JPH08176716A - Wear resistant aluminum based sintered alloy and manufacture thereof - Google Patents

Wear resistant aluminum based sintered alloy and manufacture thereof

Info

Publication number
JPH08176716A
JPH08176716A JP33571294A JP33571294A JPH08176716A JP H08176716 A JPH08176716 A JP H08176716A JP 33571294 A JP33571294 A JP 33571294A JP 33571294 A JP33571294 A JP 33571294A JP H08176716 A JPH08176716 A JP H08176716A
Authority
JP
Japan
Prior art keywords
alloy
powder
phase
primary crystal
grain size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP33571294A
Other languages
Japanese (ja)
Other versions
JP3060022B2 (en
Inventor
Zenzo Ishijima
善三 石島
Junichi Ichikawa
淳一 市川
Hideji Sasaki
秀二 佐々木
Hideo Yomo
英雄 四方
Hideo Urata
秀夫 浦田
Shoji Kawase
祥司 川瀬
Junichi Ueda
順一 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Resonac Corp
Original Assignee
Honda Motor Co Ltd
Hitachi Powdered Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd, Hitachi Powdered Metals Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP6335712A priority Critical patent/JP3060022B2/en
Priority to US08/385,988 priority patent/US5545487A/en
Priority to DE69503077T priority patent/DE69503077T2/en
Priority to EP95101854A priority patent/EP0669404B1/en
Publication of JPH08176716A publication Critical patent/JPH08176716A/en
Application granted granted Critical
Publication of JP3060022B2 publication Critical patent/JP3060022B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE: To impart an excellent mechanical strength and wear resistance by specifying composition and making an alloy with a mottled structure with an Al-Si based alloy phase having dispersed primary crystal Si and with an Al solid solution. CONSTITUTION: The overall composition by wt.% is such that 2.4-23.5% Si, 2-5% Cu, 0.2-1.5% Mg; 0.01%-1% of one or more than one kind of transition metal selected from Ti, V, Cr, Mn, Fe, Co, Ni, Zr and Nb, and the balance Al with inevitable impurities. In addition, this sintered alloy is such that it shows a mottled structure with an Al-Si based alloy phase having dispersed primary crystal Si and with an Al solid solution phase, that the area of the Al solid solution phase is 20-80% in the cross section of the mottled structure, and that the grain size of the primary crystal Si is 5μm or less in the Al-Si based alloy phase of the surface part or at least of the anticipated sliding surface of the alloy. Furthermore, the thickness of the part, in which the maximum grain size of the primary crystal Si is 5 to 60μm in the Al-Si based alloy phase, is 0.05-1mm from the alloy surface.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、軽量で強度が高く、か
つ耐摩耗性であることを要求される各種の歯車、プーリ
ー、コンプレッサー用ベーン、コンロッド、ピストンな
どを製造するために好適なアルミニウム系焼結合金およ
びその製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to aluminum suitable for manufacturing various gears, pulleys, compressor vanes, connecting rods, pistons, etc. which are required to be lightweight, high in strength, and wear resistant. The present invention relates to a sintered alloy and a method for producing the same.

【0002】[0002]

【従来の技術】近年、機械要素は、機械効率の向上や省
エネルギーの要求により、軽量化材料への置換が進んで
いる。中でもアルミニウム系焼結合金は、軽量であるこ
とおよび鋳造合金に比べて、初晶Siを微細化でき、S
i含有量を多くできることなどの理由から、比強度と耐
摩耗性に優れたアルミニウム系合金として期待が高まっ
ている。
2. Description of the Related Art In recent years, mechanical elements have been increasingly replaced with lightweight materials in order to improve mechanical efficiency and save energy. Among them, aluminum-based sintered alloys are lighter in weight and can make primary crystal Si finer than cast alloys.
Due to the fact that the i content can be increased, expectations are rising as an aluminum-based alloy having excellent specific strength and wear resistance.

【0003】従来のアルミニウム系焼結合金としては、
例えば、特開昭53−128512号公報に開示され
た、組成が重量比でCu:0.2〜4%、Mg:0.2〜
2%、Si:10〜35%、残部がAlとなるように、
Al−10〜35%Si粉、銅粉、Mg粉、Al−Cu
粉、Cu−Mg粉、Al−Cu−Mg粉、Cu−Mg−
Si粉、Al−Cu−Mg−Si粉のうちより選ばれた
粉末、および必要に応じてAl粉を混合し、圧粉成形し
た後焼結して所望の製品を製造する方法がある。この方
法は各種の粉末を混ぜ合わせるいわゆる混合法である。
このような混合法によれば、軟質金属粉末を混合するこ
とができるので、粉末成形性がよいという特徴があり、
通常の圧粉成形−焼結の工程のみでも、液相焼結によれ
ばある程度の強度のものが得られるので、強度があまり
要求されない部材には適用することができる。
As a conventional aluminum-based sintered alloy,
For example, as disclosed in JP-A-53-128512, the composition is Cu: 0.2-4% by weight and Mg: 0.2-0.2 by weight.
2%, Si: 10 to 35%, the balance being Al,
Al-10 to 35% Si powder, copper powder, Mg powder, Al-Cu
Powder, Cu-Mg powder, Al-Cu-Mg powder, Cu-Mg-
There is a method of manufacturing a desired product by mixing powder selected from Si powder and Al-Cu-Mg-Si powder, and if necessary, Al powder, compacting and sintering. This method is a so-called mixing method of mixing various powders.
According to such a mixing method, since the soft metal powder can be mixed, there is a feature that the powder moldability is good,
Since liquid phase sintering can provide a material having a certain level of strength only in the ordinary steps of powder compaction-sintering, it can be applied to a member that does not require much strength.

【0004】また、特開昭62−10237号公報に記
載されているように、組成が重量比で、Si:10〜3
0%、Ni、Fe、Mnの1種または2種以上を合計で
1〜15%、必要に応じてCu:0.5〜5およびM
g:0.2〜3%、および残部のAlおよび不可避の不
純物からなる急冷凝固アルミニウム合金粉の圧粉体を熱
間鍛造して製造され、Al−Si系合金素地中に初晶S
iが均一に分散した組織の合金がある。合金法によれ
ば、混合法に比べて高い強度が達成される。しかし、急
冷凝固粉末は硬く、金型成形によるニアネットシェープ
化が困難であること、粉末に強固な酸化皮膜があるこ
と、および焼結時に液相を発生しないことなどのため
に、焼結のみでは粉末相互の十分な結合を達成すること
ができず、ビレット形状からの押出しや鍛造など、数回
の圧縮工程を必要とする。
Further, as described in Japanese Patent Laid-Open No. 62-10237, the composition is Si: 10 to 3 in weight ratio.
0%, 1 or 2 or more of Ni, Fe, Mn in total of 1 to 15%, and Cu: 0.5 to 5 and M as required.
g: 0.2 to 3%, and manufactured by hot forging a compact of rapidly solidified aluminum alloy powder consisting of the balance Al and unavoidable impurities, and primary crystal S in the Al-Si alloy base.
There is an alloy having a structure in which i is uniformly dispersed. The alloy method achieves higher strength than the mixing method. However, since the rapidly solidified powder is hard, it is difficult to form near net shape by mold forming, the powder has a strong oxide film, and no liquid phase is generated during sintering. However, it is impossible to achieve sufficient bonding between the powders, and several compression steps such as extrusion from a billet shape and forging are required.

【0005】さらに、混合法と合金法の組合せとして、
特開平5−156399号公報に記載されているよう
に、急冷凝固Al−Si系合金粉に所定量の純Al粉を
混合した粉を熱間鍛造して製造され、その組成が重量比
で、Si:12〜30%、FeおよびNiのうち1種ま
たは2種の成分1〜10%、必要に応じCu:1〜5
%、Mg:0.3〜2%のうち1種または2種の成分お
よび残部がAlおよび不可避の不純物からなる組成で、
微細な初晶Siが分散した共晶Al−Si素地中に、熱
間鍛造により変形したAl固溶体粒が5〜20容量%分
散した組織の合金がある。この合金はAl固溶体が接着
剤として作用し、硬質な粒界の相互の密着性を向上さ
せ、耐摩耗性と強度を向上させたものである。
Further, as a combination of the mixing method and the alloying method,
As described in Japanese Patent Laid-Open No. 5-156399, it is produced by hot forging a powder obtained by mixing a predetermined amount of pure Al powder with a rapidly solidified Al-Si alloy powder, and the composition thereof is a weight ratio. Si: 12 to 30%, one or two components of Fe and Ni, 1 to 10%, Cu: 1 to 5 if necessary
%, Mg: 0.3 to 2%, one or two components and the balance being Al and inevitable impurities,
There is an alloy having a structure in which Al solid solution grains deformed by hot forging are dispersed in an amount of 5 to 20% by volume in a eutectic Al-Si matrix in which fine primary crystal Si is dispersed. In this alloy, the Al solid solution acts as an adhesive to improve the mutual adhesion of hard grain boundaries and improve the wear resistance and strength.

【0006】ところで、本出願人は特願平6−3760
6号において、組成が重量%でAl−13〜30%Si
合金粉とAl粉を2:8〜8:2の比率で配合した粉末
に、Ti、V、Cr、Mn、Fe、Co、Ni、Zrお
よびNbより選ばれる1種もしくは2種以上の遷移金属
を0.2〜30%含有するCu−遷移金属合金粉、35
%以上のMgを含有するAl−Mg合金粉またはMg粉
を添加して混合し、圧粉成形した後焼結して、全体組成
が重量比で、Si:2.4〜23.5%、Cu:2〜5
%、Mg:0.2〜1.5%、前記遷移金属0.01〜1
%、および残部のAlおよび不可避不純物からなり、5
〜60μmの初晶Siが分散するAl−Si系合金相と
Al固溶体相との斑状組織を呈し、斑状組織面に占める
Al固溶体相の面積が20〜80%である合金を提案し
た。この合金の製造方法においては、成形性に優れ、合
金は粒界への金属間化合物の析出が防止され、斑状組織
であると共にAl−Si合金相中の初晶Siの最大粒径
を限定したことにより、引張り強さが380MPa程度
で伸びが大きく、また摩擦摺動中に脱落した初晶Si粒
子をAl固溶体相が埋め込む効果を有していることから
特に耐摩耗性に優れた合金を得ることができる。
By the way, the present applicant has filed Japanese Patent Application No. 6-3760.
In No. 6, the composition is Al-13 to 30% Si by weight%.
One or more transition metals selected from Ti, V, Cr, Mn, Fe, Co, Ni, Zr, and Nb in a powder obtained by mixing alloy powder and Al powder in a ratio of 2: 8 to 8: 2. Cu-transition metal alloy powder containing 0.2 to 30% of 35,
% Or more Mg-containing Al-Mg alloy powder or Mg powder is added and mixed, followed by compacting and sintering, and the total composition by weight ratio is Si: 2.4 to 23.5%, Cu: 2-5
%, Mg: 0.2-1.5%, the transition metal 0.01-1
%, And the balance Al and unavoidable impurities, and 5
An alloy was proposed in which the Al-Si alloy phase in which primary crystal Si of -60 μm is dispersed and the Al solid solution phase are present, and the Al solid solution phase occupies 20% to 80% of the area of the mottled surface. In the method for producing the alloy, the formability is excellent, the alloy is prevented from precipitating the intermetallic compound at the grain boundary, and has a mottled structure, and the maximum grain size of the primary crystal Si in the Al-Si alloy phase is limited. As a result, the tensile strength is about 380 MPa, the elongation is large, and the Al solid solution phase has the effect of embedding the primary crystal Si particles that have fallen off during frictional sliding, so that an alloy with particularly excellent wear resistance is obtained. be able to.

【0007】[0007]

【発明が解決しようとする課題】このように、上記の焼
結合金は耐摩耗性に優れ機械強度も高いものであるが、
更に機械強度の高い合金であれば、その用途を拡大し、
また合金の信頼性を向上させることができる。本発明の
目的は、機械的強度がより高く、耐摩耗性に優れたアル
ミニウム系焼結合金を提供することにある。
Thus, although the above-mentioned sintered alloy has excellent wear resistance and high mechanical strength,
If the alloy has higher mechanical strength, expand its applications,
Moreover, the reliability of the alloy can be improved. An object of the present invention is to provide an aluminum-based sintered alloy having higher mechanical strength and excellent wear resistance.

【0008】[0008]

【課題を解決するための手段】本発明者らは、上記のよ
うな課題を解決するために、鋭意検討を行なった結果本
発明に到達したものである。すなわち、本発明の焼結合
金は、全体組成が重量比でSi:2.4〜23.5%、C
u:2〜5%、Mg:0.2〜1.5%、Ti、V、C
r、Mn、Fe、Co、Ni、ZrおよびNbから選ば
れる1種もしくは2種以上の遷移金属:0.01〜1
%、残部のAlおよび不可避不純物からなり、初晶Si
が分散しているAl−Si系合金相とAl固溶体相とが
斑状組織を呈し、斑状組織の断面に占めるAl固溶体相
の面積が20〜80%であるアルミニウム系焼結合金で
あって、合金表面部または少なくとも摺動予定面部のA
l−Si系合金相中の初晶Siの最大粒径が5〜60μ
mであり、その他の部分の初晶Siの粒径が5μm以下
であることを特徴とするものである。なお、焼結合金部
材の摺動する部位または部材全体の表面に分散する前記
5〜60μmの初晶Siの層は表面から深さ0.05〜
1mmの範囲にあることが好ましい。
The present inventors have arrived at the present invention as a result of extensive studies to solve the above problems. That is, the sintered alloy of the present invention has a total composition of Si: 2.4 to 23.5% by weight and C
u: 2-5%, Mg: 0.2-1.5%, Ti, V, C
One or more transition metals selected from r, Mn, Fe, Co, Ni, Zr and Nb: 0.01 to 1
%, Balance Al and inevitable impurities, and primary crystal Si
Is an aluminum-based sintered alloy in which the Al-Si alloy phase in which is dispersed and the Al solid solution phase have a mottled structure, and the area of the Al solid solution phase occupying the cross section of the mottled structure is 20 to 80%. A of the surface part or at least the sliding surface part
The maximum grain size of primary Si in the 1-Si alloy phase is 5 to 60 μm.
m, and the grain size of the primary crystal Si in the other portions is 5 μm or less. The layer of the primary crystal Si of 5 to 60 μm dispersed on the sliding portion of the sintered alloy member or the surface of the entire member has a depth of 0.05 to 5
It is preferably in the range of 1 mm.

【0009】また、本発明におけるアルミニウム系焼結
合金部材の製造方法としては、Si含有量が13〜30
重量%のAl−Si合金粉とAl粉を2:8〜8:2に
配合した粉末に、Ti、V、Cr、Mn、Fe、Co、
Ni、ZrおよびNbから選ばれる1種もしくは2種以
上の遷移金属の含有量が0.2〜30重量%のCu−遷
移金属合金粉、Mg含有量が35重量%以上のAl−M
g合金粉またはMg粉を添加して、全体組成が重量比
で、Si:2.4〜23.5%、Cu:2〜5%、Mg:
0.2〜1.5%、Ti、V、Cr、Mn、Fe、Co、
Ni、ZrおよびNbから選ばれる1種もしくは2種以
上の遷移金属:0.01〜1%、残部のAlおよび不可
避不純物からなる混合粉とし、この混合粉末を圧粉成形
した後焼結して、最大粒径が5μm以下の初晶Siが分
散しているAl−Si系合金相とAl固溶体相との斑状
組織を呈する焼結合金とし、この焼結合金の表面を加熱
して、合金内部に存在するAl−Si系合金相中の初晶
Siの粒径は5μm以下にとどめた状態で、合金表面部
に存在するAl−Si系合金相中の初晶Siの最大粒径
を5〜60μmに成長させ、冷却することを特徴とす
る。
Further, in the method for producing an aluminum-based sintered alloy member according to the present invention, the Si content is 13 to 30.
Ti, V, Cr, Mn, Fe, Co, powders prepared by mixing Al-Si alloy powder and Al powder in a weight ratio of 2: 8 to 8: 2,
Cu-transition metal alloy powder containing 0.2 to 30 wt% of transition metal selected from Ni, Zr and Nb, Al-M containing 35 wt% or more of Mg
With the addition of g alloy powder or Mg powder, the total composition is in a weight ratio of Si: 2.4 to 23.5%, Cu: 2 to 5%, Mg:
0.2-1.5%, Ti, V, Cr, Mn, Fe, Co,
One or more transition metals selected from Ni, Zr, and Nb: 0.01 to 1%, a mixed powder consisting of the balance Al and inevitable impurities is formed, and the mixed powder is compacted and sintered. , A sintered alloy exhibiting a mottled structure of an Al-Si alloy phase in which primary crystal Si having a maximum grain size of 5 μm or less is dispersed and an Al solid solution phase, and the surface of this sintered alloy is heated to give the inside of the alloy. In the state in which the grain size of primary crystal Si in the Al-Si alloy phase present in the alloy is 5 μm or less, the maximum grain size of the primary crystal Si in the Al-Si alloy phase present in the alloy surface is 5 to 5 μm. It is characterized in that it is grown to 60 μm and cooled.

【0010】上記の製造方法において、表面全体または
合金部材が用いられる際に摺動する部位の加熱は、高周
波加熱、プラズマ加熱、レーザー加熱などにより達成す
ることができる。
In the above-mentioned manufacturing method, heating of the entire surface or a portion which slides when the alloy member is used can be achieved by high frequency heating, plasma heating, laser heating or the like.

【0011】[0011]

【作用】以下に本発明の各構成要件についてさらに説明
する。 (1)斑状組織 斑状組織は、初晶Siが分散したAl−Si系合金相と
Al固溶体相とで構成される。初晶Siが分散したAl
−Si系合金相は、Al−Si合金中にMg、Cuおよ
び遷移金属元素が拡散した固溶体であって、この素地中
に初晶Siが分散している比較的硬質な相であり、主に
材料強度および耐摩耗性に寄与する。
The function of the present invention will be further described below. (1) Mottled structure The mottled structure is composed of an Al-Si alloy phase in which primary crystal Si is dispersed and an Al solid solution phase. Al with primary crystal Si dispersed
The -Si alloy phase is a solid solution in which Mg, Cu, and a transition metal element are diffused in an Al-Si alloy, and is a relatively hard phase in which primary Si is dispersed in the matrix, and is mainly Contributes to material strength and wear resistance.

【0012】Al固溶体相は、純アルミニウム粉の形で
添加されたAl中に、Si、Mg、Cuおよび遷移金属
が拡散した固溶体であって、比較的軟質であり、合金の
靭性に寄与するとともに、初期摩耗を受けてAl−Si
系合金相間に油だまりを形成して潤滑性および摩擦中の
相手材とのなじみ性に寄与する。また、塑性変形し易い
ので、摺動面近傍の硬質な初晶Si粒子が摩耗粉として
脱落しそうになったり、脱落した場合に、それらを埋没
させ、Si粒子が研磨粒子として作用することを防ぐ効
果がある。
The Al solid solution phase is a solid solution in which Si, Mg, Cu and a transition metal are diffused in Al added in the form of pure aluminum powder, is relatively soft, and contributes to the toughness of the alloy. , Al-Si after initial wear
It forms an oil pool between the alloy phases and contributes to lubricity and compatibility with the mating material during friction. Further, since it is easily plastically deformed, hard primary crystal Si particles in the vicinity of the sliding surface are likely to fall off as abrasion powder, or if they fall off, they are buried and the Si particles are prevented from acting as abrasive particles. effective.

【0013】前述の初晶Si粒子が分散したAl−Si
系合金相と軟質なAl固溶体相の二つの相は、Al−S
i系合金相が合金断面の面積比で20%未満のときは、
初晶Siの量が少ないため、また、80%を越える場合
についても、摩擦摺動により脱落したSi粒子を埋没さ
せるAl固溶体相の量が少ないために、耐摩耗性が著し
く低くなる。したがって、2つの相が、合金断面の面積
比で20〜80:80〜20の割合で斑状に混在した複
合組織であるときに、相互の作用によって強度および耐
摩耗性が良好になる。
Al-Si in which the primary Si particles are dispersed
The two phases of the Al-based alloy phase and the soft Al solid solution phase are Al-S
When the i-based alloy phase is less than 20% in area ratio of the alloy cross section,
Since the amount of primary crystal Si is small, and even when it exceeds 80%, the wear resistance is remarkably lowered because the amount of the Al solid solution phase in which the Si particles dropped by frictional sliding are buried is small. Therefore, when the two phases have a composite structure in which the area ratio of the alloy cross section is mixed in the shape of 20-80: 80-20, the strength and the wear resistance are improved by the mutual action.

【0014】(2)Si アルミニウム合金のSiは、熱膨張係数の低下および耐
摩耗性の向上に寄与する。全体組成からみたSiの量
は、前述の初晶Siが分散したAl−Si系合金相とA
l固溶体相とが斑状組織を呈するような範囲を選択する
必要があり、2.4〜23.5重量%の範囲が適当であ
る。全体組成中のSi量が少な過ぎると、初晶Siが分
散したAl−Si系合金相中のSi量が少ないか、ある
いはAl−Si系合金相の量が少なくなることになり、
耐摩耗性に寄与する初晶Siの量が少ないために耐摩耗
性が不十分となる。一方、Si量が多過ぎると、Al−
Si系合金相中のSi量が多いか、あるいはAl−Si
系合金相の量が多くなるために、靭性が低下し、かつ摺
動時に脱落した初晶Si粒子を埋め込むAl固溶体相の
量が少なく、斑状組織の効果がなくなるため却って摩耗
が進行する。
(2) Si Si of the aluminum alloy contributes to a reduction in the coefficient of thermal expansion and an improvement in wear resistance. The amount of Si as seen from the overall composition is the same as that of the Al-Si alloy phase in which the above-mentioned primary crystal Si is dispersed and A
It is necessary to select a range in which the solid solution phase exhibits a patchy structure, and a range of 2.4 to 23.5% by weight is suitable. When the amount of Si in the overall composition is too small, the amount of Si in the Al-Si alloy phase in which primary crystal Si is dispersed is small, or the amount of the Al-Si alloy phase becomes small.
Since the amount of primary crystal Si that contributes to the wear resistance is small, the wear resistance becomes insufficient. On the other hand, if the amount of Si is too large, Al-
A large amount of Si in the Si-based alloy phase, or Al-Si
Since the amount of the system-based alloy phase is increased, the toughness is decreased, and the amount of the Al solid solution phase that fills the primary crystal Si particles that have fallen off during sliding is small.

【0015】SiはAl−Si合金粉の形で添加される
が、初晶Siが析出するためには、合金粉末中のSi含
有量は13重量%以上必要であり、また、Si含有量が
30重量%を越えると粉末製造時の溶湯温度が高くなる
ため、Al−Si合金粉中のSi含有量は13〜30重
量%が適当である。
Si is added in the form of Al-Si alloy powder, but in order for the primary crystal Si to precipitate, the Si content in the alloy powder must be 13% by weight or more, and the Si content must be If it exceeds 30% by weight, the temperature of the molten metal at the time of powder production becomes high. Therefore, the Si content in the Al-Si alloy powder is suitably 13 to 30% by weight.

【0016】(3)Mg Mgは焼結中に液相を生じて素地中に固溶し、焼結の促
進、および時効析出するMg2Siによる素地の強化お
よび耐摩耗性の向上の効果を示す。Mgの量は、全体組
成で0.2重量%未満では上記の効果が不十分であり、
一方1.5%より多く添加してもそれ以上の添加効果を
呈するわけではないので0.2〜1.5重量%の範囲が望
ましい。
(3) Mg Mg produces a liquid phase during sintering to form a solid solution in the matrix, which promotes sintering, and has the effect of strengthening the matrix and improving wear resistance by Mg 2 Si that precipitates by aging. Show. If the total amount of Mg is less than 0.2% by weight, the above effect is insufficient.
On the other hand, addition of more than 1.5% does not exhibit the effect of addition, so the range of 0.2-1.5% by weight is desirable.

【0017】また、添加手段としては、Mg含有量が3
5重量%以上のAl−Mg合金粉またはMg粉の形態で
行う。これは、Al−Mg二元系合金の融点が、Mg含
有量33〜70重量%の間において460℃程度の低い
値を示すためである。すなわち純粋なMg粉の場合に
は、焼結過程でAl素地と固相拡散してMg濃度が低下
することにより液相が発生する。一方Al−Mg合金粉
を用いる場合には、Mg含有量を33重量%とすると、
前記と同様にAl素地との拡散でMg濃度が低下するこ
とにより融点が上昇して有効に液相を利用することがで
きないので、Mg含有量は35重量%以上とすることが
望ましい。
As a means of addition, the Mg content is 3
It is performed in the form of 5 wt% or more of Al-Mg alloy powder or Mg powder. This is because the Al—Mg binary alloy has a low melting point of about 460 ° C. when the Mg content is 33 to 70 wt%. That is, in the case of pure Mg powder, a liquid phase is generated due to the solid phase diffusion with the Al base material during the sintering process to lower the Mg concentration. On the other hand, when using Al-Mg alloy powder, if the Mg content is 33% by weight,
Similarly to the above, since the Mg concentration decreases due to diffusion with the Al base material, the melting point rises and the liquid phase cannot be effectively utilized, so the Mg content is preferably 35% by weight or more.

【0018】(4)Cuおよび遷移金属 CuはAl合金素地を強化する元素であり、時効処理に
より一層大きな効果を示すが、2重量%未満では所望の
強度向上が認められず、また5重量%を越えると粉末粒
界近傍においてCuを主成分とする金属間化合物が多量
に析出して靭性が低下するので好ましくない。CuをC
u粉の形態で添加した場合に、Cuを素地に固溶させる
ために必要な加熱を行うと、溶製材料のように初晶Si
が粗大化し、反対に加熱の温度を下げ時間を短縮する
と、素地の粒界にCuの金属間化合物が残存して強度の
低下を招く。そこで、適量の遷移金属(Ti、V、C
r、Mn、Fe、Co、Ni、Zr、Nb)を共存させ
ると、溶体化および時効処理により、素地中に過飽和に
固溶したCuが時効析出する際に、遷移金属とCuおよ
びSiが結合し、素地中のCuおよびSiの量を減少さ
せ、その分だけ粉末粒界に析出した金属間化合物のCu
が素地中に拡散するため、粒界に析出する金属間化合物
を消失させることが可能となる。
(4) Cu and Transition Metals Cu is an element that strengthens the Al alloy substrate, and exhibits a greater effect by aging treatment, but if it is less than 2% by weight, the desired strength improvement is not observed, and 5% by weight. If it exceeds, the intermetallic compound containing Cu as a main component is precipitated in a large amount in the vicinity of the powder grain boundaries, and the toughness decreases, which is not preferable. Cu to C
When added in the form of u powder, if the heating necessary for solid solution of Cu in the matrix is carried out, primary crystal Si will be obtained like a melted material.
However, if the heating temperature is lowered and the time is shortened, the intermetallic compound of Cu remains at the grain boundaries of the base material, resulting in a decrease in strength. Therefore, an appropriate amount of transition metal (Ti, V, C
r, Mn, Fe, Co, Ni, Zr, Nb) coexist with the transition metal and Cu and Si when the supersaturated solid solution Cu in the matrix is aged and precipitated by solution treatment and aging treatment. However, the amount of Cu and Si in the matrix is reduced, and Cu of the intermetallic compound precipitated in the powder grain boundaries is reduced accordingly.
Since it diffuses into the matrix, it becomes possible to eliminate the intermetallic compound that precipitates at the grain boundaries.

【0019】全体組成中の遷移金属の量は、前記のCu
含有量の範囲において0.01重量%未満ではその効果
が認められず、一方、1重量%を越えると遷移金属を主
成分とする金属間化合物が析出して靭性が低下するため
0.01から1重量%が好適である。遷移金属は単体で
添加すると拡散し難いため、Cu−遷移金属合金粉の形
態で添加することが好ましいが、合金粉中の遷移金属量
は全体組成として必要なCu量および遷移金属量を考慮
して、0.2重量%以上が必要であるが、30重量%を
越えると合金粉末の融点が高くなり、固相拡散によって
融点が低下しても液相を発生しなくなるため0.2〜1
0重量%の範囲が好適である。
The amount of transition metal in the overall composition is the above-mentioned Cu.
If the content is less than 0.01% by weight, the effect is not observed. On the other hand, if it exceeds 1% by weight, an intermetallic compound containing a transition metal as a main component is precipitated to lower the toughness. 1% by weight is preferred. Since it is difficult to diffuse the transition metal when added alone, it is preferable to add it in the form of Cu-transition metal alloy powder, but the amount of transition metal in the alloy powder should be adjusted considering the amount of Cu and the amount of transition metal required for the overall composition. 0.2% by weight or more is required, but if it exceeds 30% by weight, the melting point of the alloy powder becomes high, and even if the melting point is lowered due to solid phase diffusion, a liquid phase is not generated, so that 0.2 to 1%.
A range of 0% by weight is preferred.

【0020】(5)Al−Si系合金相中の初晶Siの
粒径 初晶Si粒子の断面形状は、粒径が小さいものは縦横の
寸法がほぼ同じで円形に近いが、大きい粒子は小さい粒
子が集合して凝集したり、粒成長したものと考えられ、
不規則な形状を示す。最大粒径とは、このような不規則
な形状をした粒子の両端距離の最長寸法を表したもので
ある。
(5) Grain size of primary crystal Si in Al-Si alloy phase The cross-sectional shape of primary crystal Si particles is similar to those of small grain size in the vertical and horizontal directions and close to a circle, but large grains are It is considered that small particles aggregated and aggregated, or that they grew.
It shows an irregular shape. The maximum particle diameter represents the longest dimension of the distance between both ends of such irregularly shaped particles.

【0021】初晶Siの粒径が大きくなると、硬質の初
晶Si粒子が突起物の状態で相手材を引っかき、相手材
を摩耗させる。一方、初晶Siの量が少ないか、または
初晶Siの粒径が小さいと、摩擦摺動時に素地より脱落
し、脱落した初晶Si粒子が研磨粒子として作用するた
め摩耗が進行する。したがって、耐摩耗性の観点から初
晶Si粒径は適度の値であることが必要であり、最大粒
径は5〜60μmの範囲が好ましい。
When the grain size of the primary crystal Si becomes large, the hard primary crystal Si particles scratch the mating material in the state of protrusions and abrade the mating material. On the other hand, when the amount of the primary crystal Si is small or the grain size of the primary crystal Si is small, the primary crystal Si particles fall off from the base material during frictional sliding, and the primary crystal Si particles that have fallen off act as abrasive particles, which promotes wear. Therefore, from the viewpoint of wear resistance, the primary crystal Si grain size needs to be an appropriate value, and the maximum grain size is preferably in the range of 5 to 60 μm.

【0022】一方、強度の点から考えると、初晶Siが
大きいほど強度や延性が低くなり、初晶Siの粒径が小
さいほど強度や延性が高くなるので好ましく、5μm以
下が好適である。そこで、摩擦部材の表面もしくは少な
くとも摺動する部位の初晶Siは、耐摩耗性を考慮して
最大粒径を5〜60μmにすると共に、内部の初晶Si
は、強度や延性を考慮して粒径を5μm以下に構成する
ことによって、耐摩耗性と強度、延性を共に向上させる
ことが可能となる。
On the other hand, from the viewpoint of strength, the larger the primary crystal Si, the lower the strength and the ductility, and the smaller the grain size of the primary Si, the higher the strength and the ductility. Therefore, 5 μm or less is preferable. Therefore, the primary crystal Si of the surface of the friction member or at least the sliding portion has a maximum grain size of 5 to 60 μm in consideration of wear resistance, and the primary crystal Si inside
By considering the strength and the ductility, the grain size is set to 5 μm or less, so that it becomes possible to improve both the wear resistance and the strength and the ductility.

【0023】また、最大粒径が5〜60μmの初晶Si
が分散しているAl−Si系合金相の表層の厚さは、部
材が使用される摩擦環境により異なるが、0.05mm
以下では初期摩耗時に耐摩耗性に寄与する5〜60μm
の初晶Si粒子が脱落して耐摩耗性向上の効果がなくな
るおそれがあり、一方、表層厚さが1mmを越えても、
それに応じて耐摩耗性がさらに向上するわけではなく、
内部の強度および靭性に寄与する部分が減少するので、
5〜60μmの初晶Siが分散している層の厚さは0.
05〜1mmの範囲であることが好ましい。
Further, primary crystal Si having a maximum grain size of 5 to 60 μm
The thickness of the surface layer of the Al-Si alloy phase in which is dispersed is 0.05 mm, although it depends on the friction environment in which the member is used.
Below, 5 to 60 μm that contributes to wear resistance during initial wear
There is a possibility that the primary crystal Si particles of will fall off and the effect of improving wear resistance will be lost. On the other hand, even if the surface layer thickness exceeds 1 mm,
Wear resistance does not improve further accordingly,
Since the part that contributes to the internal strength and toughness is reduced,
The thickness of the layer in which 5 to 60 μm of primary crystal Si is dispersed is 0.1.
It is preferably in the range of 05 to 1 mm.

【0024】図1は本発明の焼結合金組織の断面の顕微
鏡視野を模式的に表したものである。白い領域はAl固
溶体相2であり、黒点を有する領域はAl−Si合金相
2であり、黒点は初晶Siである。合金表面4付近の初
晶Si3aの平均粒径は大きく、一方、内部の初晶Si
3bの平均粒径は比較的微細である。このような初晶S
i3a、3bの構成は、あらかじめ合金全体を初晶Si
の粒径が5μm以下になるように焼結した焼結合金の表
面を、高周波加熱、プラズマ加熱あるいはレーザー加熱
などの加熱手段により、0.05〜1mmの深さにわた
って初晶Siが成長して最大粒径が5〜60μmになる
まで加熱することによって得ることができる。また、必
要な部分だけを加熱して特定の表面部位のみを改質する
ことも可能である。
FIG. 1 schematically shows a microscopic field of a cross section of the sintered alloy structure of the present invention. The white region is the Al solid solution phase 2, the region having the black dots is the Al-Si alloy phase 2, and the black dots are the primary crystal Si. The average grain size of the primary crystal Si3a near the alloy surface 4 is large, while the primary crystal Si3a inside
The average particle size of 3b is relatively fine. Such a primary crystal S
The structure of i3a and 3b has a pre-crystallized Si
On the surface of the sintered alloy sintered to have a grain size of 5 μm or less by primary heating by a heating means such as high-frequency heating, plasma heating or laser heating to a depth of 0.05 to 1 mm. It can be obtained by heating until the maximum particle size becomes 5 to 60 μm. Further, it is also possible to heat only a necessary portion to modify only a specific surface portion.

【0025】[0025]

【実施例】以下に実施例により本発明をさらに説明す
る。なお、成分量は特に付言しない限り重量基準であ
る。 [実施例1]原料粉として、Si含有量が15%、17
%、20%、25%および30%の5種類のAl−Si
合金粉、純Al粉、Cu−4%Ni合金粉およびAl−
50%Mg合金粉を、表1から表3に示す割合で混合
し、所定の形状に成形を行ない、400℃で脱ろうし、
540℃で10分間の焼結を行った。その後、熱間鍛造
によって密度比を100%とし、490℃で溶体化処理
および240℃で時効処理行った。各試料の組織は、A
l−Si系合金相とAl固溶体相の断面面積比について
はAl−Si合金粉と純Al粉の配合割合と同様になっ
ており、Al−Si系合金相中の初晶Siの最大粒径は
3〜4μmであった。
EXAMPLES The present invention will be further described below with reference to examples. The component amounts are by weight unless otherwise specified. [Example 1] As a raw material powder, Si content is 15%, 17
%, 20%, 25% and 30% of five types of Al-Si
Alloy powder, pure Al powder, Cu-4% Ni alloy powder and Al-
50% Mg alloy powder is mixed at a ratio shown in Table 1 to Table 3, shaped into a predetermined shape, and dewaxed at 400 ° C.,
Sintering was performed at 540 ° C. for 10 minutes. Then, the density ratio was set to 100% by hot forging, and solution treatment was performed at 490 ° C and aging treatment was performed at 240 ° C. The tissue of each sample is A
The cross-sectional area ratio of the 1-Si alloy phase and the Al solid solution phase is the same as the mixing ratio of the Al-Si alloy powder and the pure Al powder, and the maximum grain size of the primary crystal Si in the Al-Si alloy phase. Was 3 to 4 μm.

【0026】次に、これらの試料を高周波誘導炉によっ
て加熱し、試料1〜19を得た。得られた各試料につい
て、成分組成、斑状組織の断面に占めるAl−Si系合
金相とAl固溶体相の面積比、高周波加熱によって成長
させた試料表面部の初晶Siの最大粒径、成長させた初
晶Siが分散する部分の表面からの層の厚さおよび試料
内部の初晶Siの最大粒径を表1から表3に示す。ま
た、各試料についてピンオンディスク摩擦摩耗試験によ
る試料の摩耗量を測定した。その結果を表1から表3に
併せて示す。ピンオンディスク摩擦摩耗試験は、試料を
ピンとし、相手のディスクとしてS48C材(機械構造
用炭素鋼)の熱処理品を用い、鉱油潤滑下に、面圧49
MPa、摩擦速度5m/秒の条件で行った。
Next, these samples were heated in a high frequency induction furnace to obtain samples 1 to 19. For each of the obtained samples, the component composition, the area ratio of the Al-Si alloy phase and the Al solid solution phase occupying the cross section of the mottled structure, the maximum grain size of primary crystal Si on the surface of the sample grown by high frequency heating, Tables 1 to 3 show the thickness of the layer from the surface of the portion where the primary crystal Si is dispersed and the maximum grain size of the primary crystal Si inside the sample. Further, the amount of wear of each sample was measured by a pin-on-disk friction and wear test. The results are also shown in Tables 1 to 3. In the pin-on-disk friction and wear test, a sample was used as a pin, a heat-treated product of S48C material (carbon steel for machine structure) was used as a mating disk, and the surface pressure was 49 under mineral oil lubrication.
It was performed under the conditions of MPa and a friction speed of 5 m / sec.

【0027】表1から表3に示す結果によれば、表面部
の初晶Siの最大粒径は24〜25μmである。Al−
Si系合金相とAl固溶体相の面積比が8:2から2:
8の範囲を満たしていない試料1、3、10、13、1
5、18および19は、焼付きを生じるか摩耗量が多く
なっている。その他の試料は、全体組成中のSi量が所
定の範囲内であり、斑状組織に占めるAl−Si系合金
相とAl固溶体相の断面面積比が所定の範囲内であり、
その場合は摩耗量が少ない。
According to the results shown in Tables 1 to 3, the maximum grain size of the primary crystal Si on the surface portion is 24 to 25 μm. Al-
The area ratio of the Si-based alloy phase and the Al solid solution phase is from 8: 2 to 2:
Samples 1, 3, 10, 13, 1 which do not satisfy the range of 8
Nos. 5, 18 and 19 are seized or have a large amount of wear. Other samples, the amount of Si in the entire composition is within a predetermined range, the cross-sectional area ratio of the Al-Si alloy phase and the Al solid solution phase occupying the mottled structure is within a predetermined range,
In that case, the amount of wear is small.

【0028】[0028]

【表1】 [Table 1]

【0029】[0029]

【表2】 [Table 2]

【0030】[0030]

【表3】 [Table 3]

【0031】[実施例2]Al−20Si合金粉、純A
l粉、Cu−4%Ni合金粉、Al−50%Mg合金粉
を表4および表5に示す割合で混合し、前記実施例と同
様の条件で、成形、焼結、熱間鍛造、溶体化処理および
時効処理行い、さらに高周波加熱を行って試料20〜2
8を得た。また、同様の条件で製作し、高周波加熱を行
わない時効処理試料29〜32を得た。
[Example 2] Al-20Si alloy powder, pure A
1 powder, Cu-4% Ni alloy powder, and Al-50% Mg alloy powder were mixed in the ratios shown in Tables 4 and 5, and molding, sintering, hot forging, and solution were performed under the same conditions as in the above-mentioned Examples. Samples 20 to 2 after aging treatment and aging treatment and further high frequency heating
Got 8. Also, aging-treated samples 29 to 32 which were manufactured under the same conditions and were not subjected to high frequency heating were obtained.

【0032】得られた試料20〜32について、成分組
成、斑状組織の断面に占めるAl−Si系合金相とAl
固溶体相の面積比、高周波加熱により成長させた摺動部
位の初晶Siの最大粒径、成長させた初晶Siが分散す
る部分の表面からの層の厚さおよび試料内部の初晶Si
の最大粒径を表4および表5に示す。また、各試料の引
張り強さとピンオンディスク摩擦摩耗試験による試料の
摩耗量を測定した結果を同表に併せて示す。
Regarding the obtained samples 20 to 32, the component composition, the Al--Si alloy phase and Al occupying the cross section of the mottled structure
Area ratio of solid solution phase, maximum grain size of primary crystal Si in sliding portion grown by high frequency heating, thickness of layer from surface of portion where grown primary crystal Si is dispersed, and primary crystal Si in sample
The maximum particle size of is shown in Tables 4 and 5. In addition, the results of measuring the tensile strength of each sample and the amount of wear of the sample by the pin-on-disk friction and wear test are also shown in the same table.

【0033】これらの表に示す結果によれば、摩耗量は
摺動部位の初晶Siの最大粒径が5μm未満の試料29
および初晶Siの最大粒径が60μmを越える試料28
は摩耗量が著しく多いことが判る。また、表面の初晶S
iの最大粒径が5〜60μmの範囲内であっても、その
層の厚さが0.05mmより小さい試料21も著しく摩
耗している。一方、表面の初晶Siの最大粒径が大きく
なると引張り強さが低くなるが、内部の初晶Siの最大
粒径が小さい試料は、内部まで粒径が大きい試料30〜
32に比べて高い引張り強さを示し、表面に分散する成
長した初晶Siの層の厚さが小さいほど高い引張り強さ
を示すことが判る。以上より、初晶Siが分散している
Al−Si系合金相とAl固溶体相との斑状組織を示す
アルミニウム系焼結合金において、斑状組織の断面に占
めるAl固溶体相の面積が20〜80%であり、表面に
分散している初晶Siの最大粒径が5〜60μmで、そ
の他の部分に分散しているAl−Si系合金相中の初晶
Siの粒径が5μm以下であり、最大粒径が5〜60μ
mの初晶Siが分散した層の厚さが0.05〜1mmで
あるアルミニウム系焼結合金からなる部材は、耐摩耗性
に優れ、引張り強さが大きいことが判る。
According to the results shown in these tables, the amount of wear was found in Sample 29 in which the maximum grain size of primary Si in the sliding portion was less than 5 μm.
And sample 28 in which the maximum grain size of primary Si exceeds 60 μm
It can be seen that the amount of wear is extremely large. In addition, the primary crystal S on the surface
Even if the maximum particle size of i is in the range of 5 to 60 μm, the sample 21 having a layer thickness of less than 0.05 mm is significantly worn. On the other hand, when the maximum grain size of primary crystal Si on the surface becomes large, the tensile strength becomes low, but the sample having a small maximum grain size of internal primary Si has a large grain size to the inside.
It can be seen that the tensile strength is higher than that of No. 32, and the smaller the thickness of the grown primary crystal Si layer dispersed on the surface, the higher the tensile strength. From the above, in an aluminum-based sintered alloy showing a mottled structure of an Al-Si alloy phase in which primary crystal Si is dispersed and an Al solid solution phase, the area of the Al solid solution phase in the cross section of the mottled structure is 20 to 80%. And the maximum grain size of the primary crystal Si dispersed on the surface is 5 to 60 μm, and the grain size of the primary crystal Si in the Al—Si alloy phase dispersed in the other portion is 5 μm or less, Maximum particle size is 5-60μ
It can be seen that the member made of the aluminum-based sintered alloy in which the layer of m of primary crystal Si dispersed has a thickness of 0.05 to 1 mm has excellent wear resistance and high tensile strength.

【0034】[0034]

【表4】 [Table 4]

【0035】[0035]

【表5】 [Table 5]

【0036】[0036]

【発明の効果】以上説明したように、本発明のアルミニ
ウム系焼結合金は、初晶Siが分散しているAl−Si
系合金相とAl固溶体相との斑状組織を呈し、斑状組織
の断面に占めるAl固溶体相の面積が20〜80%であ
り、表面から0.05〜1mmの深さのAl−Si系合
金相中の初晶Siの最大粒径が5〜60μmで、その他
の部分に分散している初晶Siの粒径が5μm以下に構
成したものであり、機械強度が高く、特に耐摩耗性に優
れたものである。したがって、軽量化が要求されている
各種軸受、歯車、プーリー、コンロッド、ピストンなど
の機械要素への適用が期待され、焼結部品の利用を拡大
することができる。
As described above, the aluminum-based sintered alloy of the present invention is Al-Si in which primary crystal Si is dispersed.
An Al-Si alloy phase having a mottled structure of a system alloy phase and an Al solid solution phase, the area of the Al solid solution phase occupying the cross section of the mottled structure is 20 to 80%, and a depth of 0.05 to 1 mm from the surface. The primary crystal Si has a maximum particle size of 5 to 60 μm, and the primary crystal Si dispersed in other parts has a particle size of 5 μm or less, and has high mechanical strength and particularly excellent wear resistance. It is a thing. Therefore, it is expected to be applied to various bearings, gears, pulleys, connecting rods, mechanical elements such as pistons, which are required to be reduced in weight, and the use of sintered parts can be expanded.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の焼結合金の組織を説明する拡大模式図
である。
FIG. 1 is an enlarged schematic view illustrating the structure of a sintered alloy of the present invention.

【符号の説明】[Explanation of symbols]

1 Al−Si系合金相 2 Al固溶体相 3a 初晶Si(最大粒径5〜60μm) 3b 初晶Si(粒径5μm以下) 4 焼結合金表面 DESCRIPTION OF SYMBOLS 1 Al-Si type | system | group alloy phase 2 Al solid solution phase 3a Primary crystal Si (maximum particle diameter 5-60 micrometers) 3b Primary crystal Si (particle diameter 5 micrometers or less) 4 Sintered alloy surface

フロントページの続き (72)発明者 四方 英雄 千葉県松戸市大金平1−48−1 (72)発明者 浦田 秀夫 埼玉県和光市中央1丁目4番1号 株式会 社本田技術研究所内 (72)発明者 川瀬 祥司 埼玉県和光市中央1丁目4番1号 株式会 社本田技術研究所内 (72)発明者 上田 順一 埼玉県和光市中央1丁目4番1号 株式会 社本田技術研究所内Front Page Continuation (72) Inventor Hideo Shikata 1-48-1 Okindaira, Matsudo City, Chiba Prefecture (72) Hideo Urata Inventor, Honda Technical Research Institute Ltd. 1-4-1 Chuo, Wako City, Saitama Prefecture (72) Inventor Shoji Kawase 1-4-1, Chuo, Wako-shi, Saitama, Ltd., Honda R & D Co., Ltd. (72) Inventor, Junichi Ueda, 1-4-1, Chuo, Wako, Saitama, Ltd., Honda R & D Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 全体組成が重量比でSi:2.4〜23.
5%、Cu:2〜5%、Mg:0.2〜1.5%、Ti、
V、Cr、Mn、Fe、Co、Ni、ZrおよびNbか
ら選ばれる1種もしくは2種以上の遷移金属:0.01
〜1%、残部のAlおよび不可避不純物からなり、初晶
Siが分散しているAl−Si系合金相とAl固溶体相
とが斑状組織を呈し、斑状組織の断面に占めるAl固溶
体相の面積が20〜80%であるアルミニウム系焼結合
金であって、合金表面部または少なくとも摺動予定面部
のAl−Si系合金相中の初晶Siの最大粒径が5〜6
0μmであり、その他の部分の初晶Siの粒径が5μm
以下であることを特徴とする耐摩耗性アルミニウム系焼
結合金。
1. A total composition of Si: 2.4 to 23 by weight ratio.
5%, Cu: 2-5%, Mg: 0.2-1.5%, Ti,
One or more transition metals selected from V, Cr, Mn, Fe, Co, Ni, Zr and Nb: 0.01
.About.1%, the balance consisting of Al and unavoidable impurities, and the Al--Si alloy phase in which primary Si is dispersed and the Al solid solution phase exhibit a mottled structure, and the area of the Al solid solution phase occupying the cross section of the mottled structure is The aluminum-based sintered alloy is 20 to 80%, and the maximum grain size of primary crystal Si in the Al-Si-based alloy phase of the alloy surface portion or at least the planned sliding surface portion is 5 to 6
0 μm, and the grain size of the primary crystal Si in other parts is 5 μm
A wear-resistant aluminum-based sintered alloy, characterized in that:
【請求項2】 Al−Si系合金相中の初晶Siの最大
粒径が5〜60μmである部分の厚さが、合金表面より
0.05〜1mmであることを特徴とする請求項1記載
の耐摩耗性アルミニウム系焼結合金。
2. The thickness of the portion where the maximum grain size of primary Si in the Al—Si alloy phase is 5 to 60 μm is 0.05 to 1 mm from the surface of the alloy. The wear-resistant aluminum-based sintered alloy described.
【請求項3】 Si含有量が13〜30重量%のAl−
Si合金粉とAl粉を2:8〜8:2に配合した粉末
に、Ti、V、Cr、Mn、Fe、Co、Ni、Zrお
よびNbから選ばれる1種もしくは2種以上の遷移金属
の含有量が0.2〜30重量%のCu−遷移金属合金
粉、Mg含有量が35重量%以上のAl−Mg合金粉ま
たはMg粉を添加して、全体組成が重量比でSi:2.
4〜23.5%、Cu:2〜5%、Mg:0.2〜1.5
%、Ti、V、Cr、Mn、Fe、Co、Ni、Zrお
よびNbから選ばれる1種もしくは2種以上の遷移金
属:0.01〜1%、残部のAlおよび不可避不純物か
らなる混合粉末とし、この混合粉末を圧粉成形した後焼
結して、最大粒径が5μm以下の初晶Siが分散してい
るAl−Si系合金相とAl固溶体相との斑組織を呈す
る焼結合金とし、この焼結合金の表面を加熱して、合金
表面部に存在するAl−Si系合金相中の初晶Siの最
大粒径を5〜60μmに成長させた後、冷却することを
特徴とする耐摩耗性アルミニウム系焼結合金の製造方
法。
3. Al- having a Si content of 13 to 30% by weight.
A powder prepared by mixing Si alloy powder and Al powder in a ratio of 2: 8 to 8: 2 is added to one or more transition metals selected from Ti, V, Cr, Mn, Fe, Co, Ni, Zr and Nb. Cu-transition metal alloy powder having a content of 0.2 to 30% by weight, Al-Mg alloy powder or Mg powder having a Mg content of 35% by weight or more is added, and the total composition is Si: 2.
4 to 23.5%, Cu: 2 to 5%, Mg: 0.2 to 1.5
%, One or more transition metals selected from Ti, V, Cr, Mn, Fe, Co, Ni, Zr, and Nb: 0.01 to 1%, with the balance being Al and unavoidable impurities. The mixed powder is compacted and then sintered to obtain a sintered alloy exhibiting a mottled structure of an Al-Si alloy phase in which primary crystal Si having a maximum grain size of 5 μm or less is dispersed and an Al solid solution phase. The surface of this sintered alloy is heated to grow the maximum grain size of primary crystal Si in the Al—Si alloy phase existing in the alloy surface portion to 5 to 60 μm, and then cooled. A method for producing a wear-resistant aluminum-based sintered alloy.
【請求項4】 前記焼結合金の表面を加熱する方法が、
高周波加熱、プラズマ加熱、レーザー加熱の何れかの方
法であることを特徴とする請求項3記載の耐摩耗性アル
ミニウム系焼結合金の製造方法。
4. The method for heating the surface of the sintered alloy comprises:
The method for producing a wear resistant aluminum-based sintered alloy according to claim 3, wherein the method is any one of high frequency heating, plasma heating and laser heating.
JP6335712A 1994-02-12 1994-12-21 Wear-resistant aluminum-based sintered alloy and method for producing the same Expired - Lifetime JP3060022B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP6335712A JP3060022B2 (en) 1994-12-21 1994-12-21 Wear-resistant aluminum-based sintered alloy and method for producing the same
US08/385,988 US5545487A (en) 1994-02-12 1995-02-09 Wear-resistant sintered aluminum alloy and method for producing the same
DE69503077T DE69503077T2 (en) 1994-02-12 1995-02-10 Wear-resistant sintered aluminum alloy and process for its manufacture
EP95101854A EP0669404B1 (en) 1994-02-12 1995-02-10 Wear-resistant sintered aluminum alloy and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6335712A JP3060022B2 (en) 1994-12-21 1994-12-21 Wear-resistant aluminum-based sintered alloy and method for producing the same

Publications (2)

Publication Number Publication Date
JPH08176716A true JPH08176716A (en) 1996-07-09
JP3060022B2 JP3060022B2 (en) 2000-07-04

Family

ID=18291639

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6335712A Expired - Lifetime JP3060022B2 (en) 1994-02-12 1994-12-21 Wear-resistant aluminum-based sintered alloy and method for producing the same

Country Status (1)

Country Link
JP (1) JP3060022B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013227658A (en) * 2012-03-30 2013-11-07 Sumitomo Electric Sintered Alloy Ltd Sliding member and manufacturing method of sliding member
JP2018197366A (en) * 2017-05-23 2018-12-13 昭和電工株式会社 Aluminum alloy material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013227658A (en) * 2012-03-30 2013-11-07 Sumitomo Electric Sintered Alloy Ltd Sliding member and manufacturing method of sliding member
JP2018197366A (en) * 2017-05-23 2018-12-13 昭和電工株式会社 Aluminum alloy material

Also Published As

Publication number Publication date
JP3060022B2 (en) 2000-07-04

Similar Documents

Publication Publication Date Title
EP0669404B1 (en) Wear-resistant sintered aluminum alloy and method for producing the same
CN109022948B (en) SiC particle reinforced aluminum matrix composite material with high-temperature wear resistance and preparation method thereof
JPH0625782A (en) High ductility aluminum sintered alloy and its manufacture as well as its application
JP2761085B2 (en) Raw material powder for Al-Si based alloy powder sintered parts and method for producing sintered parts
CN114182141A (en) Novel high-strength and high-toughness heat-resistant aluminum-silicon casting alloy
JP3940022B2 (en) Method for producing sintered aluminum alloy
Bloyce et al. Static and dynamic properties of squeeze-cast A357-SiC particulate Duralcan metal matrix composite
JP3784858B2 (en) Method for producing aluminum wear-resistant sintered alloy
RU2382099C2 (en) Cast section from brass for manufacturing of rings of synchroniser
US6706126B2 (en) Aluminum alloy for sliding bearing and its production method
JP3057468B2 (en) Wear-resistant aluminum-based sintered alloy and method for producing the same
JP3060022B2 (en) Wear-resistant aluminum-based sintered alloy and method for producing the same
JP2005163100A (en) Heat resistant/high toughness aluminum alloy, its production method, and engine component
US6899844B2 (en) Production method of aluminum alloy for sliding bearing
JP2909569B2 (en) Manufacturing method of wear resistant high strength aluminum alloy parts
JP2006161103A (en) Aluminum alloy member and manufacturing method therefor
JP3504917B2 (en) Aluminum-beryllium-silicon alloy for automotive engine moving parts and casing members
JP3920656B2 (en) High rigidity aluminum alloy containing boron
JP2542603B2 (en) Abrasion resistance Al-Si-Mn sintered alloy
JP4704720B2 (en) Heat-resistant Al-based alloy with excellent high-temperature fatigue properties
JPH06192780A (en) High heat and wear resistance aluminum alloy and powder thereof
JPH08209274A (en) Wear resistant aluminum-base sintered alloy
JP2602893B2 (en) Aluminum alloy member with high strength and excellent forgeability
JPH07278714A (en) Aluminum powder alloy and its production
JP3005354B2 (en) Heat treatment method of Al powder alloy

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080428

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090428

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090428

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100428

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100428

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110428

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120428

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120428

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130428

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 14

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term