMBOLS 1 ... Substrate, 2 ... Lower electrode, 3 ... Insulating thin film, 4 ... Ferroelectric thin layer, 5 ... Insulating thin film, 6 ... Upper electrode, 10
… Ferroelectric thin film

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01L 21/8242 27/108 49/02 H01L 27/10 325 J ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical indication H01L 21/8242 27/108 49/02 H01L 27/10 325 J

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 強誘電体性を示す薄膜から成る強誘電体
薄膜層を、この強誘電体薄膜層より電気絶縁性の高い材
料から成る薄膜で挟んで構成したことを特徴とする強誘
電体薄膜。
1. A ferroelectric material comprising a ferroelectric thin film layer made of a thin film exhibiting ferroelectricity, sandwiched between thin films made of a material having a higher electric insulation than the ferroelectric thin film layer. Thin film.
JP6164863A 1994-06-24 1994-06-24 Ferroelectric material thin film Pending JPH0817678A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6164863A JPH0817678A (en) 1994-06-24 1994-06-24 Ferroelectric material thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6164863A JPH0817678A (en) 1994-06-24 1994-06-24 Ferroelectric material thin film

Publications (1)

Publication Number Publication Date
JPH0817678A true JPH0817678A (en) 1996-01-19

Family

ID=15801358

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6164863A Pending JPH0817678A (en) 1994-06-24 1994-06-24 Ferroelectric material thin film

Country Status (1)

Country Link
JP (1) JPH0817678A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001024265A1 (en) 1999-09-30 2001-04-05 Rohm, Co., Ltd. Nonvolatile memory
JP2020120020A (en) * 2019-01-25 2020-08-06 株式会社東芝 Magnetic storage device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001024265A1 (en) 1999-09-30 2001-04-05 Rohm, Co., Ltd. Nonvolatile memory
US6674109B1 (en) 1999-09-30 2004-01-06 Rohm Co., Ltd. Nonvolatile memory
JP2020120020A (en) * 2019-01-25 2020-08-06 株式会社東芝 Magnetic storage device

Similar Documents

Publication Publication Date Title
JP3929513B2 (en) Dielectric capacitor and manufacturing method thereof
Bernstein et al. Fatigue of ferroelectric PbZr x Ti y O 3 capacitors with Ru and RuO x electrodes
US5372859A (en) Enhanced fatigue and retention in ferroelectric thin film memory capacitors by post-top electrode anneal treatment
JP3460095B2 (en) Ferroelectric memory
JP3363301B2 (en) Ferroelectric thin film-coated substrate, method of manufacturing the same, and nonvolatile memory constituted by ferroelectric thin-film-coated substrate
JP3190011B2 (en) Ferroelectric memory element and method of manufacturing the same
JP3461398B2 (en) Dielectric capacitor and method of manufacturing the same
JPH07245236A (en) Dielectric capacitor and manufacture thereof
JP2004296929A (en) Process for fabricating ferroelectric capacitor, ferroelectric capacitor, memory element, electronic element, memory device and electronic apparatus
US20040061990A1 (en) Temperature-compensated ferroelectric capacitor device, and its fabrication
JP3159561B2 (en) Electrodes for crystalline thin films
JPH0817678A (en) Ferroelectric material thin film
JPH05343616A (en) Dielectric element and its manufacture
JP3130410B2 (en) Ferroelectric memory device
JP3689674B2 (en) Dielectric capacitor and method of manufacturing the same
JP3954339B2 (en) Dielectric capacitor
JP3689703B2 (en) Dielectric capacitor and method of manufacturing the same
JP3689702B2 (en) Method for manufacturing dielectric capacitor
JP2001036025A (en) Manufacture of ferroelectric memory device
WO2003075279A1 (en) A memory cell
JP2003179212A5 (en)
JP3718943B2 (en) Method for forming ferroelectric film
JP2001048645A (en) Ferroelectric thin film and its production
JP3514940B2 (en) Method of forming ferroelectric thin film
JPH09321237A (en) Non-volatile semiconductor storage device having ferroelectric film, capacitor having ferroelectric film and its manufacture