JPH08171859A - High vacuum exhausting method - Google Patents

High vacuum exhausting method

Info

Publication number
JPH08171859A
JPH08171859A JP31344494A JP31344494A JPH08171859A JP H08171859 A JPH08171859 A JP H08171859A JP 31344494 A JP31344494 A JP 31344494A JP 31344494 A JP31344494 A JP 31344494A JP H08171859 A JPH08171859 A JP H08171859A
Authority
JP
Japan
Prior art keywords
panel
vacuum
residual gas
exhaust
pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31344494A
Other languages
Japanese (ja)
Inventor
Nobumasa Suzuki
伸昌 鈴木
Masaaki Ogura
全昭 小倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP31344494A priority Critical patent/JPH08171859A/en
Publication of JPH08171859A publication Critical patent/JPH08171859A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Electron Tubes, Discharge Lamp Vessels, Lead-In Wires, And The Like (AREA)

Abstract

PURPOSE: To exhaust remaining gas in a vacuum panel for an electron emission- type display element at a low temperature, at a high speed, and at a high vacuum by exhausting it while radiating electromagnetic waves to be selectively absorbed by the remaining gas to the panel inner surface. CONSTITUTION: A vacuum panel 101 is connected to a pump 102 through a connecting part 103. Exhausting is started by opening an exhaust valve 104. Ultraviolet visible rays to be selectively absorbed by remaining gas is radiated to the inner surface of the panel 101 by using an ultraviolet visible ray radiating means 108. The specified remaining gas in the panel absorbs the ultraviolet visible ray, is excited, and selectively separated and exhausted from the inner front surface of the panel 101. In this case, the panel 101 may be heated to the suitable temperature by using a heating means 105. When a vacuum gauge 106 displays the desired the degree of vacuum, the vacuum panel 101 is vacuum- sealed by using a sealing means 107.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電子放出型表示素子用
真空パネル等の製造に用いられるパネル内の高真空排気
方法、特に、パネル内の特定の残留気体を選択的に高速
に排気する高真空排気方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high vacuum evacuation method for a panel used for manufacturing a vacuum panel for an electron emission type display device, and in particular, it selectively exhausts a specific residual gas in the panel at a high speed. High vacuum exhaust method.

【0002】[0002]

【従来の技術】高真空度が要求される電子放出型表示素
子の製造プロセスに於て、短時間で高真空を得るための
排気方法は非常に重要である。中でも、H2O、CO、
CO2、O2などの酸素原子を含む残留気体は電子源の作
動寿命を短縮させる有害なもので、これらの気体の排気
は特に重要である。
2. Description of the Related Art In a manufacturing process of an electron emission type display device which requires a high degree of vacuum, an exhaust method for obtaining a high vacuum in a short time is very important. Among them, H 2 O, CO,
Residual gases containing oxygen atoms such as CO 2 and O 2 are harmful to shorten the operating life of the electron source, and exhausting these gases is particularly important.

【0003】従来の電子放出型表示素子用真空パネルの
内部の排気方法としては、真空パネル全体を電気炉、ヒ
ータ等を用いて加熱して真空パネル内表面から放出され
る残留気体の脱離を促進しながら、排気する方法が採用
されていた。従来のパネル内部の真空排気方法を図2を
用いて説明する。図2において、201は真空パネル、
202はポンプ、203は接続部、204は排気バル
ブ、205は加熱手段、206は真空計、207は封止
手段である。
As a conventional method for exhausting the inside of a vacuum panel for an electron emission type display device, the entire vacuum panel is heated by using an electric furnace, a heater or the like to desorb residual gas released from the inner surface of the vacuum panel. A method of exhausting while promoting it was adopted. A conventional method of evacuating the inside of the panel will be described with reference to FIG. In FIG. 2, 201 is a vacuum panel,
202 is a pump, 203 is a connecting part, 204 is an exhaust valve, 205 is a heating means, 206 is a vacuum gauge, and 207 is a sealing means.

【0004】まず真空パネル201を接続部203を介
してポンプ202と接続する。次いで、排気バルブ20
4を開けて排気を開始する。一方、真空パネル201内
面に付着した気体の脱離を促進するために加熱手段20
5を用いて真空パネル201を適当な温度に加熱する。
その後、真空計206が所望の真空度を示したら、封止
手段207を用いて真空パネル201を真空封止するこ
とにより、操作が完了する。
First, the vacuum panel 201 is connected to the pump 202 via the connecting portion 203. Then, the exhaust valve 20
Open 4 to start exhausting. Meanwhile, in order to promote desorption of the gas attached to the inner surface of the vacuum panel 201, the heating means 20
5 is used to heat the vacuum panel 201 to an appropriate temperature.
After that, when the vacuum gauge 206 shows a desired degree of vacuum, the operation is completed by vacuum-sealing the vacuum panel 201 using the sealing means 207.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記従
来の排気方法では、真空パネル全体が加熱されるため
に、真空パネル内に存在する材料、素子の耐熱温度の
内、最も低い温度以上には加熱できず、このため高速に
高真空を得ることは困難であった。
However, in the above-described conventional exhaust method, since the entire vacuum panel is heated, the material existing in the vacuum panel and the heat resistant temperature of the element are heated to the lowest temperature or higher. Therefore, it was difficult to obtain a high vacuum at a high speed.

【0006】[0006]

【課題を解決するための手段】本発明の目的は、従来の
問題点を解決し、特定の残留気体を選択的に励起してパ
ネル内表面からの残留気体の脱離を促進し、低温で高速
に高真空を得ることが可能な排気方法を提供することに
ある。
SUMMARY OF THE INVENTION The object of the present invention is to solve the problems of the prior art, to selectively excite a specific residual gas to promote desorption of the residual gas from the inner surface of the panel, and at low temperature. It is to provide an exhaust method capable of obtaining a high vacuum at high speed.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に本発明は、電子放出型表示素子用真空パネル内の残留
気体が選択的に吸収する電磁波を該パネル内に照射する
と共にパネル内を排気することを特徴とするパネル内の
残留気体の高真空排気方法を提案するもので、前記電磁
波が紫外光であること、前記残留気体がH2Oであり、
前記紫外光が170nmより短波長の紫外光成分を含む
ものであること、前記電磁波が赤外光であること、前記
残留気体がH2Oであり、前記赤外光が波長2.7μm
から3.3μmの赤外光成分を含むものであること、前
記電磁波がマイクロ波であること、前記残留気体がH2
Oであり、前記マイクロ波が周波数15GHzから30
GHzの周波数成分を含むものであることを含む。
In order to achieve the above object, the present invention irradiates an electromagnetic wave selectively absorbed by a residual gas in a vacuum panel for an electron emission type display device into the panel, and A high-vacuum exhausting method of residual gas in a panel, characterized by exhausting, wherein the electromagnetic wave is ultraviolet light, the residual gas is H 2 O,
The ultraviolet light contains an ultraviolet light component having a wavelength shorter than 170 nm, the electromagnetic wave is infrared light, the residual gas is H 2 O, and the infrared light has a wavelength of 2.7 μm.
To 3.3 μm of infrared light component, the electromagnetic wave is microwave, and the residual gas is H 2
O and the microwave has a frequency of 15 GHz to 30
Including that the frequency component of GHz is included.

【0008】又本発明は、電子放出型表示素子用真空パ
ネルを加熱しながらパネル内の残留気体が選択的に吸収
する電磁波を該パネル内に照射すると共にパネル内を排
気することを特徴とするパネル内の残留気体の高真空排
気方法である。
Further, the present invention is characterized in that, while heating the vacuum panel for an electron emission type display device, the inside of the panel is evacuated while irradiating the inside of the panel with electromagnetic waves selectively absorbed by the residual gas in the panel. This is a high vacuum evacuation method for residual gas in the panel.

【0009】[0009]

【作用】本発明によれば、残留気体が選択的に吸収する
電磁波を真空パネル内面に照射し、好ましくは加熱しな
がら排気することにより、残留気体が選択的に励起され
脱離が促進されるので、パネル内が比較的低温で高速に
高真空排気される。特に、電子状態を励起する紫外光、
振動状態を励起する赤外光、回転状態を励起するマイク
ロ波が共鳴的に吸収される場合には、特に有効である。
According to the present invention, the residual gas is selectively excited and desorbed by irradiating the inner surface of the vacuum panel with an electromagnetic wave that is selectively absorbed by the residual gas, and preferably by evacuating while heating. Therefore, the inside of the panel is evacuated at high speed at a relatively low temperature. In particular, ultraviolet light that excites electronic states,
This is particularly effective when infrared light that excites the vibrational state and microwaves that excite the rotational state are absorbed resonantly.

【0010】以下、図面を参照して本発明を詳細に説明
する。
The present invention will be described in detail below with reference to the drawings.

【0011】図1中、101は真空パネル、102は排
気ポンプ、103は接続部、104は排気バルブ、10
5は加熱手段、106は真空計、107は封止手段、1
08は電磁波供給手段である。
In FIG. 1, 101 is a vacuum panel, 102 is an exhaust pump, 103 is a connecting portion, 104 is an exhaust valve, 10
5 is a heating means, 106 is a vacuum gauge, 107 is a sealing means, 1
Reference numeral 08 is an electromagnetic wave supply means.

【0012】まず真空パネル101を接続部103を介
してポンプ102と接続する。排気バルブ104を開け
て排気を開始する。電磁波供給手段108を用いて残留
気体が選択的に吸収する電磁波を真空パネル101内面
に照射する。この際、加熱手段105を用いて真空パネ
ル101を適当な温度に加熱してもよい。加熱温度は素
子やパネル材料によって異なるが、一般的には80〜4
00℃、好ましくは100〜250℃である。真空計1
06が所望の真空度を示したら、封止手段107を用い
て真空パネル101を真空封止する。
First, the vacuum panel 101 is connected to the pump 102 via the connecting portion 103. The exhaust valve 104 is opened to start exhausting. The inner surface of the vacuum panel 101 is irradiated with the electromagnetic waves selectively absorbed by the residual gas using the electromagnetic wave supply means 108. At this time, the heating means 105 may be used to heat the vacuum panel 101 to an appropriate temperature. The heating temperature varies depending on the element and panel material, but generally 80 to 4
The temperature is 00 ° C, preferably 100 to 250 ° C. Vacuum gauge 1
When 06 indicates a desired degree of vacuum, the vacuum panel 101 is vacuum-sealed using the sealing means 107.

【0013】本発明に用いられるポンプは、ターボ分子
ポンプ、クライオポンプ、イオンポンプ、イオンサブリ
メーションポンプなど高真空領域での排気速度の大きな
ものが好ましい。電磁波は、電子状態を励起する紫外可
視光、振動状態を励起する赤外光、回転状態を励起する
マイクロ波など残留気体が選択的に吸収し、脱離を促進
できるものなら有効である。特に、残留気体がH2Oの
場合には、波長170nm以下、特に100〜160n
mの紫外光、波長3μm程度の赤外光、周波数20GH
z程度のマイクロ波が有効である。
The pump used in the present invention is preferably a turbo molecular pump, a cryopump, an ion pump, an ion sublimation pump, or the like, which has a large pumping speed in a high vacuum region. Electromagnetic waves are effective as long as residual gas can be selectively absorbed and promoted desorption, such as ultraviolet-visible light that excites electronic states, infrared light that excites vibrational states, and microwaves that excite rotational states. Particularly, when the residual gas is H 2 O, the wavelength is 170 nm or less, particularly 100 to 160 n.
m ultraviolet light, wavelength 3 μm infrared light, frequency 20 GH
A microwave of about z is effective.

【0014】本発明においては、H2O、CO、CO2
2などの酸素原子を含む残留気体、CH4、C26、C
38などの炭化水素系残留気体等を効率良く排気できる
ものである。
In the present invention, H 2 O, CO, CO 2 ,
Residual gas containing oxygen atoms such as O 2 , CH 4 , C 2 H 6 , C
It can efficiently exhaust hydrocarbon-based residual gas such as 3 H 8 .

【0015】[方法例1] 本発明の高真空排気方法の
方法例1を図1を用いて説明する。101は真空パネ
ル、102はポンプ、103は接続部、104は排気バ
ルブ、105は加熱手段、106は真空計、107は封
止手段、108は電磁波供給手段で、具体的には紫外可
視光照射手段を用いている。まず真空パネル101を接
続部103を介してポンプ102と接続する。排気バル
ブ104を開けて排気を開始する。紫外可視光照射手段
108を用いて残留気体が選択的に吸収する紫外可視光
を真空パネル101内面に照射する。パネル内の特定の
残留気体は紫外可視光を吸収して電子状態が励起され、
選択的に真空パネル101の内表面から脱離し排気され
る。この際、加熱手段105を用いて真空パネル101
を適当な温度に加熱してもよい。真空計106が所望の
真空度を示したら、封止手段107を用いて真空パネル
101を真空封止する。
[Method Example 1] A method example 1 of the high vacuum evacuation method of the present invention will be described with reference to FIG. Reference numeral 101 is a vacuum panel, 102 is a pump, 103 is a connecting portion, 104 is an exhaust valve, 105 is a heating means, 106 is a vacuum gauge, 107 is a sealing means, and 108 is an electromagnetic wave supplying means. Using the means. First, the vacuum panel 101 is connected to the pump 102 via the connecting portion 103. The exhaust valve 104 is opened to start exhausting. The ultraviolet visible light irradiating means 108 is used to irradiate the inner surface of the vacuum panel 101 with the ultraviolet visible light selectively absorbed by the residual gas. The specific residual gas in the panel absorbs UV-visible light and its electronic state is excited,
It is selectively released from the inner surface of the vacuum panel 101 and exhausted. At this time, the vacuum panel 101 is heated using the heating means 105.
May be heated to a suitable temperature. When the vacuum gauge 106 shows a desired degree of vacuum, the vacuum panel 101 is vacuum-sealed by using the sealing means 107.

【0016】本発明に用いられる紫外可視光照射手段
は、残留気体が選択的に吸収して電子状態を励起し脱離
を促進できるものならば、Hgランプ、Xeランプ、X
e−Hgランプ、D2ランプ、メタルハライドランプ、
希ガス共鳴線ランプ、エキシマランプなどのランプ類で
も、エキシマレーザ、YAGレーザ、Ar+レーザ、N2
レーザ、色素レーザなどのレーザ類でも使用可能であ
る。例えば、残留気体がH 20の場合は、175nmよ
り短波長の紫外光が適当である。
UV-visible light irradiation means used in the present invention
Is a residual gas that selectively absorbs, excites electronic states, and desorbs.
Hg lamp, Xe lamp, X
e-Hg lamp, D2Lamp, metal halide lamp,
Lamps such as rare gas resonance line lamps and excimer lamps
Excimer laser, YAG laser, Ar+Laser, N2
Can be used with lasers such as lasers and dye lasers
It For example, if the residual gas is H 2In case of 0, it is 175 nm
Short wavelength ultraviolet light is suitable.

【0017】[方法例2] 本発明の高真空排気方法の
方法例2を図1を用いて説明する。
[Method Example 2] A method example 2 of the high vacuum evacuation method of the present invention will be described with reference to FIG.

【0018】101は真空パネル、102はポンプ、1
03は接続部、104は排気バルブ、105は加熱手
段、106は真空計、107は封止手段、108は電磁
波供給手段で、具体的には赤外光照射手段である。
101 is a vacuum panel, 102 is a pump, 1
Reference numeral 03 is a connecting portion, 104 is an exhaust valve, 105 is a heating means, 106 is a vacuum gauge, 107 is a sealing means, 108 is an electromagnetic wave supplying means, and specifically an infrared light irradiating means.

【0019】まず真空パネル101を接続部103を介
してポンプ102と接続する。排気バルブ104を開け
て排気を開始し、赤外光照射手段を用いて残留気体が選
択的に吸収する赤外光を真空パネル101内面に照射す
る。パネル内の特定の残留気体は赤外光を吸収して振動
状態が励起され、選択的に真空パネル101の内表面か
ら脱離し排気される。この際、加熱手段105を用いて
真空パネル101を適当な温度に加熱してもよい。真空
計106が所望の真空度を示したら、封止手段107を
用いて真空パネル101を真空封止する。本発明に用い
られる赤外光照射手段は、残留気体が選択的に吸収して
振動状態を励起し脱離を促進できるものならば、ハロゲ
ンランプなどのランプ類でも、CO2レーザなどのレー
ザ類でも使用可能である。例えば、残留気体がH20の
場合は、波長3μm程度の赤外光が適当である。
First, the vacuum panel 101 is connected to the pump 102 via the connecting portion 103. The exhaust valve 104 is opened to start exhausting, and the infrared light irradiating means is used to irradiate the inner surface of the vacuum panel 101 with the infrared light selectively absorbed by the residual gas. A specific residual gas in the panel absorbs infrared light to excite a vibration state, and is selectively desorbed from the inner surface of the vacuum panel 101 and exhausted. At this time, the heating means 105 may be used to heat the vacuum panel 101 to an appropriate temperature. When the vacuum gauge 106 shows a desired degree of vacuum, the vacuum panel 101 is vacuum-sealed by using the sealing means 107. The infrared light irradiating means used in the present invention may be a lamp such as a halogen lamp or a laser such as a CO 2 laser as long as the residual gas can be selectively absorbed to excite a vibration state to promote desorption. But it can be used. For example, when the residual gas is H 2 0, infrared light having a wavelength of about 3 μm is suitable.

【0020】[方法例3] 本発明の高真空排気方法の
方法例3を図1を用いて説明する。
[Method Example 3] A method example 3 of the high vacuum evacuation method of the present invention will be described with reference to FIG.

【0021】101は真空パネル、102はポンプ、1
03は接続部、104は排気バルブ、105は加熱手
段、106は真空計、107は封止手段、108は電磁
波供給手段としてのマイクロ波アンテナである。
101 is a vacuum panel, 102 is a pump, 1
Reference numeral 03 is a connecting portion, 104 is an exhaust valve, 105 is a heating means, 106 is a vacuum gauge, 107 is a sealing means, and 108 is a microwave antenna as an electromagnetic wave supplying means.

【0022】まず真空パネル101を接続部103を介
してポンプ102と接続する。排気バルブ104を開け
て排気を開始する。次いで、マイクロ波アンテナを用い
て残留気体が選択的に吸収するマイクロ波を真空パネル
101内面に照射する。パネル内の特定の残留気体はマ
イクロ波を吸収して回転状態が励起され、選択的に真空
パネル101の内表面から脱離し排気される。この際、
加熱手段105を用いて真空パネル101を適当な温度
に加熱してもよい。真空計106が所望の真空度を示し
たら、封止手段107を用いて真空パネル101を真空
封止する。本発明に用いられるマイクロ波アンテナは、
残留気体が選択的に吸収して回転状態を励起し脱離を促
進できるものならば、電磁ホーン、パラボラアンテナ、
スロットアンテナ、リジターノコイル、ヘリカルアンテ
ナなど使用可能である。例えば、残留気体がH2Oの場
合は、周波数20GHz程度のマイクロ波を放射するス
ロットアンテナなどが適当である。
First, the vacuum panel 101 is connected to the pump 102 via the connecting portion 103. The exhaust valve 104 is opened to start exhausting. Then, the microwave panel is used to irradiate the inner surface of the vacuum panel 101 with microwaves that are selectively absorbed by the residual gas. A specific residual gas in the panel absorbs microwaves to excite a rotational state, and is selectively desorbed from the inner surface of the vacuum panel 101 and exhausted. On this occasion,
The heating means 105 may be used to heat the vacuum panel 101 to an appropriate temperature. When the vacuum gauge 106 shows a desired degree of vacuum, the vacuum panel 101 is vacuum-sealed by using the sealing means 107. The microwave antenna used in the present invention is
If the residual gas can selectively absorb and excite the rotating state to promote desorption, an electromagnetic horn, parabolic antenna,
A slot antenna, a Ligitano coil, a helical antenna, etc. can be used. For example, when the residual gas is H 2 O, a slot antenna that radiates a microwave having a frequency of about 20 GHz is suitable.

【0023】[0023]

【実施例】以下、実施例により本発明を更に具体的に説
明する。
The present invention will be described in more detail with reference to the following examples.

【0024】(実施例1) 本発明の高真空排気方法の
方法例1を電子放出型表示パネル(内容積0.2L)の
排気に用いた。ポンプ102は、50L/secの排気
速度を持つターボ分子ポンプ−ロータリポンプの排気系
を用いた。接続部103はICF34を、排気バルブ1
04はL型オールメタルバルブを、加熱手段105は電
気炉を用いた。又、真空計106はBAゲージを用い
た。封止手段107はリング状ガスバーナを用いた。電
磁波供給手段108としては、紫外可視照射手段である
Xe共鳴線ランプ(147nm輝線発光)を用いた。
Example 1 Method 1 of the high vacuum evacuation method of the present invention was used for evacuation of an electron emission display panel (internal volume 0.2 L). As the pump 102, a turbo molecular pump-rotary pump exhaust system having an exhaust speed of 50 L / sec was used. The connecting portion 103 is the ICF 34 and the exhaust valve 1
Reference numeral 04 was an L-type all-metal valve, and heating means 105 was an electric furnace. As the vacuum gauge 106, a BA gauge was used. A ring-shaped gas burner was used as the sealing means 107. As the electromagnetic wave supplying means 108, an Xe resonance line lamp (147 nm bright line emission) which is an ultraviolet-visible irradiation means was used.

【0025】まず、パネル101を接続部103を介し
てポンプ102と接続した。排気バルブ104を開けて
排気を開始した。次いで、電気炉105を用いてパネル
101を100℃まで加熱し、さらにXe共鳴線ランプ
(500W)を点灯し、パネル108に紫外線を照射し
た。 2時間加熱、照射を行い、更に排気を1時間続け
た後、BAゲージが5xlO-8Torr以下を示したの
で、バーナを用いてパネル101を真空封止した。
First, the panel 101 was connected to the pump 102 via the connecting portion 103. The exhaust valve 104 was opened to start exhausting. Next, the panel 101 was heated to 100 ° C. using the electric furnace 105, the Xe resonance line lamp (500 W) was turned on, and the panel 108 was irradiated with ultraviolet rays. After heating and irradiation for 2 hours and further evacuation for 1 hour, the BA gauge showed 5 × 10 −8 Torr or less, so the panel 101 was vacuum-sealed using a burner.

【0026】(比較例1) Xe共鳴線ランプ照射を行
なうことなく、その他は実施例1と同様に操作をして排
気実験を行った。到達真空度は3xlO-7Torrで不
十分なものであった。
(Comparative Example 1) Exhaust experiments were conducted by operating in the same manner as in Example 1 except that the Xe resonance line lamp was not irradiated. The ultimate vacuum was 3 × 10 −7 Torr, which was insufficient.

【0027】(実施例2) 本発明の高真空排気方法の
方法例1を電子放出型表示パネル(内容積1.0L)の
排気に用いた。ポンプ102は、100L/secの排
気速度を持つクライオポンプーロータリポンプの排気系
を用いた。接続部103は1/4inch.VCRを用
いた。排気バルブ104はL型オールメタルバルブを用
い、加熱手段105は電気炉を用いた。真空計106は
BAゲージを用いた。封止手段107はリング状ガスバ
ーナを用いた。電磁波供給手段108である紫外可視照
射手段としてF2エキシマランプ(157nm帯域発
光、300W)を用いた。
Example 2 Method 1 of the high vacuum evacuation method of the present invention was used for evacuation of the electron emission display panel (internal volume 1.0 L). The pump 102 used was a cryopump-rotary pump exhaust system having an exhaust speed of 100 L / sec. The connecting portion 103 has a 1/4 inch. A VCR was used. The exhaust valve 104 was an L-type all-metal valve, and the heating means 105 was an electric furnace. As the vacuum gauge 106, a BA gauge was used. A ring-shaped gas burner was used as the sealing means 107. An F 2 excimer lamp (157 nm band emission, 300 W) was used as an ultraviolet-visible irradiation means that is the electromagnetic wave supply means 108.

【0028】まずパネル101を接続部103を介して
ポンプ102と接続した。排気バルブ104を開けて排
気を開始した。 電気炉を用いてパネル101を150
℃まで加熱し、さらにF2エキシマランプを点灯し、パ
ネルに紫外線を照射した。2時間加熱、照射を行い、更
に排気を1時間続けた後、BAゲージが3xlOー8To
rr以下を示したので、バーナを用いてパネル101を
真空封止した。
First, the panel 101 was connected to the pump 102 via the connecting portion 103. The exhaust valve 104 was opened to start exhausting. 150 panels 101 using an electric furnace
The panel was heated to 0 ° C., the F 2 excimer lamp was turned on, and the panel was irradiated with ultraviolet rays. After heating and irradiating for 2 hours and exhausting for 1 hour, BA gauge was 3xlO -8 To.
Since rr or less was shown, the panel 101 was vacuum-sealed using a burner.

【0029】(実施例3) 本発明の高真空排気方法の
方法例2を電子放出型表示パネル(内容積0.2L)の
排気に用いた。ポンプ102は、50L/secの排気
速度を持つターボ分子ポンプ−ロータリポンプの排気系
を用いた。接続部103はICF34を、排気バルブ1
04はL型オールメタルバルブを、加熱手段l05は電
気炉を用いた。真空計106はBAゲージを、封止手段
107はリング状ガスバーナを用いた。電磁波供給手段
108としての赤外光照射手段はCO2レーザ(1K
W)の3倍高調波(3.2μm発光)を用いた。
Example 3 Method 2 of the high vacuum evacuation method of the present invention was used for evacuation of the electron emission display panel (internal volume 0.2 L). As the pump 102, a turbo molecular pump-rotary pump exhaust system having an exhaust speed of 50 L / sec was used. The connecting portion 103 is the ICF 34 and the exhaust valve 1
Reference numeral 04 was an L-type all-metal valve, and heating means 105 was an electric furnace. A BA gauge was used as the vacuum gauge 106, and a ring-shaped gas burner was used as the sealing means 107. The infrared light irradiation means as the electromagnetic wave supply means 108 is a CO 2 laser (1K
W) triple harmonic (3.2 μm emission) was used.

【0030】まずパネル101を接続部103を介して
ポンプ102と接続した。排気バルブ104を開けて排
気を開始した。電気炉を用いてパネル101を100℃
まで加熱し、さらにCO2レーザを発振し、パネルに赤
外線を照射した。2時間加熱、照射を行い、更に排気を
1時間続けた後、BAゲージが4xl0ー8Torr以下
を示したので、バーナを用いてパネル101を真空封止
した。
First, the panel 101 was connected to the pump 102 via the connecting portion 103. The exhaust valve 104 was opened to start exhausting. Panel 101 at 100 ° C using an electric furnace
Then, the panel was irradiated with infrared rays by oscillating a CO 2 laser. 2 hours of heating, irradiation is performed, after continued for another hour exhaust, since BA gauge showed the following 4xl0 over 8 Torr, vacuum sealing panel 101 using a burner.

【0031】(実施例4) 本発明の高真空排気方法の
方法例3を電子放出型表示パネル(内容積0.2L)の
排気に用いた。ポンプ102は、30L/secの排気
速度を持つターボ分子ポンプ−ロータリポンプの排気系
を用いた。接続部103はICF34を用いた。排気バ
ルブ104はL型オールメタルバルブを用い、加熱手段
105は電気炉を用いた。
Example 4 Method 3 of the high vacuum evacuation method of the present invention was used for evacuation of an electron emission display panel (internal volume 0.2 L). As the pump 102, a turbo molecular pump-rotary pump exhaust system having an exhaust speed of 30 L / sec was used. ICF34 was used for the connection part 103. The exhaust valve 104 was an L-type all-metal valve, and the heating means 105 was an electric furnace.

【0032】真空計106はBAゲージを用いた。又、
封止手段107はリング状ガスバーナを用いた。電磁波
供給手段108として20GHzのマイクロ波を放射す
る線形マルチスロットアンテナを用いた。まずパネル1
01を接続部103を介してポンプ102と接続した。
排気バルブ104を開けて排気を開始した。電気炉を用
いてパネル101を100℃まで加熱し、さらに線形ス
ロットアンテナを用いて、パネルにマイクロ波(出力2
00W)を放射した。
A BA gauge was used as the vacuum gauge 106. or,
A ring-shaped gas burner was used as the sealing means 107. A linear multi-slot antenna that radiates a 20 GHz microwave was used as the electromagnetic wave supply means 108. First panel 1
01 was connected to the pump 102 via the connecting portion 103.
The exhaust valve 104 was opened to start exhausting. The panel 101 was heated to 100 ° C. using an electric furnace, and the linear slot antenna was used to microwave the panel (output 2
00W) was emitted.

【0033】2時間加熱、放射を行い、更に排気を1時
間続けた後、BAゲージが3xl0 ー8Torr以下を示
したので、バーナ109を用いてパネル101を真空封
止した。
Heat and radiate for 2 hours, and exhaust at 1:00
After continuing for a while, BA gauge is 3x10 -8Torr Shown below
Panel 101 was vacuum sealed using burner 109.
I stopped.

【0034】(実施例5) 本発明の高真空排気方法の
方法例3を電子放出型表示パネル(1.0L)の排気に
用いた。ポンプ102は、100L/secの排気速度
を持つクライオポンプ−ロータリポンプの排気系を用い
た。接続部103は1/4inch.VCRを用いた。
排気バルブ104はL型オールメタルバルブを用い、加
熱手段105は電気炉を用いた。 真空計106はBA
ゲージを、封止手段107はリング状ガスバーナを用い
た。電磁波供給手段108としてマイクロ波アンテナは
20GHzのマイクロ波を放射する電磁ホーンを用い
た。
Example 5 Method 3 of the high vacuum evacuation method of the present invention was used for evacuation of the electron emission display panel (1.0 L). The pump 102 used was a cryopump-rotary pump exhaust system having an exhaust speed of 100 L / sec. The connecting portion 103 has a 1/4 inch. A VCR was used.
The exhaust valve 104 was an L-type all-metal valve, and the heating means 105 was an electric furnace. Vacuum gauge 106 is BA
A gauge and a ring-shaped gas burner were used as the sealing means 107. The microwave antenna used as the electromagnetic wave supply means 108 is an electromagnetic horn that radiates a microwave of 20 GHz.

【0035】まず、パネル101を接続部103を介し
てポンプ102と接続した。排気バルブ104を開けて
排気を開始した。電気炉でパネル101を100℃まで
加熱し、さらに電磁ホーンを用いて、パネルにマイクロ
波(出力200W)を放射した。2時間加熱・放射を行
い、更に排気を1時間続けた後、BAゲージが5xlO
ー8Torr以下を示したので、バーナを用いてパネル1
01を真空封止した。
First, the panel 101 was connected to the pump 102 via the connecting portion 103. The exhaust valve 104 was opened to start exhausting. Panel 101 was heated to 100 ° C. in an electric furnace, and a microwave (output 200 W) was radiated to the panel using an electromagnetic horn. After heating and radiating for 2 hours and exhausting for 1 hour, BA gauge is 5xlO.
-8 Torr Since it showed below, panel 1 was used with a burner.
01 was vacuum sealed.

【0036】[0036]

【発明の効果】以上説明したように、残留気体が選択的
に吸収する電磁波を該パネル内面に照射しながら排気す
ることにより、従来より低温で高速な高真空排気が達成
できる効果がある。特に、電子状態を励起する紫外光、
振動状態を励起する赤外光、回転状態を励起するマイク
ロ波が共鳴的に吸収されるので、有効である。
As described above, by radiating the electromagnetic waves selectively absorbed by the residual gas while irradiating the inner surface of the panel, the high-vacuum exhaust can be achieved at a lower temperature and a higher speed. In particular, ultraviolet light that excites electronic states,
This is effective because infrared light that excites the vibrational state and microwaves that excite the rotational state are resonantly absorbed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の高真空排気方法を説明するための排気
装置の構成図である。
FIG. 1 is a configuration diagram of an exhaust device for explaining a high vacuum exhaust method of the present invention.

【図2】従来の排気方法を説明するための排気装置の構
成図である。
FIG. 2 is a configuration diagram of an exhaust device for explaining a conventional exhaust method.

【符号の説明】[Explanation of symbols]

101 真空パネル 102 排気ポンプ 103 接続部 104 排気バルブ 105 加熱手段 106 真空計 107 封止手段 108 電磁波供給手段 101 Vacuum Panel 102 Exhaust Pump 103 Connection Part 104 Exhaust Valve 105 Heating Means 106 Vacuum Gauge 107 Sealing Means 108 Electromagnetic Wave Supply Means

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 電子放出型表示素子用真空パネル内の残
留気体が選択的に吸収する電磁波を該パネル内に照射す
ると共にパネル内を排気することを特徴とするパネル内
の残留気体の高真空排気方法。
1. A high vacuum of residual gas in a panel, characterized in that the panel is radiated with electromagnetic waves selectively absorbed by the residual gas in the vacuum panel for an electron emission display device and the inside of the panel is evacuated. Exhaust method.
【請求項2】 前記電磁波が紫外光である請求項1に記
載の高真空排気方法。
2. The high vacuum exhaust method according to claim 1, wherein the electromagnetic wave is ultraviolet light.
【請求項3】 前記残留気体がH2Oであり、前記紫外
光が170nmより短波長の紫外光成分を含む請求項2
に記載の高真空排気方法。
3. The residual gas is H 2 O, and the ultraviolet light contains an ultraviolet light component having a wavelength shorter than 170 nm.
High-vacuum exhaust method described in.
【請求項4】 前記電磁波が赤外光である請求項1に記
載の高真空排気方法。
4. The high vacuum evacuation method according to claim 1, wherein the electromagnetic wave is infrared light.
【請求項5】 前記残留気体がH2Oであり、前記赤外
光が波長2.7μmから3.3μmの赤外光成分を含む
請求項4に記載の高真空排気方法。
5. The high vacuum evacuation method according to claim 4, wherein the residual gas is H 2 O, and the infrared light contains an infrared light component having a wavelength of 2.7 μm to 3.3 μm.
【請求項6】 前記電磁波がマイクロ波である請求項1
に記載の高真空排気方法。
6. The electromagnetic wave is a microwave.
High-vacuum exhaust method described in.
【請求項7】 前記残留気体がH2Oであり、前記マイ
クロ波が周波数15GHzから30GHzの周波数成分
を含む請求項6に記載の高真空排気方法。
7. The high vacuum evacuation method according to claim 6, wherein the residual gas is H 2 O, and the microwave contains a frequency component having a frequency of 15 GHz to 30 GHz.
【請求項8】 電子放出型表示素子用真空パネルを加熱
しながらパネル内の残留気体が選択的に吸収する電磁波
を該パネル内に照射すると共にパネル内を排気すること
を特徴とするパネル内の残留気体の高真空排気方法。
8. An inside of a panel characterized by irradiating the inside of the panel with an electromagnetic wave selectively absorbed by a residual gas inside the panel while heating the vacuum panel for an electron emission type display device, and exhausting the inside of the panel. High vacuum evacuation method for residual gas.
JP31344494A 1994-12-16 1994-12-16 High vacuum exhausting method Pending JPH08171859A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31344494A JPH08171859A (en) 1994-12-16 1994-12-16 High vacuum exhausting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31344494A JPH08171859A (en) 1994-12-16 1994-12-16 High vacuum exhausting method

Publications (1)

Publication Number Publication Date
JPH08171859A true JPH08171859A (en) 1996-07-02

Family

ID=18041381

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31344494A Pending JPH08171859A (en) 1994-12-16 1994-12-16 High vacuum exhausting method

Country Status (1)

Country Link
JP (1) JPH08171859A (en)

Similar Documents

Publication Publication Date Title
JP4295965B2 (en) Insulating panel and method for manufacturing insulating window, and insulating panel
JP4799748B2 (en) Microwave plasma process apparatus, plasma ignition method, plasma formation method, and plasma process method
JPH1064457A (en) Ultra-high vacuum field emission display device
US4660297A (en) Desorption of water molecules in a vacuum system using ultraviolet radiation
JPH08171859A (en) High vacuum exhausting method
US5098326A (en) Method for applying a protective coating to a high-intensity metal halide discharge lamp
US6670759B1 (en) Electrodeless discharge lamp
JP3252676B2 (en) Dielectric barrier discharge lamp
JP4947982B2 (en) Substrate processing method
JP4617420B2 (en) Method for manufacturing gyrotron device
JP2002216706A (en) Manufacturing method of bulb
JPH0978225A (en) Formation of thin film
JP3169846B2 (en) Electrodeless discharge lamp and its manufacturing method
JPS6236240Y2 (en)
JP2002134068A (en) Evacuation and sealing for light bulb
JPS60249240A (en) Electrodeless electric-discharge lamp
JP3022172B2 (en) Electrodeless lamp
JPH0582102A (en) Ultraviolet radiation discharge lamp
JPH0544136B2 (en)
KR100195299B1 (en) The exhaust method of color braun tube
JPH0528907A (en) Method for activating cathode for use in picture tube
JPS6139449A (en) Microwave discharge light source device
JPS62106618A (en) Photochemical vapor growth device
JP3178259B2 (en) Electrodeless discharge lamp
JPH10149803A (en) Microwave discharge lamp