JPH08172780A - Impulse voltage/current generating apparatus - Google Patents

Impulse voltage/current generating apparatus

Info

Publication number
JPH08172780A
JPH08172780A JP20128895A JP20128895A JPH08172780A JP H08172780 A JPH08172780 A JP H08172780A JP 20128895 A JP20128895 A JP 20128895A JP 20128895 A JP20128895 A JP 20128895A JP H08172780 A JPH08172780 A JP H08172780A
Authority
JP
Japan
Prior art keywords
discharge
switch
voltage
resistor
gsb
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20128895A
Other languages
Japanese (ja)
Other versions
JP2614705B2 (en
Inventor
Minoru Den
実 田
Tatsuya Hiyama
達哉 樋山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichicon Corp
Original Assignee
Nichicon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichicon Corp filed Critical Nichicon Corp
Priority to JP20128895A priority Critical patent/JP2614705B2/en
Publication of JPH08172780A publication Critical patent/JPH08172780A/en
Application granted granted Critical
Publication of JP2614705B2 publication Critical patent/JP2614705B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Generation Of Surge Voltage And Current (AREA)

Abstract

PURPOSE: To remove the contaminated material on the surface of an electrode formed when a current is generated by providing the function, which applies a voltage corresponding to the using voltage of intermediate discharge-gap switches on an intermediate point and discharges and cleans the surface of the discharging electrode. CONSTITUTION: When a voltage is applied on an intermediate point CP of discharge-gap switches GSa and GSb and discharge cleaning operation is performed, a discharging switch S2 of a main capacitor is opened after the large-current discharging operation of a main circuit is finished. A forced grounding switch S1 is closed, and the state without charge is set. A charging switch S3 is closed, and the specified voltage is applied on the intermediate point CP from a charging power supply DCG. Discharging is performed between the intermediate point CP of the discharge-gap switches GSa and GSb and discharging electrodes 1 and 2. At this time, when the dielectric strength between the respective discharge electrodes of the discharge-gap switches GSa and GSb is lowered, discharging is performed by the current which is suppressed by a resistor r3, and the electrode is discharged and cleaned. Thus, the withstand voltage is recovered to the specified value.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はコンデンサに蓄積された
充電エネルギーを気中放電ギャップスイッチにより放電
する衝撃電圧・電流発生装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a shock voltage / current generator for discharging charging energy stored in a capacitor by an air discharge gap switch.

【0002】[0002]

【従来の技術】図2は従来の衝撃電圧・電流発生装置の
基本的回路で、充電用スイッチS2を閉じて主コンデン
サ用充電用電源DCGにより充電抵抗Rgを通じて主コ
ンデンサCに充電し、該主コンデンサCに蓄積された充
電エネルギーを気中放電ギャップスイッチGSの放電に
よって瞬時に大電流を発生させて負荷Lに供給するもの
である。
2. Description of the Related Art FIG. 2 shows a basic circuit of a conventional shock voltage / current generator. The main switch C is charged by a charging power supply DCG for a main capacitor through a charging resistor Rg by closing a charging switch S2. The charging energy stored in the capacitor C is generated instantaneously by the discharge of the air discharge gap switch GS and is supplied to the load L by generating a large current.

【0003】上記気中放電ギャップスイッチGSは、放
電電極1と2の間に中間電極3を設け該中間電極3には
放電電極1と2の間に加わる電圧のほぼ中間の電位を与
え、放電電極間の電位傾度を均一にして耐電圧を保持
し、始動時にはトリガパルス発生器PGで発生したパル
ス電圧をトリガ用コンデンサC1を通じて中間電極3に
パルス電圧を与えて始動させるものであり、かつ放電電
極間の耐電圧は放電電極間の間隔長の増減で調整する場
合と、スイッチ容器内の気体の圧力で調整する場合とが
ある。
In the above air discharge gap switch GS, an intermediate electrode 3 is provided between the discharge electrodes 1 and 2, and an intermediate potential of the voltage applied between the discharge electrodes 1 and 2 is applied to the intermediate electrode 3 to discharge. The potential gradient between the electrodes is made uniform to maintain the withstand voltage, and at the time of starting, the pulse voltage generated by the trigger pulse generator PG is applied to the intermediate electrode 3 through the trigger capacitor C1 to start the discharge, and the discharge is performed. The withstand voltage between the electrodes may be adjusted by increasing or decreasing the interval length between the discharge electrodes, and may be adjusted by the pressure of the gas in the switch container.

【0004】また図4は従来の多段式衝撃電圧発生装置
の回路図で、主コンデンサCは充電抵抗Rgを通じて主
コンデンサの充電用電源DCGで並列に充電し、気中放
電ギャップスイッチG1、G2、G3、・・・Gnを通
じて直列に放電し、出力端子TH及びTL間に衝撃電圧
を発生させて負荷Lに供給する。気中放電ギャップスイ
ッチG1は始動用トリガを与えるために例えば針端ギャ
ップなどを設けた構造とし、Rsは波形調整用制動抵
抗、Roは放電抵抗である。
FIG. 4 is a circuit diagram of a conventional multi-stage impact voltage generator. A main capacitor C is charged in parallel with a power supply DCG for charging the main capacitor through a charging resistor Rg, and the air discharge gap switches G1, G2, G3,... Gn are discharged in series, and an impact voltage is generated between the output terminals TH and TL and supplied to the load L. The air discharge gap switch G1 has a structure in which a needle end gap or the like is provided to provide a trigger for starting, for example, Rs is a braking resistor for waveform adjustment, and Ro is a discharge resistor.

【0005】[0005]

【発明が解決しようとする課題】上記気中放電ギャップ
スイッチにおいて、通電時間が数μs、1回の通電容量
が0.01クーロン以下の場合は、1通電後、再度電圧
を印加しても放電電極間の耐電圧に及ぼす影響は少ない
が、通過電気量が多くなるに従って、1通電後の放電電
極間の耐電圧はバラツキを示しかつ低下する。例えば通
過電気量が2クーロンとなると、初期耐電圧に対する放
電後の耐電圧は30ー90%のバラツキを示し、この状
態では多数の気中放電ギャップスイッチを使用した装置
を安定に動作させることは不可能となる。
In the above air discharge gap switch, when the energizing time is several μs and the energizing capacity per time is 0.01 coulomb or less, the discharging is performed even if the voltage is applied again after one energizing. Although the influence on the withstand voltage between the electrodes is small, the withstand voltage between the discharge electrodes after one energization shows variations and decreases as the passing electricity amount increases. For example, when the amount of electricity passed is 2 coulombs, the withstand voltage after discharge shows a variation of 30-90% with respect to the initial withstand voltage. In this state, it is not possible to stably operate a device using many air discharge gap switches. It will be impossible.

【0006】上記のように大電流放電後、放電電極間の
耐電圧が低下する原因は、大電流放電時における放電電
極の金属表面が蒸発して放電電極周辺の空気、炭酸ガス
などの気体と結合してできた金属酸化物の微粒子と金属
粉が放電電極の表面に付着して耐圧が低下することによ
るものである。
[0006] As described above, the reason why the withstand voltage between the discharge electrodes is reduced after the large current discharge is that the metal surface of the discharge electrode during the large current discharge evaporates and the gas around the discharge electrode, such as air and carbon dioxide gas, is removed. This is because the metal oxide fine particles and the metal powder formed by the bonding adhere to the surface of the discharge electrode and the breakdown voltage is reduced.

【0007】[0007]

【課題を解決するための手段】本発明は、上記の欠点を
除去した衝撃電圧・電流発生装置であり、気中放電ギャ
ップスイッチを使用して主コンデンサに蓄積(充電)さ
れたエネルギーを放電して衝撃電圧や電流を発生する装
置において、2個1組の放電電極からなる気中放電ギャ
ップスイッチを2個直列に接続し、該接続点を中間点と
して主コンデンサの非充電時に、該中間点に上記気中放
電ギャップスイッチの使用電圧に相当する電圧を印加
し、放電電極の表面を放電洗浄する機能を付与するよう
にした衝撃電圧・電流発生装置である。
SUMMARY OF THE INVENTION The present invention is an impact voltage / current generator which eliminates the above-mentioned disadvantages, and discharges energy stored (charged) in a main capacitor using an air discharge gap switch. In a device for generating a shock voltage or a current, two air discharge gap switches each comprising a pair of discharge electrodes are connected in series, and the connection point is set as an intermediate point when the main capacitor is not charged. To apply a voltage corresponding to the working voltage of the air discharge gap switch to the surface of the discharge electrode, thereby providing a function of discharging and cleaning the surface of the discharge electrode.

【0008】即ち、図1に示す充電用電源DCGと、充
電用スイッチS2と充電抵抗Rgと、主コンデンサC
と、放電抵抗Roと、強制接地スイッチS1と、気中放
電ギャップスイッチGSa、GSbと、トリガパルス発
生器PG及びトリガ用コンデンサC1と、負荷Lと、洗
浄用電源スイッチS3と、抵抗r3と、高抵抗r1、r
2とからなる衝撃電圧・電流発生装置である。
That is, the charging power source DCG shown in FIG. 1, the charging switch S2, the charging resistor Rg, and the main capacitor C
A discharge resistor Ro, a forced ground switch S1, an air discharge gap switch GSa, GSb, a trigger pulse generator PG and a trigger capacitor C1, a load L, a cleaning power switch S3, a resistor r3, High resistance r1, r
2 is a shock voltage / current generator.

【0009】上記装置において主コンデンサCは、充電
用スイッチS2と充電抵抗Rgとを直列接続して充電用
電源DCGの出力端に並列接続するとともに、放電抵抗
Roと強制接地スイッチS1の直列回路を並列接続し、
かつ高電圧端が2個直列接続した気中放電ギャップスイ
ッチGSaの放電電極1に接続されている。
In the above device, the main capacitor C connects the charging switch S2 and the charging resistor Rg in series and connects them in parallel to the output terminal of the charging power supply DCG, and also connects a series circuit of the discharging resistor Ro and the forced ground switch S1. Connect in parallel,
In addition, two high voltage terminals are connected to the discharge electrode 1 of the air discharge gap switch GSa connected in series.

【0010】次に負荷Lは、上記2個直列の気中放電ギ
ャップスイッチGSbの放電電極2の出力端THと接地
端TLとの間に接続されている。
Next, the load L is connected between the output terminal TH and the ground terminal TL of the discharge electrode 2 of the two series air discharge gap switches GSb.

【0011】そして、上記気中放電ギャップスイッチG
Sa、GSbは、それぞれ2個1組の放電電極1、2か
らなり、これを直列接続し、該接続点を中間点CPと
し、該中間点CPには接地端TLとの間にトリガパルス
発生器PGとトリガコンデンサC1が直列接続され、か
つ抵抗r3と洗浄電源スイッチS3との直列回路が充電
用電源DCGまたは他のこれに代替する直流電源に接続
されるとともに、高抵抗r1、r2がそれぞれ中間点C
Pと気中放電ギャップスイッチGSaの放電電極1とG
Sbの放電電極2に接続して回路構成した衝撃電圧・電
流発生装置である。
The above air discharge gap switch G
Sa and GSb are each composed of a set of two discharge electrodes 1 and 2, which are connected in series, and the connection point is an intermediate point CP, and a trigger pulse is generated between the intermediate point CP and a ground terminal TL. The device PG and the trigger capacitor C1 are connected in series, the series circuit of the resistor r3 and the cleaning power switch S3 is connected to the charging power supply DCG or another direct current power supply which substitutes for this, and the high resistances r1 and r2 are respectively provided. Midpoint C
P and the discharge electrodes 1 and G of the air gap switch GSa
This is an impact voltage / current generator configured as a circuit connected to the Sb discharge electrode 2.

【0012】[0012]

【作用】気中放電ギャップスイッチを用いた衝撃電圧・
電流発生装置を大電流放電させ、気中放電ギャップスイ
ッチの耐電圧が使用電圧以下に低下したとき、主コンデ
ンサが休止時の非充電時に、2個1組の放電電極からな
る気中放電ギャップスイッチを2個直列接続し、該接続
点を中間点とし、該中間点と各気中放電ギャップスイッ
チの放電電極間に、上記放電ギャップスイッチの使用電
圧に相当する電圧を印加すると耐電圧が低下した放電ギ
ャップ間で放電する。
[Action] Impact voltage using air discharge gap switch
When a large current is discharged from the current generator and the withstand voltage of the air discharge gap switch falls below the operating voltage, and when the main capacitor is not charged when the capacitor is not in operation, the air discharge gap switch comprising a pair of two discharge electrodes. Are connected in series, and the connection point is defined as an intermediate point. When a voltage corresponding to the working voltage of the discharge gap switch is applied between the intermediate point and the discharge electrode of each air discharge gap switch, the withstand voltage is reduced. Discharge occurs between discharge gaps.

【0013】上記放電電流は、図1の抵抗r3により放
電電流が充分抑制されていて、主コンデンサの大電流放
電時に生じるような放電電極の表面に金属酸化物や金属
微粉末を生成させることなく、上記大電流発生時に生じ
た電極表面の耐電圧低下の原因になっていた電極表面の
汚染物を除去する作用をなし、放電ギャップスイッチの
絶縁耐圧を回復させる。
The discharge current is sufficiently suppressed by the resistor r3 shown in FIG. 1 and does not generate metal oxides or fine metal powders on the surface of the discharge electrode which may occur during large current discharge of the main capacitor. Also, it serves to remove the contaminants on the electrode surface that have caused the decrease in the withstand voltage of the electrode surface that occurs when the large current is generated, and restores the withstand voltage of the discharge gap switch.

【0014】[0014]

【実施例1】図1は本発明の衝撃電圧・電流発生装置の
回路であって、図2の基本回路に充電用電源DCG、洗
浄用電源スイッチS3、抵抗r3の直列回路を形成して
放電ギャップスイッチGSaとGSbが直列接続された
中間点CPに洗浄用放電電圧を印加するように回路構成
したものである。
[Embodiment 1] FIG. 1 shows a circuit of a shock voltage / current generator of the present invention, in which a series circuit of a charging power supply DCG, a cleaning power supply switch S3 and a resistor r3 is formed in the basic circuit of FIG. The circuit configuration is such that a cleaning discharge voltage is applied to an intermediate point CP where the gap switches GSa and GSb are connected in series.

【0015】上記回路において、放電ギャップスイッチ
GSa、GSbは密閉容器に収納した加圧構造とする
か、或いは大気圧下での露出構造とし、その選択は設計
上の必要要件で決める。放電ギャップスイッチGSaと
GSbの直列接続部である中間点CPの電位は、放電ギ
ャップスイッチGSaの放電電極1とGSbの放電電極
2の間に印加する電圧のほぼ中間値とし高抵抗r1、r
2で分圧して設定する。印加する電圧は充電用電源DC
Gの出力電圧の範囲であるから、本実施例では該電源を
共用した回路構成としている。該電源は、当然の事なが
ら専用電源を用いてもよい。
In the above circuit, the discharge gap switches GSa and GSb have a pressurizing structure housed in a closed container or an exposing structure under atmospheric pressure, and the selection thereof is determined by design requirements. The potential at the intermediate point CP, which is a series connection between the discharge gap switches GSa and GSb, is set to be approximately the intermediate value of the voltage applied between the discharge electrode 1 of the discharge gap switch GSa and the discharge electrode 2 of GSb, and the high resistances r1, r
Set by dividing the pressure by 2. The voltage to be applied is the charging power supply DC
Since the output voltage is in the range of G, the present embodiment has a circuit configuration that shares the power supply. Of course, a dedicated power supply may be used as the power supply.

【0016】上記回路において高抵抗r1、r2に流れ
る電流の値はそれぞれ100μA程度以下で十分であ
り、また抵抗r3は、2個直列接続された放電ギャップ
スイッチの中間点と放電電極1又は2の間が短絡したと
きに電流が数mAに抑制されるようにするために設けた
もので、高抵抗r1、r2の値より充分小さい値でよ
い。
In the above circuit, the values of the currents flowing through the high resistances r1 and r2 are each sufficient to be about 100 μA or less, and the resistance r3 is the intermediate point of two discharge gap switches connected in series and the discharge electrode 1 or 2. It is provided in order to suppress the current to several mA when a short circuit occurs between them, and the value may be sufficiently smaller than the values of the high resistances r1 and r2.

【0017】本発明の回路において、放電ギャップスイ
ッチGSaとGSbの上記中間点CPに電圧を印加して
放電洗浄動作をさせるときの操作は次の通りである。 主回路の大電流放電運転が終了後、主コンデンサの充
電用スイッチS2を開路し、強制接地スイッチS1を閉
じて主コンデンサを非充電状態とする。 充電用スイッチS3を閉路して充電用電源DCGによ
り所定の電圧を上記中間点CPに印加し、放電ギャップ
スイッチGSa、GSbの中間点CPと放電電極1、2
間で放電させる。このとき、放電ギャップスイッチGS
a、GSbの各放電電極間の絶縁耐圧が低下していれ
ば、抵抗r3で抑制された電流で放電し、電極が放電洗
浄され、各放電電極の耐電圧が所定の値に回復する。
In the circuit of the present invention, the operation for applying the voltage to the intermediate point CP of the discharge gap switches GSa and GSb to perform the discharge cleaning operation is as follows. After the high-current discharging operation of the main circuit is completed, the main capacitor charging switch S2 is opened, and the forced grounding switch S1 is closed to bring the main capacitor into a non-charged state. The charging switch S3 is closed, and a predetermined voltage is applied to the intermediate point CP by the charging power supply DCG, so that the intermediate point CP of the discharge gap switches GSa and GSb and the discharge electrodes 1, 2
Discharge between. At this time, the discharge gap switch GS
If the withstand voltage between the discharge electrodes a and GSb is reduced, the discharge is performed with the current suppressed by the resistance r3, the electrodes are discharged and cleaned, and the withstand voltage of each discharge electrode recovers to a predetermined value.

【0018】[0018]

【実施例2】図3は、本発明の放電洗浄回路を搭載した
多段式衝撃電圧・電流発生装置の他の実施例の回路であ
り、放電ギャップスイッチ2個を直列接続し中間点CP
を設けてこれを1組とし、放電ギャップスイッチGS1
〜GS13で多段直列構成したものである。上記回路に
おいて、放電抵抗Roは装置の放電機能と、放電洗浄時
における各放電ギャップスイッチの中間点CPに電位を
与える機能とを有し、放電洗浄用電源DCG2から供給
する電圧を主コンデンサCで分圧し、各放電ギャップス
イッチの中間点CPに所定の電圧を与える。S11、S
12は高圧用スイッチで放電洗浄時に閉路して接地し放
電洗浄回路を形成する。
[Embodiment 2] FIG. 3 is a circuit diagram of another embodiment of a multi-stage shock voltage / current generator equipped with a discharge cleaning circuit of the present invention, in which two discharge gap switches are connected in series and an intermediate point CP is formed.
To form a set, and the discharge gap switch GS1
To GS13 in a multi-stage series configuration. In the above circuit, the discharge resistor Ro has a function of discharging the device and a function of applying a potential to the intermediate point CP of each discharge gap switch at the time of discharge cleaning, and the voltage supplied from the discharge cleaning power supply DCG2 is supplied by the main capacitor C. The voltage is divided and a predetermined voltage is applied to an intermediate point CP of each discharge gap switch. S11, S
A high-voltage switch 12 is closed during discharge cleaning and grounded to form a discharge cleaning circuit.

【0019】上記により形成された回路により、放電洗
浄時に主コンデンサCを接地し、放電洗浄用電源DCG
2により高電圧を印加すると、2個直列の各放電ギャッ
プスイッチの中間点CPに電圧が印加され、他の放電電
極が接地電位となり各放電ギャップスイッチの放電電極
を放電洗浄することができる。
With the circuit formed as described above, the main capacitor C is grounded at the time of discharge cleaning, and the discharge cleaning power supply DCG
When a high voltage is applied by 2, a voltage is applied to the midpoint CP of each of the two discharge gap switches in series, and the other discharge electrodes become the ground potential, so that the discharge electrodes of each discharge gap switch can be discharged and cleaned.

【0020】[0020]

【発明の効果】上記のように、本発明の衝撃電圧・電流
発生装置は、気中放電ギャップスイッチを2個直列接続
し、その接続点を中間点とし、該中間点に上記気中放電
ギャップスイッチの使用電圧に相当する高電圧を印加
し、耐電圧の低下した電極間に微小放電電流を流すこと
によって、大電流放電で放電電極の表面に生じた導電性
の汚染生成物を除去することができ、放電ギャップスイ
ッチの電極間絶縁耐電圧を所定値まで回復させることが
できる。
As described above, in the shock voltage / current generator of the present invention, two air discharge gap switches are connected in series, and the connection point is set as an intermediate point, and the air discharge gap is set at the intermediate point. By applying a high voltage equivalent to the operating voltage of the switch and passing a minute discharge current between the electrodes with a reduced withstand voltage, the conductive contamination products generated on the surface of the discharge electrode due to the large current discharge can be removed. It is possible to restore the dielectric breakdown voltage between electrodes of the discharge gap switch to a predetermined value.

【0021】上記効果により、従来まで手作業によって
行っていた放電電極の洗浄作業が不要となり、例えば、
最も困難であった地上高十数mを超える多段衝撃電圧・
電流発生装置の確実な運転と保守管理並びに作業安全に
多大の効果を発揮することができ、本発明は、工業的な
らびに実用的に価値極めて大なるものがある。
With the above-mentioned effects, the cleaning work of the discharge electrode, which has been conventionally performed manually, becomes unnecessary.
The most difficult multi-stage impact voltage exceeding ten meters above ground
A great effect can be exerted on the reliable operation, maintenance and operation of the current generator, and work safety, and the present invention has industrial and practical value.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の、気中放電ギャップスイッチを2個1
組として直列接続し、放電洗浄回路を具備した衝撃電圧
・電流発生装置の回路図である。
FIG. 1 shows two aerial discharge gap switches of the present invention.
FIG. 2 is a circuit diagram of an impact voltage / current generating device connected in series as a set and provided with a discharge cleaning circuit.

【図2】従来の衝撃電圧・電流発生装置の基本回路図で
ある。
FIG. 2 is a basic circuit diagram of a conventional shock voltage / current generator.

【図3】本発明の多段式衝撃電圧発生装置の一実施例の
回路図である。
FIG. 3 is a circuit diagram of an embodiment of a multistage shock voltage generator of the present invention.

【図4】従来の多段式衝撃電圧発生装置の回路図であ
る。
FIG. 4 is a circuit diagram of a conventional multi-stage shock voltage generator.

【符号の説明】[Explanation of symbols]

DCG、DCG1:充電用電源 DCG2:放電洗浄用電源 C :主コンデンサ GS、GSa、GSb、GS1〜GS13、G1〜G
7:気中放電ギャップスイッチ 1、2:放電電極 CP :中間点 PG :トリガパルス発生器 C1 :トリガ用コンデンサ L :負荷 S1 :強制接地スイッチ S2 :充電用スイッチ S3 :洗浄用電源スイッチ S11、S12 :高圧用スイッチ Rg :充電抵抗 Ro :放電抵抗 r1、r2:高抵抗 r3 :抵抗 RS :制動抵抗 R1 :電流制御抵抗 TH、TL:出力端子 E :接地
DCG, DCG1: Power supply for charging DCG2: Power supply for discharge cleaning C: Main capacitor GS, GSa, GSb, GS1 to GS13, G1 to G
7: Air discharge gap switch 1, 2: Discharge electrode CP: Midpoint PG: Trigger pulse generator C1: Trigger capacitor L: Load S1: Forced ground switch S2: Charge switch S3: Cleaning power switch S11, S12 : High-voltage switch Rg: Charge resistance Ro: Discharge resistance r1, r2: High resistance r3: Resistance RS: Braking resistance R1: Current control resistance TH, TL: Output terminal E: Ground

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 充電用電源(DCG)と、充電用スイッ
チ(S2)と、充電抵抗(Rg)と、主コンデンサ
(C)と、放電抵抗(Ro)と、強制接地スイッチ(S
1)と、気中放電ギャップスイッチ(GSa、GSb)
と、トリガパルス発生器(PG)及びトリガ用コンデン
サ(C1)と、負荷(L)と、洗浄用電源スイッチ(S
3)と、抵抗(r3)と、高抵抗(r1、r2)とから
なる衝撃電圧・電流発生装置であって、 主コンデンサ(C)は、充電用スイッチ(S2)と充電
抵抗(Rg)とを直列接続して充電用電源(DCG)の
出力端に並列接続するとともに、放電抵抗(Ro)と強
制接地スイッチ(S1)の直列回路を並列接続し、かつ
高電圧端が2個直列接続した気中放電ギャップスイッチ
(GSa)の放電電極(1)に接続され、 負荷(L)は、上記2個直列の気中放電ギャップスイッ
チ(GSb)の放電電極(2)に接続されている出力端
(TH)と接地端(TL)との間に接続され、 上記気中放電ギャップスイッチ(GSa,GSb)は、
2個1組の放電電極(1、2)からなり、これを直列接
続し、該接続点を中間点(CP)とし、該中間点(C
P)には接地端(TL)との間にトリガパルス発生器
(PG)とトリガ用コンデンサ(C1)が直列接続さ
れ、かつ抵抗(r3)と洗浄電源スイッチ(S3)との
直列回路が充電用電源(DCG)または他のこれに代替
する直流電源に接続されるとともに、高抵抗(r1、r
2)がそれぞれ中間点(CP)と気中放電ギャップスイ
ッチ(GSa)の放電電極(1)と(GSb)の放電電
極(2)に接続して回路構成したことを特徴とする衝撃
電圧・電流発生装置。
1. A charging power source (DCG), a charging switch (S2), a charging resistor (Rg), a main capacitor (C), a discharging resistor (Ro), and a forced grounding switch (S).
1) and air discharge gap switch (GSa, GSb)
, A trigger pulse generator (PG) and a trigger capacitor (C1), a load (L), and a cleaning power switch (S)
3) An impact voltage / current generator comprising a resistor (r3) and a high resistor (r1, r2), wherein a main capacitor (C) comprises a charging switch (S2), a charging resistor (Rg), Are connected in series to the output terminal of the charging power supply (DCG) in parallel, the series circuit of the discharge resistor (Ro) and the forced ground switch (S1) is connected in parallel, and two high voltage terminals are connected in series. The load (L) is connected to the discharge electrode (1) of the air discharge gap switch (GSa), and the output terminal connected to the discharge electrode (2) of the two series air discharge gap switches (GSb). (TH) and a ground terminal (TL), and the air discharge gap switches (GSa, GSb)
A pair of two discharge electrodes (1, 2) are connected in series, and the connection point is defined as an intermediate point (CP).
A trigger pulse generator (PG) and a trigger capacitor (C1) are connected in series between P) and a ground terminal (TL), and a series circuit of a resistor (r3) and a cleaning power switch (S3) is charged. Power supply (DCG) or another alternative DC power supply and a high resistance (r1, r
2) are connected to the intermediate point (CP) and the discharge electrode (1) of the air discharge gap switch (GSa) and the discharge electrode (2) of (GSb), respectively. Generator.
JP20128895A 1995-07-14 1995-07-14 Shock voltage / current generator Expired - Fee Related JP2614705B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20128895A JP2614705B2 (en) 1995-07-14 1995-07-14 Shock voltage / current generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20128895A JP2614705B2 (en) 1995-07-14 1995-07-14 Shock voltage / current generator

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP62180883A Division JP2527193B2 (en) 1987-07-20 1987-07-20 Shock voltage / current generator

Publications (2)

Publication Number Publication Date
JPH08172780A true JPH08172780A (en) 1996-07-02
JP2614705B2 JP2614705B2 (en) 1997-05-28

Family

ID=16438499

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20128895A Expired - Fee Related JP2614705B2 (en) 1995-07-14 1995-07-14 Shock voltage / current generator

Country Status (1)

Country Link
JP (1) JP2614705B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102998645A (en) * 2012-11-29 2013-03-27 中国电力科学研究院 Impulse voltage standard wave source for high-voltage impulse voltage quantity value traceability and using method thereof
CN104459236A (en) * 2014-12-12 2015-03-25 国家电网公司 Bipolar linkage impulse current generator
CN110196351A (en) * 2019-06-24 2019-09-03 北京宇航系统工程研究所 A kind of electric initiator electromagnetic pulse susceptibility test device
WO2020097969A1 (en) * 2018-11-15 2020-05-22 中车永济电机有限公司 Grounding switch, and traction converter and system thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102998645A (en) * 2012-11-29 2013-03-27 中国电力科学研究院 Impulse voltage standard wave source for high-voltage impulse voltage quantity value traceability and using method thereof
CN104459236A (en) * 2014-12-12 2015-03-25 国家电网公司 Bipolar linkage impulse current generator
WO2020097969A1 (en) * 2018-11-15 2020-05-22 中车永济电机有限公司 Grounding switch, and traction converter and system thereof
CN111193381A (en) * 2018-11-15 2020-05-22 中车永济电机有限公司 Earthing switch, traction converter and system thereof
CN110196351A (en) * 2019-06-24 2019-09-03 北京宇航系统工程研究所 A kind of electric initiator electromagnetic pulse susceptibility test device
CN110196351B (en) * 2019-06-24 2022-01-04 北京宇航系统工程研究所 Electromagnetic pulse sensitivity measuring device of electric initiator

Also Published As

Publication number Publication date
JP2614705B2 (en) 1997-05-28

Similar Documents

Publication Publication Date Title
JPS6075348A (en) Device for controlling voltage between pair of output terminal
US4107757A (en) Pulse power source
JP2771649B2 (en) Selection method of current limiting resistance value in high voltage circuit
CA2047201A1 (en) Method for controlling the current pulse supply to an electrostatic precipitator
US4567541A (en) Electric power source for use in electrostatic precipitator
JP2614705B2 (en) Shock voltage / current generator
JP2527193B2 (en) Shock voltage / current generator
US4017763A (en) Device for triggering the discharge of flash tubes
SU1662694A1 (en) Electrostatic precipitator power supply device
Grass et al. Microsecond pulsed power supply for electrostatic precipitators
US3114077A (en) Protective apparatus for high voltage electrical equipment
JPH0590681A (en) Power circuit for discharge-excitation pulse gas laser device
JP3500079B2 (en) Square wave power supply
JPH062147Y2 (en) Gap switch
SU1428473A1 (en) Method of charging particles in apparatus for electronic ionic technology under conditions of reverse corona discharge
JPS55111676A (en) Impulse voltage generator
JPS6369312A (en) Pulse large current generating device
JPS62204868A (en) High voltage power source apparatus of multistage type electric precipitator
JPH11262277A (en) Charging and discharging circuit including discharge gap switch
JPS62233253A (en) Ink jet recorder
Samaulah et al. Switching characteristics of two series-connected triggered vacuum gaps
JPH07107544B2 (en) AC-impulse superposition test equipment
JPH02132388A (en) Trigger device for trigger gap
JPS6471190A (en) Discharge type excimer laser device
JPH0559674B2 (en)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees