JPH0817478A - Power storing secondary battery charge/discharge current measuring method, remaining power amount measuring method, and device for it - Google Patents

Power storing secondary battery charge/discharge current measuring method, remaining power amount measuring method, and device for it

Info

Publication number
JPH0817478A
JPH0817478A JP7069508A JP6950895A JPH0817478A JP H0817478 A JPH0817478 A JP H0817478A JP 7069508 A JP7069508 A JP 7069508A JP 6950895 A JP6950895 A JP 6950895A JP H0817478 A JPH0817478 A JP H0817478A
Authority
JP
Japan
Prior art keywords
charging
discharging
circuit
secondary battery
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7069508A
Other languages
Japanese (ja)
Other versions
JP2937796B2 (en
Inventor
Toshiyuki Kawaguchi
敏幸 川口
Hiroyuki Abe
浩幸 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP7069508A priority Critical patent/JP2937796B2/en
Publication of JPH0817478A publication Critical patent/JPH0817478A/en
Application granted granted Critical
Publication of JP2937796B2 publication Critical patent/JP2937796B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To accurately measure and evaluate the residual capacity of a secondary battery with a low-cost measuring circuitry configuration without use of any high precision insulated amplifier etc. CONSTITUTION:At the time of charging and discharging a secondary battery 1, currents in different directions flowing in a charge/discharge circuit 2 are fed to a measuring circuit 5 upon putting them together as either in the positive direction or negative direction through the polarity inversion made by a polarity inverter circuit 6. The measuring circuit 5 has a measuring instrument 9 which measures the fed charging current and discharging current and determines the residual capacity of the secondary battery 1 through cumulation of the measurements.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】 この発明は、電力貯蔵用二次電
池の残存容量を評価する際に使用される電力貯蔵用二次
電池の充放電電流測定方法及び残存電力量測定方法並び
に測定装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a charging / discharging current measuring method, a remaining power amount measuring method and a measuring device used for evaluating the remaining capacity of a power storage secondary battery. It is a thing.

【0002】[0002]

【従来の技術】 従来のこの種の電力貯蔵用二次電池の
充放電電流測定装置としては、例えば図10に示すよう
な構成のものが知られている。すなわち、二次電池21
の充電または放電時に、充放電回路22に流れる異なっ
た方向の電流が、シャント抵抗23により電圧に変換し
て測定回路24に入力される。この測定回路24におい
ては、入力電圧が絶縁アンプ25により所定の測定レン
ジに絶縁変換された状態で、電圧測定器26によって測
定される。
2. Description of the Related Art As a conventional charge / discharge current measuring device for a secondary battery for storing electric power of this type, a device having a structure as shown in FIG. 10 is known. That is, the secondary battery 21
At the time of charging or discharging, currents flowing in different directions in the charge / discharge circuit 22 are converted into voltages by the shunt resistor 23 and input to the measurement circuit 24. In the measuring circuit 24, the input voltage is measured by the voltage measuring device 26 in a state where the input voltage is insulation-converted into a predetermined measurement range by the insulation amplifier 25.

【0003】そして、電圧測定器26の電圧測定値が演
算装置27により電流測定値に変換されるとともに、そ
の電流測定値が積分装置28により積算されて、二次電
池21の残存容量が求められる。すなわち、二次電池2
1の定格容量を初期値として設定しておき、充電電流を
プラス側に積算するとともに、放電電流をマイナス側に
積算することにより、二次電池21の充放電運転に伴う
各時点の残存容量が評価される。
Then, the voltage measurement value of the voltage measuring device 26 is converted into a current measurement value by the arithmetic unit 27, and the current measurement value is integrated by the integrating unit 28 to obtain the remaining capacity of the secondary battery 21. . That is, the secondary battery 2
By setting the rated capacity of 1 as the initial value and integrating the charging current on the plus side and the discharging current on the minus side, the remaining capacity at each time point associated with the charging / discharging operation of the secondary battery 21 is calculated. To be evaluated.

【0004】[0004]

【発明が解決しようとする課題】 ところが、この従来
の二次電池の充放電測定装置においては、次のような問
題があった。 (1) 図11に鎖線で示すように、絶縁アンプ25に
出力誤差があると、充電側と放電側との電流測定誤差が
加算されて発生し、それらの電流を積算して差分から残
存容量を計算する方式では、充放電1回当たりの残存容
量の評価誤差が大きくなる。すなわち、充電側の積算値
はプラス側に積算されたものであり、放電側の積算値は
マイナス側に積算されたものであり、それらの誤差は、
絶対値としては互いプラスマイナス反対側に積算される
ため、放電時と充電時の誤差の値が同一であれば2倍に
拡大される。充放電回数が増加するほどこの誤差は累積
され、さらに大きくなる。 (2) 1つの絶縁アンプ25により充電側と放電側と
の異なった正負両方向の電流を変換するようになってい
るため、図8に示すように、絶縁アンプ25の対応レン
ジLが広くなり、出力カーブCの傾きが小さくなる。従
って、電流の変動に対する出力の変化率が小さくなり、
精度の高い測定が不可能である。 (3) 測定回路24に使用される電圧測定器26は、
1〜5Vの入力仕様のものが多いが、充電側または放電
側のいずれか一方の測定値が絶縁アンプ25の低出力側
になって、出力が安定せず、電圧測定器26の測定誤差
が大きくなる。従って、二次電池21の残留容量の評価
誤差も大きくなる。
However, the conventional charge / discharge measuring device for a secondary battery has the following problems. (1) As shown by the chain line in FIG. 11, if there is an output error in the isolation amplifier 25, an error in current measurement between the charging side and the discharging side is added and generated, and those currents are integrated to calculate the remaining capacity from the difference. In the method of calculating, the evaluation error of the remaining capacity per charge / discharge becomes large. That is, the integrated value on the charge side is the one integrated on the plus side, and the integrated value on the discharge side is the one integrated on the minus side.
Since the absolute values are integrated on the plus and minus opposite sides, if the error values at the time of discharging and charging are the same, they will be doubled. As the number of times of charging / discharging increases, this error is accumulated and becomes larger. (2) Since one isolation amplifier 25 is configured to convert the currents in both positive and negative directions on the charging side and the discharging side, as shown in FIG. 8, the corresponding range L of the isolation amplifier 25 is wide, The inclination of the output curve C becomes smaller. Therefore, the rate of change of the output with respect to the fluctuation of the current becomes small,
Highly accurate measurement is not possible. (3) The voltage measuring device 26 used in the measuring circuit 24 is
Most of them have an input specification of 1 to 5 V, but the measured value on either the charge side or the discharge side becomes the low output side of the isolation amplifier 25, the output is not stable, and the measurement error of the voltage measuring device 26 growing. Therefore, the evaluation error of the residual capacity of the secondary battery 21 also increases.

【0005】この発明は、このような従来の技術に存在
する問題点に着目してなされたものである。その目的と
するところは、高精度の絶縁アンプ等を使用することな
く、安価な測定回路構成で二次電池の残存容量を精度良
く測定評価することができる電力貯蔵用二次電池の充放
電電流測定方法及その装置を提供することにある。
The present invention has been made by paying attention to the problems existing in such conventional techniques. Its purpose is to enable accurate measurement and evaluation of the remaining capacity of the secondary battery with an inexpensive measurement circuit configuration without using a high-precision insulation amplifier, etc. It is to provide a measuring method and an apparatus thereof.

【0006】[0006]

【課題を解決するための手段】 上記の目的を達成する
ために、請求項1に記載の電力貯蔵用二次電池の充放電
電流測定方法の発明では、二次電池の充電及び放電時
に、充放電回路に流れる異なった方向の電流を、極性反
転により正方向または負方向のいずれか一方に統一して
測定回路に入力し、その測定回路において充電及び放電
電流を測定するものである。
[Means for Solving the Problems] In order to achieve the above object, in the invention of the charging / discharging current measuring method for a secondary battery for power storage according to claim 1, charging and discharging of the secondary battery are performed. The current flowing in different directions in the discharge circuit is unified into either the positive direction or the negative direction by polarity reversal and is input to the measurement circuit, and the charge and discharge currents are measured in the measurement circuit.

【0007】また、請求項2の発明では、請求項1に記
載の二次電池の充放電電流測定方法において、充放電回
路に流れる電流を電圧に変換して測定回路に入力し、そ
の電圧を絶縁アンプにより絶縁変換して測定するもので
ある。
According to the second aspect of the invention, in the charging / discharging current measuring method for the secondary battery according to the first aspect, the current flowing in the charging / discharging circuit is converted into a voltage and input to the measuring circuit, and the voltage is Insulation amplifier is used for insulation conversion to measure.

【0008】さらに、請求項3の発明では、請求項1ま
たは請求項2に記載の二次電池の充放電電流測定方法に
おいて、外部指令により二次電池の充電及び放電に応じ
て極性反転を行うものである。
Further, in the invention of claim 3, in the method for measuring the charging / discharging current of the secondary battery according to claim 1 or 2, the polarity is inverted according to the charging and discharging of the secondary battery by an external command. It is a thing.

【0009】しかも、請求項4の発明では、請求項1ま
たは請求項2に記載の二次電池の充放電電流測定方法に
おいて、測定回路の測定値により、二次電池の充電及び
放電に応じて極性反転を行うものである。
Further, in the invention of claim 4, in the charging / discharging current measuring method for the secondary battery according to claim 1 or 2, the measured value of the measuring circuit is used to charge or discharge the secondary battery. The polarity is reversed.

【0010】そして、請求項5に記載の電力貯蔵用二次
電池の充放電電流測定装置の発明では、二次電池の充電
及び放電時に充放電回路に流れる異なった方向の電流
を、正方向または負方向のいずれか一方に統一して測定
回路に入力するための極性反転回路を、充放電回路と測
定回路との間に介装したものである。
In the invention of the charging / discharging current measuring device for a secondary battery for power storage according to claim 5, the currents flowing in different directions in the charging / discharging circuit at the time of charging and discharging the secondary battery are positive or A polarity reversing circuit for uniformly inputting to either one of the negative directions to the measuring circuit is provided between the charging / discharging circuit and the measuring circuit.

【0011】加えて、請求項6に記載の電力貯蔵用二次
電池の残存電力量測定方法の発明では、二次電池の充電
及び放電時に、充放電回路に流れる異なった方向の電流
を、極性反転により正方向または負方向のいずれか一方
に統一して測定回路に入力し、その測定回路において充
電及び放電電流を測定し、その電流値と充放電時の電池
電圧値より充電電力と放電電力とをそれぞれ積算して求
め、その差により残存電力量を測定するものである。
In addition, in the invention of the method for measuring the remaining power amount of the secondary battery for power storage according to claim 6, when charging and discharging the secondary battery, the currents flowing in different directions in the charge / discharge circuit are polarized. By reversing, input in either the positive direction or the negative direction to the measurement circuit, input the measurement circuit charge and discharge current, and measure the charging and discharging power from the current value and the battery voltage value during charging and discharging. Is calculated by summing up and, respectively, and the residual electric energy is measured by the difference.

【0012】また、請求項7に記載の電力貯蔵用二次電
池の残存電力量測定方法の発明では、二次電池の充電及
び放電時に、充放電回路に流れる異なった方向の電流
を、極性反転により正方向または負方向のいずれか一方
に統一して測定回路に入力し、その測定回路において充
電及び放電電流を測定し、その電流値に基づいて残存容
量を測定し、この残存容量と放電電圧とに基づいて残存
電力量を測定するものである。
Further, in the invention of the method for measuring the amount of remaining power of the secondary battery for power storage according to claim 7, when the secondary battery is charged and discharged, currents flowing in different directions in the charge / discharge circuit are reversed in polarity. Input to the measurement circuit in either the positive or negative direction, measure the charge and discharge currents in that measurement circuit, and measure the remaining capacity based on the current value. The remaining electric energy is measured based on

【0013】さらに、請求項8に記載の電力貯蔵用二次
電池の残存電力量測定方法の発明では、二次電池の充電
及び放電時に、充放電回路に流れる異なった方向の電流
を、極性反転により正方向または負方向のいずれか一方
に統一して測定回路に入力し、その測定回路において充
電及び放電電流を測定し、それらの電流値をそれぞれ積
算し、その差に基づいて残存容量を測定し、これから放
電深度を求め、電池電圧の理論曲線をもとにその放電深
度以降の放電電圧と放電電流を推定演算することにより
残存電力量を測定するものである。
Further, in the invention of the method for measuring the remaining power amount of the secondary battery for power storage according to the eighth aspect, when the secondary battery is charged and discharged, currents flowing in different directions in the charge / discharge circuit are reversed in polarity. Input to the measurement circuit in either the positive direction or the negative direction, measure the charge and discharge currents in that measurement circuit, integrate the respective current values, and measure the remaining capacity based on the difference. Then, the depth of discharge is obtained from this, and the remaining electric energy is measured by estimating and calculating the discharge voltage and the discharge current after the depth of discharge based on the theoretical curve of the battery voltage.

【0014】[0014]

【作用】 請求項1及び5の発明においては、二次電池
の充電及び放電時に、充放電回路に流れる異なった方向
の電流が、極性反転回路の極性反転により、正方向また
は負方向のいずれか一方に統一して測定回路に入力され
る。そして、この測定回路において、入力された充電電
流及び放電電流が測定されるとともに、その測定値を充
電を正、放電を負として積算することによって二次電池
の残存容量が求められる。
According to the first and fifth aspects of the present invention, when the secondary battery is charged and discharged, the currents flowing in different directions in the charge / discharge circuit are either in the positive direction or the negative direction due to the polarity inversion of the polarity inversion circuit. It is input to the measurement circuit as one unit. Then, in this measuring circuit, the input charging current and discharging current are measured, and the remaining capacity of the secondary battery is obtained by integrating the measured values with charging being positive and discharging being negative.

【0015】請求項2の発明においては、充放電回路が
高電圧であっても、絶縁アンプにより測定回路が保護さ
れ、破壊されたりすることなく、安全な測定が可能とな
る。請求項3及び4の発明においては、充放電の切換に
ともない、極性反転を自動的に行うことができる。
According to the second aspect of the present invention, even if the charging / discharging circuit has a high voltage, the insulation amplifier protects the measuring circuit and does not damage it, so that safe measurement is possible. In the inventions of claims 3 and 4, the polarity inversion can be automatically performed along with the switching of charging and discharging.

【0016】請求項6の発明では、前述の充電及び放電
電流値を測定し、これら電流値と充放電時の電池電圧値
より充電電力と放電電力とをそれぞれ積算し、その差に
基づいて残存電力量が測定される。
According to the sixth aspect of the present invention, the charging and discharging current values are measured, the charging power and the discharging power are integrated from the current value and the battery voltage value at the time of charging / discharging, and the remaining value is calculated based on the difference. Electric energy is measured.

【0017】請求項7の発明においては、充電及び放電
電流値に基づいて残存容量を測定し、この残存容量と放
電電圧とに基づいて残存電力量が測定される。請求項8
の発明においては、充電及び放電電流値を積算し、その
差に基づいて残存容量を測定し、これから放電深度が求
められる。そして、電池電圧の理論曲線に基づいて、そ
の放電深度以降の放電電圧と放電電流を推定演算するこ
とにより、残存電力量が測定される。
In the seventh aspect of the present invention, the remaining capacity is measured based on the charging and discharging current values, and the remaining electric energy is measured based on the remaining capacity and the discharging voltage. Claim 8
In the invention, the charging and discharging current values are integrated, the remaining capacity is measured based on the difference, and the depth of discharge is obtained from this. Then, based on the theoretical curve of the battery voltage, the remaining voltage is measured by estimating the discharge voltage and the discharge current after the depth of discharge.

【0018】[0018]

【実施例】 (第1実施例)以下、この発明を具体化し
た電力貯蔵用二次電池の充放電電流測定装置の第1実施
例を、図1及び図2に基づいて詳細に説明する。
EXAMPLES First Example A first example of a charging / discharging current measuring device for a secondary battery for power storage embodying the present invention will be described in detail below with reference to FIGS. 1 and 2.

【0019】図1に示すように、電力貯蔵用二次電池1
は充放電回路2に接続され、ナトリウム−硫黄電池等の
モジュールから構成されている。図示はしないが、モジ
ュールは複数のブロックから構成され、ブロックは複数
のストリングから構成され、ストリングは複数のナトリ
ウム−硫黄単電池から構成されている。そして、充放電
切換装置3の切換制御により、例えば昼間の所定時間中
は、この二次電池1が放電運転されて充放電回路2から
交直変換装置を介して送電線等に電力が供給され、夜間
の所定時間中は、二次電池1が充電運転されて充放電回
路2から充電が行われる。
As shown in FIG. 1, a secondary battery 1 for power storage.
Is connected to the charge / discharge circuit 2 and is composed of a module such as a sodium-sulfur battery. Although not shown, the module is composed of a plurality of blocks, the blocks are composed of a plurality of strings, and the strings are composed of a plurality of sodium-sulfur single cells. Then, by the switching control of the charging / discharging switching device 3, for example, during a predetermined time in the daytime, the secondary battery 1 is discharged and electric power is supplied from the charging / discharging circuit 2 to the power transmission line or the like via the AC / DC converter. During a predetermined time at night, the secondary battery 1 is charged and the charging / discharging circuit 2 charges the secondary battery 1.

【0020】シャント抵抗4は充放電回路2に接続さ
れ、二次電池1の充電または放電時に、充放電回路2に
流れる異なった方向の電流が、このシャント抵抗4によ
り電圧に変換して測定回路5に入力される。
The shunt resistor 4 is connected to the charging / discharging circuit 2, and when the secondary battery 1 is charged or discharged, currents flowing in different directions in the charging / discharging circuit 2 are converted into voltages by the shunt resistor 4 and measured. Input to 5.

【0021】極性反転回路6は前記充放電回路2と測定
回路5との間に介装され、複数のリレースイッチより構
成されている。そして、充放電切換装置3により二次電
池1が充電運転と放電運転とに切り換えられるとき、そ
の充放電切換装置3からの外部指令により、シーケンサ
またはCPUユニット等からなる制御装置7を介して極
性反転回路6が切り換えられる。これにより、図2に示
すように、二次電池1の充電及び放電時に、充放電回路
2に流れる異なった方向の電流は、極性反転にて正方向
または負方向のいずれか一方(実施例では正方向)に統
一されて、電圧に変換した状態で測定回路5に入力され
る。
The polarity reversing circuit 6 is interposed between the charging / discharging circuit 2 and the measuring circuit 5 and is composed of a plurality of relay switches. Then, when the secondary battery 1 is switched between the charging operation and the discharging operation by the charge / discharge switching device 3, an external command from the charge / discharge switching device 3 causes a polarity via the control device 7 including a sequencer or a CPU unit. The inverting circuit 6 is switched. As a result, as shown in FIG. 2, when charging and discharging the secondary battery 1, the currents flowing in different directions in the charging / discharging circuit 2 are either positive or negative in polarity reversal (in the embodiment, It is unified in the positive direction) and is input to the measurement circuit 5 in a state of being converted into a voltage.

【0022】絶縁アンプ8は前記測定回路5に接続さ
れ、この絶縁アンプ8によって測定回路5の入力電圧が
所定の測定レンジ(1〜5V)に絶縁変換される。電圧
測定器9は絶縁アンプ8の出力側に接続され、この電圧
測定器9により測定回路5の入力電圧が測定される。演
算装置10は電圧測定器9の出力側に接続され、この演
算装置10により電圧測定器9の電圧測定値が電流絶対
値に変換される。このとき、制御装置7の制御により、
充電と放電との条件に応じて、電流絶対値が積算の正方
向と負方向とに切り換えられる。積分装置11は演算装
置10の出力側に接続され、この積分装置11により電
流値が積算される。そして、予め充電末で二次電池1の
定格容量値を設定しておけば、この積算により二次電池
1の残存容量が求められる。
The isolation amplifier 8 is connected to the measurement circuit 5, and the insulation amplifier 8 insulates and converts the input voltage of the measurement circuit 5 into a predetermined measurement range (1 to 5 V). The voltage measuring device 9 is connected to the output side of the isolation amplifier 8, and the voltage measuring device 9 measures the input voltage of the measuring circuit 5. The arithmetic device 10 is connected to the output side of the voltage measuring device 9, and the arithmetic device 10 converts the voltage measurement value of the voltage measuring device 9 into an absolute current value. At this time, by the control of the control device 7,
The absolute value of the current is switched between the positive direction and the negative direction of integration according to the conditions of charging and discharging. The integrator 11 is connected to the output side of the arithmetic unit 10, and the current value is integrated by the integrator 11. Then, if the rated capacity value of the secondary battery 1 is set at the end of charging in advance, the remaining capacity of the secondary battery 1 can be obtained by this integration.

【0023】次に、前記のように構成された電力貯蔵用
二次電池の充放電測定装置において、二次電池の充放電
電流を測定する方法について説明する。さて、二次電池
1の充電運転及び放電運転時には、充放電回路2に流れ
る異なった方向の電流が、シャント抵抗4により電圧に
変換され、絶縁アンプ8で絶縁変換されて、測定回路5
に入力される。なお、二次電池1の充放電回路2の両極
間の電圧は、通常1000V程度であり、絶縁アンプ8
は、充放電回路2と絶縁を確保した状態で、二次側から
1〜5Vの出力を行う。
Next, a method of measuring the charging / discharging current of the secondary battery in the charging / discharging measuring device for the secondary battery for power storage configured as described above will be described. During charging operation and discharging operation of the secondary battery 1, currents flowing in different directions in the charging / discharging circuit 2 are converted into voltages by the shunt resistor 4 and insulation conversion by the insulation amplifier 8, and the measurement circuit 5
Is input to The voltage between both electrodes of the charging / discharging circuit 2 of the secondary battery 1 is usually about 1000 V, and the isolation amplifier 8
Outputs 1 to 5 V from the secondary side in a state where insulation is secured from the charge / discharge circuit 2.

【0024】このとき、充放電切換装置3からの外部指
令に基づき、二次電池1の充電及び放電の切換に応じ
て、制御装置7により極性反転回路6が切り換えられ、
入力電圧が正方向のみに極性反転されて測定回路5に入
力される。
At this time, the polarity reversing circuit 6 is switched by the controller 7 in accordance with the switching of charging and discharging of the secondary battery 1 based on an external command from the charging / discharging switching device 3.
The polarity of the input voltage is inverted only in the positive direction and input to the measurement circuit 5.

【0025】そして、この測定回路5において、入力電
圧が絶縁アンプ8により所定の測定レンジに絶縁変換さ
れた状態で、電圧測定器9によって測定される。その
後、演算装置10の演算により、電圧測定器9の電圧測
定値から電流絶対値が求められるとともに、その電流絶
対値が制御装置7の制御により、充電と放電との条件に
応じて積算の正方向と負方向とに切り換えられる。そし
て、積分装置11により、充電電流がプラス側に積算さ
れるとともに、放電電流がマイナス側に積算され、二次
電池1の充放電運転に伴う各時点の残存容量が評価され
る。
Then, in the measuring circuit 5, the input voltage is measured by the voltage measuring device 9 in a state where the input voltage is insulation-converted into a predetermined measurement range by the insulation amplifier 8. After that, the absolute value of the current is obtained from the voltage measurement value of the voltage measuring device 9 by the calculation of the calculation device 10, and the absolute value of the current is controlled by the control device 7 to determine whether the integration is positive or negative according to the conditions of charging and discharging. The direction can be switched to the negative direction. Then, the integrating device 11 integrates the charging current into the plus side and the discharging current into the minus side, and evaluates the remaining capacity at each time point associated with the charging / discharging operation of the secondary battery 1.

【0026】以上のように、この実施例においては、充
放電回路2に流れる異なった方向の充電電流及び放電電
流が電圧に変換された状態で、極性反転回路6により正
方向のみに極性反転されて測定回路5に入力される。こ
のため、図2に鎖線で示すように、絶縁アンプ8に出力
誤差がある場合でも、充電側と放電側との電流測定誤差
がプラスマイナス反対側に加算されることはなく、相殺
される。従って、それらの電流の積算値から残存容量を
評価する場合、残存容量の評価誤差を小さくすることが
できる。しかも、極性反転のための切換が充放電の切換
と連動して、充放電切換装置3の作動により自動的に行
われ、切換タイミングを逸して、測定結果が誤った値に
なることがない。
As described above, in this embodiment, the polarity reversing circuit 6 reverses the polarity only in the positive direction while the charging and discharging currents flowing through the charging and discharging circuit 2 in different directions are converted into voltages. Is input to the measurement circuit 5. Therefore, as shown by the chain line in FIG. 2, even if there is an output error in the isolation amplifier 8, the current measurement error between the charging side and the discharging side is not added to the plus and minus opposite sides, but is offset. Therefore, when the remaining capacity is evaluated from the integrated value of these currents, the remaining capacity evaluation error can be reduced. Moreover, the switching for polarity reversal is automatically performed by the operation of the charging / discharging switching device 3 in conjunction with the switching of charging / discharging, and the switching timing is not missed so that the measurement result does not become an erroneous value.

【0027】また、絶縁アンプ8により正方向のみの電
流を変換するようになっているため、図2に示すよう
に、電流測定するためのの測定レンジを狭くすることが
できる。従って、絶縁アンプ25の対応レンジLが狭く
なり、出力カーブCの傾きが大きくなる。従って、電流
の変動に対する出力の変化率が大きくなり、変動精度の
高い測定が可能となる。言い替えれば、広い測定レンジ
に亘って高精度の機能を発揮する高価な絶縁アンプを使
用する必要がなく、測定回路5を安価に構成することが
できる。
Further, since the isolation amplifier 8 is adapted to convert the current only in the positive direction, the measurement range for measuring the current can be narrowed as shown in FIG. Therefore, the corresponding range L of the isolation amplifier 25 becomes narrow and the slope of the output curve C becomes large. Therefore, the rate of change of the output with respect to the fluctuation of the current becomes large, and measurement with high fluctuation accuracy becomes possible. In other words, it is not necessary to use an expensive isolation amplifier that exhibits a highly accurate function over a wide measurement range, and the measurement circuit 5 can be inexpensively configured.

【0028】さらに、電圧測定器9として1〜5Vの入
力仕様のものを使用した場合でも、極性反転により正方
向のみの電流を測定するため、充電側または放電側のい
ずれか一方の測定が絶縁アンプの低出力側で行われると
いうことがなくなり、絶縁アンプの出力が安定して、二
次電池1の残存容量を精度良く測定評価することができ
る。
Further, even when a voltage measuring device 9 having an input specification of 1 to 5 V is used, since the current is measured only in the positive direction by reversing the polarity, either the charging side or the discharging side is insulated. It is not performed on the low output side of the amplifier, the output of the isolation amplifier is stable, and the remaining capacity of the secondary battery 1 can be accurately measured and evaluated.

【0029】[0029]

【別の実施例】 以下に、この発明の別の実施例につい
て説明する。 (第2実施例)まず、図3及び図4に示す第2実施例に
おいては、電圧測定器9の測定値が制御装置7に入力さ
れるようになっている。また、絶縁アンプ8には少しだ
けマイナス側への変換機能を持たせ、電圧測定器9で所
定以上のマイナス電流を測定したとき、制御装置7がこ
れを判定して、極性反転回路6を瞬時に切り換えるよう
になっている。従って、この実施例においては、電圧測
定器9の測定値に基づく自己判断により、二次電池1の
充電及び放電に応じて、充放電電流の極性反転を行うこ
とができる。従って、この第2実施例においても、極性
反転を自動的に行うことができる。 (第3実施例)次に、図5及び図6に示す第3実施例に
おいては、極性反転回路6の入力側に電圧極性を判定す
るための極性判定器12が接続されている。そして、こ
の極性判定器12で所定以上の電圧を検出したとき、制
御装置7の識閾値判定により、極性反転回路6を切り換
えるようになっている。すなわち、図6に示すように、
極性判定器12は充放電回路2の極性及び電圧に対応し
た出力を行い、制御装置12は極性判定器12のプラス
側、マイナス側の出力が識閾値を越えた場合に極性の判
定を行う。従って、この実施例においても、極性判定器
12の検出に基づく自己判定により、二次電池1の充電
及び放電に応じて、充放電電流の極性反転を自動的に行
うことができる。なお、この識閾値は定格電流の5%程
度以下としておけば、実用上十分な機能が得られる。 (第4実施例)次に、第4実施例においては、以下のよ
うな方法により残存電力量を算出し、それを表示できる
ようにした。すなわち、残存電力量W1 (Wh)は下記
(1)式で求められる。
[Other Embodiment] Another embodiment of the present invention will be described below. (Second Embodiment) First, in the second embodiment shown in FIGS. 3 and 4, the measured value of the voltage measuring device 9 is input to the control device 7. Further, the isolation amplifier 8 is provided with a function of slightly converting to the negative side, and when the voltage measuring device 9 measures a negative current more than a predetermined value, the control device 7 judges this and instantaneously activates the polarity reversing circuit 6. It is designed to switch to. Therefore, in this embodiment, the polarity of the charging / discharging current can be reversed according to the charging and discharging of the secondary battery 1 by self-determination based on the measurement value of the voltage measuring device 9. Therefore, also in the second embodiment, the polarity inversion can be automatically performed. (Third Embodiment) Next, in the third embodiment shown in FIGS. 5 and 6, a polarity determiner 12 for determining the voltage polarity is connected to the input side of the polarity inverting circuit 6. When the polarity determiner 12 detects a voltage equal to or higher than a predetermined value, the polarity reversing circuit 6 is switched by the identification threshold determination of the control device 7. That is, as shown in FIG.
The polarity determiner 12 outputs an output corresponding to the polarity and voltage of the charging / discharging circuit 2, and the controller 12 determines the polarity when the positive and negative outputs of the polarity determiner 12 exceed the threshold value. Therefore, also in this embodiment, the polarity inversion of the charge / discharge current can be automatically performed according to the charging and discharging of the secondary battery 1 by the self-determination based on the detection of the polarity determiner 12. Note that if this threshold value is set to about 5% or less of the rated current, a practically sufficient function can be obtained. (Fourth Embodiment) Next, in the fourth embodiment, the remaining electric energy is calculated by the following method and can be displayed. That is, the remaining power amount W 1 (Wh) is calculated by the following equation (1).

【0030】 W1 =∫Wc (t) dt×η−∫Wd (t) dt ・・・(1) 但し、Wc (t) は充電電力であり、Wc (t) =Vc (t)
×Ic (t) で求められる。Vc (t) は充電電圧、I
c (t) は充電電流である。Wd (t) は放電電力であり、
d (t) =Vd (t) ×Id (t) で求められる。Vd (t)
は放電電圧、Id (t) は放電電流である。ηは充放電効
率を表す。
W 1 = ∫W c (t) dt × η−∫W d (t) dt (1) where W c (t) is charging power and W c (t) = V c (t)
× I c (t). V c (t) is the charging voltage, I
c (t) is the charging current. W d (t) is discharge power,
Wd (t) = Vd (t) × Id (t). V d (t)
Is the discharge voltage, and I d (t) is the discharge current. η represents charge / discharge efficiency.

【0031】この充放電効率ηは、運転条件がいつも等
しい場合には1つの設定値でよいが、運転条件が異なる
場合にはその運転条件に応じた充放電効率を自動的に選
択できるようにするのが望ましい。
This charging / discharging efficiency η may be one set value when the operating conditions are always the same, but when the operating conditions are different, the charging / discharging efficiency corresponding to the operating conditions can be automatically selected. It is desirable to do.

【0032】運転条件がいつも等しい場合には、各サイ
クルの効率ηを次式(2)で求め、次回のサイクルの効
率ηとして使用することにより、いつも最適な評価を行
うことができる。
When the operating conditions are always the same, the efficiency η of each cycle is obtained by the following equation (2) and used as the efficiency η of the next cycle, so that the optimum evaluation can always be performed.

【0033】 η=(Vd (t) の時間平均値)/(Vc (t) の時間平均値) ・・・(2) また、電池の内部抵抗によるジュール熱損失を考慮する
ため、各サイクルの平均内部抵抗Rm を次式(3)によ
り算出する。
Η = (time average value of V d (t)) / (time average value of V c (t)) (2) Further, since Joule heat loss due to internal resistance of the battery is taken into consideration, The average internal resistance R m of the cycle is calculated by the following equation (3).

【0034】 Rm =(Wc −Wd )/(∫IC (t)2dt+∫Id (t)2dt) ・・・(3) 但し、Wc は1サイクルの充電電力量、Wd は1サイク
ルの放電電力量、IC(t) は充電電流(測定値)、I
d (t) は放電電流(測定値)である。
R m = (W c −W d ) / (∫I C (t) 2 dt + ∫I d (t) 2 dt) (3) where W c is the charging power amount of one cycle, W d is the discharge electric energy of one cycle, I C (t) is the charging current (measured value), I
d (t) is the discharge current (measured value).

【0035】本評価によって得られたRm を用いて、次
式(4)によりVD を補正することができる。 VD =V0 −Rm ×ID ・・・(4) 但し、V0 は放電平均開放電圧(設定値)、ID は定格
放電電流(設定値)である。
Using R m obtained by this evaluation, V D can be corrected by the following equation (4). V D = V 0 -R m × I D ··· (4) where, V 0 is the average discharge open voltage (set point), I D is the rated discharge current (set value).

【0036】あるいは、平均内部抵抗Rm を次式(5)
により算出することもできる。 Rm ≒(V0e−Vde)/Ide ・・・(5) 但し、V0eは放電終了後の開放電圧、Vdeは放電末の電
池電圧、Ideは放電末の電流値を表す。
Alternatively, the average internal resistance R m can be calculated by the following equation (5).
It can also be calculated by R m ≈ (V 0e −V de ) / I de (5) where V 0e is the open circuit voltage after discharge, V de is the battery voltage at the end of discharge, and I de is the current value at the end of discharge. .

【0037】以上のように、この実施例では、残存電力
量(Wh)を容易かつ精度良く測定することができる。
しかも、この残存電力量を表示できるようにしたことか
ら、残存容量(Ah)では一定電力で放電した場合の放
電可能時間を容易に把握することができないのに対し、
定電力による放電可能時間を直ちに把握することができ
る。加えて、残存電力量(Wh)を評価することによ
り、残存容量(Ah)に基づく電池の劣化のみではな
く、内部抵抗Rm の変化を加味して電池の劣化を判定で
きるため、電池の劣化の判定をより的確に行うことがで
きる。 (第5実施例)次に、この発明を具体化した第5実施例
について、図7〜図9に基づいて説明する。
As described above, in this embodiment, the remaining electric energy (Wh) can be measured easily and accurately.
Moreover, since the remaining power amount can be displayed, the remaining capacity (Ah) cannot easily grasp the dischargeable time when discharging with constant power, whereas
It is possible to immediately know the dischargeable time with constant power. In addition, by evaluating the remaining power amount (Wh), not only the deterioration of the battery based on the remaining capacity (Ah) but also the deterioration of the battery can be determined in consideration of the change in the internal resistance R m. Can be determined more accurately. (Fifth Embodiment) Next, a fifth embodiment of the present invention will be described with reference to FIGS.

【0038】この実施例においては、第1実施例で求め
られた残存容量(Ah)より、以下のようにして残存電
力量を求めた。すなわち、残存電力量W2 (Wh)は、
次式(6)により算出される。
In this example, the amount of remaining power was determined as follows from the remaining capacity (Ah) obtained in the first example. That is, the remaining electric energy W 2 (Wh) is
It is calculated by the following equation (6).

【0039】 W2 =残存容量(Ah)×VD ・・・(6) 但し、VD は定格放電電圧の初期設定値を表す。このV
D は、第4実施例で述べた内部抵抗Rm により、補正す
るのが望ましい。また、毎サイクル放電条件が等しい場
合には、次式(7)で適正なVD を直接求めることも可
能である。
W 2 = remaining capacity (Ah) × V D (6) However, V D represents the initial setting value of the rated discharge voltage. This V
It is desirable to correct D by the internal resistance R m described in the fourth embodiment. Further, when the discharge conditions are the same every cycle, it is also possible to directly obtain an appropriate V D by the following equation (7).

【0040】VD =WD /∫Id (t) dt ・・・(7) VD は放電電力により異なり、それによって残存電力量
も異なる。従って、図7(a)に示すように、放電電力
(W)と放電電圧(VD )との関係をグラフにしたり、
図7(b)に示すように、同じく両者の関係を表にした
りして、放電電力から放電電圧を容易に読み取り、内部
演算に使用することができるようにしておくのが望まし
い。
V D = W D / ∫I d (t) dt (7) V D varies depending on the discharge power, and the residual power also varies accordingly. Therefore, as shown in FIG. 7A, the relationship between the discharge power (W) and the discharge voltage (V D ) can be graphed,
As shown in FIG. 7 (b), it is desirable that the relationship between the two is also shown in a table so that the discharge voltage can be easily read from the discharge power and used for internal calculation.

【0041】さらに、図8(a)に示すように、放電電
力(W)と残存電力量(Wh)との関係をグラフにした
り、図8(b)に示すように、同様に両者の関係を表に
したりして、ユーザーが放電電力に対応する残存電力量
を一目でわかるようにしておくのが望ましい。
Furthermore, as shown in FIG. 8 (a), the relationship between the discharge power (W) and the remaining power amount (Wh) is plotted in a graph, or as shown in FIG. It is desirable for the user to see at a glance the amount of remaining power corresponding to the discharge power by using the table below.

【0042】加えて、放電電圧(VD )は放電深度(A
h)によっても異なるため、放電電圧を放電深度の関数
として表しておくことにより、より正確な評価を可能に
することができる。図9に電池の深度と開放電圧との関
係を示す。VD =VD (q0)とし、現深度(q0 )か
ら放電末までの深度領域で評価を行い、このVD を用い
て残存電力量を評価するものである。VD (q)は、初
期設定関数として予め設定するものであり、試験データ
から推定して得る方法と理論式により汎用的に与える方
法がある。理論式により求める場合には、一例として次
の手順が考えられる。すなわち、実施例1において深度
と開放電圧との関係は理論上既に示されており、放電を
一旦終了した時点でその深度における開放電圧は既に得
られていることから、現深度から放電末に到るまでの平
均開放電圧V0D(q0 )は容易に算出できる。
In addition, the discharge voltage (V D ) is the depth of discharge (A
Since it also differs depending on h), more accurate evaluation can be made possible by expressing the discharge voltage as a function of the depth of discharge. FIG. 9 shows the relationship between the depth of the battery and the open circuit voltage. With V D = V D (q 0 ), evaluation is performed in the depth region from the current depth (q 0 ) to the end of discharge, and the residual power amount is evaluated using this V D. V D (q) is preset as an initial setting function, and there are a method of estimating it from test data and a method of giving it generally by a theoretical formula. In the case of the theoretical formula, the following procedure can be considered as an example. That is, in Example 1, the relationship between the depth and the open circuit voltage has already been theoretically shown, and since the open circuit voltage at that depth is already obtained when the discharge is once completed, the current depth reaches the end of the discharge. The average open-circuit voltage V 0D (q 0 ) up to this point can be easily calculated.

【0043】現深度から放電末に到るまでの平均開放電
圧VD (q0 )は、次式で評価することができる。 VD (q0 )=V0D(q0 )−Rm ×Id (q0 ) 平均内部抵抗Rm は前述のいくつかの方法により、補正
値を用いることも可能であり、Id (q0 )はその深度
における計測電流値である。Id (q0 )の代わりに、
定格放電電流ID を用いてもよいが、深度の深い領域で
はId (q0 )方が高い精度が得られると考えられる。
なお、現放電深度は、電池の全容量(Ah)から残存容
量(Ah)を差し引いて得られる値である。
The average open circuit voltage V D (q 0 ) from the current depth to the end of discharge can be evaluated by the following equation. The V D (q 0) = V 0D (q 0) -R m × I d (q 0) The average internal resistance R m of several of the aforementioned methods, it is also possible to use a correction value, I d ( q 0 ) is the measured current value at that depth. Instead of I d (q 0 ),
The rated discharge current I D may be used, but it is considered that I d (q 0 ) is more accurate in a deeper region.
The current discharge depth is a value obtained by subtracting the remaining capacity (Ah) from the total capacity (Ah) of the battery.

【0044】以上のように、この実施例では、残存電力
量(Wh)を表示できるようにしたので、定電力による
放電可能時間を容易に把握することができる。その上、
残存電力量(Wh)を評価することにより、内部抵抗R
m の変化を加味して電池の劣化を的確に判定することが
できる。
As described above, in this embodiment, since the remaining electric energy (Wh) can be displayed, it is possible to easily grasp the dischargeable time by the constant electric power. Moreover,
By evaluating the remaining power amount (Wh), the internal resistance R
The deterioration of the battery can be accurately determined by considering the change in m .

【0045】なお、さらに高い精度を要求する場合に
は、次式が有効と考えられる。すなわち、定格放電電力
をPD とすれば、次の関係が与えられる。 PD =(V0D(q)−Rm ×Id (q))×Id (q) 但し、qは放電深度(q=q(t))を表す。
If higher accuracy is required, the following equation is considered effective. That is, if the rated discharge power is P D , the following relationship is given. P D = (V 0D (q ) -R m × I d (q)) × I d (q) where, q denotes the depth of discharge (q = q (t)) .

【0046】[0046]

【数1】 [Equation 1]

【0047】[0047]

【数2】 [Equation 2]

【0048】[0048]

【数3】 (Equation 3)

【0049】但し、teは現深度q0 からの放電可能時間
を表す。従って、q=q0 (t=0)の時点からシミュ
レーション的に演算処理を行うことにより、高い精度で
残存電力量を評価することが可能である。
However, te represents the dischargeable time from the current depth q 0 . Therefore, it is possible to evaluate the remaining power amount with high accuracy by performing the arithmetic processing in a simulation from the time point of q = q 0 (t = 0).

【0050】なお、この発明は、例えば以下のように構
成を変更して具体化してもよい。 (1)前記第1実施例において、充放電切換回路3から
制御装置7に充放電のいずれの指令もない場合、二次電
池1が充放電運転を行わない休止期間中にあるものと判
断して、充放電電流の積算を休止させるように構成する
こと。このように構成した場合には、二次電池1の休止
期間中において、絶縁アンプのゼロ点変動により誤差が
蓄積されていくのを防止することができて、二次電池1
の残存容量をより正確に評価することができる。 (2)前記第3実施例において、極性判定器12の検出
電圧が、図6に示すように、所定の識閾値以下にある場
合、二次電池1が休止期間中にあるものと判断して、充
放電電流の積算を休止させるように構成すること。この
ように構成した場合にも、同様にゼロ点変動による誤差
の蓄積を防止して、残存容量の評価精度を高めることが
できる。 (3)前記各実施例において、極性反転回路6により充
電電流及び放電電流を、負方向に極性反転させて測定回
路5に入力するように構成すること。
The present invention may be embodied by changing the configuration as follows, for example. (1) In the first embodiment, when there is no command for charging / discharging from the charging / discharging switching circuit 3 to the control device 7, it is determined that the secondary battery 1 is in a rest period during which charging / discharging operation is not performed. And stop charging and discharging current integration. With such a configuration, it is possible to prevent the error from accumulating due to the zero point fluctuation of the isolation amplifier during the idle period of the secondary battery 1, and the secondary battery 1
The remaining capacity of can be evaluated more accurately. (2) In the third embodiment, when the voltage detected by the polarity determiner 12 is equal to or lower than the predetermined threshold value as shown in FIG. 6, it is determined that the secondary battery 1 is in the idle period. , Configure to suspend the integration of charge / discharge current. In the case of such a configuration as well, it is possible to prevent the accumulation of errors due to the zero point variation and improve the evaluation accuracy of the remaining capacity. (3) In each of the above embodiments, the polarity reversing circuit 6 reverses the polarities of the charging current and the discharging current in the negative direction and inputs them to the measuring circuit 5.

【0051】また、前記実施例より把握される技術的思
想につき、以下に説明する。 (a)二次電池の充電及び放電時に、充放電回路に流れ
る異なった方向の電流を、極性反転により正方向または
負方向のいずれか一方に統一して測定回路に入力し、そ
の測定回路において充電及び放電電流を測定し、その電
流値に基づいて残存容量を測定する電力貯蔵用二次電池
の残存容量測定方法。この方法によれば、残存容量を評
価誤差を小さくして精度良く測定することができる。 (b)残存電力量を表示可能にした請求項6又は7に記
載の電力貯蔵用二次電池の残存電力量測定方法。この構
成により、定電力による放電可能時間を直ちに把握する
ことができる。 (c)電池の内部抵抗も加味して残存電力量を測定する
請求項6又は7に記載の電力貯蔵用二次電池の残存電力
量測定方法。この構成によれば、電池の劣化をより的確
に判定することができる。
Further, the technical idea grasped from the above embodiment will be described below. (A) When charging and discharging the secondary battery, the currents flowing in different directions in the charging / discharging circuit are unified into either the positive direction or the negative direction by polarity reversal and are input to the measuring circuit. A method for measuring the remaining capacity of a secondary battery for power storage, which measures a charging and discharging current and measures the remaining capacity based on the current value. According to this method, the remaining capacity can be accurately measured with a small evaluation error. (B) The residual power amount measuring method of the secondary battery for power storage according to claim 6 or 7, wherein the residual power amount can be displayed. With this configuration, it is possible to immediately understand the dischargeable time with constant power. (C) The residual power amount measuring method of the secondary battery for power storage according to claim 6 or 7, wherein the residual power amount is measured in consideration of the internal resistance of the battery. According to this configuration, it is possible to more accurately determine the deterioration of the battery.

【0052】[0052]

【発明の効果】 この発明は、以上説明したように構成
されているため、以下に示す効果を発揮する。請求項1
及び5の発明によれば、二次電池の充電及び放電時に、
充放電回路に流れる異なった方向の電流が、極性反転回
路の極性反転により、正方向または負方向のいずれか一
方に統一して測定回路に入力される。そして、この測定
回路において、入力された充電電流及び放電電流が測定
されるとともに、その測定値を充電を正、放電を負とし
て積算することによって二次電池の残存容量が求められ
る。従って、高精度絶縁アンプを使用することなく、安
価な測定回路構成で、二次電池の残存容量を精度良く測
定評価できる。
EFFECTS OF THE INVENTION Since the present invention is configured as described above, it has the following effects. Claim 1
According to the invention of 5 and 5, when the secondary battery is charged and discharged,
Due to the polarity reversal of the polarity reversing circuit, the currents flowing through the charging / discharging circuit in different directions are uniformly input to the measuring circuit in either the positive direction or the negative direction. Then, in this measuring circuit, the input charging current and discharging current are measured, and the remaining capacity of the secondary battery is obtained by integrating the measured values with charging being positive and discharging being negative. Therefore, the remaining capacity of the secondary battery can be accurately measured and evaluated with an inexpensive measurement circuit configuration without using a high-precision insulating amplifier.

【0053】請求項2の発明によれば、充放電回路が高
電圧であっても、絶縁アンプにより測定回路が保護さ
れ、破壊されたりすることなく、安全な測定が可能とな
る。請求項3及び4の発明によれば、充放電の切換にと
もない、極性反転を自動的に行うことができる。
According to the second aspect of the present invention, even if the charge / discharge circuit has a high voltage, the measurement circuit is protected by the insulation amplifier and is not destroyed, so that the safe measurement can be performed. According to the third and fourth aspects of the present invention, the polarity inversion can be automatically performed along with the switching of charging and discharging.

【0054】請求項6及び請求項7に記載の発明によれ
ば、残存電力量を容易かつ精度良く得ることができ、そ
の残存電力量から定電力による放電可能時間を容易に知
ることができるとともに、電池の劣化も的確に判定する
ことができる。
According to the sixth and seventh aspects of the present invention, the amount of remaining power can be obtained easily and accurately, and the dischargeable time at constant power can be easily known from the amount of remaining power. Also, deterioration of the battery can be accurately determined.

【0055】請求項8に記載の発明によれば、高い精度
で残存電力量を評価することができる。
According to the invention described in claim 8, the remaining electric energy can be evaluated with high accuracy.

【図面の簡単な説明】[Brief description of drawings]

【図1】 第1実施例における充放電測定装置のブロッ
ク線図。
FIG. 1 is a block diagram of a charge / discharge measuring device according to a first embodiment.

【図2】 充放電測定装置における電圧と電流との関係
を示すグラフ。
FIG. 2 is a graph showing the relationship between voltage and current in a charge / discharge measuring device.

【図3】 第2実施例における充放電測定装置のブロッ
ク線図。
FIG. 3 is a block diagram of a charge / discharge measuring device according to a second embodiment.

【図4】 充放電測定装置における電圧と電流との関係
を示すグラフ。
FIG. 4 is a graph showing the relationship between voltage and current in a charge / discharge measuring device.

【図5】 第3実施例における充放電測定装置のブロッ
ク線図。
FIG. 5 is a block diagram of a charge / discharge measuring device according to a third embodiment.

【図6】 他の実施例における測定電圧と電流との関係
を示すグラフ。
FIG. 6 is a graph showing the relationship between measured voltage and current in another example.

【図7】 (a)は放電電力と放電電圧との関係を示す
グラフ、(b)は放電電力と放電電圧との関係を示す表
形式の図。
FIG. 7A is a graph showing the relationship between discharge power and discharge voltage, and FIG. 7B is a tabular diagram showing the relationship between discharge power and discharge voltage.

【図8】 (a)は放電電力と残存電力との関係を示す
グラフ、(b)は放電電力と残存電力との関係を示す表
形式の図。
FIG. 8A is a graph showing a relationship between discharge power and remaining power, and FIG. 8B is a tabular diagram showing a relationship between discharge power and remaining power.

【図9】 放電深度と開放電圧との関係を示すグラフ。FIG. 9 is a graph showing the relationship between the depth of discharge and the open circuit voltage.

【図10】 従来の充放電測定装置を示すブロック線
図。
FIG. 10 is a block diagram showing a conventional charge / discharge measuring device.

【図11】 充放電測定装置による測定電圧と電流との
関係のグラフ。
FIG. 11 is a graph showing the relationship between the voltage and current measured by the charge / discharge measuring device.

【符号の説明】[Explanation of symbols]

1…二次電池、2…充放電回路、3…充放電切換装置、
4…シャント抵抗、5…測定回路、6…極性反転回路、
7…制御装置、8…絶縁アンプ、9…電圧測定器、10
…演算装置、11…積分装置。
1 ... Secondary battery, 2 ... Charge / discharge circuit, 3 ... Charge / discharge switching device,
4 ... Shunt resistance, 5 ... Measurement circuit, 6 ... Polarity inversion circuit,
7 ... Control device, 8 ... Insulation amplifier, 9 ... Voltage measuring device, 10
... arithmetic device, 11 ... integrating device.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 二次電池の充電及び放電時に、充放電回
路に流れる異なった方向の電流を、極性反転により正方
向または負方向のいずれか一方に統一して測定回路に入
力し、その測定回路において充電及び放電電流を測定す
る電力貯蔵用二次電池の充放電電流測定方法。
1. When charging and discharging a secondary battery, currents flowing in different directions in a charging / discharging circuit are unified into either a positive direction or a negative direction by polarity reversal and input to a measuring circuit, and the measurement is performed. A charging / discharging current measuring method for a secondary battery for power storage, which measures charging and discharging currents in a circuit.
【請求項2】 充放電回路に流れる電流を電圧に変換し
て測定回路に入力し、その電圧を絶縁アンプにより絶縁
変換して測定する請求項1に記載の電力貯蔵用二次電池
の充放電電流測定方法。
2. The charging / discharging of the secondary battery for power storage according to claim 1, wherein the current flowing in the charging / discharging circuit is converted into a voltage, which is input to the measuring circuit, and the voltage is insulation-converted by an insulation amplifier for measurement. Current measurement method.
【請求項3】 外部指令により二次電池の充電及び放電
に応じて極性反転を行う請求項1または請求項2に記載
の電力貯蔵用二次電池の充放電電流測定方法。
3. The charging / discharging current measuring method for a secondary battery for power storage according to claim 1, wherein polarity reversal is performed according to charging and discharging of the secondary battery in accordance with an external command.
【請求項4】 測定回路の測定値により、二次電池の充
電及び放電に応じて極性反転を行う請求項1または請求
項2に記載の電力貯蔵用二次電池の充放電電流測定方
法。
4. The charge / discharge current measuring method for a secondary battery for power storage according to claim 1, wherein polarity reversal is performed according to charging and discharging of the secondary battery based on a measurement value of a measuring circuit.
【請求項5】 二次電池の充電及び放電時に充放電回路
に流れる異なった方向の電流を、正方向または負方向の
いずれか一方に統一して測定回路に入力するための極性
反転回路を、充放電回路と測定回路との間に介装した電
力貯蔵用二次電池の充放電電流測定装置。
5. A polarity reversing circuit for unifying the currents flowing in different directions in the charge / discharge circuit at the time of charging and discharging the secondary battery in either the positive direction or the negative direction into the measurement circuit, A charging / discharging current measuring device for a secondary battery for storing power, which is interposed between a charging / discharging circuit and a measuring circuit.
【請求項6】 二次電池の充電及び放電時に、充放電回
路に流れる異なった方向の電流を、極性反転により正方
向または負方向のいずれか一方に統一して測定回路に入
力し、その測定回路において充電及び放電電流を測定
し、その電流値と充放電時の電池電圧値より充電電力と
放電電力とをそれぞれ積算して求め、その差により残存
電力量を測定する電力貯蔵用二次電池の残存電力量測定
方法。
6. When charging and discharging a secondary battery, the currents flowing in different directions in the charge / discharge circuit are unified into either the positive direction or the negative direction by polarity reversal and input to the measurement circuit, and the measurement is performed. A secondary battery for power storage that measures charging and discharging currents in a circuit, calculates charging current and discharging power from the current value and battery voltage value during charging / discharging respectively, and measures the remaining power amount by the difference. Method for measuring the amount of remaining electric power.
【請求項7】 二次電池の充電及び放電時に、充放電回
路に流れる異なった方向の電流を、極性反転により正方
向または負方向のいずれか一方に統一して測定回路に入
力し、その測定回路において充電及び放電電流を測定
し、その電流値に基づいて残存容量を測定し、この残存
容量と放電電圧とに基づいて残存電力量を測定する電力
貯蔵用二次電池の残存電力量測定方法。
7. When charging and discharging a secondary battery, currents flowing in different directions in a charge / discharge circuit are unified into either a positive direction or a negative direction by polarity reversal and are input to a measurement circuit, and the measurement is performed. A method for measuring the remaining power amount of a secondary battery for power storage, which measures the charge and discharge currents in a circuit, measures the remaining capacity based on the current value, and measures the remaining power amount based on the remaining capacity and the discharge voltage. .
【請求項8】 二次電池の充電及び放電時に、充放電回
路に流れる異なった方向の電流を、極性反転により正方
向または負方向のいずれか一方に統一して測定回路に入
力し、その測定回路において充電及び放電電流を測定
し、それらの電流値をそれぞれ積算し、その差に基づい
て残存容量を測定し、これから放電深度を求め、電池電
圧の理論曲線をもとにその放電深度以降の放電電圧と放
電電流を推定演算することにより残存電力量を測定する
電力貯蔵用二次電池の残存電力量測定方法。
8. When charging and discharging a secondary battery, currents flowing in different directions in a charge / discharge circuit are unified into either a positive direction or a negative direction by polarity reversal and are input to a measurement circuit, and the measurement is performed. Measure the charging and discharging current in the circuit, integrate each of those current values, measure the remaining capacity based on the difference, calculate the depth of discharge from this, based on the theoretical curve of the battery voltage A method for measuring the remaining power amount of a secondary battery for power storage, which measures the remaining power amount by estimating and calculating a discharge voltage and a discharge current.
JP7069508A 1994-04-27 1995-03-28 Method for measuring charge / discharge current of secondary battery for power storage, method for measuring remaining power, and measuring device Expired - Fee Related JP2937796B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7069508A JP2937796B2 (en) 1994-04-27 1995-03-28 Method for measuring charge / discharge current of secondary battery for power storage, method for measuring remaining power, and measuring device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP6-90244 1994-04-27
JP9024494 1994-04-27
JP7069508A JP2937796B2 (en) 1994-04-27 1995-03-28 Method for measuring charge / discharge current of secondary battery for power storage, method for measuring remaining power, and measuring device

Publications (2)

Publication Number Publication Date
JPH0817478A true JPH0817478A (en) 1996-01-19
JP2937796B2 JP2937796B2 (en) 1999-08-23

Family

ID=26410696

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7069508A Expired - Fee Related JP2937796B2 (en) 1994-04-27 1995-03-28 Method for measuring charge / discharge current of secondary battery for power storage, method for measuring remaining power, and measuring device

Country Status (1)

Country Link
JP (1) JP2937796B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000350372A (en) * 1999-04-21 2000-12-15 Samsung Sdi Co Ltd Charging of secondary battery and data generation method for monitoring and controlling discharge state
JP2002184470A (en) * 2000-12-11 2002-06-28 Fuji Electric Co Ltd Charge/discharge current measuring apparatus
WO2010109977A1 (en) 2009-03-25 2010-09-30 日本碍子株式会社 Method for calculating residual capacity of sodium-sulfur battery
WO2011148743A1 (en) * 2010-05-28 2011-12-01 矢崎総業株式会社 Voltage measuring apparatus for battery pack
WO2012026064A1 (en) * 2010-08-25 2012-03-01 三洋電機株式会社 Detection circuit, battery module, battery system, electrically-driven vehicle, moving body, power storage device, and power supply device
CN108923087A (en) * 2017-11-05 2018-11-30 杨春晓 Lead-acid batteries including charge and discharge device
CN112014749A (en) * 2020-09-01 2020-12-01 珠海艾派克微电子有限公司 Method and device for determining battery display electric quantity, chip and storage medium

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000350372A (en) * 1999-04-21 2000-12-15 Samsung Sdi Co Ltd Charging of secondary battery and data generation method for monitoring and controlling discharge state
JP2002184470A (en) * 2000-12-11 2002-06-28 Fuji Electric Co Ltd Charge/discharge current measuring apparatus
JP4719972B2 (en) * 2000-12-11 2011-07-06 富士電機システムズ株式会社 Charge / discharge current measuring device
WO2010109977A1 (en) 2009-03-25 2010-09-30 日本碍子株式会社 Method for calculating residual capacity of sodium-sulfur battery
US8957640B2 (en) 2009-03-25 2015-02-17 Ngk Insulators, Ltd. Method for accurately and precisely calculating state of charge of a sodium-sulfur battery
WO2011148743A1 (en) * 2010-05-28 2011-12-01 矢崎総業株式会社 Voltage measuring apparatus for battery pack
JP2011247818A (en) * 2010-05-28 2011-12-08 Yazaki Corp Voltage measuring instrument for assembled battery
CN102918403A (en) * 2010-05-28 2013-02-06 矢崎总业株式会社 Voltage measuring apparatus for battery assembly
WO2012026064A1 (en) * 2010-08-25 2012-03-01 三洋電機株式会社 Detection circuit, battery module, battery system, electrically-driven vehicle, moving body, power storage device, and power supply device
CN108923087A (en) * 2017-11-05 2018-11-30 杨春晓 Lead-acid batteries including charge and discharge device
CN112014749A (en) * 2020-09-01 2020-12-01 珠海艾派克微电子有限公司 Method and device for determining battery display electric quantity, chip and storage medium
CN112014749B (en) * 2020-09-01 2023-06-27 极海微电子股份有限公司 Method, device, chip and storage medium for determining battery display electric quantity

Also Published As

Publication number Publication date
JP2937796B2 (en) 1999-08-23

Similar Documents

Publication Publication Date Title
CN100428559C (en) Method and apparatus for estimating state of charge of secondary battery
JP5356465B2 (en) Storage battery charge state detection method and storage battery charge state detection device
US8358136B2 (en) State of charge calculator for multi-cell energy storage system having cell balancing
US10365334B2 (en) Storage battery control device, power storage system, control method, and computer-readable medium
CN110998344B (en) Degraded state calculating method and degraded state calculating device
JP4210794B2 (en) Battery capacity detection method, battery pack and electronic device system
US10024924B2 (en) Remaining battery life prediction device and battery pack
RU2006121543A (en) METHOD FOR BALANCED CHARGING OF A LITHIUM-ION OR LITHIUM-POLYMER BATTERY
JP5397013B2 (en) Battery control device
JPWO2006080067A1 (en) Secondary battery charge / discharge quantity estimation method and apparatus, secondary battery polarization voltage estimation method and apparatus, and secondary battery remaining capacity estimation method and apparatus
JP2000323183A (en) Battery condition detection device
JP5911407B2 (en) Battery soundness calculation device and soundness calculation method
JP2004271342A (en) Charging and discharging control system
KR101460248B1 (en) Apparatus and method for measuring degradation of battery and equipment for reproducing battery
JP2937796B2 (en) Method for measuring charge / discharge current of secondary battery for power storage, method for measuring remaining power, and measuring device
JP2003068369A (en) Detecting method of total capacity of secondary battery and detector of total capacity
EP3605123A1 (en) Storage battery control device and control method
JP2004177373A (en) Method of estimating battery condition, and method of determining engine start
JP5904916B2 (en) Battery soundness calculation device and soundness calculation method
JP3014945B2 (en) Method for determining remaining electric energy of sodium-sulfur battery
JP2004014462A (en) Remaining capacity measurement device of secondary battery
JP4802414B2 (en) Battery remaining capacity meter
JP2020024120A (en) Voltage estimation device and method
JPWO2017195253A1 (en) Device for calculating discharge characteristics of composite batteries
JPH03180784A (en) Calculator for residual capacity of battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080611

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090611

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100611

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100611

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110611

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120611

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees