JPS6139449A - Microwave discharge light source device - Google Patents

Microwave discharge light source device

Info

Publication number
JPS6139449A
JPS6139449A JP16052084A JP16052084A JPS6139449A JP S6139449 A JPS6139449 A JP S6139449A JP 16052084 A JP16052084 A JP 16052084A JP 16052084 A JP16052084 A JP 16052084A JP S6139449 A JPS6139449 A JP S6139449A
Authority
JP
Japan
Prior art keywords
discharge
microwave
antenna
arc tube
light emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16052084A
Other languages
Japanese (ja)
Inventor
Masaaki Yada
矢田 正明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP16052084A priority Critical patent/JPS6139449A/en
Publication of JPS6139449A publication Critical patent/JPS6139449A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J65/00Lamps without any electrode inside the vessel; Lamps with at least one main electrode outside the vessel
    • H01J65/04Lamps in which a gas filling is excited to luminesce by an external electromagnetic field or by external corpuscular radiation, e.g. for indicating plasma display panels
    • H01J65/042Lamps in which a gas filling is excited to luminesce by an external electromagnetic field or by external corpuscular radiation, e.g. for indicating plasma display panels by an external electromagnetic field
    • H01J65/048Lamps in which a gas filling is excited to luminesce by an external electromagnetic field or by external corpuscular radiation, e.g. for indicating plasma display panels by an external electromagnetic field the field being produced by using an excitation coil

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Circuit Arrangements For Discharge Lamps (AREA)
  • Discharge Lamps And Accessories Thereof (AREA)

Abstract

PURPOSE:To improve light emitting efficiency ever so better, by installing a concave part in a light emitting tube sealing a discharge medium inside, while inserting an antenna of a magnetron into this concave part, and radiating a microwave from the inside of the light emitting tube. CONSTITUTION:Operating a magnetron, when a microwave is emitted out of its antenna 15, since the circumference of this antenna 15 is covered with a concave part 18, the microwave emitted radially out of the antenna 15 is made incident inside a discharge space 19 from the inside of the light emitting tube 16. As a result, uniform discharge is excited inside the discharge space 19 along the circumferential direction, whereby ultraviolet rays generated by this discharge is radiated out of the light emitting tube 16. And, part of the ultraviolet rays is radiated outward from a direct light radiating port 22, while the rest is reflected on a light reflecting surface 21 afterward, it is radiated outward through the light radiating port 22.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明はマイクロ波放電を利用したマイクロ波放電光源
装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a microwave discharge light source device that utilizes microwave discharge.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

最近、マイクロ波放電を利用した無電極光源が、その長
寿命性の点で注目されており、例えばLSI転写8置の
光源として利用する試みがなされている。
Recently, an electrodeless light source using microwave discharge has been attracting attention because of its long life, and attempts have been made to use it as a light source for, for example, an LSI transfer system.

ところで、このマイクロ波を利用した無電極光源として
は、従来例えば第5図に概略的に示したように、箱状を
なした装置本体1内に、マイクロ波を発生させるマグネ
トロン2を配置するとともに、このマグネトロン2のマ
イクロ波出力部3がら発射されるマイクロ波が集中する
場所に、石英製バルブ内に放電気体を封入してなる発光
管4を配置し、この発光管4にマイクロ波を印加するこ
とにより、発光管4内の放電気体に放電を生じせしめて
例えば200 nm以下の紫外線を発生させたり、ある
いは図示しないが、マイクロ波出力部3から発射される
マイクロ波を、導波管を介して発光管4に導くようにし
たものが知られている。
By the way, as an electrodeless light source using microwaves, conventionally, for example, as schematically shown in FIG. , an arc tube 4 made of a quartz bulb sealed with a discharge material is placed at a location where the microwaves emitted from the microwave output section 3 of the magnetron 2 are concentrated, and microwaves are applied to the arc tube 4. By doing so, a discharge is caused in the discharge body in the arc tube 4 to generate, for example, ultraviolet rays of 200 nm or less, or, although not shown, the microwave emitted from the microwave output section 3 is transmitted through the waveguide. One is known in which the light is guided to the arc tube 4 through the tube.

ところが、上述したいずれの先行技術の場合も、マイク
ロ波出力部3と発光管4とが装置本体1内で離間してい
るため、マイクロ波が発光管ル「すで導かれる過程にお
いて減衰されてしまうとともに、発光管の外側からマイ
クロ波を照射しているため、このマイクロ波が外方に漏
洩し易く、したがって、その分宛光効率が低下する問題
があった。
However, in the case of any of the above-mentioned prior arts, since the microwave output section 3 and the arc tube 4 are separated within the device main body 1, the microwaves are attenuated in the process of being guided through the arc tube. In addition, since microwaves are irradiated from the outside of the arc tube, there is a problem in that the microwaves tend to leak to the outside, resulting in a corresponding decrease in light delivery efficiency.

〔発明の目的〕[Purpose of the invention]

本発明はこのような事情にもとづいてなされたもので、
マイクロ波の減衰や漏洩が少なく、発光効率を向上させ
ることができるマイクロ波放電光源装置の提供を目的と
する。
The present invention was made based on these circumstances, and
An object of the present invention is to provide a microwave discharge light source device that has less attenuation and leakage of microwaves and can improve luminous efficiency.

〔発明の概要) すなわち、本発明は上記目的を達成するため、内部に放
電媒体を封入した気密の放電空間を形成する発光管に凹
部を設け、この凹部にマグネトロンのアンテナを挿入す
ることにより、マイクロ波を発光管の内側から照射させ
るようにしたことを特徴とする。
[Summary of the Invention] That is, in order to achieve the above object, the present invention provides a concave portion in an arc tube that forms an airtight discharge space in which a discharge medium is sealed, and inserts a magnetron antenna into this concave portion. It is characterized in that the microwave is irradiated from inside the arc tube.

〔発明の実施例〕[Embodiments of the invention]

以下本発明の一実施例を、第1図ないし第4図にもとづ
いて説明する。
An embodiment of the present invention will be described below with reference to FIGS. 1 to 4.

図中11はマイクロ波を発生させるマグネトロンであり
、このマグネトロン11を収容したケース12内には、
冷却用のファン13が設けられている。なお、符号14
はマグネトロン11の電源である。
In the figure, 11 is a magnetron that generates microwaves, and inside the case 12 that houses this magnetron 11,
A cooling fan 13 is provided. In addition, the code 14
is the power source of the magnetron 11.

ケース12から導出されたマグネトロン11の一端部に
は、マイクロ嫁を発射するアンテナ15が設けられてお
り、このアンテナ15側の端部には、透光性および透磁
性を有する石英ガラス製の発光管16が取付けられてい
る。本実施例の発光管1Gは、第3図に示したように両
端が閉塞された中空円筒状をなし、その一端閉塞面は半
球状の球面17をなしているとともに、他端閉塞面の中
央部には上記アンテナ15が入り込む凹部18が形成さ
れている。したがって、発光管16はその凹部18で以
てアンテナ15の全周を覆っており、この発光管16内
には上記凹部18の周囲を取囲む気密の放電空間19が
形成されている。そして、この放電空間19内には放電
媒体としての水銀が分圧で5×10°3 Torr (
動作時圧力)程度封入されているとともに、起動用希ガ
スとして窒素ガスが数〜十数7orr程度封入されてい
る。
One end of the magnetron 11 led out from the case 12 is provided with an antenna 15 that emits microscopic light, and the end on the side of the antenna 15 is provided with a light-emitting device made of quartz glass having translucency and magnetic permeability. A tube 16 is attached. The arc tube 1G of this embodiment has a hollow cylindrical shape with both ends closed as shown in FIG. A recess 18 into which the antenna 15 fits is formed in the portion. Therefore, the arc tube 16 covers the entire circumference of the antenna 15 with its recess 18, and an airtight discharge space 19 surrounding the recess 18 is formed within the arc tube 16. In this discharge space 19, mercury as a discharge medium has a partial pressure of 5×10°3 Torr (
In addition, nitrogen gas is filled as a starting rare gas at a pressure of several to several tens of seven orr.

また、マグネトロン11の一端導出部には、回転放物面
状をなした反射体20が取付けられている。
Further, a reflector 20 having a paraboloid of revolution shape is attached to one end of the magnetron 11 leading out.

反射体20の内面はアルミニウムを蒸着させることによ
って光反射面21に形成されており、この光反射面21
の中央部に上記発光管16が同心的に位置されていると
ともに、光反射面21の前面側に設けた光照射口22に
、発光管1Gの球面11が対向されている。そして、こ
の光照射口22には金属製のメツシュ23が張られてお
り、これらメツシュ23と反射体20は、発光管1Gの
周囲を覆う電磁波シールド部24を構成している。
The inner surface of the reflector 20 is formed into a light reflecting surface 21 by vapor-depositing aluminum.
The arc tube 16 is concentrically located in the center of the arc tube 1G, and the spherical surface 11 of the arc tube 1G faces the light irradiation port 22 provided on the front side of the light reflecting surface 21. A metal mesh 23 is placed over the light irradiation port 22, and the mesh 23 and the reflector 20 constitute an electromagnetic wave shield section 24 that covers the circumference of the arc tube 1G.

次に、上記構成の作用について説明する。Next, the operation of the above configuration will be explained.

まず、マグネトロン11を動作させ、□そのアンテナ1
5からマイクロ波を発射させる。すると、このアンテナ
15の周囲は発光管16の凹部18によって覆われてい
るので、アンテナ15から放射状に発射されたマイクロ
波は、発光管16の内側から放電空間19内に入射され
る。この結果、放電空間19内には周方向に沿って均一
な放電(プラズマ)が励起され、この放電により生起さ
れた紫外線が発光管1Gから放射される。そして、この
紫外線の一部は直接光照射口22から外方に照射される
とともに、残りは光反射面21で反射された後、光照射
口22を通じて外方に照射される。
First, operate the magnetron 11, and □ its antenna 1.
Emit microwave from 5. Then, since the antenna 15 is surrounded by the recess 18 of the arc tube 16, the microwaves radially emitted from the antenna 15 enter the discharge space 19 from inside the arc tube 16. As a result, a uniform discharge (plasma) is excited in the discharge space 19 along the circumferential direction, and ultraviolet rays generated by this discharge are emitted from the arc tube 1G. A part of this ultraviolet light is directly irradiated outward from the light irradiation port 22, and the rest is reflected by the light reflection surface 21 and then irradiated outward through the light irradiation port 22.

このような一実施例によれば、マイクロ□波の出力端で
あるアンテナ15を、発光管16の凹部18内に挿入し
たので、このアンテナ15から放射状に発射されたマイ
クロ波は、直ちに放電空間19内に導入されることにな
る。このため、放電空間19に導かれるまでの間に、マ
イクロ波が減衰することがほとんどなくなり、効率が向
上する。また、従来の導波管の如きマイクロ波を伝送す
る部品が一切不要となるから、装置全体のコンパクト化
は勿論、部品点数も少なくて済み、安価に提供できる。
According to such an embodiment, since the antenna 15, which is the output end of the microwave, is inserted into the recess 18 of the arc tube 16, the microwaves radially emitted from the antenna 15 immediately reach the discharge space. It will be introduced in 2019. Therefore, the microwaves are hardly attenuated before being guided to the discharge space 19, improving efficiency. In addition, since no components for transmitting microwaves such as conventional waveguides are required, the entire device can be made more compact, and the number of components can be reduced, making it possible to provide the device at low cost.

加えて、マイクロ波は発光管16の内側から放射状に発
射されるので、放電空間19内には全体に屋って均一な
放電が励起されることになり、しか゛もこのマイクロ波
の全てが必ず放電空間19内を通過するとともに、この
通過する過程で吸収し切れなかった分のみが発光管16
の外に放射されるから、マイクロ波の漏洩による損失が
少なくなり、所望の波長領域の光(本実施例の場合は紫
外線)を効率よく安定して供給することが可能どなる。
In addition, since the microwaves are emitted radially from inside the arc tube 16, uniform discharge is excited throughout the discharge space 19; It always passes through the discharge space 19, and only the amount that was not absorbed during this passing process is transferred to the arc tube 16.
Since the microwave is radiated outside the microwave, loss due to microwave leakage is reduced, and it becomes possible to efficiently and stably supply light in a desired wavelength range (ultraviolet rays in the case of this embodiment).

そして、発光管16の周囲は電磁波シールド部24によ
って覆われているので、上記吸収し切れなかったマイク
ロ波が発光管16の外部に漏洩しても、この電磁波シー
ルド部24によってシールドされ、装置全体の外部に漏
洩するのを防止することができる。
Since the circumference of the arc tube 16 is covered by the electromagnetic wave shield section 24, even if the unabsorbed microwaves leak to the outside of the arc tube 16, the electromagnetic wave shield section 24 shields the entire device. leakage to the outside can be prevented.

この場合、電磁波シールド部24は、シールドする対象
のマイクロ波自体が弱いので、この弱い分だけシールド
構造を簡略化できる。
In this case, since the microwave itself to be shielded by the electromagnetic wave shielding section 24 is weak, the shielding structure can be simplified by this weakness.

さらに、本実施例の発光管1Gは円筒状をなすとともに
、光照射口23に対向する一端閉塞面が球面17となっ
ているので、発光管16からの紫外線の放射方向が同心
円的に均等化されることになる。したがって、第4図に
示したように光照射口22から一定距@離れた光照射面
上の輝度分布が、発光管16の管軸線X−Xを中心とし
た場合に、広い範囲に亙って均等化されるとともに、こ
の管軸線X −Xを通るいずれの方向から見た場合でも
上記と同等の配光特性が得られ、大面積の照射が可能と
なる利点がある。
Further, since the arc tube 1G of this embodiment has a cylindrical shape, and the closed surface at one end facing the light irradiation port 23 is a spherical surface 17, the radiation direction of the ultraviolet rays from the arc tube 16 is concentrically equalized. will be done. Therefore, as shown in FIG. 4, when the luminance distribution on the light irradiation surface at a certain distance from the light irradiation port 22 is centered on the tube axis X-X of the arc tube 16, it spreads over a wide range. This has the advantage that the same light distribution characteristics as above can be obtained when viewed from any direction passing through the tube axis X-X, and a large area can be irradiated.

なお、本発明において、放電空間内に封入する放電媒体
は水銀に限らず、例えば水木、クリプトンあるいはキセ
ノンガス又はこれらの混合ガスで〔発明の効果〕 以上詳述した本発明によれば、マイクロ波出力部から発
射されたマイクロ波は、直ちに発光管の放電空間内に導
入されるので、マイクロ波の減衰がほとんどなく、効率
が向上する。加えて、マイクロ波は発光管の内側から放
射状に発射されるので、放電空間内には全体に亙って均
一な放電が励起されることになり、しかもこのマイクロ
波の全てが必ず放電空間内を通過するとともに、この通
過する過程で吸収し切れなかった分のみが発光管の外に
放射きれるので、マイクロ波の漏洩による損失が少なく
、上記発光効率が向上することと相まって、所望の波長
領域の光を効率よく安定して供給することが可能となる
In the present invention, the discharge medium sealed in the discharge space is not limited to mercury, but may be, for example, mercury, krypton, or xenon gas, or a mixture thereof. [Effects of the Invention] According to the present invention described in detail above, microwave Since the microwaves emitted from the output section are immediately introduced into the discharge space of the arc tube, there is almost no attenuation of the microwaves, improving efficiency. In addition, since the microwaves are emitted radially from the inside of the arc tube, a uniform discharge is excited throughout the discharge space, and all of these microwaves are necessarily emitted within the discharge space. At the same time, only the unabsorbed part during this passing process is radiated out of the arc tube, so there is less loss due to microwave leakage, and this improves the luminous efficiency mentioned above. This makes it possible to efficiently and stably supply light.

【図面の簡単な説明】[Brief explanation of drawings]

第1図ないし第4図は本発明の一実施例を示し、第1図
は断面図、第2図は第1図中II−I線に沿う断面図、
第3図は発光管の斜視図、第4図は配光特性図、第5図
は従来のマイクロ波放電光源装置の概略構成図である。 11・・・マグネトロン、15・・・アンテナ、16・
・・発光管、18・・・凹部、19・・・放電空間。 出願人代理人 弁理士 鈴江武彦 第1図 第2図
1 to 4 show an embodiment of the present invention, in which FIG. 1 is a sectional view, FIG. 2 is a sectional view taken along line II-I in FIG. 1,
FIG. 3 is a perspective view of an arc tube, FIG. 4 is a light distribution characteristic diagram, and FIG. 5 is a schematic configuration diagram of a conventional microwave discharge light source device. 11... Magnetron, 15... Antenna, 16.
... Arc tube, 18 ... recess, 19 ... discharge space. Applicant's agent Patent attorney Takehiko Suzue Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] マイクロ波を発生させるマグネトロンと、内部に放電媒
体が封入された気密の放電空間を有する透光性および透
磁性材料で構成された発光管とを具備し、上記発光管は
、上記マグネトロンのマイクロ波を出力するアンテナが
挿入される凹部を有することを特徴とするマイクロ波放
電光源装置。
It is equipped with a magnetron that generates microwaves, and an arc tube made of a translucent and magnetically permeable material and having an airtight discharge space in which a discharge medium is enclosed, and the arc tube is configured to generate microwaves from the magnetron. A microwave discharge light source device characterized by having a recess into which an antenna for outputting is inserted.
JP16052084A 1984-07-31 1984-07-31 Microwave discharge light source device Pending JPS6139449A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16052084A JPS6139449A (en) 1984-07-31 1984-07-31 Microwave discharge light source device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16052084A JPS6139449A (en) 1984-07-31 1984-07-31 Microwave discharge light source device

Publications (1)

Publication Number Publication Date
JPS6139449A true JPS6139449A (en) 1986-02-25

Family

ID=15716731

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16052084A Pending JPS6139449A (en) 1984-07-31 1984-07-31 Microwave discharge light source device

Country Status (1)

Country Link
JP (1) JPS6139449A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2888397A1 (en) * 2005-07-08 2007-01-12 Pascal Sortais ELECTRONIC CYCLOTRONIC RESONANCE LUMINOUS APPARATUS
JP2007220410A (en) * 2006-02-15 2007-08-30 Stanley Electric Co Ltd Light source device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2888397A1 (en) * 2005-07-08 2007-01-12 Pascal Sortais ELECTRONIC CYCLOTRONIC RESONANCE LUMINOUS APPARATUS
WO2007006918A1 (en) * 2005-07-08 2007-01-18 Rc-Lux Microwave excited lighting device using an electron cyclotron resonance phenomena
JP2007220410A (en) * 2006-02-15 2007-08-30 Stanley Electric Co Ltd Light source device

Similar Documents

Publication Publication Date Title
RU2278482C1 (en) Electrode-less lighting system
EP0447852B1 (en) Luminaire for an electrodeless high intensity discharge lamp with electromagnetic interference shielding
EP1070339B1 (en) Microwave energised plasma light source
JPH036618B2 (en)
JPH11345598A (en) Electrodeless lamp
KR950010037B1 (en) Geometry on han ceel optical output for rf excited flurescent lights
JP3202910B2 (en) Microwave discharge lamp
JPS61185857A (en) Electrodeless discharge lamp
EP1335407B1 (en) Electrodeless lighting system and bulb therefor
JPS6139449A (en) Microwave discharge light source device
GB2182486A (en) Magnesium vapor discharge lamp
JPS61104560A (en) Microwave electric-discharge light source
KR100339574B1 (en) Light collection structure for electrodeless lamp
JPS6196649A (en) Electrodeless electric-discharge lamp
JP4259274B2 (en) Microwave electrodeless discharge lamp device
KR102512098B1 (en) Electroless lighting equipment using indium bromide plasma
JP2004355980A (en) Microwave discharge lamp device
JPS61104559A (en) Microwave electric-discharge light source
JPH1154090A (en) Electrodeless discharge lamp device
JPS5923613B2 (en) High frequency discharge light source device
JP3424446B2 (en) Electrodeless lamp
JP3178368B2 (en) High frequency electrodeless discharge lamp light reflector and high frequency electrodeless discharge lamp device
JPH0195462A (en) Electrodeless discharge lamp
JPH10312777A (en) Electrodeless fluorescent lamp apparatus
KR100748542B1 (en) Plasma lighting system