JPH08173813A - 石炭液化触媒の製造方法 - Google Patents

石炭液化触媒の製造方法

Info

Publication number
JPH08173813A
JPH08173813A JP6318356A JP31835694A JPH08173813A JP H08173813 A JPH08173813 A JP H08173813A JP 6318356 A JP6318356 A JP 6318356A JP 31835694 A JP31835694 A JP 31835694A JP H08173813 A JPH08173813 A JP H08173813A
Authority
JP
Japan
Prior art keywords
catalyst
grinding medium
grinding
wet
ground
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6318356A
Other languages
English (en)
Inventor
Masatoshi Kobayashi
正俊 小林
Shoichi Oi
章市 大井
Toshihiko Okada
敏彦 岡田
Katsumi Hirano
勝巳 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON KOOLE OIL KK
Nippon Steel Corp
Original Assignee
NIPPON KOOLE OIL KK
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON KOOLE OIL KK, Sumitomo Metal Industries Ltd filed Critical NIPPON KOOLE OIL KK
Priority to JP6318356A priority Critical patent/JPH08173813A/ja
Publication of JPH08173813A publication Critical patent/JPH08173813A/ja
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Crushing And Grinding (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

(57)【要約】 【目的】 石炭液化触媒の製造工程での粉砕媒体の磨耗
および所要動力を低減し、全体として製造コストの低減
をはかる。 【構成】 硫化鉄および/または酸化鉄を主成分とする
鉄含有固形物質を、第一段階では溶剤中40〜80重量
%の濃度で、被粉砕固形物質平均粒径対粉砕媒体平均粒
径の比率が0.05以下の粉砕媒体を使用して湿式粉砕
し、第二段階で溶剤中40〜80重量%の濃度の被粉砕
物質を、被粉砕物質平均粒径対粉砕媒体平均粒径の比率
が0.01以下である粉砕媒体を使用して湿式粉砕する
ことによる。

Description

【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明は石炭液化触媒の製造方法
に関し、より詳しくは二段階湿式粉砕による石炭液化触
媒の製造方法に関する。
【0002】
【従来の技術】世界のエネルギー使用量は近年益々増大
してきており、エネルギー源の枯渇が近未来の問題とし
てクローズアップされてきている。このような状況か
ら、最近燃料としての石炭の利用価値が見直されてお
り、石炭を触媒の存在下に水添することにより得られる
石炭液化燃料が開発されてきており、それと同時に石炭
液化のための触媒も種々開発されてきている。
【0003】石炭液化触媒としては、コバルト、ニッケ
ル、モリブデン、鉄、等の金属およびこれら金属の混合
物が利用されてきた。しかし石炭液化触媒は石炭に対し
3〜5重量%前後使用されるため、工業的規模では使用
される触媒量も多量となり、液化用石炭30,000ト
ン/日で必要な触媒量が900〜1,500トン/日に
達する。従って大量に入手可能でかつ触媒活性が安定し
ていることが必須要件であるのみならず、生産コストの
面からは安価であることも重要である。
【0004】このような観点から、安価で使い捨て可能
な鉄系金属化合物の使用が有利である。しかし、鉄系の
触媒はコバルト、ニッケル、等に比較して触媒活性が劣
るため、触媒活性を高めることを目的として例えば硫化
鉄および/または酸化鉄を含有する金属化合物を限界粒
径に達した後もさらに粉砕を続行することにより、より
活性の高い石炭液化用触媒を得る方法(特願平4−24
9639号)、あるいは硫化鉄および/または酸化鉄を
主成分とする固体を平均粒子径10μm 以下となるまで
粉砕後ただちに水添液化用触媒として使用することによ
り触媒活性の低下を回避する方法(特願平4−2496
40号)などが本出願人により既に提案されている。
【0005】
【発明が解決しようとする課題】しかしながら、天然硫
化鉄鉱石のような鉄系鉱石は、硬度がモース硬度で5以
上と高く、かかる鉱石類を粒径1μm 以下となるまで微
粉砕した場合、粉砕機の粉砕媒体であるボール、ビー
ズ、あるいはローラー等が著しく磨耗する欠点があっ
た。さらには粉砕所要動力量も増大する等の問題もあっ
た。
【0006】特に一日量900〜1,500トンにも達
する大量の触媒を製造する場合にはこれら粉砕媒体の磨
耗を無視することはできず、ボールミル等の場合ボール
の磨耗に見あうボールを追加挿入して操業を継続するこ
とも可能ではあるが、定期的にボールを取り替えたり、
粉砕機内部の構造部分の磨耗箇所を補修する場合には操
業を一時停止する必要が出て、触媒の生産能率が低下す
る。
【0007】もう一つ、天然硫化鉄鉱石のような天然鉱
物は供給される原料の粒径幅の変動が大きいため、それ
に起因する粉砕媒体の磨耗も少なくないと見られる。従
って、触媒の製造コストを低減するためには粉砕媒体の
磨耗量の低減および粉砕所要動力の低減が課題となって
いた。粉砕媒体が磨耗する原因としては、例えば鋼球を
粉砕媒体とする場合、天然の硫化鉄鉱石の方が硬度が高
いため鋼球の磨耗が著しいのであろうし、またジルコニ
アビーズ粉砕媒体を用いても磨耗量が高い場合は、被粉
砕物質の粒径のばらつき、特に粗大粒子の混入に起因す
るものと推測される。
【0008】今、本発明者らは、触媒原料を湿式粉砕す
る場合に、たとえ単独粉砕ではいずれの粉砕媒体を用い
た場合でも高い磨耗を示しても、特定の条件下に二段階
に分けて粉砕すると、全体としての粉砕媒体の磨耗量お
よび所要動力を著明に低減でき、製造コストを著しく低
減できることを見出した。しかも得られた触媒が安定で
高い液化性能を有する。
【0009】
【課題を解決するための手段】それゆえ本発明は、硫化
鉄および/または酸化鉄を主成分とする鉄含有固形物質
を、第一段階では溶剤中40〜80重量%の濃度で、被
粉砕固形物質の平均粒径対粉砕媒体の平均粒径の比率が
0.05以下である粉砕媒体を使用して湿式粉砕し、次
に第二段階で溶剤中40〜80重量%の濃度とした被粉
砕物質を、被粉砕物質の平均粒径対粉砕媒体の平均粒径
の比率が0.01以下である粉砕媒体を使用して湿式粉
砕することによる、粒径1μm 以下を有する石炭液化触
媒の製造方法に関する。
【0010】前記溶剤としては、石炭液化プラントにお
いてスラリー形成に使用される循環溶剤を使用するのが
好ましい。本発明で得られる微粉砕触媒粒子は、溶剤を
媒体とするスラリー形態で製造され、そのまま石炭液化
プラントに供給できる。本発明では第一段階で粒径約1
〜50μm となるまで粉砕し、次に第二段階で所望の粒
径1μm 以下に粉砕する。特に0.7μm 以下の微粉砕
触媒粒子となすのが好ましい。
【0011】本発明方法では被粉砕物質の粒径のばらつ
きの大きい第1段階で、原料物質を特定範囲の粒径を有
する粉砕媒体で粉砕してほぼ粒径のそろった粉砕物とな
し、次にこれを第2段階で触媒に所望される粒径まで微
粉砕するという2段階粉砕をとるため、鋼球やセラミッ
クビーズ等の粉砕媒体の磨耗量が著しく少なくて済み、
全体として大きな相乗効果が得られたものと見られる。
本発明方法によれば粉砕所要動力もそれぞれの粉砕装置
単体2基の合計分よりもかなり低減できる。
【0012】本発明において石炭液化触媒原料として使
用できる鉄含有固形物質は、硫化鉄および/または酸化
鉄を主成分とするものであればよく、天然鉄鉱石例え
ば、黄鉄鉱(パイライト)、紅土(ラテライト)、白鉄
鉱(マーカサイト)、磁硫鉄鉱(ピロータイト)、磁鉄
鉱(マグネタイト)、赤鉄鉱(ヘマタイト)、褐鉄鉱
(リモナイト)、またはアルミ精錬副産物である赤泥、
合成物質であるフェライト、鉄鋼製品製造時の金属ダス
ト等があげられる。触媒としての活性の高さおよび原料
の入手容易さその他の点でパイライトが特に好適であ
る。
【0013】本発明の湿式粉砕工程で使用できる溶剤と
しては、石油系および石炭系の種々の溶剤、石炭液化プ
ラントから得られる常圧軽油、重質ナフサ、石炭液化プ
ラントで使用される循環溶剤等があげられるが、石炭液
化プラントにおいて石炭のスラリー形成に使用される循
環溶剤を使用すれば、触媒スラリーと同一溶剤を使用す
ることになるので好ましく、特に沸点200〜500℃
で、2〜3環芳香族化合物およびその水素化物からなる
循環溶剤が石炭液化工程との適合性の点から最も好まし
い。
【0014】これら溶剤が磨耗量および所要動力の低減
に及ぼす効果は明らかではないが、被粉砕物の分散を促
進させ、それによる粉砕促進効果、粉砕媒体への潤滑作
用による磨耗量低減効果などが寄与しているものと推測
される。好都合なことに、液化用石炭を分散させるのに
有効な循環溶剤が触媒原料粉砕工程用溶剤としても好適
であることが判明した。
【0015】かかる溶剤中における触媒原料の割合は、
使用される粉砕機の機種によっても異なるが、第一段階
では溶剤中40〜80重量%の範囲とする。この濃度範
囲で粉砕エネルギーが効率的に原料に分散されるものと
推測される。40重量%未満では粉砕時間が長くなり、
また80重量%を越えるとスラリー粘度が高まり、いず
れにしても媒体磨耗量の増大あるいは所要動力の増大を
引き起こして好ましくない。粉砕の第2段階では溶剤中
の被粉砕物質濃度は40〜80重量%の範囲内とする。
40重量%未満では単位時間当たりの粉砕量が低下して
粉砕効率が下がり、一方80重量%を越えるとスラリー
粘度が上昇し、目的とする平均粒径1μm 以下までの粉
砕が困難となり、やはり媒体磨耗量の増大あるいは所要
動力の増大を引き起こして好ましくない。
【0016】粉砕の第一段階では被粉砕固形物質の平均
粒径対粉砕媒体の平均粒径の比率が0.05以下である
粉砕媒体を使用して湿式粉砕する。このことは粉砕媒体
が被粉砕固形物質の20倍以上の平均粒径を有すること
を意味し、それにより粉砕媒体の衝撃および摩擦エネル
ギーが効率良く被粉砕物質に伝達され、粉砕媒体の磨耗
が少なく、かつ粉砕動力が少ない粉砕を達成できる。
【0017】第二段階では被粉砕物質の平均粒径対粉砕
媒体の平均粒径の比率が0.01以下である粉砕媒体を
使用して湿式粉砕する。このことは粉砕媒体が被粉砕固
形物質の100倍以上の平均粒径を有することを意味
し、それにより粉砕媒体の剪断および摩擦エネルギーが
効率良く被粉砕物質に伝達され、粉砕媒体の磨耗並びに
粉砕動力を低減できる効果が得られて、容易に所望の平
均粒径1μm 以下の液化触媒が得られる。
【0018】本発明の湿式粉砕には、種々のボールミ
ル、例えば転動ボールミル、振動ボールミル、遠心ボー
ルミル、遊星ミル、あるいは攪拌ミル例えばスクリュー
型、流通管型、攪拌槽型、アニュラー型攪拌ミル、等を
適宜組み合わせて使用できる。転動ボールミルとは、円
筒状をしたミルの中に鋼球等の粉砕媒体を入れ、ミルを
運動させることにより粉砕を行うボールミルであって、
円筒状ミルをその軸を中心に回転させ、鋼球等の粉砕媒
体を持ち上げてから落下させ、その衝撃や粉砕媒体の転
動に伴う摩擦作用によって粉砕を行うミルのことを指
す。また攪拌ミルとは、攪拌容器中に入れたビーズ等の
粉砕媒体を介して攪拌機構によって力を伝達し、媒体の
剪断や摩擦作用によって粉砕を行うミルを指す。流通管
型やアニュラー型攪拌ミルが好ましい。各種の構造をし
たミル、例えばコンパートメントミル、コニカルミル、
トリコンミル、あるいはまた、粉砕媒体を回転軸方向に
分散させるためにライナーにピン等の分散機構を付与し
たミル等も使用できる。
【0019】第1段階が転動ボールミルであり、第2段
階が攪拌ミルの組み合わせが本発明にとって最も好適で
ある。使用されるミルは連続式でも回分式でもよいが、
大量の触媒原料を粉砕するには連続式が適当である。こ
れらのミル中に用いられる粉砕媒体としては、所定の粒
径を有する炭素鋼、低合金鋼、高合金鋼等の鋼球、ある
いは被粉砕固体よりも硬度が高いアルミナ、ジルコニ
ア、窒化珪素等のようなセラミックビーズが好適に使用
できる。被粉砕物質の粒径のばらつきの大きい第1段階
では鋼球を使用し、ある程度粒径の揃った第2段階では
セラミックビーズを使用するのが好ましい。
【0020】本発明では、被粉砕物質に対して特定範囲
の粒径を有する粉砕媒体を使用したところに、粉砕に好
都合な摩擦作用、剪断作用、衝撃作用等の力が発揮され
たものと推測され、粉砕機から伝達されるエネルギーが
被粉砕物質の粉砕に効率的に利用されたものと考えられ
る。なお、本発明における粉砕物の平均粒径はレーザー
回折法で求めたD50値を指す。
【0021】本発明の方法により製造された石炭液化触
媒は高い液化性能を保持し、かつそのスラリーは安定
で、輸送や貯蔵時に凝集することがなく、工業的な使用
に好適である。
【0022】
【実施例】
実施例1 連続型粉砕装置を用いた場合の本発明の石炭液化触媒の
製造工程の1例を図1のフローチャートに基づき説明す
る。 第1段階 転動型湿式ボールミル1(三菱重工製AT−60型、内
容積202リットル)中に、乾燥したフィンランド産天
然硫化鉄鉱石5(平均粒径300μm 、同和鉱業から入
手)を定量フィーダーにより49.3Kg/時で供給
し、同時に溶剤として石炭液化油7(常圧軽油)を2
6.8Kg/時(硫化鉄鉱石濃度約65重量%)で供給
し、回転比1.25で湿式粉砕した。粉砕媒体としては
10mmφの鋼球を充填率65重量%となるよう充填し
た。なお、この段階での被粉砕原料の平均粒径と粉砕媒
体の平均粒径との比率は0.03であった。
【0023】この粉砕により、平均粒径1.5μm を有
する硫化鉄鉱第1次粉砕物が得られた。 第2段階 第1段階で得られた硫化鉄鉱粉砕物含有スラリーを、濃
度調整槽2で40重量%となるよう溶剤7で希釈したの
ち、ビーズを粉砕媒体とするアニュラー型湿式攪拌ミル
3(日本アイリッヒ製PM−DCP3型、内容積11.
8リットル)中にギヤポンプで被粉砕物123.2Kg
/時の供給速度で導入し、ローター回転数700rpm
で湿式粉砕した。粉砕媒体としては0.2mmφのジル
コニアビーズを充填率95重量%となるよう充填した。
なお、この第2段階での被粉砕物質平均粒径/粉砕媒体
平均粒径の比率は0.008であった。この粉砕によ
り、平均粒径0.55μm を有する石炭液化触媒6が得
られた。
【0024】なお、各粉砕機の滞留時間は約2時間であ
った。第1および第2各段階での粉砕媒体の重量変化を
50時間粉砕後に測定し、粉砕媒体の磨耗量を調べた。
またその間粉砕に要した動力量も測定した。その結果を
下記表1に示す。 表1 媒体磨耗量 所要動力 第1段階 8Kg/t−dry 112kwh/t−dry 第2段階 0.4Kg/t−dry 190kwh/t−dry 実施例2 粉砕用溶剤として、石炭液化プラント4で石炭液化スラ
リーを形成するのに使用される循環溶剤を使用する以外
は実施例1におけると同様の条件下に湿式粉砕し、平均
粒径0.53μm を有する石炭液化触媒を得た。50時
間粉砕後の粉砕媒体の磨耗量および所要動力量は下記表
2に示すとおりである。
【0025】 表2 媒体磨耗量 所要動力 第1段階 5Kg/t−dry 110kwh/t−dry 第2段階 0.3Kg/t−dry 180kwh/t−dry 比較例1 実施例1におけると同様の転動型湿式ボールミルおよび
アニュラー型湿式攪拌ミルをそれぞれ単独で別々に運転
し、原料を49.3Kg/時で供給して平均粒径が0.
60μm となるまで粉砕した。なお、原料スラリーの濃
度は転動型ミルが65重量%、攪拌ミルが40重量%と
なるように調整した。
【0026】それぞれの粉砕機における50時間粉砕後
の粉砕媒体の磨耗量および所要動力量は下記表3に示す
とおりである。 表3 媒体磨耗量 所要動力 転動型湿式ボールミル 60Kg/t−dry 432kwh/t−dry アニュラー型湿式ミル 8Kg/t−dry 337kwh/t−dry 表3から明らかなとおり、それぞれ粉砕機を単独で別々
に運転した比較例1においては、粉砕媒体の磨耗量も所
要動力量も実施例1および2に比較して著しく高い。 比較例2 第1段階の鋼球を5mmφのものとし(被粉砕原料の平
均粒径と粉砕媒体の平均粒径との比率0.06)、第2
段階の粉砕時に0.1mmφのジルコニアビーズを使用
する(被粉砕物質平均粒径/粉砕媒体平均粒径比率0.
015)以外は実施例1におけると同様の条件下で平均
粒径が0.62μm となるまで湿式粉砕した。粉砕媒体
の磨耗量および所要動力量は下記表4に示すとおりであ
る。
【0027】 表4 媒体磨耗量 所要動力 第1段階 30Kg/t−dry 190kwh/t−dry 第2段階 0.8Kg/t−dry 250kwh/t−dry 比較例3 第1段階における溶剤中の被粉砕原料の濃度を30重量
%に、第2段階における濃度を35重量%に変更する以
外は実施例1におけると同様の条件下で湿式粉砕し、平
均粒径0.64μm を有する石炭液化触媒を得た。50
時間の運転の結果得られた粉砕媒体の磨耗量および所要
動力量は下記表5に示すとおりである。
【0028】 表5 媒体磨耗量 所要動力 第1段階 40Kg/t−dry 150kwh/t−dry 第2段階 0.7Kg/t−dry 240kwh/t−dry この比較例3で得られた触媒スラリーは1日放置すると
触媒粒子の沈降が認められ、安定性が低かった。 比較例4 第1段階における溶剤中の被粉砕原料の濃度を80重量
%に、第2段階における濃度を85重量%に変更する以
外は実施例1におけると同様の条件下で湿式粉砕して平
均粒径0.55μm を有する石炭液化触媒を得ようとし
たが、第1段階、第2段階とも平均粒径0.84μm の
ものを得るのが限度であった。この例における粉砕媒体
の磨耗量および所要動力量は下記表6に示すとおりであ
る。
【0029】 表6 媒体磨耗量 所要動力 第1段階 50Kg/t−dry 480kwh/t−dry 第2段階 0.7Kg/t−dry 350kwh/t−dry 以上の各実施例および比較例から明らかなとおり、本発
明によれば粉砕媒体の磨耗量および所要動力量を著しく
低減できる。
【0030】実施例1で得られた触媒スラリーを表7に
示す条件下に3回石炭液化反応に使用したところ、液化
油の収率はそれぞれ61.9、62.7および59.8
重量%dafであった。石炭の液化に使用されたワンド
ワン炭(100メッシュパス、149μm 以下)の分析
結果を表8に示す。
【0031】
【0032】
【0033】
【発明の効果】第一段階で溶剤中40〜80重量%の濃
度の被粉砕固形物質に対し、被粉砕固形物質平均粒径/
粉砕媒体平均粒径比率が0.05以下であるような粉砕
媒体を使用して湿式粉砕し、第二段階で溶剤中40〜8
0重量%の濃度の被粉砕物質に対し、被粉砕物質平均粒
径/粉砕媒体の平均粒径比率が0.01以下であるよう
な粉砕媒体を使用して湿式粉砕する2段階粉砕により、
粉砕媒体の磨耗量および所要動力量を大幅に低減でき
る。前記溶剤が石炭液化プラントにおいてスラリー形成
に使用される循環溶剤である場合に特に効果的である。
【図面の簡単な説明】
【図1】石炭液化触媒の製造工程の1例のフローチャー
トを示す。
【符号の説明】
1 転動ミル 2 濃度調整槽 3 アニュラーミル 4 石炭液化プラ
ント 5 鉱石原料 6 触媒スラリー 7 溶剤
───────────────────────────────────────────────────── フロントページの続き (72)発明者 岡田 敏彦 東京都千代田区霞ケ関3丁目3番1号 尚 友会館 日本コールオイル株式会社内 (72)発明者 平野 勝巳 大阪府大坂市中央区北浜4丁目5番33号 住友金属工業株式会社内

Claims (2)

    【特許請求の範囲】
  1. 【請求項1】 硫化鉄および/または酸化鉄を主成分と
    する鉄含有固形物質を、第一段階では溶剤中40〜80
    重量%の濃度で、被粉砕固形物質の平均粒径対粉砕媒体
    の平均粒径の比率が0.05以下である粉砕媒体を使用
    して湿式粉砕し、次に第二段階で溶剤中40〜80重量
    %の濃度とした被粉砕物質を、被粉砕物質の平均粒径対
    粉砕媒体の平均粒径の比率が0.01以下である粉砕媒
    体を使用して湿式粉砕することによる、粒径1μm 以下
    を有する石炭液化触媒の製造方法。
  2. 【請求項2】 前記溶剤が、石炭液化プラントにおいて
    スラリー形成に使用される循環溶剤である請求項1記載
    の石炭液化触媒の製造方法。
JP6318356A 1994-12-21 1994-12-21 石炭液化触媒の製造方法 Pending JPH08173813A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6318356A JPH08173813A (ja) 1994-12-21 1994-12-21 石炭液化触媒の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6318356A JPH08173813A (ja) 1994-12-21 1994-12-21 石炭液化触媒の製造方法

Publications (1)

Publication Number Publication Date
JPH08173813A true JPH08173813A (ja) 1996-07-09

Family

ID=18098245

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6318356A Pending JPH08173813A (ja) 1994-12-21 1994-12-21 石炭液化触媒の製造方法

Country Status (1)

Country Link
JP (1) JPH08173813A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002200432A (ja) * 2000-10-26 2002-07-16 Showa Denko Kk 湿式粉砕方法およびその方法により製造したスラリー組成物
JP2005507841A (ja) * 2001-02-28 2005-03-24 キャボット コーポレイション 酸化ニオブの製造方法
WO2016088963A1 (ko) * 2014-12-05 2016-06-09 주식회사 포스코 코크스용 첨가제 제조 방법과 제조 장치
WO2023181834A1 (ja) * 2022-03-24 2023-09-28 株式会社キャタラー スラリーの製造方法及び排ガス浄化用触媒の製造方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002200432A (ja) * 2000-10-26 2002-07-16 Showa Denko Kk 湿式粉砕方法およびその方法により製造したスラリー組成物
JP2005507841A (ja) * 2001-02-28 2005-03-24 キャボット コーポレイション 酸化ニオブの製造方法
WO2016088963A1 (ko) * 2014-12-05 2016-06-09 주식회사 포스코 코크스용 첨가제 제조 방법과 제조 장치
JP2018501346A (ja) * 2014-12-05 2018-01-18 ポスコPosco コークス用添加剤の製造方法と製造装置
WO2023181834A1 (ja) * 2022-03-24 2023-09-28 株式会社キャタラー スラリーの製造方法及び排ガス浄化用触媒の製造方法

Similar Documents

Publication Publication Date Title
JP5325387B2 (ja) 単結晶質ダイヤモンド微粉及びその製造方法
JP2532231B2 (ja) エネルギ−効率の高い粉砕方法及び装置
CN101282790B (zh) 提高矿石、矿物和精矿的研磨效率的方法
GB1569521A (en) Comminution of materials
CN109569837A (zh) 一种处理镍铜硫化矿石的碎磨工艺
CN101695754A (zh) 亚微米硬质合金生产用混合料的制备方法
CN107185658A (zh) 一种以陶瓷球为介质的矿物细磨和超细磨磨矿方法
JPH089016B2 (ja) 竪型ローラミルによる粉砕装置および粉砕方法
JPH08173813A (ja) 石炭液化触媒の製造方法
JPH09150072A (ja) スラリー製造方法及び装置
JPH04220494A (ja) 高濃度石炭−水スラリーの製造方法
Rule et al. IsaMill™ design improvements and operational performance at Anglo platinum
WO2010113571A1 (ja) 鉄鉱石原料の粉砕方法
AU558280B2 (en) An autogenous grinding method
JP2004530551A (ja) 鉱物粒子を微粉砕する方法および装置
JPH08173812A (ja) 石炭液化触媒、その製造方法および使用方法
CN1314492C (zh) 氧化铝矿浆制备的二段磨磨矿——分级工艺
JPH06343890A (ja) 湿式粉砕方法
CN110607195A (zh) 一种粗颗粒管道输送煤浆的制备方法
KR20020044622A (ko) 견운모질 도석으로부터 산업용 충전재 생산방법
JP2004261635A (ja) 石炭液化高活性触媒の製造方法
RU2361675C2 (ru) Способ тонкого измельчения цементного клинкера
Hacıfazlıoğlu Ultrafine Grinding of Kokaksu Bauxite ore via Stirred Mill and Ball Mill
Jankovic et al. Advances in ore comminution practices over the last 25 years
GB1569969A (en) Comminution of solid materials

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20010925

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040209

A072 Dismissal of procedure [no reply to invitation to correct request for examination]

Free format text: JAPANESE INTERMEDIATE CODE: A072

Effective date: 20040601