JPH08174049A - Production of superplastically molded goods - Google Patents

Production of superplastically molded goods

Info

Publication number
JPH08174049A
JPH08174049A JP33455894A JP33455894A JPH08174049A JP H08174049 A JPH08174049 A JP H08174049A JP 33455894 A JP33455894 A JP 33455894A JP 33455894 A JP33455894 A JP 33455894A JP H08174049 A JPH08174049 A JP H08174049A
Authority
JP
Japan
Prior art keywords
temperature
blank
temp
heating
processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP33455894A
Other languages
Japanese (ja)
Other versions
JP2878141B2 (en
Inventor
Toshisuke Shibata
利介 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YKK Corp
Original Assignee
YKK Corp
Yoshida Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YKK Corp, Yoshida Kogyo KK filed Critical YKK Corp
Priority to JP33455894A priority Critical patent/JP2878141B2/en
Publication of JPH08174049A publication Critical patent/JPH08174049A/en
Application granted granted Critical
Publication of JP2878141B2 publication Critical patent/JP2878141B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C23/00Extruding metal; Impact extrusion
    • B21C23/001Extruding metal; Impact extrusion to improve the material properties, e.g. lateral extrusion

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Extrusion Of Metal (AREA)
  • Forging (AREA)
  • Powder Metallurgy (AREA)

Abstract

PURPOSE: To rapidly and easily produce final molded goods by one stage of process with a good productivity by controlling the heating temp. to be applied on the blank of a supply section by the temp. at which the blank exhibits superelasticity and the temp. rise by the heat of working generated at the time when the blank is extruded from the supply section to a passage section. CONSTITUTION: The blank 7 of a superplastic material is first loaded into the supply section 2 of a die 1 and is heated by a heating means 6 up to the heating temp. attained after the temp. rising-component by the heat of working is subtracted from the temp. at which the blank exhibits the superelasticity. The blank is pressurized at one time by means of a punch 5 arranged right above the supply section 2 when the heating temp. is attained. The blank 7 is extruded and compressed through the passage section 3 to a molding section 4 and is rapidly heated by the heat generated by pressurization up to the temp. at which the blank exhibits the superelasticity. In succession, the blank is rapidly cooled by a temp. difference between the molding section 4 and the die 1 and is molded and solidified to a desired shape. Then, the time at which the blank is exposed to the high temp. is short and, therefore, the change in the structure of the molded goods and the consequent degradation in the properties are minimized.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、加工発熱を利用した超
塑性成形加工品の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a superplastically molded product utilizing heat generated by processing.

【0002】[0002]

【従来技術】従来、超塑性を示す急冷凝固材(微細結晶
質合金材)等の成形加工品の製造方法としては、加工の
際の加熱温度の高温化、高温下での加工時間の長時間化
を避けるため、加工はゆっくりまたは素材を予備成形か
ら仕上成形まで数工程で成形し、最終成形加工品を製造
している。しかしながら、上記のような一連の加工工程
の工程上の問題点としては、総合的に時間がかかるこ
と、大きな加工成形力が必要であること、及び予備成形
から仕上成形まで数工程を要するため成形加工用の金型
数が多くなることなどが挙げられる。すなわち、加工成
形力は材料の受圧面積に比例するため、一工程で成形が
できず、予備成形から仕上成形まで数工程で除々に成形
する必要がある。その結果、素材の高温暴露時間が長く
なり、結晶粒径の粗大化、物性低下といった問題があ
る。また、一金型内でゆっくり成形加工を行う場合、型
内に素材を配し、外部から(金型から)誘導加熱、接触
加熱、通電加熱により加熱を行うため、上記と同様に高
温暴露時間が長くなり、上述の結晶粒径の粗大化、物性
の低下を招くとともに、金型自体も素材とほぼ同じか又
は幾分高い温度となるため、成形加工後の成形加工品の
冷却がスムーズに行えないといった問題を有する。
2. Description of the Related Art Conventionally, as a method of manufacturing a molded product such as a rapidly solidified material (fine crystalline alloy material) that exhibits superplasticity, the heating temperature during processing is increased, and the processing time at high temperature is long. In order to avoid aging, the processing is done slowly or the material is molded in several steps from preforming to finish forming to produce the final molded product. However, the problems in the series of processing steps as described above are that it takes a long time overall, a large processing and forming force is required, and several steps from preforming to finish forming are required. For example, the number of molds for processing increases. That is, since the work-forming force is proportional to the pressure receiving area of the material, it cannot be formed in one step, and it is necessary to gradually form it in several steps from preforming to finish forming. As a result, the material is exposed to high temperature for a long time, resulting in problems such as coarsening of crystal grain size and deterioration of physical properties. In addition, when slowly forming in one mold, the material is placed in the mold and heating is performed from the outside (from the mold) by induction heating, contact heating, and electric heating. Becomes longer, leading to coarsening of the above-mentioned crystal grain size and deterioration of physical properties, and the mold itself has a temperature almost the same as or slightly higher than that of the material, so that the molded product after cooling can be cooled smoothly. There is a problem that it cannot be done.

【0003】一方、塑性加工により発生する加工発熱を
考慮した急冷凝固材からなる成形加工品の製造方法とし
ては、特開平3−247706号公報記載の製造方法が
知られている。この公報には、加工発熱による素材の温
度上昇を抑制するために、塑性加工により素材に発生し
た加工熱を吸収する吸熱材の存在下で塑性加工を行うこ
とが開示されている。しかしながら、上記成形加工品の
製造方法においても、前記と同様に高温暴露時間が長く
なり、結晶粒径の粗大化、物性の低下を招くといった問
題を有するとともに、素材に含有又はその周囲に配され
る吸熱材の添加量、素材との相対的な関係などを制御ま
たは設定するのが困難であり、また素材に吸熱材を含有
させて加工を行った場合、成形加工品は吸熱材を含むも
のとなるため、物性的な低下を招くといった問題も有す
る。
On the other hand, as a method of manufacturing a molded product made of a rapidly solidified material in consideration of the heat generated by processing caused by plastic working, a manufacturing method described in JP-A-3-247706 is known. This publication discloses that plastic working is performed in the presence of an endothermic material that absorbs the working heat generated in the material by plastic working in order to suppress the temperature rise of the material due to working heat. However, even in the above-mentioned method for producing a molded product, there is a problem that the exposure time at a high temperature becomes long, coarsening of the crystal grain size and deterioration of physical properties are caused similarly to the above, and it is contained in the material or arranged around it. It is difficult to control or set the amount of heat absorbing material added, the relative relationship with the material, etc. Also, when processing is performed by including the heat absorbing material in the material, the molded product contains the heat absorbing material. Therefore, there is also a problem that the physical properties are deteriorated.

【0004】[0004]

【発明が解決しようとする課題】そこで、本発明は、成
形加工の際に発生する加工発熱による温度上昇を積極的
に利用して加熱温度を制御し、最終成形加工品を一工程
の加工によって短時間に生産性よく、容易に製造できる
とともに、最終成形加工品が急冷凝固材としての優れた
特性を維持できる成形加工品の製造方法を提供すること
を目的とする。
Therefore, according to the present invention, the heating temperature is controlled by positively utilizing the temperature rise due to the processing heat generated during the molding process, and the final molded product is processed by one step. An object of the present invention is to provide a method for producing a molded product which can be easily produced with high productivity in a short time and which can maintain excellent properties of the final molded product as a rapidly solidified material.

【0005】[0005]

【課題を解決するための手段】前記目的を達成するため
に、本発明によれば、素材が供給される供給部と、素材
が所望の形状に成形される成形部と、該供給部と成形部
との間を連通する通路部とを有する金型の前記供給部
に、超塑性を発現する素材を装填し、これを通路部を介
して成形部に供給、圧縮することにより成形加工を施す
超塑性成形加工品の製造方法であって、供給部の素材に
加える加熱温度(T1 )を、素材が超塑性を示す温度
(T2 )と、供給部から通路部へ素材が押し出され変形
する際に発生する加工発熱による温度上昇(△T)とに
より制御することを特徴とする超塑性成形加工品の製造
方法が提供される。好適な態様においては、上記加工発
熱による温度上昇(△T)を、下記数2の式(1)及び
式(2)から求め、加熱温度(T1 )をT1 =T2 −△
Tにより設定し、さらに好ましくは、該加熱温度
(T1)が超塑性を示す素材の結晶粗大化開始温度(Tx
)より低くなるように制御して成形加工を行う。
In order to achieve the above-mentioned object, according to the present invention, a supply part to which a material is supplied, a forming part for forming the material into a desired shape, and the supply part and a forming part. The material having superplasticity is loaded in the supply part of the mold having the passage part communicating with the part, and the material is supplied to the forming part through the passage part and compressed to perform the forming process. A method for manufacturing a superplastically formed product, wherein the heating temperature (T 1 ) applied to the material of the supply section is a temperature at which the material exhibits superplasticity (T 2 ) and the material is extruded from the supply section into the passage section and deformed. There is provided a method for producing a superplastically formed product, which is controlled by the temperature rise (ΔT) due to the heat generated during processing. In a preferred embodiment, the temperature rise (ΔT) due to the above-mentioned heat generation of processing is obtained from the following equations (1) and (2), and the heating temperature (T 1 ) is T 1 = T 2 −Δ
It is set by T, and more preferably, the heating temperature (T 1 ) is the crystal coarsening start temperature (T x of the material showing superplasticity).
) Perform the molding process by controlling it so that it becomes lower.

【0006】[0006]

【数2】 [Equation 2]

【0007】[0007]

【発明の作用】前記特開平3−247706号公報に記
載の方法によれば、塑性加工により素材に発生した加工
熱を例えばその周囲に配された吸熱材により効率よく吸
収して、加工発熱による素材の温度上昇を抑制するもの
であり、この場合、加工発熱は素材の塑性加工に利用さ
れていないため、熱効率的に大きな無駄を生じており、
また高温暴露時間も長くなる。これに対し、本発明の方
法は、加工発熱による温度上昇を素材の成形加工に積極
的に利用し、一工程で短時間に生産性よく成形加工を行
おうとするものである。すなわち、本発明の超塑性成形
加工品の製造方法は、供給部の素材に加える加熱温度
(T1 )を、素材が超塑性を示す温度(T2 )と、供給
部から通路部へ素材が押し出され変形する際に発生する
加工発熱による温度上昇(△T)とにより制御すること
を特徴としている。より具体的には、上記加工発熱によ
る温度上昇(△T)を前記式(1)及び(2)から求
め、加熱温度(T1 )をT1 =T2 −△Tにより設定す
る。
According to the method disclosed in the above-mentioned Japanese Patent Laid-Open No. 3-247706, the processing heat generated in the material by the plastic working is efficiently absorbed by, for example, the heat absorbing material arranged around the material, and the working heat is generated. It suppresses the temperature rise of the material, and in this case, the processing heat is not used for plastic working of the material, so a large waste is generated in terms of thermal efficiency,
Also, the high temperature exposure time becomes longer. On the other hand, the method of the present invention positively utilizes the temperature rise due to heat generation during processing for forming the raw material, and attempts to perform the forming with high productivity in a short time in one step. That is, in the method for producing a superplastically molded product of the present invention, the heating temperature (T 1 ) applied to the material of the feeding part is the temperature at which the material exhibits superplasticity (T 2 ) It is characterized in that it is controlled by the temperature rise (ΔT) due to the heat generated by processing when it is extruded and deformed. More specifically, the temperature rise (ΔT) due to the above-mentioned heat generation of processing is obtained from the above equations (1) and (2), and the heating temperature (T 1 ) is set by T 1 = T 2 −ΔT.

【0008】素材の加工発熱による温度上昇(△T)
は、前記式(2)で求められる。歪速度を設定すること
で前記式(1)より応力σが求まり、これを式(2)に
代入することで温度上昇(△T)を計算することができ
る。加工に用いる素材が超塑性を示す温度域は予め測定
することで分かり、その温度域内の適当な温度を超塑性
を示す温度(T2 )と設定する。この超塑性を示す温度
(T2 )から加工発熱による上昇分(△T)を引いた温
度を加熱温度(T1 )と設定し、外部加熱手段により素
材が組織的に安定な温度域にある温度(T1 )まで加熱
する。引き続き成形加工を行うことによって、素材は加
工発熱により超塑性を示す温度にまで急速加熱され、超
塑性発現温度域に達した時に加工終了になると共に、金
型温度は超塑性発現温度よりも低いため、接触伝熱によ
り急冷され、組織的に安定な温度域まで冷却される。
Temperature rise due to heat generated by processing of material (ΔT)
Is calculated by the equation (2). By setting the strain rate, the stress σ is obtained from the equation (1), and by substituting this into the equation (2), the temperature rise (ΔT) can be calculated. The temperature range in which the material used for processing exhibits superplasticity is known by measuring in advance, and an appropriate temperature within the temperature range is set as the temperature (T 2 ) exhibiting superplasticity. The temperature obtained by subtracting the increase (ΔT) due to heat generation from processing from the temperature (T 2 ) showing this superplasticity is set as the heating temperature (T 1 ), and the material is in a structurally stable temperature range by the external heating means. Heat to temperature (T 1 ). By continuing the forming process, the material is rapidly heated to a temperature at which it exhibits superplasticity due to the heat generated during processing, and when the temperature reaches the superplasticity manifestation temperature range, the machining ends and the mold temperature is lower than the superplasticity manifestation temperature. Therefore, it is rapidly cooled by contact heat transfer and cooled to a structurally stable temperature range.

【0009】非晶質合金や微細結晶質材料のように、或
る温度で組織変化が起こる材料の塑性加工では、急速な
加熱、加工、冷却が必須の条件となるが、本発明の方法
を採用することにより、バルク材の超塑性加工や粉末材
の固化成形、超塑性拡散接合が可能となる。また、本発
明の方法によれば、加熱、加工、冷却が1つの工程で行
われ、サイクルタイムが短縮されると共に、短時間で固
化成形でき、高温に暴露される時間が短いので、成形加
工品の組織変化(結晶粒の粗大化など)及びそれに伴う
物性低下が最小限に抑えられる。その結果、素材の特性
を損うことなく超塑性成形加工品を製造することができ
る。
Rapid heating, processing, and cooling are indispensable conditions for plastic working of materials such as amorphous alloys and fine crystalline materials in which the microstructure changes at a certain temperature. By adopting it, superplastic working of bulk material, solidification forming of powder material, and superplastic diffusion bonding become possible. Further, according to the method of the present invention, since heating, processing and cooling are performed in one step, the cycle time is shortened, solidification molding can be performed in a short time, and the time of exposure to high temperature is short, so molding processing is performed. Changes in the structure of the product (such as coarsening of crystal grains) and accompanying deterioration of physical properties are minimized. As a result, it is possible to manufacture a superplastic molded product without deteriorating the characteristics of the material.

【0010】[0010]

【実施例】以下、添付図面を参照しながら本発明の実施
例を説明しつつ、本発明についてさらに具体的に説明す
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described more specifically below with reference to the embodiments of the present invention with reference to the accompanying drawings.

【0011】図1は、本発明に係る超塑性成形加工品を
製造する装置の一実施態様の要部を示したものである。
図中、1は金型であり、該金型1は素材7(バルク材、
粉末材料)が供給される供給部2と素材7が所望の形状
に成形される成形部4と、該供給部2と成形部4との間
を連通する通路部3を有する。金型1の供給部2の側部
には加熱手段6が設けられている。さらに供給部2の上
方には、供給部2の孔内を摺動可能なように供給部2の
孔に対応する断面形状を有するパンチ5が昇降自在に配
設されている。
FIG. 1 shows an essential part of an embodiment of an apparatus for producing a superplastic forming product according to the present invention.
In the figure, 1 is a mold, and the mold 1 is a material 7 (bulk material,
It has a supply part 2 to which a powder material) is supplied, a forming part 4 in which a material 7 is formed into a desired shape, and a passage part 3 which communicates between the supplying part 2 and the forming part 4. A heating unit 6 is provided on the side of the supply unit 2 of the mold 1. Further, a punch 5 having a cross-sectional shape corresponding to the hole of the supply unit 2 is arranged above the supply unit 2 so as to be slidable in the hole of the supply unit 2 so as to be vertically movable.

【0012】成形加工にあたっては、まず、超塑性材料
の素材7を前記金型1の供給部2に装填し、超塑性を示
す温度(T2 )から加工発熱による温度上昇分(△T)
を引いた加熱温度(T1 )まで加熱手段6により加熱す
る。加熱温度(T1 )に達した時、供給部2直上に配さ
れたパンチ5によっていっきに加圧する。素材7は通路
部3を通って成型部4へと押し出されて圧縮されると共
に、加工発熱により超塑性を示す温度域まで急速加熱さ
れる。引き続き、成形部4の金型1との温度差により急
冷され、所望の形状に成形固化される。上記加熱手段と
しては、誘導加熱、接触加熱、通電加熱等従来公知の任
意の加熱手段を用いることができる。このような方法に
より成形加工を行うことにより、室温から超塑性発現温
度域の所定温度にいっきに急速加熱する場合に比べて小
電力で加熱でき、さらに、成形後の冷却も、超塑性発現
温度域にある素材7と、加熱手段6が配された供給部2
と通路部3を狭んで離れた成形部4自体の低い温度との
接触伝熱による冷却を利用するので、経済的であること
はもちろん、高温に暴露される時間が短く、従って組織
変化(結晶粒の粗大化など)及びそれに伴う物性低下が
最小限に抑えられ、素材の特性を損うことなく塑性加工
を確実、容易に行うことができる。
In the forming process, first, the superplastic material 7 is loaded into the supply part 2 of the mold 1, and the temperature rise (ΔT) from the temperature (T 2 ) showing superplasticity due to the process heat generation.
The heating means 6 heats up to the heating temperature (T 1 ) obtained by subtracting. When the heating temperature (T 1 ) is reached, the punch 5 arranged immediately above the supply unit 2 pressurizes all at once. The raw material 7 is extruded to the molding portion 4 through the passage portion 3 and compressed, and is rapidly heated to a temperature range exhibiting superplasticity due to heat generation during processing. Subsequently, it is rapidly cooled due to the temperature difference between the molding unit 4 and the mold 1, and is molded and solidified into a desired shape. As the heating means, any conventionally known heating means such as induction heating, contact heating, and electric heating can be used. By performing the forming process by such a method, it is possible to heat with a small electric power as compared with the case of rapidly heating from room temperature to a predetermined temperature in the superplasticity developing temperature range. 2 in which material 7 and heating means 6 are arranged
Since it utilizes cooling by contact heat transfer with the low temperature of the molding part 4 itself which narrows and separates the passage part 3 from each other, it is economical, of course, and the time to be exposed to the high temperature is short, so that the structure change (crystal (Grain coarsening, etc.) and accompanying deterioration of physical properties are minimized, and plastic working can be reliably and easily performed without impairing the characteristics of the material.

【0013】図2に示す製造装置の基本構成は、前記図
1の構成と同様であるが、図1の装置においては、通路
部3及び成形部4が供給部2の側部に位置しているのに
対し、図2の装置においては、金型1aの通路部3a及
び成形部4aが供給部2の下方に位置している。このよ
うな図2の装置の態様、すなわち、素材が押し出される
方向が、パンチ5の昇降方向と同一である装置を用いて
成形を行った場合、成形品の底面中央部にくぼみが生じ
易いため、それを防ぐために成形部4底面中央部に切除
成形部8が設けられている。これにより成形品の底面中
央部は凸状となるが、同様に通路部に形成される凸部と
共に成形後切断される。
The basic structure of the manufacturing apparatus shown in FIG. 2 is the same as that of FIG. 1, but in the apparatus of FIG. 1, the passage portion 3 and the molding portion 4 are located on the side of the supply portion 2. On the other hand, in the apparatus of FIG. 2, the passage portion 3a and the molding portion 4a of the mold 1a are located below the supply portion 2. When molding is performed using such a mode of the apparatus of FIG. 2, that is, an apparatus in which the direction in which the material is extruded is the same as the ascending / descending direction of the punch 5, a recess is likely to occur in the center of the bottom surface of the molded product. In order to prevent this, a cut-out molding portion 8 is provided at the center of the bottom surface of the molding portion 4. As a result, the central portion of the bottom surface of the molded product has a convex shape, but it is likewise cut after molding together with the convex portion formed in the passage portion.

【0014】本発明の製造方法が適用される素材として
は、塑性加工に供される超塑性を有するような変形能の
大きな材質は全て適用可能であるが、特に特開平6−1
7178号に記載されている下記超塑性金属材料や急冷
凝固合金粉末固化材を有利に用いることができる。特開
平6−17178号に記載の超塑性アルミニウム基合金
は、特定の組成を有する合金材料を急冷することによっ
て、非晶質相、非晶質と微細結晶質の混合相又は微細結
晶質相からなるアルミニウム基合金を作成し、これを所
定温度で所定時間熱処理し、これに加工熱処理を施して
結晶粒径及び金属間化合物の粒子の大きさを調整して得
られるものであり、平均結晶粒径が0.005〜1μm
のアルミニウム又はアルミニウムの過飽和固溶体のマト
リックス中に、マトリックス元素(A1)とその他の合
金元素との金属間化合物又はその他の合金元素同士から
なる金属間化合物の安定相又は準安定相からなる平均粒
子の大きさが0.001〜0.1μmの粒子が均一に分
散している超塑性アルミニウム基合金材料であり、その
合金系としては以下のような組成のものが含まれる。
As the material to which the manufacturing method of the present invention is applied, any material having a large deformability such as having superplasticity to be subjected to plastic working can be applied.
The following superplastic metal materials and rapidly solidified alloy powder solidifying materials described in No. 7178 can be advantageously used. The superplastic aluminum-based alloy described in JP-A-6-17178 is produced by quenching an alloy material having a specific composition to obtain an amorphous phase, a mixed phase of amorphous and fine crystalline, or a fine crystalline phase. It is obtained by preparing an aluminum-based alloy, which is heat-treated at a predetermined temperature for a predetermined period of time, and subjecting it to thermomechanical treatment to adjust the crystal grain size and the intermetallic compound grain size. Diameter 0.005 ~ 1μm
In the matrix of aluminum or a supersaturated solid solution of aluminum, an average particle consisting of a stable phase or a metastable phase of an intermetallic compound of the matrix element (A1) and other alloy elements or other alloy elements It is a superplastic aluminum-based alloy material in which particles having a size of 0.001 to 0.1 μm are uniformly dispersed, and its alloy system includes the following compositions.

【0015】(A)Ala1 be (ただし、M1 :M
n、Fe、Co、Ni及びMoから選ばれる少なくとも
一種の元素、X:Nb、Hf、Ta、Y、Zr、Ti、
希土類元素及び希土類元素の集合体(Mm;ミッシュメ
タル)から選ばれる少なくとも一種の元素、a、b、e
は原子パーセントで75≦a≦97、0.5≦b≦1
5、0.5≦e≦10)で示される組成を有する超塑性
アルミニウム基合金材料、(B)Ala1 (b-c)2 c
e (ただし、M1 :Mn、Fe、Co、Ni及びMoか
ら選ばれる少なくとも一種の元素、M2 :V、Cr及び
Wから選ばれる少なくとも一種の元素、X:Nb、H
f、Ta、Y、Zr、Ti、希土類元素及び希土類元素
の集合体(Mm;ミッシュメタル)から選ばれる少なく
とも一種の元素、a、b、c、eは原子パーセントで7
5≦a≦97、0.5≦b≦15、0.1≦c≦5、
0.5≦e≦10)で示される組成を有する超塑性アル
ミニウム基合金材料、(C)Ala1 (b-d)3 de
(ただし、M1 :Mn、Fe、Co、Ni及びMoから
選ばれる少なくとも一種の元素、M3 :Li、Ca、M
g、Si、Cu及びZnから選ばれる少なくとも一種の
元素、X:Nb、Hf、Ta、Y、Zr、Ti、希土類
元素及び希土類元素の集合体(Mm;ミッシュメタル)
から選ばれる少なくとも一種の元素、a、b、d、eは
原子パーセントで75≦a≦97、0.5≦b≦15、
0.5≦d≦5、0.5≦e≦10)で示される組成を
有する超塑性アルミニウム基合金材料、及び(D)Al
a1 (b-c-d)2 c3 de (ただし、M1 :Mn、F
e、Co、Ni及びMoから選ばれる少なくとも一種の
元素、M2 :V、Cr及びWから選ばれる少なくとも一
種の元素、M3 :Li、Ca、Mg、Si、Cu及びZ
nから選ばれる少なくとも一種の元素、X:Nb、H
f、Ta、Y、Zr、Ti、希土類元素及び希土類元素
の集合体(Mm;ミッシュメタル)から選ばれる少なく
とも一種の元素、a、b、c、d、eは原子パーセント
で75≦a≦97、0.5≦b≦15、0.1≦c≦
5、0.5≦d≦5、0.5≦e≦10)で示される組
成を有する超塑性アルミニウム基合金材料。
(A) Al a M 1 b X e (where M 1 : M
at least one element selected from n, Fe, Co, Ni and Mo, X: Nb, Hf, Ta, Y, Zr, Ti,
At least one element selected from rare earth elements and aggregates of rare earth elements (Mm; misch metal), a, b, e
Is in atomic percent 75 ≦ a ≦ 97, 0.5 ≦ b ≦ 1
5, a superplastic aluminum-based alloy material having a composition represented by 0.5 ≦ e ≦ 10), (B) Al a M 1 (bc) M 2 c X
e (provided that at least one element selected from M 1 : Mn, Fe, Co, Ni and Mo, at least one element selected from M 2 : V, Cr and W, X: Nb, H
At least one element selected from f, Ta, Y, Zr, Ti, a rare earth element and an aggregate of rare earth elements (Mm; misch metal), and a, b, c, and e are 7 in atomic percent.
5 ≦ a ≦ 97, 0.5 ≦ b ≦ 15, 0.1 ≦ c ≦ 5,
0.5 ≦ e ≦ 10), a superplastic aluminum-based alloy material having a composition represented by (C) Al a M 1 (bd) M 3 d X e
(However, at least one element selected from M 1 : Mn, Fe, Co, Ni and Mo, M 3 : Li, Ca, M
At least one element selected from g, Si, Cu and Zn, X: Nb, Hf, Ta, Y, Zr, Ti, a rare earth element and an aggregate of rare earth elements (Mm; misch metal).
At least one element selected from a, b, d, and e is in atomic percent 75 ≦ a ≦ 97, 0.5 ≦ b ≦ 15,
0.5 ≦ d ≦ 5, 0.5 ≦ e ≦ 10), a superplastic aluminum-based alloy material, and (D) Al
a M 1 (bcd) M 2 c M 3 d X e (where M 1 : Mn, F
At least one element selected from e, Co, Ni and Mo, at least one element selected from M 2 : V, Cr and W, M 3 : Li, Ca, Mg, Si, Cu and Z
at least one element selected from n, X: Nb, H
At least one element selected from f, Ta, Y, Zr, Ti, a rare earth element and an aggregate of rare earth elements (Mm; misch metal), and a, b, c, d, and e are atomic percentages 75 ≦ a ≦ 97. , 0.5 ≦ b ≦ 15, 0.1 ≦ c ≦
5, 0.5 ≦ d ≦ 5, 0.5 ≦ e ≦ 10), a superplastic aluminum-based alloy material.

【0016】前記組成の合金材料は耐熱性に優れたもの
であって、高温においても粒成長が起こらず、加工熱処
理後、微細な結晶粒及び金属間化合物が得られ、高温強
度が高いなどの特性を有している。さらに、前記組成の
合金を熱処理及び加工熱処理(Thermo-Mechanical Trea
tment :例えば圧延、押出など)することにより、円滑
な粒界移動又はすべりが起こる微細な結晶構造からなる
超塑性材料が得られ、これが比較的大きな歪速度でもっ
て大きな伸びを示す。なお、前記超塑性アルミニウム基
合金は、平均結晶粒径1μm以下の微細結晶質からなる
原材料を、前記平均結晶粒径及び金属間化合物の平均粒
子径に調整することによっても製造することができる。
前記超塑性アルミニウム基合金を素材として用いて成形
を行う場合、成形加工の際の加熱温度は350〜600
℃、歪速度は10-2-1以上、好ましくは10-1-1
上が適当であり、またその際の流動応力は約20〜17
0MPaである。
The alloy material having the above composition has excellent heat resistance, does not cause grain growth even at high temperatures, and can obtain fine crystal grains and intermetallic compounds after the thermomechanical treatment, and has high strength at high temperature. It has characteristics. Further, the alloy having the above composition is subjected to heat treatment and thermomechanical treatment (thermo-mechanical treatment).
tment: For example, rolling, extrusion, etc.), a superplastic material having a fine crystal structure in which smooth grain boundary movement or slippage occurs is obtained, which exhibits a large elongation at a relatively high strain rate. The superplastic aluminum-based alloy can also be produced by adjusting the raw material made of fine crystalline material having an average crystal grain size of 1 μm or less to the average crystal grain size and the average grain size of the intermetallic compound.
When molding is performed using the superplastic aluminum-based alloy as a raw material, the heating temperature at the time of molding is 350 to 600.
C., the strain rate is 10 −2 s −1 or more, preferably 10 −1 s −1 or more, and the flow stress at that time is about 20 to 17.
It is 0 MPa.

【0017】図3は、Al88Ni8 Mm3.5 Zr0.5
(原子%)の組成の急冷凝固合金粉末の固化材について
の種々の温度における歪速度と破断伸びとの関係を示す
グラフ、図4は歪速度と応力との関係を示すグラフであ
る。なお、素材は以下のようにして調製した。A188
8 Mm3.5 Zr0.5 (at%)の組成の合金をガスア
トマイズによって中心粒径10μmからなる粉末を得
た。これらの粉末は、微細なA1マトリックス相と金属
間化合物相とからなるものであった。上記の粉末を外径
50mm(肉厚1mm)の金属カプセル(銅製)に入
れ、400℃で3時間熱処理を行った。その後、200
MPaでプレスし、押出用ビレットを作成した。この段
階で結晶化が進み、平均結晶粒径0.1〜0.3μmの
A1マトリックス相と0.05μm以下の金属間化合物
相とに調整されていた。これを押出比10、360℃で
押出すことにより押出棒を得た。この段階で結晶粒径及
び金属間化合物の粒径は、前記押出用ビレットのものと
変化はみられなかった。得られた押出棒に誘導コイルを
装着し、誘導加熱により押出棒を加熱した。このときの
種々の温度における歪速度と破断伸びとの関係が図3
に、また、種々の温度における歪速度と応力との関係が
図4に示されている。
FIG. 3 shows Al 88 Ni 8 Mm 3.5 Zr 0.5.
FIG. 4 is a graph showing the relationship between strain rate and fracture elongation at various temperatures for a solidified material of rapidly solidified alloy powder having a composition of (atomic%), and FIG. 4 is a graph showing the relationship between strain rate and stress. The materials were prepared as follows. A1 88 N
An alloy having a composition of i 8 Mm 3.5 Zr 0.5 (at%) was gas atomized to obtain a powder having a central particle size of 10 μm. These powders consisted of a fine A1 matrix phase and an intermetallic compound phase. The above powder was put into a metal capsule (made of copper) having an outer diameter of 50 mm (thickness of 1 mm) and heat-treated at 400 ° C. for 3 hours. Then 200
It was pressed at MPa to prepare an extrusion billet. Crystallization proceeded at this stage, and an A1 matrix phase having an average crystal grain size of 0.1 to 0.3 μm and an intermetallic compound phase of 0.05 μm or less were adjusted. This was extruded at an extrusion ratio of 10,360 ° C. to obtain an extruded rod. At this stage, the crystal grain size and the intermetallic compound grain size did not change from those of the extrusion billet. An induction coil was attached to the obtained extrusion rod, and the extrusion rod was heated by induction heating. The relationship between strain rate and elongation at break at various temperatures at this time is shown in FIG.
4 and the relationship between strain rate and stress at various temperatures is shown in FIG.

【0018】図3及び図4から明らかなように、上記ア
ルミ合金押出材は673K(400℃)以上の高温で超
塑性を示し、また歪速度10-2-1以上、特に10-1
10s-1の範囲で大きな伸びを示すことがわかり、さら
に、温度が高くなる程伸びが大きくなるが、ある温度以
上になると伸びが減少する傾向がある。また、600℃
(873K)で歪速度が1s-1であれば伸び600%が
得られることがわかる。超塑性特性を有する素材を加熱
し、超塑性現象を利用して成形加工を行う場合、素材が
超塑性現象を示す温度領域、一般に素材の融点の75〜
95%、好ましくは80〜95%、最適には90%程度
の温度に加熱する必要がある。なお、図4に示す歪速度
−応力曲線においては、m=0.3以上で超塑性を示
す。
As is apparent from FIGS. 3 and 4, the aluminum alloy extruded material exhibits superplasticity at a high temperature of 673 K (400 ° C.) or higher, and has a strain rate of 10 -2 s -1 or higher, particularly 10 -1 〜.
It was found that a large elongation was exhibited in the range of 10 s −1 , and further, the higher the temperature was, the larger the elongation was, but the elongation tended to be reduced at a certain temperature or higher. Also, 600 ℃
It can be seen that an elongation of 600% can be obtained at a strain rate of (873 K) of 1 s -1 . When a material having superplasticity is heated and a forming process is carried out by utilizing the superplasticity phenomenon, the temperature range in which the material exhibits the superplasticity phenomenon, generally 75 to the melting point of the material
It is necessary to heat to a temperature of 95%, preferably 80 to 95%, optimally about 90%. In the strain rate-stress curve shown in FIG. 4, superplasticity is exhibited when m = 0.3 or more.

【0019】図5は上記アルミ合金押出材の温度暴露時
間と硬度及び引張強さとの関係を示すグラフ、図6は温
度と温度暴露許容時間との関係を示すグラフである。図
5から明らかなように、硬度は引張強さと密接に関係
し、ほぼ比例関係が見られる。また、図5中左上の水平
な直線は常温における硬度及び引張強さを示している。
また、図6から、例えば550℃の温度に暴露される場
合、引張強さσB を850MPaに維持するために許容
される暴露時間は約0.15秒以下、800MPaに維
持するための許容暴露時間は約1.2秒以下、750M
Paの場合は10秒以下、700MPaの場合約12秒
以下であることがわかる。すなわち、図5及び図6か
ら、所要の物性値と加工温度が決まれば、そのために許
容される時間が自ら規制されることがわかる。
FIG. 5 is a graph showing the relationship between the temperature exposure time and the hardness and tensile strength of the aluminum alloy extruded material, and FIG. 6 is a graph showing the relationship between the temperature and the temperature exposure allowable time. As is clear from FIG. 5, hardness is closely related to tensile strength, and a nearly proportional relationship is seen. The horizontal straight line at the upper left of FIG. 5 indicates hardness and tensile strength at room temperature.
Further, from FIG. 6, for example, when exposed to a temperature of 550 ° C., the exposure time allowed for maintaining the tensile strength σ B at 850 MPa is about 0.15 seconds or less, and the allowable exposure time for maintaining at 800 MPa. Approximately 1.2 seconds or less, 750M
It can be seen that it is 10 seconds or less for Pa and about 12 seconds or less for 700 MPa. That is, it can be seen from FIGS. 5 and 6 that when the required physical property values and the processing temperature are determined, the time allowed for that is regulated by itself.

【0020】一般に成形加工は500℃以上の温度領域
で行われる。一方、所要の強度を維持するために許容さ
れる温度暴露許容時間は、図6の各曲線の左側の領域で
ある。従って、所要の強度を維持して加工できる温度−
時間領域は、図6の500℃の線と所要の強度の各曲線
とで囲まれる左上の領域となる。そして、外部加熱のみ
によって超塑性を示す温度(T2 )までt秒以下で加熱
する場合、昇温速度は最小でT2 /tとなる。これに対
して、本発明の方法によれば、超塑性を示す温度(T
2 )から加工発熱による温度上昇分(△T)を引いた温
度を加熱温度(T1 )と設定し、この温度(T1 )まで
外部加熱手段により加熱する。この加熱温度(T1 )は
素材が組織的に安定な温度域にあるため、昇温速度は上
記の場合よりも緩やかでよく、加熱電力容量を大幅に軽
減できる。引き続き成形加工を行うことによって、加工
発熱により超塑性を示す温度にまで急速加熱され、超塑
性発現温度域に達した時に加工終了になると共に、金型
温度は超塑性発現温度よりも低いため、接触伝熱により
急冷され、組織的に安定な温度域まで冷却される。
Generally, the molding process is performed in a temperature range of 500 ° C. or higher. On the other hand, the permissible temperature exposure time for maintaining the required strength is the area on the left side of each curve in FIG. Therefore, the temperature at which processing can be performed while maintaining the required strength
The time region is the upper left region surrounded by the line of 500 ° C. in FIG. 6 and each curve of the required intensity. When heating to a temperature (T 2 ) exhibiting superplasticity only by external heating in t seconds or less, the temperature rising rate is T 2 / t at a minimum. On the other hand, according to the method of the present invention, the temperature (T
The temperature obtained by subtracting the temperature rise (ΔT) due to heat generation from processing from 2 ) is set as the heating temperature (T 1 ), and this temperature (T 1 ) is heated by the external heating means. Since this heating temperature (T 1 ) is in a temperature range in which the material is structurally stable, the heating rate may be slower than in the above case, and the heating power capacity can be greatly reduced. By subsequently performing the forming process, it is rapidly heated to a temperature exhibiting superplasticity by the process heat, and when the process reaches the superplasticity expression temperature range, the processing is completed, and the mold temperature is lower than the superplasticity development temperature. It is rapidly cooled by contact heat transfer and cooled to a structurally stable temperature range.

【0021】次に、前記Al88Ni8 Mm3.5 Zr0.5
の組成の急冷凝固合金粉末の固化材について、φ8mm
のビレットを図1に示す金型の同一内径の供給部2から
φ2.5mmの通路部3を経て成形部4に圧縮する条件
で、初期加熱温度(T1 )を400℃に設定し、実際に
行った成形加工の際の加工発熱による温度上昇と、計算
による予測値を以下に示す。まず、加工発熱による温度
上昇(△T)について試算すると、前記式(1)におけ
るm値は図4に示すデータからm=0.3とする。次に
歪を計算すると、断面減少による歪(押出比R=10)
は下記数3の式(3)から、また角による剪断歪は式
(4)からそれぞれ3.23及び1と計算され、全体の
歪は4.23となる。
Next, the Al 88 Ni 8 Mm 3.5 Zr 0.5 is used.
For the solidified material of the rapidly solidified alloy powder with the composition of φ8 mm
The initial heating temperature (T 1 ) was set to 400 ° C. under the condition that the billet of FIG. 1 was compressed from the supply part 2 having the same inner diameter of the mold shown in FIG. The temperature rise due to the processing heat generated during the molding process performed in the above and the predicted value by calculation are shown below. First, when the temperature rise (ΔT) due to heat generated by processing is calculated, the m value in the above equation (1) is set to m = 0.3 from the data shown in FIG. Next, when the strain is calculated, the strain due to the reduction in cross section (extrusion ratio R = 10)
Is calculated as 3.23 and 1 from Equation (3) of Equation 3 below, and the shear strain due to the angle is calculated from Equation (4), and the total strain is 4.23.

【数3】 (Equation 3)

【0022】一方、初期加熱温度を400℃に設定すれ
ば、前記式(1)におけるK値は、400℃でK=20
である。そこで、これらの値を前記式(2)に代入して
△Tを求めると、下記数4に示すように△T=331℃
と計算され、最高温度は600℃を越えることになる。
On the other hand, if the initial heating temperature is set to 400 ° C., the K value in the above equation (1) is K = 20 at 400 ° C.
It is. Therefore, by substituting these values into the above equation (2) to obtain ΔT, ΔT = 331 ° C. as shown in the following formula 4.
It is calculated that the maximum temperature exceeds 600 ° C.

【数4】 しかし、上記計算は初期加熱温度(押出開始温度)での
K値をそのまま一定と仮定して行っているが、実際には
加工発熱により温度が上昇するためK値が下がり(σが
下がる)、加工発熱量が減少する(600℃でのK値は
K=2で400℃でのK値の1/10となる)。400
℃から600℃に温度が上昇する時の加工発熱分に相当
する仕事量は、初期加熱温度時の仕事量の1/2になる
ことが実験的に求められている。そのため、400℃か
ら600℃に向けて上昇する温度は331/2≒165
℃となる。従って、加工発熱により最高565℃に達す
ると予想される。一方、実際にビレット(φ8mm)を
図1に示す金型1の材料供給部2に装填した後、400
℃まで加熱し、供給部直上に設置されたパンチ5によ
り、初期歪速度1S-1にて加圧加工を行ったところ、内
径2.5mmの通路部3では加工発熱により最高540
℃に温度が上昇し、成形部4へと押し出されて成形が終
了した。この加工発熱による温度上昇140℃は、前記
計算値と若干差異があるが、いずれの場合にも前記材料
の超塑性発現温度域に達し、前記のように予め計算によ
り予想した値から初期加熱温度を設定しても十分に成形
加工を行えることがわかる。
[Equation 4] However, the above calculation is performed by assuming that the K value at the initial heating temperature (extrusion start temperature) is constant, but in reality, the temperature rises due to the heat generated by processing, so the K value decreases (σ decreases), The amount of heat generated by processing decreases (K value at 600 ° C. is 1/10 of K value at 400 ° C. when K = 2). 400
It has been experimentally sought that the work amount corresponding to the heat generated by processing when the temperature rises from 0 ° C to 600 ° C is 1/2 of the work amount at the initial heating temperature. Therefore, the temperature rising from 400 ° C to 600 ° C is 331/2 ≒ 165
℃. Therefore, it is expected that the temperature will reach a maximum of 565 ° C. due to processing heat. On the other hand, after the billet (φ8 mm) was actually loaded into the material supply unit 2 of the mold 1 shown in FIG.
It was heated up to ℃ and subjected to pressure processing at an initial strain rate of 1S -1 with a punch 5 installed directly above the supply section.
The temperature rose to ℃ and was extruded into the molding section 4 to complete the molding. The temperature rise of 140 ° C. due to the heat generated by processing is slightly different from the calculated value, but in any case, the temperature reaches the superplasticity expression temperature range of the material, and the initial heating temperature is calculated from the value predicted by the calculation as described above. It can be seen that the molding process can be sufficiently performed even if is set.

【0023】[0023]

【発明の効果】以上のように、本発明の超塑性成形加工
品の製造方法によれば、加工する際発生する熱を利用
し、一金型内で加熱・加工・冷却を行って成形を行うも
のであるため、以下のような効果・利点が得られる。 (イ) 素材は、組織的に安定な温度域まで外部加熱手
段により加熱された後、成形加工の際に加工発熱により
超塑性を示す温度にまで急速加熱され、超塑性発現温度
域に達した時に加工終了になると共に、金型との温度差
により組織的に安定な温度域まで急速に冷却されること
から、高温に暴露される時間が短いので、成形加工品の
組織変化(結晶粒の粗大化など)及びそれに伴う物性低
下が最小限に抑えられる。その結果、素材の特性を損う
ことなく超塑性成形加工品を製造することができる。 (ロ) 加熱・加工・冷却を一金型において一工程で行
えるので、加工サイクルの時間が短くなり、また超塑性
加工が高速で行われるので、複雑な形状の成形品や精密
な成形品の成形を短時間で行うことができる。 (ハ) 加工発熱を利用して超塑性を示す温度(T2
まで上昇させることから、余分な加熱はほとんどされ
ず、熱効率が極めて優れており、また加熱温度(T1
まで緩やかな昇温速度で加熱できるので、いっきに急速
加熱する場合に比べて小電力で加熱でき、製造コストを
低減することができる。
As described above, according to the method for producing a superplastic forming product of the present invention, the heat generated during processing is used to perform heating, processing and cooling in one die for forming. Since this is performed, the following effects and advantages can be obtained. (B) After the material is heated to a structurally stable temperature range by an external heating means, it is rapidly heated to a temperature at which it exhibits superplasticity due to processing heat during forming and reaches the superplasticity manifestation temperature range. At the end of processing, the temperature difference between the mold and the mold rapidly cools it to a structurally stable temperature range, which shortens the time it is exposed to high temperatures. (Coarsening, etc.) and accompanying deterioration of physical properties are minimized. As a result, it is possible to manufacture a superplastic molded product without deteriorating the characteristics of the material. (B) Since heating, processing, and cooling can be performed in one process in one mold, the processing cycle time is shortened, and because superplastic processing is performed at high speed, molding of complicated shapes and precision molded products can be performed. Molding can be performed in a short time. (C) Temperature (T 2 ) at which superplasticity is achieved by utilizing heat generated during processing
Since the temperature is raised to 0, there is almost no extra heating, the thermal efficiency is extremely excellent, and the heating temperature (T 1 )
Since the heating can be performed at a gradual heating rate, heating can be performed with a small amount of electric power as compared with the case of rapid heating, and the manufacturing cost can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の方法を実施する装置の一例の要部断面
図である。
FIG. 1 is a cross-sectional view of an essential part of an example of an apparatus for performing the method of the present invention.

【図2】本発明の方法を実施する装置の他の例の要部断
面図である。
FIG. 2 is a cross-sectional view of a main part of another example of the apparatus for performing the method of the present invention.

【図3】Al88Ni8 Mm3.5 Zr0.5 (at%)の組
成の急冷凝固合金粉末固化材の種々の温度における歪速
度と破断伸びとの関係を示すグラフである。
FIG. 3 is a graph showing the relationship between strain rate and elongation at break at various temperatures for a rapidly solidified alloy powder solidified material having a composition of Al 88 Ni 8 Mm 3.5 Zr 0.5 (at%).

【図4】Al88Ni8 Mm3.5 Zr0.5 (at%)の組
成の急冷凝固合金粉末固化材の種々の温度における歪速
度と応力との関係を示すグラフである。
FIG. 4 is a graph showing the relationship between strain rate and stress at various temperatures of a rapidly solidified alloy powder solidified material having a composition of Al 88 Ni 8 Mm 3.5 Zr 0.5 (at%).

【図5】Al88Ni8 Mm3.5 Zr0.5 (at%)の組
成の急冷凝固合金粉末固化材の温度暴露時間と硬度及び
引張強さとの関係を示すグラフである。
FIG. 5 is a graph showing the relationship between temperature exposure time and hardness and tensile strength of a rapidly solidified alloy powder solidified material having a composition of Al 88 Ni 8 Mm 3.5 Zr 0.5 (at%).

【図6】Al88Ni8 Mm3.5 Zr0.5 (at%)の組
成の急冷凝固合金粉末固化材の温度と温度暴露許容時間
との関係を示すグラフである。
FIG. 6 is a graph showing the relationship between the temperature of the rapidly solidified alloy powder solidified material having a composition of Al 88 Ni 8 Mm 3.5 Zr 0.5 (at%) and the temperature exposure allowable time.

【符号の説明】[Explanation of symbols]

1 金型、2 供給部、3 通路部、4 成形部、5
パンチ、6 加熱手段、7 素材、8 切除成形部
1 mold, 2 supply section, 3 passage section, 4 molding section, 5
Punch, 6 heating means, 7 material, 8 excision molding part

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C22K 3:00 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI technical display location C22K 3:00

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 素材が供給される供給部と、素材が所望
の形状に成形される成形部と、該供給部と成形部との間
を連通する通路部とを有する金型の前記供給部に、超塑
性を発現する素材を装填し、これを通路部を介して成形
部に供給、圧縮することにより成形加工を施す超塑性成
形加工品の製造方法であって、供給部の素材に加える加
熱温度(T1 )を、素材が超塑性を示す温度(T2
と、供給部から通路部へ素材が押し出され変形する際に
発生する加工発熱による温度上昇(△T)とにより制御
することを特徴とする超塑性成形加工品の製造方法。
1. A supply section of a mold having a supply section for supplying a material, a molding section for molding the material into a desired shape, and a passage section communicating between the supply section and the molding section. A method for producing a superplastically formed product, in which a material that exhibits superplasticity is loaded, and the material is supplied to the forming part via the passage part and compressed to perform the forming process, and is added to the material of the supplying part. The heating temperature (T 1 ) is the temperature at which the material exhibits superplasticity (T 2 ).
And a temperature rise (ΔT) due to processing heat generated when the material is extruded from the supply part to the passage part and deformed, and a method for manufacturing a superplastically formed product.
【請求項2】 加工発熱による温度上昇(△T)を、下
記数1の式(1)及び式(2)から求め、加熱温度(T
1 )をT1 =T2 −△Tにより設定する請求項1に記載
の超塑性成形加工品の製造方法。 【数1】
2. The temperature rise (ΔT) due to heat generated by processing is calculated from the following equations (1) and (2), and the heating temperature (T
The method for producing a superplastically formed product according to claim 1, wherein 1 ) is set by T 1 = T 2 −ΔT. [Equation 1]
【請求項3】 加熱温度(T1 )が超塑性を示す素材の
結晶粗大化開始温度(TX )より低くなるように制御す
る請求項2に記載の超塑性成形加工品の製造方法。
3. The method for producing a superplastically molded product according to claim 2, wherein the heating temperature (T 1 ) is controlled to be lower than the crystal coarsening start temperature (T X ) of the material exhibiting superplasticity.
JP33455894A 1994-12-20 1994-12-20 Manufacturing method of superplastic molded products Expired - Fee Related JP2878141B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33455894A JP2878141B2 (en) 1994-12-20 1994-12-20 Manufacturing method of superplastic molded products

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33455894A JP2878141B2 (en) 1994-12-20 1994-12-20 Manufacturing method of superplastic molded products

Publications (2)

Publication Number Publication Date
JPH08174049A true JPH08174049A (en) 1996-07-09
JP2878141B2 JP2878141B2 (en) 1999-04-05

Family

ID=18278753

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33455894A Expired - Fee Related JP2878141B2 (en) 1994-12-20 1994-12-20 Manufacturing method of superplastic molded products

Country Status (1)

Country Link
JP (1) JP2878141B2 (en)

Also Published As

Publication number Publication date
JP2878141B2 (en) 1999-04-05

Similar Documents

Publication Publication Date Title
US11603583B2 (en) Ribbons and powders from high strength corrosion resistant aluminum alloys
US10030293B2 (en) Aluminum material having improved precipitation hardening
EP1640466B1 (en) Magnesium alloy and production process thereof
EP0090253B1 (en) Fine grained metal composition
US5306463A (en) Process for producing structural member of amorphous alloy
KR101237122B1 (en) Titanium alloy microstructural refinement method and high temperature-high strain superplastic forming of titanium alloys
JP2864287B2 (en) Method for producing high strength and high toughness aluminum alloy and alloy material
US3997369A (en) Production of metallic articles
EP1902149B2 (en) Process of producing a foil of an al-fe-si type aluminium alloy and foil thereof
JP3878214B2 (en) Beverage container and can lid and knob manufacturing method
WO2018009359A1 (en) Ribbons and powders from high strength corrosion resistant aluminum alloys
EP0445114B1 (en) Thermomechanical processing of rapidly solidified high temperature al-base alloys
JP5548578B2 (en) High strength magnesium alloy wire and manufacturing method thereof, high strength magnesium alloy component, and high strength magnesium alloy spring
WO2016130470A1 (en) Methods for producing titanium and titanium alloy articles
JP5948124B2 (en) Magnesium alloy member and manufacturing method thereof
JP2003277899A (en) Magnesium alloy member and its production method
JPH05117800A (en) Production of oxide-dispersed and reinforced iron base alloy
JP2878141B2 (en) Manufacturing method of superplastic molded products
US5860313A (en) Method of manufacturing press-formed product
US4000008A (en) Method of treating cast aluminum metal to lower the recrystallization temperature
JP2001262291A (en) Amorphous alloy and method for manufacturing the same, and golf club head using the same
JP3113893B2 (en) Manufacturing method of plastic working material and manufacturing method of plastic working material
JPH0617486B2 (en) Method for forging powder-made Ni-base superalloy
JPH0810888A (en) Production of press formed goods
JPH05245610A (en) Production of high strength structural member

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees