JPH08173858A - Electrostatic coating method of powder coating material and booth therefor - Google Patents

Electrostatic coating method of powder coating material and booth therefor

Info

Publication number
JPH08173858A
JPH08173858A JP6340824A JP34082494A JPH08173858A JP H08173858 A JPH08173858 A JP H08173858A JP 6340824 A JP6340824 A JP 6340824A JP 34082494 A JP34082494 A JP 34082494A JP H08173858 A JPH08173858 A JP H08173858A
Authority
JP
Japan
Prior art keywords
coating
electrostatic coating
electrostatic
chamber
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6340824A
Other languages
Japanese (ja)
Inventor
Ikuo Tochisawa
郁夫 栃澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP6340824A priority Critical patent/JPH08173858A/en
Publication of JPH08173858A publication Critical patent/JPH08173858A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To provide an electrostatic coating method and a booth therefor in which a powder coating material of less atmospheric pollution is adopted to obtain a stable and smooth coating film without a reverse ionization phenomenon and adhesiveness in painting is increased to lower costs. CONSTITUTION: An electrostatic coating booth 3 whose ceiling part 4 and wall surfaces 65 are formed of a dielectric such as reinforced concrete is evacuated to low vacuum of 50-250Torr according to the particle size distribution. Voltage applied to an electrostatic coating apparatus 103 is lowered almost in proportion to the vacuum of the coating booth 3 to perform electrostatic coating, thereby reverse ionization is prevented and Faraday cage effect is relaxed and also adhesiveness in painting is improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は粉体塗料を用いての、静
電塗装方法と静電塗装室に関するものであり、特に自動
車などの上塗り塗装に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrostatic coating method and an electrostatic coating chamber using a powder coating, and more particularly to a top coating for automobiles and the like.

【0002】[0002]

【従来技術と問題点】粉体塗料は大気を汚染する石油系
溶剤を含まないため、塗料を大量に使用する自動車など
の上塗り塗装にその普及が期待されている。しかるに粉
体塗料は静電塗装されるにもかかわらず塗着効率が低
く、液体系塗料に比し著しくコストが上昇するため普及
が進行していない。塗着効率は、粉体塗装に限らない
が、静電塗装室内の不必要な電気力線と、不規則な方向
への空気流れとが著しく塗着効率を低下させていた。そ
の他塗着効率に関係する大きな要因は粉体塗料の帯電率
と電界強度であるが、塗料の粒径分布によりその影響度
が変化する。すなわち粒径は小さいほど帯電率が高くな
るがが、一方粒径分布は帯電率の他に、塗膜の平滑性
と、膜厚に影響し、粒径が小さいほど平滑性が良い。し
かるに粉体塗装を行った場合、粉体塗料の静電塗装に特
有の問題である逆電離と、ファラデイケージ効果の問題
が発生し、膜厚や塗膜の平滑性に大きく影響を与えるた
め、高い塗着効率や平滑な塗膜を得るための最適の電圧
や、最適の粒径分布を自由に選択することができなかっ
た。
2. Description of the Related Art Since powder coatings do not contain petroleum-based solvents that pollute the atmosphere, their widespread use is expected in top coatings for automobiles and the like that use large amounts of coatings. However, powder coating has low spreading efficiency despite being electrostatically coated, and its cost is significantly higher than that of liquid coating, so that it has not spread. The coating efficiency is not limited to powder coating, but unnecessary electric lines of force in the electrostatic coating chamber and air flow in irregular directions significantly reduced the coating efficiency. The other major factors related to the coating efficiency are the charge ratio and the electric field strength of the powder coating, but the degree of influence changes depending on the particle size distribution of the coating. That is, the smaller the particle size, the higher the charging rate. On the other hand, the particle size distribution affects the smoothness of the coating film and the film thickness in addition to the charging rate. The smaller the particle size, the better the smoothness. However, when powder coating is applied, problems such as reverse ionization, which is a problem peculiar to electrostatic coating of powder coating, and the Faraday cage effect occur, which greatly affects the film thickness and the smoothness of the coating film. However, it was not possible to freely select the optimum voltage and the optimum particle size distribution for obtaining a high coating efficiency and a smooth coating film.

【0003】以上の問題点をさらに詳細に説明すると、
静電塗装を行う塗装室は通常鋼板などの導電体で形成さ
れているため、電気力が被塗物のみならず、塗装室の天
井部や側壁方面に及んでいた。この不必要な電気力線
が、帯電した粉体塗料をクーロン力で引き付けるため塗
着効率を低下させるのみならず、帯電した粉体塗料の塗
装室外への排出を遅らせるため、大量の排気及び給気を
必要とさせた。この給気が被塗物に衝突することによっ
て、塗装室内に不規則な空気流れを形成するためますま
す塗着効率を低下させた。
To explain the above problems in more detail,
Since the coating room for electrostatic coating is usually formed of a conductor such as a steel plate, the electric force has spread not only to the object to be coated but also to the ceiling and side walls of the coating room. These unnecessary lines of electric force not only reduce the coating efficiency because the charged powder paint is attracted by the Coulomb force, but also delay the discharge of the charged powder paint to the outside of the coating room. I needed attention. When this air supply collides with the object to be coated, an irregular air flow is formed in the coating chamber, further decreasing the coating efficiency.

【0004】また帯電率の良否は、静電塗装機の電極構
造に大きく影響されるが、さらに電極への印加電圧に影
響される。すなわち印加電圧を上げれば放電電流が増大
し、塗料の帯電率が高くなり、従って塗着効率が高くな
る。また電圧を高くするほど放電極と対電極との間の電
界強度が大きくなり、従って対電極である被塗物への引
力が強くなるので塗着効率が高くなる。すなわち電圧を
上げれば2重に塗着効率向上に寄与する。それゆえ静電
塗装はできるだけ高い電圧を印加するのが好ましいが、
電界強度が6kv/cmを超えるとスパークが発生し危
険な状態となる。逆に電界強度が2kv/cm以下では
塗着効率が著しく低下する。そのため、液体塗料の場合
はスパーク電圧よりやや低いが、3.0〜4.5kv/
cmの比較的強い電界強度で静電塗装されている。例え
ば極間距離が20〜30cmの場合少なくも60kv以
上の高電圧が印加され、通常90〜125kvの高電圧
で静電塗装されている。しかるに粉体塗料の場合は、逆
電離現象が発生するため電圧を高くすることができなか
った。例えば極間距離20〜30cmにおいて、75k
v以上とするすることが困難であった。
The quality of the charging rate is greatly influenced by the electrode structure of the electrostatic coating machine, but is further influenced by the voltage applied to the electrodes. That is, when the applied voltage is increased, the discharge current is increased, the charge ratio of the paint is increased, and therefore the coating efficiency is increased. Further, the higher the voltage, the greater the electric field strength between the discharge electrode and the counter electrode, and the stronger the attraction to the object to be coated, which is the counter electrode, and the higher the coating efficiency. That is, increasing the voltage doubles the contribution to the improvement of the coating efficiency. Therefore, it is preferable to apply as high a voltage as possible for electrostatic coating,
When the electric field strength exceeds 6 kv / cm, sparks are generated and it becomes a dangerous state. On the contrary, when the electric field strength is 2 kv / cm or less, the coating efficiency is remarkably reduced. Therefore, in the case of liquid paint, it is slightly lower than the spark voltage, but 3.0-4.5 kv /
Electrostatically coated with a relatively strong electric field strength of cm. For example, when the distance between the electrodes is 20 to 30 cm, a high voltage of at least 60 kv is applied, and electrostatic coating is usually performed at a high voltage of 90 to 125 kv. However, in the case of the powder coating, the voltage cannot be increased because the reverse ionization phenomenon occurs. For example, at a distance between the electrodes of 20 to 30 cm, 75 k
It was difficult to set v or more.

【0005】粉体塗装における逆電離現象はつぎのよう
に発生する。静電塗装機の具備する放電極に、直流高電
圧を印加しコロナ放電を発生させると、放電極と同極性
の空気イオンが生成される。粉体塗料粒子は生成された
空気イオンを吸着し帯電する。帯電した粉体塗料は放電
極と、アースされ対電極を形成する被塗物との間に形成
された電気力線に乗って飛行し被塗物に塗着する。其の
際塗着した粉体塗料に吸着されていた空気イオンは、対
電極に向かって放電し電荷を失い、空気に戻り空中に放
出される。空気イオンの放出により、さらに帯電した新
しい粉体塗料粒子が塗着し膜厚を増大することが出来
る。しかるに塗着が進行すると被塗物表面の絶縁性が増
大し、空気イオンからの放電が阻害されるため、次第に
塗膜中に放電極と同極性の電荷が蓄積され、帯電した新
しい塗料粒子の塗着を阻害することになる。このとき塗
料粒子の粒径が小さいと、必要な膜厚が得られない。そ
こで必要な膜厚を得るため、塗装電圧を高くすると、塗
着塗料内の蓄積電荷量がさらに増大しついには塗着塗膜
の絶縁破壊電圧を越え、いわゆる逆電離現象を発生す
る。この現象は、塗膜表面上で小さな火花放電が発生す
るもので、塗膜を破壊し、塗膜表面にハジキや凹み現象
などを形成する。それゆえ粉体塗料を静電塗装する場
合、塗着効率を犠牲にして電界強度を緩和し、電界強度
を2.5kv/cm以下とせざるをえなかった。すなわ
ち電極間距離が20〜30cmにたいし、塗装電圧をス
パーク電圧よりかなり低い75kv以下とせざるをえな
かった。
The reverse ionization phenomenon in powder coating occurs as follows. When DC high voltage is applied to the discharge electrode of the electrostatic coating machine to generate corona discharge, air ions having the same polarity as the discharge electrode are generated. The powder coating particles adsorb the generated air ions and become charged. The charged powder coating material flies on the line of electric force formed between the discharge electrode and the grounded object forming the counter electrode, and flies to the object to be coated. At that time, the air ions adsorbed on the powder coating applied are discharged toward the counter electrode to lose the electric charge, return to the air and are released into the air. The release of air ions allows the newly charged powder coating particles to be further applied to increase the film thickness. However, as the coating progresses, the insulating property of the surface of the object to be coated increases and the discharge from air ions is hindered, so the electric charge of the same polarity as that of the discharge electrode gradually accumulates in the coating film, and the charged new paint particles It will hinder the adhesion. At this time, if the particle size of the paint particles is small, the required film thickness cannot be obtained. Therefore, if the coating voltage is increased in order to obtain the required film thickness, the amount of accumulated charge in the coating composition further increases and eventually exceeds the dielectric breakdown voltage of the coating composition, causing a so-called reverse ionization phenomenon. This phenomenon causes a small spark discharge on the surface of the coating film, destroys the coating film, and causes cissing or dent phenomenon on the surface of the coating film. Therefore, in the case of electrostatically coating the powder coating, it was unavoidable to reduce the electric field strength by sacrificing the coating efficiency and to set the electric field strength to 2.5 kv / cm or less. That is, the distance between the electrodes was 20 to 30 cm, and the coating voltage had to be 75 kv or less, which was considerably lower than the spark voltage.

【0006】一方塗装電圧を75kv以下としても、被
塗物が箱型製品の場合、内部角隅部への電気力線密度が
低いため、帯電した塗料微粒子が到達できないという、
いわゆるファラデイケージ効果が発生し、内部角隅部が
塗装出来ないという問題があった。すなわち電界強度を
低下すれば、従って印加電圧を低下すればファラデーケ
ージ効果を緩和できる。しかるに電圧を低下し、例えば
電圧を40kv以下とし、電界強度をととえば2.0k
v/cm以下に低下させると、上述のごとく塗着効率が
著しく低下するため電圧を充分に低下させることができ
なかった。それゆえ粉体塗料の静電塗装においては、電
界強度として2.0〜2.5kv/cmに設定されてい
た。そのため液体塗料の静電塗装に比し、塗着効率が悪
く、しかもファラデーケージ効果が充分に解消せず、箱
型製品の角隅部の膜厚が不足することになった。そこで
箱型製品の内部角隅部の膜厚を確保するため、粒径を大
きく、例えば80〜150μの粒径とせざるを得なかっ
た。しるに粒径を大きくすると、角隅部以外の部分が必
要以上に膜厚が厚くなるため、塗料コストが上昇するの
みならず、加熱熔融しても平滑化されにくく外観が悪く
なる。それゆえ粒径の小さな、例えば10〜30μの粉
体塗料を混合せざるを得なかった。それゆえ粉体塗料の
粒径分布は、粒径の大きい塗料と、小さい塗料を含む例
えば10〜150μのように広い粒径分布となってい
た。しかるに粒径の小さな粉体塗料は、落下速度がおそ
く、しかも帯電率がよいため導電体で形成された塗装室
天井部などに引き付けられ空中に長く滞留する。この場
合、塗装室内の空気流れの速度、すなわち風速が小さい
と、空気中の粉体濃度が高くなり、粉塵爆発の危険性が
増大するため、例えば塗装室内の風速を塗装室の下向き
方向に0.3m/sec以上とせざるをえず、通常は
0.5m/secの風速が形成されていた。しかるに空
気流れの速度を早くすると、空中に浮遊する余剰の粉体
塗料を排出するのみならず、被塗物に向かった帯電粉体
塗料の被塗物への塗着も阻害するため、塗着効率の著し
い、低下という結果を招くこととなっていた。
On the other hand, even if the coating voltage is set to 75 kV or less, if the article to be coated is a box-shaped product, the electric flux line density to the inner corners is low, so that charged paint particles cannot reach.
There was a problem that the so-called Faraday cage effect occurred and the inner corners could not be painted. That is, the Faraday cage effect can be alleviated by reducing the electric field strength, and hence the applied voltage. However, the voltage is lowered, for example, the voltage is set to 40 kv or less, and the electric field strength is 2.0 k.
When it was reduced to v / cm or less, the coating efficiency was remarkably lowered as described above, so that the voltage could not be lowered sufficiently. Therefore, in electrostatic coating of powder coating, the electric field strength was set to 2.0 to 2.5 kv / cm. Therefore, as compared with electrostatic coating of liquid coating, the coating efficiency is poor, the Faraday cage effect is not sufficiently eliminated, and the film thickness at the corners of the box-shaped product becomes insufficient. Therefore, in order to secure the film thickness at the inner corners of the box-shaped product, the particle size has to be large, for example, 80 to 150 μm. However, if the particle size is increased, the film thickness becomes larger than necessary in the portions other than the corners, which not only increases the coating cost but also makes it difficult to be smoothed by heating and melting, resulting in poor appearance. Therefore, it was unavoidable to mix powder coating having a small particle size, for example, 10 to 30 μm. Therefore, the particle size distribution of the powder coating material has a wide particle size distribution of, for example, 10 to 150 μm including a coating material having a large particle diameter and a coating material having a small particle diameter. However, since the powder coating having a small particle diameter has a slow falling speed and a high charging rate, it is attracted to the ceiling of a coating chamber formed of a conductor and stays in the air for a long time. In this case, if the velocity of the air flow in the coating chamber, that is, the wind velocity, is low, the powder concentration in the air increases and the risk of dust explosion increases. Inevitably, the wind velocity was 0.5 m / sec. However, increasing the speed of the air flow not only discharges the surplus powder coating that floats in the air, but also hinders the coating of the charged powder coating toward the coating object. This resulted in a significant decrease in efficiency.

【0007】そこで塗料コストを低減するため、塗着し
なかった余剰の粉体塗料を回収して再使用するという方
法が取られて来た。この方法によれば、塗着しなかった
塗料は回収するので、塗料コストは低下するように考え
られるが、再使用した塗料の品質低下が免れず、塗装不
良が増大し、必ずしもコスト低減とならなかった。
Therefore, in order to reduce the coating cost, a method of collecting and reusing the surplus powder coating which has not been applied has been taken. According to this method, the paint that has not been applied is collected, so it is thought that the paint cost will decrease, but the quality of the reused paint is unavoidably deteriorated, and the paint failure increases, which is not necessarily a cost reduction. There wasn't.

【0008】この問題を解消する為、特公昭50−31
182において、粉体塗料を真空塗装室内で静電塗装
し、真空乾燥する装置が開示されている。この装置によ
れば、真空下で静電塗装されるため、使用した粉体塗料
が酸化しないので品質が劣化しにくいという効果があっ
た。しかし真空塗装室が誘電体で形成されていないた
め、静電効果が被塗物のみでなく、装置内壁や天井、そ
の他搬送用ハンガー、チェーンやレール、静電気付加装
置などにも及ぶ。それゆえ帯電した粉体塗料が、塗装室
内に充満滞留し、それらの導電体機器に塗料が付着する
ため塗着効率が極端に悪くなった。
To solve this problem, Japanese Patent Publication No. 50-31
At 182, an apparatus for electrostatically coating powder coating in a vacuum coating chamber and vacuum drying is disclosed. According to this apparatus, since electrostatic coating is performed under vacuum, the powder coating used does not oxidize, so that there is an effect that the quality does not easily deteriorate. However, since the vacuum coating chamber is not formed of a dielectric material, the electrostatic effect extends not only to the object to be coated, but also to the inner walls and ceiling of the device, other transport hangers, chains and rails, static electricity addition devices, etc. Therefore, the charged powder coating material is fully retained in the coating chamber, and the coating material adheres to those electric conductor devices, resulting in extremely poor coating efficiency.

【0009】本発明は従来技術の抱える問題点に鑑み
て、火災や爆発の危険性がなく、粉体塗料の静電塗装に
最適な条件を備えた塗装室内環境を備えつつ、塗着効率
を最大限にする方法と装置を提供するものである。
In view of the problems of the prior art, the present invention provides a coating room environment with the optimum conditions for electrostatic coating of powder coatings without the risk of fire or explosion, and at the same time, improves the coating efficiency. A method and apparatus for maximizing is provided.

【0010】[0010]

【課題を解決する為の手段】その為に、本発明が供する
手段は、誘電体材料で形成された静電塗装室内を低い真
空度に減圧し、該塗装室内で粉体塗料を用いて静電塗装
することを特徴とするものであり、低い真空度が粉体塗
料の粒径により決定されることと、低い真空度が50t
orr以上250torr以下であることを特徴とする
ことを含む。さらに静電塗装する電圧を真空度にほぼ比
例して低下させることを特徴とすることを含むものであ
る。また静電塗装室が誘電体材料で形成され低い真空度
を形成、維持する手段を保有するものであり、誘電体材
料が鉄筋コンクリートであることを含むものである。
Therefore, the means provided by the present invention is to reduce the pressure in an electrostatic coating chamber formed of a dielectric material to a low degree of vacuum, and to use a powder coating in the coating chamber for static electricity. It is characterized by electrocoating, the low vacuum degree is determined by the particle size of the powder coating, and the low vacuum degree is 50t.
It is characterized in that it is not less than orrr and not more than 250 torr. Further, it is characterized in that the voltage for electrostatic coating is lowered substantially in proportion to the degree of vacuum. Further, the electrostatic coating chamber is made of a dielectric material and has a means for forming and maintaining a low degree of vacuum, and includes that the dielectric material is reinforced concrete.

【0011】[0011]

【作用】本発明の手段によれば低い真空度に維持された
静電塗装室が誘電体で形成されているので、静電塗装室
の天井や壁面など被塗物以外の方向への電気力線が消去
される。従って塗着効率が向上し、かつ塗着しなかった
帯電塗料が空中に長く滞留しない。それゆえ塗装室内に
全く空気流れがなくとも余剰の粉体塗料の排出が可能と
なり安定した塗装作業が継続できる。また空気流れが無
いので、帯電し電気力線に乗り被塗物に向かった粉体塗
料が、殆ど被塗物に塗着するので塗着効率が著しく向上
する。さらに静電塗装室内の真空度が50torr以上
の低い真空度であり誘電体として鉄筋コンクリートが用
い得るので、大型と塗装室を形成しても、真空度の維持
が容易で安定した静電塗装作業ができる。さらに塗装電
圧を真空度に応じて低下させるので、逆電離やファラデ
ーケージ効果が現れず、箱型型製品の内部も均一に塗装
出来る。
According to the means of the present invention, since the electrostatic coating chamber maintained at a low degree of vacuum is made of a dielectric material, an electric force in a direction other than the object to be coated, such as the ceiling or the wall of the electrostatic coating chamber, is applied. The line is erased. Therefore, the coating efficiency is improved and the uncoated electrostatic coating does not stay in the air for a long time. Therefore, even if there is no air flow in the coating chamber, the excess powder coating material can be discharged, and stable coating work can be continued. Further, since there is no air flow, the powder coating which has been electrified and rides on the lines of electric force and which is directed to the object to be coated almost adheres to the object to be coated, so that the coating efficiency is remarkably improved. Furthermore, since the vacuum degree in the electrostatic coating chamber is a low vacuum degree of 50 torr or more, and reinforced concrete can be used as a dielectric, even if a large-sized coating chamber is formed, the vacuum degree can be maintained easily and stable electrostatic coating work can be performed. it can. Furthermore, since the coating voltage is lowered according to the degree of vacuum, the reverse ionization and Faraday cage effects do not appear, and the inside of the box-shaped product can be coated uniformly.

【0012】さらに詳細に説明すれば、本発明の手段に
よれば、粒径分布により決定される50〜250tor
rの低い真空度に減圧された塗装室内で放電が行われ
る。一般に10torr以上の低い真空度下の放電は放
電工学の教科書が示すごとくパッシェンの法則に従う。
すなわち低い真空下では、放電電圧は真空度に比例して
低下し、常圧下での電圧より低い電圧で放電する。それ
ゆえ電圧を下げて静電塗装を行っても、常圧下と変わら
ない帯電率が得られる。一方塗着した粉体塗料が吸着し
ている空気イオンからの放電抵抗も、真空度にほぼ比例
して小さくなり、従って放電がスムーズに行われるの
で、逆電離が発生しなくなり、粒径の極端に大きな粉体
塗料を用いなくとも、例えば粒径が60μ以下の粉体塗
料を用いても必要な膜厚を得ることができる。また真空
度にほぼ比例して電圧を低下させて静電塗装するので、
電界が緩和され被塗物の凹凸による影響が小さく、それ
ゆえ特別に粒径の大きな粉体塗料を用いなくとも必要な
膜厚が得られる。一方電界強度を低下させても、放電電
気量が変わらないので、粉体塗料の帯電率が変わらず、
むしろ特別大きな粒径の粉体塗料を用いなくともよいの
で帯電率が向上し塗着効率が向上する。さらに特別大き
な粒径の塗料を用いないので、特別小さな粒径の粉体塗
料を含まなくとも平滑な塗膜が得られる。特別小さな粒
径の粉体塗料を含まず、しかも真空下では、微粒子の落
下速度はストークスの法則またはアレンの法則に従い、
真空度に応じて落下速度が増大するので余剰塗料の排出
が容易であり、排気や給気を行わなくても塗装室内の雰
囲気を清浄に保つことが可能である。
More specifically, according to the means of the present invention, the particle size distribution determines 50 to 250 torr.
Discharge is performed in a coating chamber that is depressurized to a low vacuum degree of r. Generally, a discharge under a low degree of vacuum of 10 torr or more follows Paschen's law as shown in the textbook of discharge engineering.
That is, under a low vacuum, the discharge voltage decreases in proportion to the degree of vacuum, and discharge occurs at a voltage lower than the voltage under normal pressure. Therefore, even if the voltage is lowered and electrostatic coating is performed, the charging rate that is the same as under normal pressure can be obtained. On the other hand, the discharge resistance from the air ions adsorbed by the powder coating that has been adsorbed also decreases almost in proportion to the degree of vacuum, and therefore discharge is performed smoothly, so that reverse ionization does not occur and the particle size is extremely small. The required film thickness can be obtained without using a large powder coating, for example, even if a powder coating having a particle size of 60 μm or less is used. Also, since the voltage is reduced almost in proportion to the degree of vacuum and electrostatic coating is performed,
The electric field is relaxed and the influence of the unevenness of the object to be coated is small, so that the required film thickness can be obtained without using a powder coating having a particularly large particle size. On the other hand, even if the electric field strength is reduced, the discharge electricity amount does not change, so the charge ratio of the powder coating does not change,
Rather, it is not necessary to use a powder coating having a particularly large particle size, so that the charging rate is improved and the coating efficiency is improved. Furthermore, since a paint having a particularly large particle size is not used, a smooth coating film can be obtained without including a powder paint having a particularly small particle size. It does not contain powder paint with a particularly small particle size, and under vacuum, the falling velocity of fine particles follows Stokes' law or Allen's law,
Since the falling speed increases according to the degree of vacuum, the excess paint can be easily discharged, and the atmosphere in the coating chamber can be kept clean without exhausting or supplying air.

【0013】すなわち微粒子の落下速度は、化学工学の
教科書が示すごとく、常圧下ではストークスの法則によ
り、粒径のほぼ2乗に反比例する。例えば比重が1.2
〜1.6の粉体塗料の粒径が60μ以上の場合、常圧下
での落下速度は15cm/sec以上であり、空気流れ
が無くとも、充分な落下速度となる。しかるに粒径が3
0μの場合、常圧下では4.5〜6.0cm/secに
低下し、20μの場合は2cm/sec以下に低下し、
殆ど自然落下せず塗装室内に充満する。しかし塗装室を
250torr以下に減圧すれば、20μの粉体塗料は
アレンの法則に従い、その落下速度は15〜20cm/
secが得られ、充分な落下速度となる。また粒径が1
0μの場合は50torrで15〜20cm/sec得
られる。それゆえ塗装室内の真空度は粒径に応じて決定
すればよい。実際上は平滑性の確保のため粒径分布は6
0μ以下とするのが好ましく従って十分な落下速度の確
保には250torr以下とするのが好ましい。また本
発明においては逆電離が発生しないので、粒径の小さな
塗料を用いることができるが、径を10μ以下としても
得られる塗膜の平滑性に大差が無いので50torr以
下にする必要がなく、一方真空条件の維持に要する費用
が著しく増大する。それゆえ塗装室の真空度は、50t
orr以上250torr以下とするのが好ましい。
That is, as shown in the textbook of chemical engineering, the falling velocity of fine particles is inversely proportional to the square of the particle diameter under normal pressure according to Stokes' law. For example, the specific gravity is 1.2
When the particle diameter of the powder coating material of 1.6 is 60 μm or more, the falling speed under normal pressure is 15 cm / sec or more, which is a sufficient falling speed even without air flow. However, the particle size is 3
In the case of 0 μ, it decreases to 4.5 to 6.0 cm / sec under normal pressure, and in the case of 20 μ, it decreases to 2 cm / sec or less,
Almost no natural fall and fills the painting room. However, if the coating chamber is depressurized to 250 torr or less, the powder coating of 20μ follows the Allen's law and the falling speed is 15 to 20 cm /
sec is obtained, and the fall velocity is sufficient. Also, the particle size is 1
In the case of 0 μ, 15 to 20 cm / sec can be obtained at 50 torr. Therefore, the degree of vacuum in the coating chamber may be determined according to the particle size. In practice, the particle size distribution is 6 to ensure smoothness.
It is preferably 0 μm or less, and therefore, it is preferably 250 torr or less in order to secure a sufficient falling speed. Further, in the present invention, since reverse ionization does not occur, a paint having a small particle size can be used, but even if the particle size is 10 μm or less, there is no great difference in the smoothness of the obtained coating film, so there is no need to set it to 50 torr or less, On the other hand, the cost required for maintaining the vacuum condition increases significantly. Therefore, the degree of vacuum in the coating room is 50t.
It is preferable that it is not less than orrr and not more than 250 torr.

【0014】また本発明によれば、鉄筋コンクリートが
実質上誘電体材料として使用できるので、大型の静電塗
装室を形成することが可能である。大型の静電気塗装室
が形成できるため、塗装室の天井や壁面上部に設置した
照明器具など導電体機器に電気力線が及ばない。また塗
装室内に配置した静電塗装機の支柱や、レシプロケータ
ーなど導電体機器への電気力線を制限する保護電極を配
設し静電塗装機へ印加する電圧と同極性の直流高電圧を
印加できる。これらの保護電極や静電塗装機について
は、特願平6−281101、特願平6−281104
に開示されているものが用い得る。そのため静電塗装機
から不要の電気力線が発生しない。また搬送装置とし
て、天井走行式コンベアーを用いても、ハンガーなど長
さを余裕をもって、設定できるので、電気力線の方向を
制限する保護電極を配設することが出来る。それゆえ不
要の電気力線を発生させない。それゆえ塗着効率が向上
しかつ帯電塗料が長く空中に滞留しない。従って余剰塗
料の排出が容易である。すなわち静電塗装機の放電極か
ら静電塗装室の天井部など被塗物の上部方向への電気力
線が形成されないことと、250torr以下の真空に
減圧されているので、塗装室内に下向きの空気流が全く
なくとも、また粒径が60μ以下でも、粒径に応じて真
空度を低下させるので、充分な落下速度が得られ、余剰
の粉体塗料が塗装室内に充満することがない。
Further, according to the present invention, since reinforced concrete can be used substantially as a dielectric material, it is possible to form a large electrostatic coating chamber. Since a large electrostatic coating room can be formed, the lines of electric force do not reach the conductive equipment such as lighting fixtures installed on the ceiling or the upper part of the wall of the coating room. In addition, the columns of the electrostatic coating machine placed in the coating room and the protective electrodes that limit the lines of electric force to the conductive equipment such as the reciprocator are installed, and a high DC voltage of the same polarity as the voltage applied to the electrostatic coating machine is applied. Can be applied. Regarding these protective electrodes and electrostatic coating machines, Japanese Patent Application Nos. 6-281101 and 6-281104
Can be used. Therefore, unnecessary lines of electric force are not generated from the electrostatic coating machine. Further, even if an overhead traveling type conveyor is used as the transfer device, the length such as a hanger can be set with a margin, so that a protective electrode for limiting the direction of the lines of electric force can be provided. Therefore, unnecessary electric lines of force are not generated. Therefore, the coating efficiency is improved and the electrified paint does not stay in the air for a long time. Therefore, it is easy to discharge the excess paint. That is, since no electric line of force is formed from the discharge electrode of the electrostatic coating machine to the upper part of the object to be coated, such as the ceiling of the electrostatic coating chamber, and since the pressure is reduced to a vacuum of 250 torr or less, the downward direction of the coating chamber is reduced. Even if there is no air flow, and even if the particle size is 60 μm or less, the degree of vacuum is lowered according to the particle size, so that a sufficient falling speed can be obtained and the excess powder paint does not fill the coating chamber.

【0015】[0015]

【実施例】次に粒径分布が30〜60μの粉体塗料を用
いて自動車の静電塗装を行う実施例に基ずき本発明の実
施の態様と作用の詳細を説明する。発明における静電塗
装室3は通常200torrの真空度を維持して行われ
る。静電塗装室3の環境を保持するには、粉体の落下速
度として15cm/secが必要であり、20cm/s
ecが通常の噴射量にたいし充分である。粒径分布が3
0〜60μの粉体塗料の落下速度は比重1.2〜1.
6、粒径30μの場合、常圧下では、3.5〜4.5c
m/cecであるが,200torrではアレンの法則
に従うので、25〜35cm/secの落下速度が得ら
れ、清浄な塗装室の環境維持に充分な落下速度となる。
[Embodiment] Next, based on an embodiment in which an electrostatic coating of an automobile is performed using a powder coating having a particle size distribution of 30 to 60 [mu], the mode and operation of the present invention will be described in detail. The electrostatic coating chamber 3 according to the invention is usually maintained while maintaining a vacuum degree of 200 torr. In order to maintain the environment of the electrostatic coating chamber 3, a powder dropping speed of 15 cm / sec is required.
ec is sufficient for the normal injection amount. Particle size distribution is 3
The falling speed of the powder coating material of 0 to 60 μ is 1.2 to 1.
6, in the case of particle size 30μ, under normal pressure 3.5-4.5c
Although it is m / cec, at 200 torr, since it follows Allen's law, a fall velocity of 25 to 35 cm / sec is obtained, which is a fall velocity sufficient to maintain the environment of a clean coating room.

【0016】図1は本実施例を示す連続式静電塗装装置
の縦断面図であり、図まその配置図である。また図3は
圧力調整室の給気システムを示す図である。図2におい
て、被塗物74および台車は、まず入り口側圧力調整室
2に入る。入り口側圧力調整室2は、大気圧即ち760
torrから静電塗装室3の運転条件、すなわち200
torrまで周期的に気圧の調整が行えるようになって
いる。大気圧状態の入り口側圧力調整室2に被塗物が入
ると、第1密閉扉5が密閉され、排気システム10が作
動し、所定時間内に減圧を行う。入り口側圧力調整室2
の気圧が静電塗装室3の気圧と等しくなったとき、即ち
この場合200torrとなったとき、入り口側圧力調
整室2と静電塗装室3の隔壁に取り付けられた第2密閉
扉6が開き、被塗物が静電塗装室3に送られる。被塗物
が静電塗装室3に入り終わると、第2密閉扉6が密閉さ
れ、入り口側圧力調整室2の給気システム11、12が
作動し大気圧に戻る。続いて第1密閉扉5が開いて、次
の被塗物が入ってる。圧力調整室2では以上の操作が繰
り返される。この間の被塗物の動作は間欠的であるが、
停止と早送りを組み合わす事により、全体の流れとして
は連続的移動、即ち連続的生産が可能となる。静電塗装
室3に入った被塗物は停止状態または連続的に移動しな
がら、静電塗装される。塗装された被塗物は、静電塗装
室3の出口側定位置に到達すると、出口側圧力調整室4
との隔壁に設けられた第3密閉扉7が開き、真空度20
0torrに調節された出口側圧力調整室4に移動す
る。入り終わると第3密閉扉7が閉じられ、給気システ
ム13、14が作動し圧力を大気圧即ち760torr
まで戻す。続いて出口側の第4密閉扉8が開き、被塗物
は乾燥工程に移動する。静電塗装後の次工程は焼き付け
乾燥工程であるが、通常の常圧下での装置が用い得る。
FIG. 1 is a vertical sectional view of a continuous electrostatic coating apparatus showing the present embodiment, and is a layout diagram thereof. Further, FIG. 3 is a diagram showing an air supply system of the pressure adjusting chamber. In FIG. 2, the article-to-be-coated 74 and the carriage first enter the inlet-side pressure adjustment chamber 2. The pressure adjustment chamber 2 on the inlet side has an atmospheric pressure of 760
From torr to the operating condition of the electrostatic coating chamber 3, that is, 200
The atmospheric pressure can be adjusted periodically up to torr. When an object to be coated enters the inlet side pressure adjusting chamber 2 in the atmospheric pressure state, the first sealing door 5 is closed and the exhaust system 10 is activated to reduce the pressure within a predetermined time. Entrance side pressure adjustment chamber 2
When the atmospheric pressure of is equal to the atmospheric pressure of the electrostatic coating chamber 3, that is, 200 torr in this case, the second airtight door 6 attached to the partition walls of the inlet side pressure adjusting chamber 2 and the electrostatic coating chamber 3 opens. The article to be coated is sent to the electrostatic coating chamber 3. When the object to be coated has finished entering the electrostatic coating chamber 3, the second sealing door 6 is sealed, and the air supply systems 11 and 12 of the inlet side pressure adjusting chamber 2 are activated to return to atmospheric pressure. Then, the 1st sealing door 5 opens and the next to-be-coated article is contained. The above operation is repeated in the pressure adjusting chamber 2. The movement of the coated object during this period is intermittent,
By combining stop and fast-forward, continuous movement, that is, continuous production, becomes possible as the whole flow. The object to be coated that has entered the electrostatic coating chamber 3 is electrostatically coated while being stopped or continuously moving. When the coated object reaches the outlet side fixed position of the electrostatic coating chamber 3, the outlet side pressure adjusting chamber 4
The third closed door 7 provided on the partition wall of
It moves to the outlet side pressure adjustment chamber 4 adjusted to 0 torr. After entering, the third airtight door 7 is closed, the air supply systems 13 and 14 are operated, and the pressure is atmospheric pressure or 760 torr.
Back up. Subsequently, the fourth closed door 8 on the outlet side is opened, and the article to be coated moves to the drying step. The next step after electrostatic coating is a baking and drying step, but an apparatus under normal atmospheric pressure can be used.

【0017】次に各室の構造及び操作と作用について詳
細を説明する。
Next, the structure, operation and action of each chamber will be described in detail.

【0018】入り口側圧力調整室2は、鉄筋コンクリー
トを用いて密閉耐圧構造となっていて、図2に示すごと
く、自然給気システム11と強制給気システム12との
2つの新鮮空気供給システムが具備されている。自然給
気システ11は、図3に示すごとく、圧力調整室2の上
部ににヂストリビュウター30が適宜なピッチでとりつ
けられていて、圧力調整弁21、第1オリフィス22、
ヘッダー23、ヒーター29、第2オリフィス24、ス
トップ弁25、フイルター26、エリミネーター27、
サイクロンスクラバー28、を経て外部と通じている。
圧力調整弁21は真空状態から大気圧に戻すとき、別途
に与えられる信号により開くようになっており、圧力調
整室2が大気圧になると自動的に閉じるようになってい
る。ヒーター29は冬季において15℃に加温出来る能
力となっている。オリフィス22、24は供給空気量を
制限するもので、給気速度を測定してその口径を定めて
設置される。自然給気によって、圧力調整室2内の圧力
が730torrとなったとき、強制給気システム11
が作動し、先ずストップ弁33が開き、次いで750t
orrとなったときストップ弁36が開き、さらにブロ
アー37が作動し、大気圧になると停止する。強制給気
システム12は図3に示すごとく圧力調整弁34、ヘッ
ダー35、ストップ弁36、送風ブロアー37、フイル
ター38、エリミネーター39、シャワースクラバー4
0、ヒーター41よりなる。
The inlet side pressure adjusting chamber 2 has a closed pressure-resistant structure using reinforced concrete, and as shown in FIG. 2, has two fresh air supply systems, a natural air supply system 11 and a forced air supply system 12. Has been done. As shown in FIG. 3, in the natural air supply system 11, the distributor 30 is attached to the upper part of the pressure adjusting chamber 2 at an appropriate pitch, and the pressure adjusting valve 21, the first orifice 22,
Header 23, heater 29, second orifice 24, stop valve 25, filter 26, eliminator 27,
It communicates with the outside via a cyclone scrubber 28.
The pressure adjusting valve 21 is adapted to be opened by a signal separately given when returning from a vacuum state to atmospheric pressure, and is automatically closed when the pressure adjusting chamber 2 becomes atmospheric pressure. The heater 29 is capable of heating to 15 ° C. in winter. The orifices 22 and 24 limit the amount of supply air, and are installed by measuring the supply speed and determining the diameter. When the pressure in the pressure adjusting chamber 2 becomes 730 torr due to natural air supply, the forced air supply system 11
Operates, the stop valve 33 opens first, and then 750t
When it becomes orrr, the stop valve 36 opens, and the blower 37 further operates, and stops when the atmospheric pressure is reached. As shown in FIG. 3, the forced air supply system 12 includes a pressure regulating valve 34, a header 35, a stop valve 36, a blower 37, a filter 38, an eliminator 39, and a shower scrubber 4.
0, heater 41.

【0019】入り口側圧力調整室2の最下部付近の壁面
には、図2に示すごとく吸引ノズル50が取り付けら
れ、排気システム10に接続されている。排気システム
10は、真空ポンプと電動バルブよりなり、その能力は
生産量によって決定される。自動車生産量が2分間に1
台の場合につき入り口側圧力調整室2の給気および排気
と扉の開閉操作について
As shown in FIG. 2, a suction nozzle 50 is attached to the wall surface near the lowermost portion of the inlet side pressure adjusting chamber 2 and is connected to the exhaust system 10. The exhaust system 10 is composed of a vacuum pump and an electric valve, the capacity of which is determined by the production volume. Car production is 1 in 2 minutes
Air supply and exhaust of the inlet side pressure adjustment chamber 2 and opening / closing operation of the door for a stand

【表1】 に示す。この場合到達真空度50torr、排気能力が
20m/minの真空ポンプが6台必要である。また
圧力調整室2には、その他付属設備として、床部分に、
台車などの搬送装置を取り付けたり、また作業者が入っ
たときの通路や照明などが設けられる。
[Table 1] Shown in In this case, six vacuum pumps having an ultimate vacuum of 50 torr and an exhaust capacity of 20 m 3 / min are required. In addition, in the pressure adjusting chamber 2, as other auxiliary equipment, on the floor part,
It is equipped with a carrier such as a trolley, and is provided with a passage and lighting when an operator enters.

【0020】静電塗装室3の天井部64や壁面65は、
図1に示すごとく鉄筋コンクリートで形成されている。
被塗物が小型の製品の場合、壁面材料としてFRPなど
樹脂製品が使用出来るが、耐圧性が高いので、鉄筋コン
クリートを用いるのが好ましい。もた静電塗装室3の大
きさは、静電塗装機103やロボットなどの自動塗装機
が配設しうる充分な大きさとすればよい。静電塗装室3
の壁面には照明器具71が適宜取り付けられている。ま
た監視用の窓70が適宜に設置されている。また作業者
が外部から出入り可能な耐圧性をもった扉9が宜設けら
れている。静電塗装室30床面は、鉄鋼製のグレーチン
グ72が敷かれている。また床面の中央は、被塗物を搬
送するコンベアー73が通過できるようになっている。
被塗物74は台車に乗せられているが、被塗物を含めて
これらの導電体はすべてアースされている。静電塗装室
3の下部ゾーンはダスト捕集室63となっている。被塗
物74に塗着しなかった余剰の微粒化塗料は、重力と下
向きの静電気力によりダスト捕集室63の最下部に溜め
られている捕集用水76に落下し捕集される。静電塗装
室3の真空状態を維持する手段として、ダスト捕集室6
3の最下端付近壁面には、ノズル78が適宜のピッチで
取り付けられ、塗装室外に配設されている排気システム
68と連結されている。排気システム68の排気能力
は、塗装室の大きさにより決定すればよい。また66は
緊急時用の給気弁であり通常は閉止されている。
The ceiling portion 64 and the wall surface 65 of the electrostatic coating chamber 3 are
As shown in FIG. 1, it is made of reinforced concrete.
When the article to be coated is a small product, a resin product such as FRP can be used as the wall material, but it is preferable to use reinforced concrete because it has high pressure resistance. The size of the electrostatic coating chamber 3 may be set to a size large enough to accommodate an automatic coating machine such as the electrostatic coating machine 103 or a robot. Electrostatic coating room 3
A lighting fixture 71 is appropriately attached to the wall surface of the. Further, a window 70 for monitoring is installed appropriately. Further, a door 9 having a pressure resistance that allows an operator to enter and exit from the outside is provided as appropriate. On the floor surface of the electrostatic coating room 30, a steel grating 72 is laid. A conveyor 73 that conveys the article to be coated can pass through the center of the floor surface.
The article to be coated 74 is placed on a dolly, but all the conductors including the article to be coated are grounded. The lower zone of the electrostatic coating chamber 3 is a dust collection chamber 63. The excess atomized paint that has not been applied to the object to be coated 74 falls and is collected by the collecting water 76 stored at the bottom of the dust collecting chamber 63 due to gravity and downward electrostatic force. As a means for maintaining the vacuum state of the electrostatic coating chamber 3, the dust collection chamber 6
Nozzles 78 are attached to the wall surface near the lowermost end of 3 at an appropriate pitch, and are connected to an exhaust system 68 arranged outside the coating chamber. The exhaust capacity of the exhaust system 68 may be determined according to the size of the coating chamber. Further, 66 is an air supply valve for emergencies, which is normally closed.

【0021】静電塗装機103としては、それに限定す
るものでないが、電極からの電気力線の方向を制限する
整形電極つきの静電塗装機をもちいるのが好ましい。静
電塗装機103に印加する電圧は200torrに維持
されているので、極間距離20〜30cmにたいし、し
スパーク電圧よりやや低い25〜30kvが用いられ
る。スパークは、常圧下では電界強度が6kv/cmを
超えると、発生しやすくなる。また200torrの低
い、真空下では、真空度にほぼ比例し1.6kv/cm
の電界強度でスパークが発生しやすくなる。それゆえ.
9〜1.2kv/cmが実用的な電界強度となる。それ
ゆえ極間距離が20〜30cmの場合25〜32kvが
実用的な電圧となる。この場合常圧下での95〜125
kvの高電圧印加とほぼ同等の放電電流が得られる。従
って常圧下で40〜75kv印加する場合に比し、帯電
率が向上し塗着効率が向上する。一方被塗物の凹凸やフ
ァラデーケージ効果にたいしては電圧が低下しているの
で電界が緩和され、より均一な塗膜が得られる。塗膜の
膜厚や平滑度を変化させるため、粒径分布を変化させる
場合は、上記の200torrの場合を標準として真空
度を比例的に変化させ、静電塗装機への電圧は真空度に
比例させて変化させればよい。
The electrostatic coating machine 103 is not limited to this, but it is preferable to use an electrostatic coating machine with a shaping electrode for limiting the direction of the lines of electric force from the electrodes. Since the voltage applied to the electrostatic coating machine 103 is maintained at 200 torr, the distance between the electrodes is 20 to 30 cm, and 25 to 30 kv, which is slightly lower than the spark voltage, is used. Sparks tend to occur when the electric field strength exceeds 6 kv / cm under normal pressure. Under a low vacuum of 200 torr, it is approximately proportional to the degree of vacuum at 1.6 kv / cm.
Sparks are easily generated due to the electric field strength. therefore.
A practical electric field strength is 9 to 1.2 kv / cm. Therefore, when the distance between the electrodes is 20 to 30 cm, a practical voltage is 25 to 32 kv. In this case 95-125 under normal pressure
It is possible to obtain a discharge current almost equal to that when a high voltage of kv is applied. Therefore, as compared with the case of applying 40 to 75 kv under normal pressure, the charging rate is improved and the coating efficiency is improved. On the other hand, with respect to the unevenness of the article to be coated and the Faraday cage effect, the voltage is lowered, so that the electric field is relaxed and a more uniform coating film can be obtained. In order to change the film thickness and smoothness of the coating film, when changing the particle size distribution, the vacuum degree is proportionally changed with the above case of 200 torr as the standard, and the voltage to the electrostatic coating machine is changed to the vacuum degree. It may be changed in proportion.

【0022】静電塗装機103の高圧発生機100や塗
料供給装置102は、静電塗装室3の外に設置され、静
電塗装室3内の静電塗装用ガンや電極とはレントゲンケ
ーブル104や塗料ホース105で接続されている。照
明器具71や、静電塗装機103を往復運動させるレシ
プロケーター108には、電気力線が及ばないよう、細
い金属線で形成された保護電極107を配設し、静電塗
装機103と極性が等しく、電圧のほぼ等しい直流高電
圧が印加される。また搬送装置として天井走行式コンベ
アーを用いる場合は、静電塗装機の電気力線が被塗物の
上方に向かわないよう保護電極を配設するのが好まし
い。
The high-voltage generator 100 and the paint supply device 102 of the electrostatic coating machine 103 are installed outside the electrostatic coating chamber 3, and the electrostatic coating gun and electrodes in the electrostatic coating chamber 3 are connected to the X-ray cable 104. And paint hose 105. A protective electrode 107 formed of a thin metal wire is arranged on the lighting fixture 71 and the reciprocator 108 that reciprocates the electrostatic coating machine 103 so that the lines of electric force do not reach and the polarity is different from that of the electrostatic coating machine 103. Is applied and a DC high voltage having almost the same voltage is applied. Further, when an overhead traveling type conveyor is used as the transfer device, it is preferable to dispose the protective electrode so that the lines of electric force of the electrostatic coating machine do not go above the article to be coated.

【0023】出口側圧力調整室4は、電塗装室3の圧力
から大気圧に戻すために設置するものであり、入り口側
圧力調整室2とほぼ同様の構造および材料でよい。出口
側圧力調整室の扉と被塗物の動作表、および必要な真空
ポンプ能力は表1に示す入り口側圧力調整室の場合と同
様である。
The outlet side pressure adjusting chamber 4 is installed to return the pressure of the electrocoating chamber 3 to the atmospheric pressure, and may have substantially the same structure and material as the inlet side pressure adjusting chamber 2. The operation table of the door of the outlet side pressure adjusting chamber and the object to be coated, and the required vacuum pump capacity are the same as those of the inlet side pressure adjusting chamber shown in Table 1.

【0024】[0024]

【発明の効果】本発明によれば、静電塗装室が誘電体で
形成されているため、静電塗装機からの電気力線の方向
が限定できるので、また塗装室内に空気の流れがないの
で、塗着効率が高くなる。また塗装室内が低い真空度で
静電塗装されるので、逆電離が発生せず、また真空度に
ほぼ比例する低い電圧で静電塗装ができるのでファラデ
イケージ効果が緩和される。それゆえ粉体塗料の粒径分
布を必要な膜厚または平滑度に応じ、自由に選択でき
る。それゆえ極端に大きな粒径の粉体塗料を含ます必要
がないので、平滑な塗膜が得られ、かつ帯電率が向上
し、塗着効率が向上する。また極端に小さい粒径の塗料
を含ます必要が無いので、低い真空度でも余乗塗料の排
出が容易に可能となる。それゆえ安定した塗装が継続で
きる。更に塗装室が真空なので火災や爆発の危険の無
い、安全な塗装環境が得られる。
According to the present invention, since the electrostatic coating chamber is made of a dielectric material, the direction of the lines of electric force from the electrostatic coating machine can be limited, and there is no air flow in the coating chamber. Therefore, the coating efficiency is increased. Further, since the interior of the coating chamber is electrostatically coated at a low degree of vacuum, back ionization does not occur, and electrostatic coating can be performed at a low voltage almost proportional to the degree of vacuum, so that the Faraday cage effect is mitigated. Therefore, the particle size distribution of the powder coating material can be freely selected according to the required film thickness or smoothness. Therefore, it is not necessary to include the powder coating material having an extremely large particle size, so that a smooth coating film can be obtained, and the charging rate is improved, and the coating efficiency is improved. Moreover, since it is not necessary to include paint with an extremely small particle size, it is possible to easily discharge the extra power paint even at a low vacuum degree. Therefore, stable coating can be continued. Furthermore, since the coating room is vacuum, a safe coating environment can be obtained without the risk of fire or explosion.

【0025】本発明の静電塗装室は粉体塗料を用いて効
果を発揮するものであるが、水性塗料や高沸点の石油系
溶剤塗料の使用を妨げるものでない。この場合は新鮮な
空気を塗料の使用量にに応じて供給すればよい。
The electrostatic coating chamber of the present invention exerts its effect by using a powder coating, but it does not prevent the use of an aqueous coating or a high boiling point petroleum solvent coating. In this case, fresh air may be supplied according to the amount of paint used.

【図面の簡単な説明】[Brief description of drawings]

【図1】 静電塗装室の断面図[Figure 1] Sectional view of the electrostatic coating room

【図2】 静電塗装室および圧力調整室の配置図[Fig. 2] Layout plan of electrostatic coating chamber and pressure adjustment chamber

【図3】 圧力調整室の空気供給システムを示す図FIG. 3 is a diagram showing an air supply system of a pressure adjusting chamber.

【符号の説明】[Explanation of symbols]

3、静電塗装室 64、静電塗装室天井部 65、静電塗装室壁面 74、被塗物 103、静電塗装機 3, electrostatic coating room 64, electrostatic coating room ceiling 65, electrostatic coating room wall surface 74, article 103, electrostatic coating machine

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 誘電体材料で形成された静電塗装室内を
低い真空度の気圧に減圧し、該塗装室内において、粉体
塗料を用いて静電塗装することを特徴とする粉体塗料の
静電塗装方法
1. A powder coating material characterized in that an electrostatic coating chamber formed of a dielectric material is decompressed to an atmospheric pressure of a low vacuum degree, and electrostatic coating is performed using the powder coating material in the coating chamber. Electrostatic coating method
【請求項2】 気圧が粉体塗料の粒径により決定される
ことを特徴とする請求項1に記載の粉体塗料の静電塗装
方法
2. The electrostatic coating method for powder coating according to claim 1, wherein the atmospheric pressure is determined by the particle diameter of the powder coating.
【請求項3】気圧が50torr以上250torr以
下であることを特徴とする請求項1に記載の粉体塗料の
静電塗装方法
3. The electrostatic coating method for powder coating according to claim 1, wherein the atmospheric pressure is 50 torr or more and 250 torr or less.
【請求項4】 静電塗装する電圧を気圧の減圧度にほぼ
比例して低下させることを特徴とする請求項1に記載の
粉体塗料の静電塗装方法
4. The electrostatic coating method for powder coating according to claim 1, wherein the voltage for electrostatic coating is reduced substantially in proportion to the degree of pressure reduction.
【請求項5】 低い真空度を形成、維持する手段を保有
し、誘電体材料で形成された粉体塗料の静電塗装室
5. An electrostatic coating chamber for powder coating formed of a dielectric material, which has means for forming and maintaining a low degree of vacuum.
【請求項6】 誘電体材料が鉄筋コンクリートであるこ
とを特徴とする請求項5に記載の粉体塗料の静電塗装室
6. The electrostatic coating chamber for powder coating according to claim 5, wherein the dielectric material is reinforced concrete.
JP6340824A 1994-12-22 1994-12-22 Electrostatic coating method of powder coating material and booth therefor Pending JPH08173858A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6340824A JPH08173858A (en) 1994-12-22 1994-12-22 Electrostatic coating method of powder coating material and booth therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6340824A JPH08173858A (en) 1994-12-22 1994-12-22 Electrostatic coating method of powder coating material and booth therefor

Publications (1)

Publication Number Publication Date
JPH08173858A true JPH08173858A (en) 1996-07-09

Family

ID=18340642

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6340824A Pending JPH08173858A (en) 1994-12-22 1994-12-22 Electrostatic coating method of powder coating material and booth therefor

Country Status (1)

Country Link
JP (1) JPH08173858A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004256974A (en) * 2003-02-27 2004-09-16 Japan Vilene Co Ltd Method for electrospinning and device for electrospinning
WO2004096449A1 (en) * 2003-04-25 2004-11-11 Semiconductor Energy Laboratory Co. Ltd. Liquid droplet jet device using charged particle beam and method for forming pattern using the device
JP2017064583A (en) * 2015-09-28 2017-04-06 東レエンジニアリング株式会社 Electrospray device
WO2021124541A1 (en) * 2019-12-20 2021-06-24 株式会社アシックス Method for manufacturing shoe upper, shoe upper, and shoe
CN113893982A (en) * 2020-07-06 2022-01-07 丰田自动车株式会社 Coating device and method for installing coating device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004256974A (en) * 2003-02-27 2004-09-16 Japan Vilene Co Ltd Method for electrospinning and device for electrospinning
WO2004096449A1 (en) * 2003-04-25 2004-11-11 Semiconductor Energy Laboratory Co. Ltd. Liquid droplet jet device using charged particle beam and method for forming pattern using the device
JPWO2004096449A1 (en) * 2003-04-25 2006-07-13 株式会社半導体エネルギー研究所 Droplet discharge apparatus using charged beam and method for producing pattern using the apparatus
US7232773B2 (en) 2003-04-25 2007-06-19 Semiconductor Energy Laboratory Co., Ltd. Liquid drop jetting apparatus using charged beam and method for manufacturing a pattern using the apparatus
JP2017064583A (en) * 2015-09-28 2017-04-06 東レエンジニアリング株式会社 Electrospray device
WO2021124541A1 (en) * 2019-12-20 2021-06-24 株式会社アシックス Method for manufacturing shoe upper, shoe upper, and shoe
JPWO2021124541A1 (en) * 2019-12-20 2021-06-24
CN113316401A (en) * 2019-12-20 2021-08-27 株式会社爱世克私 Method for manufacturing shoe upper, shoe upper and shoe
CN113893982A (en) * 2020-07-06 2022-01-07 丰田自动车株式会社 Coating device and method for installing coating device
CN113893982B (en) * 2020-07-06 2024-02-06 丰田自动车株式会社 Coating device and method for setting coating device

Similar Documents

Publication Publication Date Title
CN112354320A (en) Automobile coating over-sprayed paint mist dry-type trapping system
US4069974A (en) Electrostatic powder coating apparatus
EP0480663B1 (en) Improvements in and relating to mounting and moving coating dispensers
JPH08173858A (en) Electrostatic coating method of powder coating material and booth therefor
CN204469938U (en) Aluminium foil oiling station
JPS63258669A (en) Operation control method of electrostatic coating device
CA1226430A (en) Electrostatic coating plant
CN102059208B (en) Static even-color painting method
JPH0224587B2 (en)
CN213170481U (en) Cloud and mist dust settling system of screw car unloader
CN104549814A (en) Aluminum foil oiling device and oiling method thereof
US2730460A (en) Electrostatic method and apparatus
CN215141078U (en) High-voltage electrostatic spraying device with protection function
JPH11253855A (en) Coating booth for automobile
JP2013000708A (en) Powder coating device
US2757597A (en) Self-contained paint spray booth
JPH08173859A (en) Vacuum coating method with water base paint and vacuum coating chamber
DE2444563C2 (en) Method and device for electrostatic powder coating in a dip tank
US4285296A (en) Lubricating apparatus
JPH0278457A (en) Gondola for painting provided with repulsing plate and automatic outside wall painting method using this gondola
EP0268211B1 (en) Method of applying electrostatically sprayable enamel powder to work pieces with the addition of a protective gas
CN219785302U (en) High-voltage electrostatic spraying equipment with protection function
US20230136624A1 (en) System and method for electrostatic coating
CN214717739U (en) Fireproof door roller shutter door paint spraying device
JPS59199076A (en) Painting booth for automatic painting machine