JPH08175869A - Glass-ceramic sintered body and its production - Google Patents

Glass-ceramic sintered body and its production

Info

Publication number
JPH08175869A
JPH08175869A JP6320152A JP32015294A JPH08175869A JP H08175869 A JPH08175869 A JP H08175869A JP 6320152 A JP6320152 A JP 6320152A JP 32015294 A JP32015294 A JP 32015294A JP H08175869 A JPH08175869 A JP H08175869A
Authority
JP
Japan
Prior art keywords
glass
sintered body
ceramic sintered
zirconia
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6320152A
Other languages
Japanese (ja)
Other versions
JP3085636B2 (en
Inventor
Hideto Yonekura
秀人 米倉
Satoshi Hamano
智 濱野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP06320152A priority Critical patent/JP3085636B2/en
Publication of JPH08175869A publication Critical patent/JPH08175869A/en
Application granted granted Critical
Publication of JP3085636B2 publication Critical patent/JP3085636B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C10/00Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
    • C03C10/0036Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing SiO2, Al2O3 and a divalent metal oxide as main constituents
    • C03C10/0045Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing SiO2, Al2O3 and a divalent metal oxide as main constituents containing SiO2, Al2O3 and MgO as main constituents

Abstract

PURPOSE: To obtain a glass-ceramic sintered body capable of being baked at 900-1000 deg.C and having high dielectric constant and high strength. CONSTITUTION: This glass-ceramic sintered body comprises 40-70wt.% of Zr in terms of ZrO2 and the rest % of Si, Al, Mg, Zn and B and consists of a crystalline phase comprising zirconia crystalline phase 1, spinel crystalline phase 2 (MgO Al2 O3 , ZnO Al2 O3 ) and a glass phase 3. The glass-ceramic sintered body can be obtained, e.g. by adding a binder to a mixture powder comprising 30-60wt.% of SiO2 -Al2 O3 -MgO-ZnO-B2 O3 based crystalline glass and 40-70wt.% of zirconia, molding into a predetermined shape and baking the molded product in a nonoxidizing atmosphere at 900-1000 deg.C.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ガラス−セラミック焼
結体およびその製造方法に関するものであり、例えば、
集積回路(IC)や電子部品を搭載するための基板等に
最適なガラス−セラミック焼結体およびその製造方法に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a glass-ceramic sinter and a method for producing the same.
The present invention relates to a glass-ceramic sintered body which is most suitable for a substrate for mounting an integrated circuit (IC) or an electronic component, and a manufacturing method thereof.

【0002】[0002]

【従来技術】現代では高度情報化時代を迎え、情報伝送
はより高速化・高周波化の傾向にある。自動車電話やパ
ーソナル無線等の移動無線,衛星放送,衛星通信やCA
TV等のニューメディアでは、機器のコンパクト化が推
し進められており、これに伴い誘電体共振器等のマイク
ロ波用回路素子に対しても小型化が強く望まれている。
2. Description of the Related Art In the present age, with the advance of the advanced information age, information transmission tends to be faster and higher in frequency. Mobile radio such as car phone and personal radio, satellite broadcasting, satellite communication and CA
In new media such as TVs, downsizing of devices is being promoted, and accordingly, miniaturization of microwave circuit elements such as dielectric resonators is strongly desired.

【0003】マイクロ波用回路素子の大きさは、使用電
磁波の波長が基準となる。比誘電率εrの誘電体中を伝
播する電磁波の波長λは、真空中の伝播波長をλ0 とす
るとλ=λ0 /(εr)1/2 となる。したがって、素子
は、使用される基板の比誘電率が大きい程、小型にな
る。
The size of the microwave circuit element is based on the wavelength of the electromagnetic wave used. The wavelength λ of the electromagnetic wave propagating through the dielectric having the relative permittivity εr is λ = λ 0 / (εr) 1/2 when the propagation wavelength in vacuum is λ 0 . Therefore, the device becomes smaller as the relative permittivity of the substrate used increases.

【0004】さらに、多層回路基板に種々の電子部品や
入出力端子等を接続する工程上で基板に加わる応力から
基板が破壊したり、欠けを生じたりすることを防止する
為に材料の機械的強度が高いことが要求されている。
Further, in order to prevent the substrate from being broken or chipped due to the stress applied to the substrate in the process of connecting various electronic parts, input / output terminals, etc. to the multilayer circuit board, a mechanical material is used. High strength is required.

【0005】このような要求を満足するため、従来で
は、特開平6−132621号公報に示すように、樹脂
中に無機誘電体粒子が分散され高誘電率ガラス繊維で強
化された回路用基板が開示されている。この回路用基板
では、比誘電率が高いため機器の小型化を促進でき、ま
た、高誘電率ガラス繊維で強化されているため高強度で
ある。
In order to satisfy such requirements, conventionally, as disclosed in Japanese Patent Application Laid-Open No. 6-132621, a circuit board reinforced with a high dielectric constant glass fiber in which inorganic dielectric particles are dispersed in a resin is used. It is disclosed. This circuit board has a high relative permittivity, which facilitates miniaturization of equipment, and has high strength because it is reinforced with a high-dielectric-constant glass fiber.

【0006】[0006]

【発明が解決しようとする問題点】しかしながら、特開
平6−132621号公報に開示された回路用基板で
は、焼成温度が400℃程度であり、銅を配線導体とし
て用いての多層化、微細配線化が困難であり、基板の小
型化には不利であった。
However, in the circuit board disclosed in Japanese Unexamined Patent Publication No. 6-132621, the firing temperature is about 400 ° C., and copper is used as a wiring conductor for multilayering and fine wiring. However, it is difficult to reduce the size of the substrate, which is disadvantageous.

【0007】本発明は、900〜1000℃で焼成でき
るとともに、比誘電率の高いガラス−セラミック焼結体
を提供することを目的とする。また、このようなガラス
−セラミック焼結体が容易に得られる製造方法を提供す
ることを目的とする。
It is an object of the present invention to provide a glass-ceramic sintered body which can be fired at 900 to 1000 ° C. and has a high relative dielectric constant. Moreover, it aims at providing the manufacturing method which can obtain such a glass-ceramic sintered compact easily.

【0008】[0008]

【問題点を解決するための手段】本発明者等は、上記問
題点を鋭意検討した結果、ガラスの軟化流動を利用して
900〜1000℃で焼成することにより、配線導体と
して金,銀及び銅を用い多層化,微細配線化を実施で
き、また、高誘電率のジルコニアとガラスを組み合わせ
ることによって高い比誘電率を得ることができ、さらに
スピネル型結晶相を析出させることにより高強度化を達
成することができることを知見し、本発明に至った。
Means for Solving the Problems The inventors of the present invention have made earnest studies on the above-mentioned problems, and as a result, by firing at 900 to 1000 ° C. by utilizing the softening flow of glass, gold, silver and Copper can be used for multi-layering and fine wiring, and by combining glass with high-dielectric constant zirconia, a high relative dielectric constant can be obtained. Furthermore, by precipitating a spinel type crystal phase, high strength can be obtained. The inventors have found that they can be achieved and have reached the present invention.

【0009】即ち、本発明のガラス−セラミック焼結体
は、ZrをZrO2 換算で40〜70重量%と、残部に
Si,Al,Mg,ZnおよびBを含有するガラス−セ
ラミック焼結体であって、該焼結体が、ジルコニア結晶
相とスピネル型結晶相(MgO・Al2 3 、ZnO・
Al2 3 )からなる結晶相と、ガラス相とからなるも
のである。
That is, the glass-ceramic sintered body of the present invention is a glass-ceramic sintered body containing 40 to 70% by weight of Zr in terms of ZrO 2 and the balance of Si, Al, Mg, Zn and B. Therefore, the sintered body has a zirconia crystal phase and a spinel type crystal phase (MgO.Al 2 O 3 , ZnO.
It is composed of a crystal phase composed of Al 2 O 3 ) and a glass phase.

【0010】ここで、ガラス−セラミック焼結体中にお
けるZr量をZrO2 換算で40〜70重量%としたの
は、Zr量がZrO2 換算で40重量%より少ない場合
には、焼結体の比誘電率が10より低くなり、Zr量が
ZrO2 換算で70重量%より多い場合、焼結体の緻密
化温度が1000℃より高くなり、銅導体を用いること
が困難となるからである。
Here, the Zr content in the glass-ceramic sintered body is set to 40 to 70% by weight in terms of ZrO 2 , because the Zr content is less than 40% by weight in terms of ZrO 2. When the relative dielectric constant of is less than 10 and the amount of Zr is more than 70% by weight in terms of ZrO 2 , the densification temperature of the sintered body is higher than 1000 ° C., and it becomes difficult to use the copper conductor. .

【0011】ガラス−セラミック焼結体中におけるZr
量はZrO2 換算で45〜60重量%であることが基板
強度の点から望ましく、特には50〜60重量%が最適
である。
Zr in a glass-ceramic sintered body
The amount is preferably 45 to 60% by weight in terms of ZrO 2 from the viewpoint of substrate strength, and particularly 50 to 60% by weight is optimum.

【0012】また、ガラス−セラミック焼結体は、ジル
コニア結晶相が主として析出し、この他にスピネル型結
晶相(MgO・Al2 3 、ZnO・Al2 3 )が析
出する。このように焼結体中にジルコニア結晶相を主と
して存在させることにより比誘電率を向上することがで
きる。また、焼成時における昇温速度を調整することに
より、焼成時にスピネル型結晶相(MgO・Al
2 3 ,ZnO・Al2 3)を十分に析出させる。こ
の結晶相はガラスのネットワークを補強する形態で存在
し、機械的強度の高い焼結体を得ることができる。
Further, in the glass-ceramic sintered body, the zirconia crystal phase is mainly precipitated, and besides this, the spinel type crystal phase (MgO.Al 2 O 3 , ZnO.Al 2 O 3 ) is also precipitated. By allowing the zirconia crystal phase to exist mainly in the sintered body as described above, the relative dielectric constant can be improved. In addition, the spinel type crystal phase (MgO.Al
2 O 3 , ZnO.Al 2 O 3 ) is sufficiently precipitated. This crystal phase exists in a form that reinforces the glass network, and a sintered body having high mechanical strength can be obtained.

【0013】本発明においては、上記した組成を満足す
る限り、他の不純物が混入しても良い。また、焼結体中
にコージェライトやZrSi4 が微量存在する場合もあ
るが、なるべく存在させないようにする必要がある。
In the present invention, other impurities may be mixed as long as the above composition is satisfied. In addition, although a small amount of cordierite or ZrSi 4 may exist in the sintered body, it is necessary to prevent it from existing as much as possible.

【0014】本発明のガラス−セラミック焼結体は、図
1に示すように、ジルコニア結晶相1と、スピネル型結
晶相2と、これらの結晶の粒界に存在するSi,Al,
Mg,Zn,Bを含有するガラス3とから構成されてい
る。
As shown in FIG. 1, the glass-ceramic sintered body of the present invention comprises a zirconia crystal phase 1, a spinel type crystal phase 2, and Si, Al, which are present in the grain boundaries of these crystals.
The glass 3 contains Mg, Zn and B.

【0015】また、本発明のガラス−セラミック焼結体
は、例えば、SiO2 −Al2 3−MgO−ZnO−
2 3 系結晶性ガラス30〜60重量%と、ジルコニ
ア40〜70重量%とからなる混合粉末にバインダーを
添加した後、所定形状に成形し、非酸化性雰囲気中にお
いて900〜1000℃で焼成することにより得られる
ものである。
Further, the glass-ceramic sintered body of the present invention is, for example, SiO 2 —Al 2 O 3 —MgO—ZnO—
After adding a binder to a mixed powder composed of 30 to 60% by weight of B 2 O 3 based crystalline glass and 40 to 70% by weight of zirconia, the mixture is molded into a predetermined shape at 900 to 1000 ° C. in a non-oxidizing atmosphere. It is obtained by firing.

【0016】ここで、SiO2 −Al2 3 −MgO−
ZnO−B2 3 系結晶性ガラスを添加したのは、この
系の結晶性ガラスを用いることによりスピネル型結晶相
が析出し、この結晶相はガラスのネットワークを補強す
る形態で存在し、高強度の焼結体を得ることができるか
らである。また、このような結晶性ガラスを30〜60
重量%添加したのは、結晶性ガラス量が30重量%より
少ない場合には、焼結体の緻密化温度が1000℃より
高くなり銅導体を用いることができないからであり、結
晶性ガラス量が60重量%より多いと磁器の抗折強度が
20kg/cm2 より小さくなるからである。SiO2
−Al2 3 −MgO−ZnO−B2 3 系結晶性ガラ
スの添加量は40〜55重量%であることが望ましく、
特には40〜50重量%であることが望ましい。
Here, SiO 2 --Al 2 O 3 --MgO--
The ZnO-B 2 O 3 -based crystalline glass was added because a spinel-type crystalline phase was precipitated by using this type of crystalline glass, and this crystalline phase exists in a form that reinforces the glass network, This is because a strong sintered body can be obtained. Further, such a crystalline glass is used in an amount of 30 to 60
The reason why the content of the crystalline glass is less than 30% by weight is that when the amount of the crystalline glass is less than 30% by weight, the densification temperature of the sintered body is higher than 1000 ° C. and the copper conductor cannot be used. This is because the bending strength of the porcelain becomes less than 20 kg / cm 2 if it exceeds 60% by weight. SiO 2
Amount of -Al 2 O 3 -MgO-ZnO- B 2 O 3 based crystalline glass is desirably 40 to 55 wt%,
It is particularly desirable that the amount is 40 to 50% by weight.

【0017】SiO2 −Al2 3 −MgO−ZnO−
2 3 系結晶性ガラスの組成としては、SiO2 40
〜46重量%、Al2 3 25〜30重量%、MgO8
〜13重量%、ZnO6〜9重量%、B2 3 8〜11
重量%が望ましい。
SiO 2 --Al 2 O 3 --MgO--ZnO--
The composition of the B 2 O 3 -based crystalline glass is SiO 2 40
To 46 wt%, Al 2 O 3 25~30 wt%, MgO8
To 13 wt%, ZnO6~9 wt%, B 2 O 3 8~11
Weight percent is preferred.

【0018】また、ジルコニアを40〜70重量%添加
したのは、ジルコニアが40重量%より少ない場合に
は、焼結体の比誘電率が10より低くなり、ジルコニア
70重量%より大きい場合、焼結体の緻密化温度が10
00℃より高くなり、銅導体を用いることが困難となる
からである。ジルコニアの添加量は、45〜60重量%
であることが望ましく、特には50〜60重量%である
ことが望ましい。
Further, 40 to 70% by weight of zirconia is added because when the zirconia is less than 40% by weight, the relative dielectric constant of the sintered body becomes lower than 10, and when the zirconia is more than 70% by weight, the calcination is performed. Consolidation temperature is 10
This is because the temperature becomes higher than 00 ° C. and it becomes difficult to use the copper conductor. Addition amount of zirconia is 45 to 60% by weight
It is desirable that it is, and it is particularly desirable that it is 50 to 60% by weight.

【0019】非酸化性雰囲気中において900〜100
0℃で焼成したのは、900℃よりも低い温度で焼成し
た場合には、ガラスが結晶化せず、緻密度が低くなり、
1000℃よりも高い温度で焼成した場合には、ジルコ
ニアがガラス中のSiO2 と反応してZrSiO4 やコ
ージェライトを生成し、比誘電率を低下させるからであ
る。焼成温度は、900〜950℃であることが望まし
い。
900-100 in a non-oxidizing atmosphere
Firing at 0 ° C. means that when fired at a temperature lower than 900 ° C., the glass does not crystallize and the compactness decreases.
This is because, when fired at a temperature higher than 1000 ° C., zirconia reacts with SiO 2 in glass to produce ZrSiO 4 and cordierite, which lowers the relative dielectric constant. The firing temperature is preferably 900 to 950 ° C.

【0020】本発明においては、900〜1000℃に
おいて、コージェライトやZrSi04 の生成を抑制す
るために、焼成温度の保持時間をできるだけ短くする必
要がある。焼成温度における保持時間は10分以内が望
ましい。また、添加するZrO2 粉末の平均結晶粒径を
2〜5μmとすることが望ましい。これはZrO2 の平
均結晶粒径が小さくなるに従い、ZrSiO4 が生成し
易くなるからである。
In the present invention, at 900 to 1000 ° C., in order to suppress the formation of cordierite and ZrSiO 4 , it is necessary to keep the firing temperature as short as possible. The holding time at the firing temperature is preferably 10 minutes or less. Further, it is desirable that the added ZrO 2 powder has an average crystal grain size of 2 to 5 μm. This is because ZrSiO 4 is more likely to be produced as the average crystal grain size of ZrO 2 becomes smaller.

【0021】このように、焼成時間を短くしたり、Zr
2 の平均結晶粒径を小さくすることにより、結晶相と
して、実質的にZrO2 結晶相とスピネル型結晶相(M
gO・Al2 3 、ZnO・Al2 3 )からなる焼結
体が得られる。
In this way, the firing time can be shortened and Zr
By reducing the average crystal grain size of O 2 , the ZrO 2 crystal phase and the spinel type crystal phase (M
A sintered body composed of gO.Al 2 O 3 and ZnO.Al 2 O 3 ) can be obtained.

【0022】本発明においては、ジルコニア原料として
は、正方晶ZrO2 または立方晶ZrO2 、或いは正方
晶ZrO2 および立方晶ZrO2 が混在した原料を用い
ることが望ましい。これは単斜晶ジルコニアを用いた場
合、温度によって相変態し、これに伴って生じる体積変
化により基板にクラック等が発生するからである。ジル
コニア原料として正方晶ZrO2 および/または立方晶
ZrO2 を用いた場合には、焼結体中においても、正方
晶ZrO2 および/または立方晶ZrO2 が存在するこ
とになる。
In the present invention, the zirconia material, it is desirable to use a tetragonal ZrO 2 or cubic ZrO 2, or tetragonal ZrO 2 and cubic ZrO 2 are mixed raw material. This is because when monoclinic zirconia is used, a phase transformation occurs depending on the temperature, and a crack or the like occurs on the substrate due to a volume change accompanied with the phase transformation. When tetragonal ZrO 2 and / or cubic ZrO 2 is used as the zirconia raw material, tetragonal ZrO 2 and / or cubic ZrO 2 are present even in the sintered body.

【0023】[0023]

【作用】本発明のガラス−セラミック焼結体では、ジル
コニアとガラスを組み合わせることにより銅を配線導体
として用いての多層化、微細配線化を容易に達成するこ
とができ、また、高誘電率材料であるジルコニアにより
高い比誘電率を得ることができ、さらに、ガラス中にス
ピネル型結晶相を析出させることにより、焼結体の抗折
強度を向上させることができる。
In the glass-ceramic sintered body of the present invention, by combining zirconia and glass, it is possible to easily achieve multi-layering and fine wiring by using copper as a wiring conductor, and a high dielectric constant material. It is possible to obtain a high relative permittivity with zirconia, and it is possible to improve the bending strength of the sintered body by precipitating a spinel type crystal phase in the glass.

【0024】[0024]

【実施例】SiO2 −Al2 3 −MgO−ZnO−B
2 3 系結晶性ガラス(SiO2:44、Al2 3
28、MgO:11、ZnO:7、B2 3 :10重量
%)と、立方晶ジルコニアを表1に示す組成となるよう
に秤量混合し、この混合物に所定のバインダー、可塑剤
およびトルエンを添加し、ドクターブレード法により厚
さ250μmのグリーンシートを作製した。そして、こ
のグリーンシートを、50℃の温度で100kg/cm
2 の圧力を加える熱圧着により、7層または18層積層
した。得られた積層体を湿潤窒素中750℃で脱バイン
ダーした後、乾燥窒素中において表1に示すような焼成
温度,保持時間で焼成してガラス−セラミック焼結体を
得た。
EXAMPLES SiO 2 -Al 2 O 3 -MgO- ZnO-B
2 O 3 type crystalline glass (SiO 2 : 44, Al 2 O 3 :
28, MgO: 11, ZnO: 7, B 2 O 3 : 10 wt%) and cubic zirconia were weighed and mixed so as to have the composition shown in Table 1, and a predetermined binder, a plasticizer and toluene were added to this mixture. Then, a green sheet having a thickness of 250 μm was prepared by the doctor blade method. Then, this green sheet is 100 kg / cm at a temperature of 50 ° C.
Seven layers or 18 layers were laminated by thermocompression bonding applying a pressure of 2 . The obtained laminated body was debindered in wet nitrogen at 750 ° C., and then fired in dry nitrogen at a firing temperature and a holding time as shown in Table 1 to obtain a glass-ceramic sintered body.

【0025】[0025]

【表1】 [Table 1]

【0026】得られたガラス−セラミック焼結体につい
て、比誘電率および抗折強度を測定した。比誘電率は、
グリーンシートを7層積層して得られた焼結体を50m
m×50mm厚み1mmの試料形状に加工し、ネットワ
ークアナライザーを用いた空洞共振器法により、、サフ
ァイヤを充填した円筒空洞共振器の間に試料を挟んで構
成される共振器のTE011 モードの共振特性より算出し
た。
The relative permittivity and bending strength of the obtained glass-ceramic sintered body were measured. The relative permittivity is
50m of sintered body obtained by stacking 7 layers of green sheets
Resonance of TE 011 mode of a resonator formed by sandwiching a sample between cylindrical cavities filled with sapphire by the cavity resonator method using a network analyzer and processed into a sample shape of m × 50 mm and thickness of 1 mm. Calculated from the characteristics.

【0027】また、抗折強度は、グリーンシートを18
層積層して得られた焼結体を長さ40mm,厚さ3m
m,幅4mmに加工し、JIS−C−2141の規定に
準じて3点曲げ試験を行うことにより求めた。結果を表
1に示した。
The bending strength of the green sheet is 18
The sintered body obtained by stacking layers has a length of 40 mm and a thickness of 3 m.
m, width 4 mm, and a three-point bending test was performed according to JIS-C-2141. The results are shown in Table 1.

【0028】この表1より、本発明のガラス−セラミッ
ク焼結体は、900〜1000℃で焼成することがで
き、比誘電率が10以上であり、抗折強度が22kg/
mm2以上であることが判る。
From Table 1, the glass-ceramic sintered body of the present invention can be fired at 900 to 1000 ° C., the relative dielectric constant is 10 or more, and the bending strength is 22 kg /
It can be seen that it is at least mm 2 .

【0029】[0029]

【発明の効果】本発明のガラス−セラミック焼結体で
は、900〜1000℃で焼成できるため銅を配線導体
として用いることができるとともに、比誘電率が高く、
さらに高強度とすることができ、機器の小型化を促進す
ることができるとともに、基板材料の高強度化により入
出力端子部に施すリードの接合や実装における基板の信
頼性が向上することができる。
In the glass-ceramic sintered body of the present invention, since it can be fired at 900 to 1000 ° C., copper can be used as the wiring conductor and the relative dielectric constant is high.
Further, the strength can be made higher, the miniaturization of the device can be promoted, and the strength of the board material makes it possible to improve the reliability of the board in the joining of leads to the input / output terminal portion and the mounting. .

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のガラス−セラミック焼結体の模式図で
ある。
FIG. 1 is a schematic view of a glass-ceramic sintered body of the present invention.

【符号の説明】[Explanation of symbols]

1・・・ジルコニア結晶相 2・・・スピネル型結晶相 3・・・ガラス 1 ... Zirconia crystal phase 2 ... Spinel type crystal phase 3 ... Glass

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H05K 1/03 610 C 7511−4E 3/46 H 6921−4E T 6921−4E H01L 23/14 C ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Office reference number FI Technical indication H05K 1/03 610 C 7511-4E 3/46 H 6921-4E T 6921-4E H01L 23/14 C

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】ZrをZrO2 換算で40〜70重量%
と、残部にSi,Al,Mg,ZnおよびBを含有する
ガラス−セラミック焼結体であって、該焼結体が、ジル
コニア結晶相とスピネル型結晶相(MgO・Al
2 3 、ZnO・Al23 )からなる結晶相と、ガラ
ス相とからなることを特徴とするガラス−セラミック焼
結体。
1. Zr is 40 to 70% by weight in terms of ZrO 2.
And a glass-ceramic sintered body containing Si, Al, Mg, Zn and B in the balance, the sintered body being a zirconia crystal phase and a spinel type crystal phase (MgO.Al).
A glass-ceramic sintered body, comprising a crystal phase composed of 2 O 3 , ZnO.Al 2 O 3 ) and a glass phase.
【請求項2】SiO2 −Al2 3 −MgO−ZnO−
2 3 系結晶性ガラス30〜60重量%と、ジルコニ
ア40〜70重量%とからなる混合粉末にバインダーを
添加した後、所定形状に成形し、非酸化性雰囲気中にお
いて900〜1000℃で焼成することを特徴とするガ
ラス−セラミック焼結体の製造方法。
2. SiO 2 --Al 2 O 3 --MgO--ZnO--
After adding a binder to a mixed powder composed of 30 to 60% by weight of B 2 O 3 based crystalline glass and 40 to 70% by weight of zirconia, the mixture is molded into a predetermined shape at 900 to 1000 ° C. in a non-oxidizing atmosphere. A method for producing a glass-ceramic sintered body, which comprises firing.
JP06320152A 1994-12-22 1994-12-22 Glass-ceramic sintered body and method for producing the same Expired - Fee Related JP3085636B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06320152A JP3085636B2 (en) 1994-12-22 1994-12-22 Glass-ceramic sintered body and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06320152A JP3085636B2 (en) 1994-12-22 1994-12-22 Glass-ceramic sintered body and method for producing the same

Publications (2)

Publication Number Publication Date
JPH08175869A true JPH08175869A (en) 1996-07-09
JP3085636B2 JP3085636B2 (en) 2000-09-11

Family

ID=18118292

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06320152A Expired - Fee Related JP3085636B2 (en) 1994-12-22 1994-12-22 Glass-ceramic sintered body and method for producing the same

Country Status (1)

Country Link
JP (1) JP3085636B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008126486A1 (en) * 2007-04-09 2008-10-23 Murata Manufacturing Co., Ltd. Dielectric ceramic composition, ceramic substrate, and method for producing the same
CN115340376A (en) * 2022-06-28 2022-11-15 清华大学深圳国际研究生院 Ceramic substrate for LTCC (Low temperature Co-fired ceramic), and preparation method and application thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008126486A1 (en) * 2007-04-09 2008-10-23 Murata Manufacturing Co., Ltd. Dielectric ceramic composition, ceramic substrate, and method for producing the same
JPWO2008126486A1 (en) * 2007-04-09 2010-07-22 株式会社村田製作所 Ceramic substrate and manufacturing method thereof
US7790271B2 (en) 2007-04-09 2010-09-07 Murata Manufacturing Co., Ltd. Dielectric ceramic composition, ceramic substrate, and method for producing the same
JP5104761B2 (en) * 2007-04-09 2012-12-19 株式会社村田製作所 Ceramic substrate and manufacturing method thereof
CN115340376A (en) * 2022-06-28 2022-11-15 清华大学深圳国际研究生院 Ceramic substrate for LTCC (Low temperature Co-fired ceramic), and preparation method and application thereof
CN115340376B (en) * 2022-06-28 2023-08-08 清华大学深圳国际研究生院 Ceramic substrate for LTCC and preparation method and application thereof

Also Published As

Publication number Publication date
JP3085636B2 (en) 2000-09-11

Similar Documents

Publication Publication Date Title
JP3297569B2 (en) Low temperature firing porcelain composition
JP4535592B2 (en) Laminated body
JP2003238244A (en) Dielectric porcelain for high frequency, dielectric resonator, dielectric filter, dielectric duplexer and communication device
JP3101970B2 (en) Glass-ceramic sintered body and method for producing the same
JP3085636B2 (en) Glass-ceramic sintered body and method for producing the same
JP4006755B2 (en) Dielectric porcelain composition for microwave
JP3311924B2 (en) Porcelain composition and method for producing porcelain
JP3101971B2 (en) Glass-ceramic sintered body and method for producing the same
JP3101967B2 (en) Glass-ceramic sintered body and method for producing the same
JP3346721B2 (en) Non-radiative dielectric line
JPH10297960A (en) Ceramic composition baked at low temperature and production of porcelain baked at low temperature
JP3406787B2 (en) Manufacturing method of dielectric porcelain
JPH0840768A (en) Dielectric material for high frequency
JP2003146752A (en) Dielectric ceramic composition
JPH1117294A (en) Wiring board and manufacture of the same
JPH10189828A (en) Low-temperature baked ceramic composition and manufacturing method of low-temperature baked ceramic
JP3441940B2 (en) High frequency porcelain composition and method for producing high frequency porcelain
JPH09175853A (en) Low-temperature-baked ceramic composition
JP3193157B2 (en) Dielectric porcelain composition for low-temperature firing, dielectric resonator or dielectric filter obtained using the same, and methods for producing them
JPH09208298A (en) Porcelain composition fired at a low temperature
JP3754778B2 (en) High frequency porcelain composition, high frequency porcelain and method for producing the same
JPH11209172A (en) Dielectric porcelain composition and composite dielectric porcelain composition
JPH10188674A (en) Microwave dielectric porcelain composition
JP3833340B2 (en) Low-temperature fired porcelain composition, low-temperature fired porcelain and method for producing low-temperature fired porcelain
JPH11100258A (en) Wiring substrate for high frequency application

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees