JPH08171407A - Machining tool shift type machining device and its method - Google Patents

Machining tool shift type machining device and its method

Info

Publication number
JPH08171407A
JPH08171407A JP26707395A JP26707395A JPH08171407A JP H08171407 A JPH08171407 A JP H08171407A JP 26707395 A JP26707395 A JP 26707395A JP 26707395 A JP26707395 A JP 26707395A JP H08171407 A JPH08171407 A JP H08171407A
Authority
JP
Japan
Prior art keywords
machining
workpiece
amount
machining tool
shake
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26707395A
Other languages
Japanese (ja)
Inventor
Yoshinori Furusawa
可憲 古澤
Yoshihiro Ikemoto
義寛 池本
Tsutomu Hamada
力 浜田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP26707395A priority Critical patent/JPH08171407A/en
Publication of JPH08171407A publication Critical patent/JPH08171407A/en
Pending legal-status Critical Current

Links

Landscapes

  • Automatic Control Of Machine Tools (AREA)
  • Machine Tool Sensing Apparatuses (AREA)
  • Numerical Control (AREA)

Abstract

PURPOSE: To perform the machining by a machining tool and with tracking secured to the rotational run-out by providing a sensor which detects the rotational position of a work held by a holding member provided on a rotary spindle and a sensor which detects the run-out value on the machining reference plane of the work. CONSTITUTION: The detection output of a rotational position sensor 9 is inputted to an arithmetic circuit 12 and an output circuit 13. The detection output of a run-out sensor 10 is inputted to the circuit 12 via a waveform shaping circuit 14. Then the output signal of the circuit 12 is inputted to the circuit 13, and a fine adjustment mechanism 15 gives a fine movement to a cutting tool 4 based on the output signal of the circuit 13. The circuit 14 approximates the detection output of the sensor 10 to the sine curve and can reduce the measurement error on the machining reference plane. Then the circuit 12 operates the correction value at every machining point and every rotational position of a work 3 based on the detection output of both sensors 9 and 10.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、バイト、フライス
工具、研磨工具などの加工工具を搭載したNCテーブル
を二次元的に移動させて切削、フライス、研磨等の加工
を行う加工工具移動式加工装置及び加工方法に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a machining tool moving machining for two-dimensionally moving an NC table equipped with a machining tool such as a cutting tool, a milling tool and a polishing tool to perform machining such as cutting, milling and polishing. The present invention relates to an apparatus and a processing method.

【0002】[0002]

【従来の技術】近年、NCテーブルを備えたバイト移動
式切削装置が、ビデオテープレコーダ用ヘッドシリンダ
などの高精度部品の切削加工に広く用いられている。図
5に示す従来のバイト移動式切削装置は、矢印Aの方向
に回転する回転主軸1の軸上にチャック2を有し、チャ
ック2によって被加工物3が把持される。図示した被加
工物3はビデオテープレコーダ用のヘッドシリンダで、
その中心軸部にセンタ穴3aがある。一方、被加工物3
の外周面を切削するバイト4を搭載してなるNCテーブ
ル5は、制御回路6に組み込まれたプログラムに基づ
き、矢印BおよびCで示す方向に二次元的に移動する。
切削加工を終えた被加工物3たるヘッドシリンダのセン
タ穴3aには、図6に示すようにヘッドシリンダとは異
質のシャフト7が、焼き填めまたは圧入等の方法で結合
される。
2. Description of the Related Art In recent years, a cutting tool with an NC table has been widely used for cutting high-precision parts such as head cylinders for video tape recorders. The conventional cutting tool moving type cutting machine shown in FIG. 5 has a chuck 2 on the axis of a rotary spindle 1 that rotates in the direction of arrow A, and a workpiece 3 is gripped by the chuck 2. The workpiece 3 shown is a head cylinder for a video tape recorder,
There is a center hole 3a in the central shaft portion. On the other hand, the work piece 3
The NC table 5, which is equipped with the cutting tool 4 for cutting the outer peripheral surface, moves two-dimensionally in the directions indicated by arrows B and C based on a program incorporated in the control circuit 6.
As shown in FIG. 6, a shaft 7 different from the head cylinder is coupled to the center hole 3a of the head cylinder, which is the workpiece 3 after the cutting work, by a method such as shrink fitting or press fitting.

【0003】[0003]

【発明が解決しようとする課題】ここで問題となるの
は、被加工物3の外周面をいかに高い精度で切削加工し
ても、センタ穴3aに結合されたシャフト7が、図6に
示すように被加工物3の外周面に対して傾きやすいとい
うことである。この傾きによる回転振れ量は高だか数ミ
クロンのオーダであっても、最終製品としてのビデオテ
ープレコーダにおいては大きな障害となる。なぜなら、
磁気テープはヘッドシリンダの外周面を基準にして走行
するのに対し、磁気ヘッドはシャフト7を基準にして回
転するので、磁気ヘッドが磁気テープを正しくトレース
できず、再生画像の画質が損なわれるからである。
The problem here is that no matter how highly accurate the outer peripheral surface of the workpiece 3 is cut, the shaft 7 connected to the center hole 3a is shown in FIG. That is, it is easy to tilt with respect to the outer peripheral surface of the workpiece 3. Even if the amount of rotational shake due to this inclination is on the order of a few microns, it is a major obstacle in the final product, a video tape recorder. Because
The magnetic tape runs on the basis of the outer peripheral surface of the head cylinder, while the magnetic head rotates on the basis of the shaft 7. Therefore, the magnetic head cannot trace the magnetic tape properly and the quality of the reproduced image is deteriorated. Is.

【0004】このような課題は、センタ穴3aにまずシ
ャフト7を結合しておき、シャフト7を基準にしてヘッ
ドシリンダの外周面を削工すれば解決する。しかし、従
来の切削装置を用いてこれを実現しようとすると、傾い
て結合されたシャフト7が回転主軸1に同軸となるよう
に、被加工物3をチャック2に装着する際に微細な調整
を要し、この調整は手作業に頼らざるを得ないので量産
に適しない。
Such a problem can be solved by first connecting the shaft 7 to the center hole 3a and cutting the outer peripheral surface of the head cylinder with the shaft 7 as a reference. However, if this is attempted to be realized by using a conventional cutting device, fine adjustment is required when the work piece 3 is mounted on the chuck 2 so that the shaft 7 that is tilted and coupled is coaxial with the rotation main shaft 1. In fact, this adjustment is not suitable for mass production because it requires resorting to manual work.

【0005】かかる課題は、ヘッドシリンダの切削加工
に限らず起こる。例えば図7に示すように、棒状の被加
工物8の外周面を全長にわたり切削加工する場合を考え
る。
This problem occurs not only in the cutting of the head cylinder. For example, as shown in FIG. 7, consider a case where the outer peripheral surface of the rod-shaped workpiece 8 is cut over the entire length.

【0006】この場合、棒状の被加工物8の一方の端部
8aをチャック2で把持して他方の端部8bを切削加工
する。次いで、端部8bをチャック2で把持し直して端
部8aを切削加工することになるが、チャック2で端部
8bを把持し直すときに回転主軸1と端部8bとの同軸
性が狂うと、端部8aに回転振れが生じる。
In this case, one end 8a of the rod-shaped workpiece 8 is held by the chuck 2 and the other end 8b is cut. Next, the end portion 8b is gripped again by the chuck 2 and the end portion 8a is cut, but when the grip portion 2 is gripped again, the coaxiality between the rotary spindle 1 and the end portion 8b is lost. Then, rotational runout occurs at the end 8a.

【0007】端部8aは回転主軸1の回転中心を基準に
して削工されるので、回転振れが生じると被加工物8を
その全長にわたり高い精度で切削加工することができな
くなる。この場合も上述したヘッドシリンダにおけると
同様に、チャック2で把持される端部8aの長さよりも
十分に長い範囲にわたって端部8bを切削加工してお
き、切削を終えた端部8bをチャック2で把持し直せば
よいのであるが、この場合も人手に頼ることになるので
量産には適しない。
Since the end portion 8a is machined with the center of rotation of the rotary spindle 1 as a reference, when the rotational runout occurs, the workpiece 8 cannot be cut with high accuracy over its entire length. Also in this case, similarly to the head cylinder described above, the end 8b is machined over a range that is sufficiently longer than the length of the end 8a gripped by the chuck 2, and the end 8b after the cutting is chucked by the chuck 2 It suffices to re-grip with, but in this case as well, it is not suitable for mass production because it requires manual labor.

【0008】そこで本出願人は、被加工物の加工基準面
が回転主軸の回転に伴い回転振れを起こしても、高い精
度で切削加工ができるバイト移動式切削装置を提案して
きた(特願平4−323925号)。しかし、この既提
案の切削装置は、加工基準面が理想的な条件のもとで測
定されることを前提にしているので、測定時の条件次第
で加工基準面の振れ測定に誤差を生じる。この誤差の発
生原因には以下の2点がある。その一つは、加工基準面
の精度が低いことによる誤差である。バイトは加工基準
面の回転振れに追従して移動するので、加工基準面に傷
や汚れがあったり、真円度や平面度などが低かったりす
ると測定誤差を生じ、加工精度に低下をきたす。いま一
つは、加工基準面の回転振れ測定方式にかかわる誤差で
ある。接触式・静電容量式の距離センサやレーザ変位計
などは、加工基準面に付着している切削油やごみなどに
よって測定誤差を生じる。また、渦電流式ギャップセン
サでは、残留磁気によって測定誤差を生じる。
Therefore, the applicant of the present invention has proposed a bite moving type cutting device capable of cutting with high accuracy even if the machining reference surface of the workpiece causes rotational runout due to the rotation of the rotating main shaft (Japanese Patent Application No. Hei 10 (1999)). 4-323925). However, since the proposed cutting device is premised on that the machining reference plane is measured under ideal conditions, an error occurs in the deflection measurement of the machining reference plane depending on the measurement conditions. There are the following two causes of this error. One of them is an error due to the low precision of the machining reference plane. Since the cutting tool moves following the rotational runout of the machining reference surface, if the machining reference surface has scratches or stains, or if the roundness or flatness is low, a measurement error occurs and the machining accuracy deteriorates. The other is an error related to the rotational runout measuring method of the machining reference plane. Contact type and capacitance type distance sensors and laser displacement meters cause measurement errors due to cutting oil and dust adhering to the machining reference surface. Further, in the eddy current type gap sensor, a measurement error occurs due to residual magnetism.

【0009】したがって本発明の目的は、被加工物の回
転振れを高い精度で検出でき、回転振れに追尾した加工
工具で加工ができる加工工具移動式加工装置及び加工方
法を提供することにある。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a machining tool moving type machining apparatus and a machining method capable of detecting a rotational runout of a workpiece with high accuracy and capable of working with a working tool following the rotational runout.

【0010】[0010]

【課題を解決するための手段】本願の第1発明による
と、上述した目的を達成するために、回転主軸に設けら
れた保持部材で保持される被加工物の回転位置を検出す
る回転位置検出センサと、前記被加工物の加工基準面の
振れ量を検出する振れ検出センサと、振れ検出センサの
出力信号波形をサインカーブに近似した波形に整形する
波形整形手段と、波形整形手段の出力信号に基づき前記
被加工物の加工点における加工工具の位置補正量を回転
主軸の回転に同期して算出する演算手段と、演算手段の
出力信号に基づき前記位置補正量を前記回転位置および
前記加工点ごとに出力する出力手段と、出力手段の出力
信号に基づき加工工具を微動させる微動調整機構と、微
動調整機構を搭載して二次元的に移動して前記被加工物
の加工を行うNCテーブルとを備えてなることを特徴と
する加工工具移動式加工装置が提供される。
According to a first invention of the present application, in order to achieve the above-mentioned object, a rotational position detection for detecting a rotational position of a workpiece held by a holding member provided on a rotary spindle. A sensor, a shake detection sensor that detects the amount of shake of the machining reference surface of the workpiece, a waveform shaping unit that shapes the output signal waveform of the shake detection sensor into a waveform that approximates a sine curve, and an output signal of the waveform shaping unit. Calculating means for calculating the position correction amount of the processing tool at the processing point of the work piece in synchronization with the rotation of the rotating spindle, and the position correction amount for the rotation position and the processing point based on the output signal of the calculating means. Each of the output means, a fine movement adjusting mechanism for finely moving the processing tool based on the output signal of the output means, and a fine movement adjusting mechanism are mounted to move two-dimensionally. Machining tool moving type machining apparatus characterized by comprising a table is provided.

【0011】本願の第2発明によると、上述した目的を
達成するために、被加工物を回転させ、前記被加工物の
回転位置を検出し、前記被加工物の加工基準面の振れ量
を検出し、前記振れ量の信号をサインカーブに近似した
波形に整形し、前記近似された波形の信号に基づき前記
被加工物の加工点における加工工具の位置補正量を回転
主軸の回転に同期して算出し、前記位置補正量の信号に
基づき前記位置補正量を前記回転位置および前記加工点
ごとに出力し、微動調整機構によって前記出力された位
置補正量の信号に基づき加工工具を微動させ、微動調整
機構を二次元的に移動させて前記被加工物の加工を行う
ようにしたことを特徴とする加工工具移動式加工方法が
提供される。
According to the second invention of the present application, in order to achieve the above object, the workpiece is rotated, the rotational position of the workpiece is detected, and the deflection amount of the machining reference plane of the workpiece is determined. Detect, shape the signal of the shake amount into a waveform approximate to a sine curve, and synchronize the position correction amount of the processing tool at the processing point of the workpiece based on the signal of the approximated waveform with the rotation of the rotating spindle. Calculated, the position correction amount is output for each of the rotational position and the processing point based on the position correction amount signal, and the processing tool is finely moved based on the output position correction amount signal by the fine adjustment mechanism. There is provided a machining tool moving machining method characterized in that a fine movement adjusting mechanism is two-dimensionally moved to machine the workpiece.

【0012】本発明は上述のように構成されるので、被
加工物の加工面全域に対する必要な補正量を加工前に演
算しておくことができる。とくに、保持部材により保持
された被加工物の加工基準面の回転振れ量を、被加工物
の回転位置に対応させて検出する一方、検出された回転
振れ量の信号波形を理論上の曲線たるサインカーブに近
似させるので、測定誤差の低減された補正量を演算によ
って得ることができる。
Since the present invention is configured as described above, it is possible to calculate the necessary correction amount for the entire working surface of the workpiece before processing. In particular, the rotational shake amount of the machining reference surface of the workpiece held by the holding member is detected in correspondence with the rotational position of the workpiece, while the signal waveform of the detected rotational shake amount is a theoretical curve. Since it is approximated to a sine curve, it is possible to obtain a correction amount with a reduced measurement error by calculation.

【0013】また、加工中は、被加工物の加工点(加工
工具と被加工物の接触点)と、被加工物の回転位置とに
対応する補正量が出力回路から出力され、この出力信号
に基づいて駆動される微動調整機構が加工工具を微動さ
せるので、加工工具と加工基準面とは相対的に振れのな
い状態に維持される。したがって、回転主軸の回転に同
期して移動する加工工具で加工をすると、加工面は加工
基準面に対して回転振れのない面となり、加工基準面が
回転振れを起こす被加工物であっても、見かけ上、回転
振れのない状態で加工を施すことが可能となる。
During machining, the output circuit outputs a correction amount corresponding to the machining point of the workpiece (contact point between the machining tool and the workpiece) and the rotational position of the workpiece. The fine movement adjusting mechanism driven based on the above finely moves the machining tool, so that the machining tool and the machining reference surface are maintained in a relatively steady state. Therefore, when machining is performed with a machining tool that moves in synchronization with the rotation of the rotary spindle, the machining surface becomes a surface that does not have rotational runout with respect to the machining reference plane, and the machining reference plane is a workpiece that causes rotational runout. In addition, it is possible to perform the processing in a state where there is apparently no rotational shake.

【0014】さらに、加工基準面の回転振れ量の測定結
果がサインカーブに近似したものとなるので、加工基準
面の面精度や測定方式にかかわる誤差を低減でき、結果
的に被加工物に対する加工精度を向上させることができ
る。
Furthermore, since the measurement result of the rotational runout amount of the machining reference surface is close to a sine curve, it is possible to reduce the error relating to the surface precision of the machining reference surface and the measuring method, and as a result, the machining of the workpiece. The accuracy can be improved.

【0015】[0015]

【発明の実施の形態】つぎに、本発明の一実施形態を図
面を参照しながら説明する。図1に示すバイト移動式切
削装置は、回転主軸1に設けられたチャック2、バイト
4、NCテーブル5および制御回路6等を有し、チャッ
ク2に被加工物3が把持されている。
BEST MODE FOR CARRYING OUT THE INVENTION Next, an embodiment of the present invention will be described with reference to the drawings. The cutting tool moving type cutting machine shown in FIG. 1 has a chuck 2, a cutting tool 4, an NC table 5, a control circuit 6 and the like provided on a rotary spindle 1, and a workpiece 3 is held by the chuck 2.

【0016】被加工物3はビデオテープレコーダ用のヘ
ッドシリンダで、そのセンタ穴3aにシャフト7が焼き
填めまたは圧入等の方法であらかじめ結合されており、
シャフト7が被加工物3の加工基準面となる。シャフト
7は回転主軸1の回転に伴ってわずかながら回転振れを
起こすので、故意に傾けて図示している。
The work piece 3 is a head cylinder for a video tape recorder, and a shaft 7 is preliminarily joined to its center hole 3a by a method such as shrink fitting or press fitting.
The shaft 7 serves as a machining reference surface of the workpiece 3. The shaft 7 causes a slight rotational runout as the rotary main shaft 1 rotates, and therefore is shown by intentionally inclining it.

【0017】従来の切削装置と異なるのは以下の点であ
る。すなわち、被加工物3の回転位置を検出するための
回転位置検出センサ9が、回転主軸1に設けられてい
る。また、被加工物3の回転に伴ってシャフト7に生じ
る回転振れを検出するための振れ検出センサ10が、金
具11によってNCテーブル5に固定されている。
The following points are different from the conventional cutting device. That is, the rotation position detection sensor 9 for detecting the rotation position of the workpiece 3 is provided on the rotating spindle 1. Further, a shake detection sensor 10 for detecting a rotational shake generated on the shaft 7 as the workpiece 3 rotates is fixed to the NC table 5 by a metal fitting 11.

【0018】回転位置検出センサ9の検出出力は、演算
回路12および出力回路13に入力され、振れ検出セン
サ10の検出出力は、波形整形回路14を通じて演算回
路12に入力される。そして、演算回路12の出力信号
が出力回路13に入力され、出力回路13の出力信号に
基づき微動調整機構15がバイト4を微動させる。
The detection output of the rotational position detection sensor 9 is input to the arithmetic circuit 12 and the output circuit 13, and the detection output of the shake detection sensor 10 is input to the arithmetic circuit 12 through the waveform shaping circuit 14. Then, the output signal of the arithmetic circuit 12 is input to the output circuit 13, and the fine movement adjusting mechanism 15 finely moves the bite 4 based on the output signal of the output circuit 13.

【0019】波形整形回路14は、振れ検出センサ10
の検出出力をサインカーブに近似させるので、加工基準
面の測定誤差を低減させることができる。また、演算回
路12は、回転位置検出センサ9および振れ検出センサ
10の検出出力に基づいて、被加工物3の各加工点にお
ける補正量を被加工物3の回転位置ごとに演算する。
The waveform shaping circuit 14 includes a shake detection sensor 10
Since the detection output of is approximated to a sine curve, it is possible to reduce the measurement error of the processing reference plane. Further, the arithmetic circuit 12 calculates a correction amount at each machining point of the workpiece 3 for each rotational position of the workpiece 3 based on the detection outputs of the rotational position detection sensor 9 and the shake detection sensor 10.

【0020】出力回路13は、被加工物3の回転位置に
同期して加工点ごとの補正量を微動調整機構15に伝達
する。バイト4を搭載した微動調整機構15は、NCテ
ーブル5上に固定されている。
The output circuit 13 transmits the correction amount for each processing point to the fine movement adjusting mechanism 15 in synchronization with the rotational position of the workpiece 3. The fine adjustment mechanism 15 having the bite 4 mounted thereon is fixed on the NC table 5.

【0021】微動調整機構15は図2に示すように、バ
イト4をねじなどで固定した可動台16を有し、可動台
16は1対のばね部16a、16aによって取付台17
に固定されている。そして、可動台16と取付台17と
の間に圧電素子18が設けられている。取付台17はN
Cテーブル5に固定されている。
As shown in FIG. 2, the fine movement adjusting mechanism 15 has a movable base 16 on which the bite 4 is fixed with screws or the like. The movable base 16 is attached to the mounting base 17 by a pair of spring portions 16a, 16a.
It is fixed to. The piezoelectric element 18 is provided between the movable table 16 and the mounting table 17. Mount 17 is N
It is fixed to the C table 5.

【0022】このように構成されたバイト移動式切削装
置においては、回転主軸1の回転に伴い被加工物3は矢
印Aの方向に回転し、その加工基準面となるシャフト7
は振れながら回転する。切削加工前に、回転位置検出セ
ンサ9は被加工物3の回転位置を検出し、振れ検出セン
サ10はシャフト7の回転振れ量を検出する。一方、演
算回路12は両センサ9、10の検出出力に基づき、被
加工物3の加工面に対する必要な補正量を、回転位置と
対応させながら演算する。
In the cutting tool moving tool constructed as described above, the work piece 3 rotates in the direction of arrow A with the rotation of the rotary spindle 1, and the shaft 7 serving as a machining reference surface thereof.
Rotates while swinging. Before cutting, the rotational position detection sensor 9 detects the rotational position of the workpiece 3, and the shake detection sensor 10 detects the amount of rotational shake of the shaft 7. On the other hand, the arithmetic circuit 12 calculates a necessary correction amount for the machined surface of the workpiece 3 based on the detection outputs of both the sensors 9 and 10 in association with the rotational position.

【0023】その詳細を図3の(a)および(b)を用
いて説明する。ここでは、バイト4の位置が4a、4b
で、振れ検出センサ10の測定位置が10a、10b
で、回転主軸1の回転中心が1aで、シャフト7の位置
が7a、7bで、そして、加工を終えた被加工物が19
a、19bでそれぞれ示されている。図3の(a)はシ
ャフト7aが振れ検出センサ10に最も近づいた状態を
示し、図3の(b)は図3の(a)に示した状態から回
転主軸が180度回転した状態(シャフト7bが振れ検
出センサ10から遠ざかった状態)を示している。
(a)、(b)で示した2つの状態は、振れ検出センサ
10に例えば静電容量式の距離センサを用いると、その
距離の最大位置および最小位置から容易に特定できる。
一方、被加工物3の回転位置は、回転主軸1に設けた回
転位置検出センサ9で検出できる。
The details will be described with reference to FIGS. 3 (a) and 3 (b). Here, the position of the byte 4 is 4a, 4b.
Then, the measurement positions of the shake detection sensor 10 are 10a, 10b.
Then, the center of rotation of the rotary spindle 1 is 1a, the position of the shaft 7 is 7a, 7b, and the processed workpiece is 19
a and 19b respectively. 3A shows a state in which the shaft 7a is closest to the shake detection sensor 10, and FIG. 3B shows a state in which the rotation main shaft is rotated 180 degrees from the state shown in FIG. 7b shows a state in which it is away from the shake detection sensor 10.
The two states shown in (a) and (b) can be easily specified from the maximum position and the minimum position of the distance by using, for example, a capacitance type distance sensor as the shake detection sensor 10.
On the other hand, the rotational position of the workpiece 3 can be detected by the rotational position detection sensor 9 provided on the rotary spindle 1.

【0024】シャフト7aとバイト4aとの間隔が、シ
ャフト7bとバイト4bとの間隔に等しくなるように、
検出した回転振れデータから、回転主軸の回転中心1a
に対するシャフト7の位置を算出する。そして、シャフ
ト7aに平行な面を削工するとき、加工点におけるシャ
フト7の振れに同期してバイト4が微動するので、相対
的に振れのない状態が実現する。
[0024] The distance between the shaft 7a and the cutting tool 4a is equal to the distance between the shaft 7b and the cutting tool 4b.
From the detected rotation runout data, the rotation center 1a of the rotation spindle
The position of the shaft 7 with respect to is calculated. Then, when the surface parallel to the shaft 7a is machined, the bite 4 slightly moves in synchronization with the shake of the shaft 7 at the processing point, so that a relatively steady state is realized.

【0025】バイト4が加工基準面たるシャフト7と相
対的に振れのない状態を維持して被加工物3の外周面を
削工することは、削工された外周面がシャフト7を基準
に加工されることを意味する。なお、前記演算および演
算結果の保存は、市販の一般的なパーソナルコンピュー
タを用いて容易に実現できる。
The outer peripheral surface of the work piece 3 is machined while the bite 4 is kept in a state in which there is no runout relative to the shaft 7, which is the machining reference surface, because the machined outer peripheral surface is based on the shaft 7. Means being processed. The calculation and the saving of the calculation result can be easily realized by using a general commercially available personal computer.

【0026】振れ検出センサ10による測定の結果は、
加工基準面の精度に大きく左右される。したがって、加
工基準面の傷や、センサの電気的ノイズをそのままにし
てバイト4に対する補正量を算出すると、加工面の真円
度や平面度などの精度を低下させる。これを防ぐため
に、理論式に見合うサインカーブに近似した波形に整形
して、バイト4の位置の補正量を算出するのであり、サ
インカーブに近似させる理由を図4を用いて説明する。
The result of the measurement by the shake detection sensor 10 is
It is greatly affected by the accuracy of the machining reference plane. Therefore, if the correction amount for the cutting tool 4 is calculated while leaving the scratches on the machining reference surface and the electrical noise of the sensor as they are, the accuracy such as the roundness and flatness of the machining surface is lowered. In order to prevent this, the correction amount of the position of the cutting tool 4 is calculated by shaping into a waveform approximate to a sine curve that matches a theoretical formula. The reason for approximating to the sine curve will be described with reference to FIG.

【0027】図4の(a)はバイト4、被加工物3、シ
ャフト7、回転位置検出センサ9および振れ検出センサ
10の相対関係を示している。旋盤の回転主軸1を回転
させたときのシャフト7の軌跡は、双円錐曲面またはそ
の一部分の曲面となるが、これを曲面20とし、回転主
軸1の回転中心1aに対して垂直な平面を平面21とす
る。また、振れ検出センサ10の測定位置10a、10
bおよびバイト4の位置における回転中心1aに垂直な
平面をそれぞれ平面21a、21b、21cとする。曲
面20と平面21との交線は円となる。この円をそれぞ
れ円22a、22b、22cとする。したがって、振れ
検出センサ10の測定位置10a、10bからみたシャ
フト7は円軌道を描いて回ることになり、これを測定す
ると、その測定波形はサインカーブとなる。
FIG. 4A shows a relative relationship among the cutting tool 4, the workpiece 3, the shaft 7, the rotational position detecting sensor 9 and the shake detecting sensor 10. The trajectory of the shaft 7 when the rotary spindle 1 of the lathe is rotated is a biconical curved surface or a curved surface of a part thereof, which is a curved surface 20, and a plane perpendicular to the rotation center 1a of the rotary spindle 1 is a flat surface. 21. In addition, the measurement positions 10a, 10 of the shake detection sensor 10
The planes perpendicular to the rotation center 1a at the positions of b and the cutting tool 4 are planes 21a, 21b and 21c, respectively. The line of intersection between the curved surface 20 and the flat surface 21 is a circle. These circles are referred to as circles 22a, 22b, 22c, respectively. Therefore, the shaft 7 viewed from the measurement positions 10a and 10b of the shake detection sensor 10 turns in a circular orbit, and when this is measured, the measured waveform becomes a sine curve.

【0028】次に近似の方法について説明する。回転位
置検出センサ9で1回転の時間を計測し、振れ検出セン
サ10で振れを測定すると、その波形はサインカーブの
1周期相当分となる。図4の(b)、(c)は、振れ検
出センサ10の測定位置10a、10bにおける測定波
形を示している。これらの図に示すように、測定波形は
理想的なサインカーブを描くとは限らず、加工基準面た
るシャフト7の真円度や、振れ検出センサ10の測定方
式による誤差を含んでいる。このため、かかる測定波形
の信号に基づきバイト4の各位置における補正量を演算
回路12で演算すると、図4の(d)に示すような波形
となる。そして、このような波形の信号に基づいてバイ
ト4を微動させると、加工精度に悪影響を与える。
Next, the approximation method will be described. When the rotation position detection sensor 9 measures the time of one rotation and the shake detection sensor 10 measures the shake, the waveform thereof corresponds to one cycle of the sine curve. 4B and 4C show measurement waveforms at the measurement positions 10a and 10b of the shake detection sensor 10. As shown in these figures, the measurement waveform does not always draw an ideal sine curve, but includes the roundness of the shaft 7 that is the processing reference plane and the error due to the measurement method of the shake detection sensor 10. Therefore, when the correction amount at each position of the bite 4 is calculated by the calculation circuit 12 based on the signal of the measured waveform, a waveform as shown in (d) of FIG. 4 is obtained. Then, if the cutting tool 4 is slightly moved based on such a waveform signal, the processing accuracy is adversely affected.

【0029】そこで、図4の(b)、(c)に示した測
定波形を、波形整形回路14で最小自乗法を適用して振
幅・位相を求め、サインカーブに近似した波形の信号を
得る。整形後の近似波形を図4の(e)、(f)に示
す。この近似波形の信号に基づきバイト4の各位置にお
ける補正量を演算回路12で演算すると、図4の(g)
のようになる。この波形に基づいてバイト4を微動させ
ると、加工基準面たるシャフト7の測定誤差による加工
精度の低下を抑えることができる。なお、回転振れの測
定データは1回転分だけでなく、任意の回転数分を記録
しておき、近似波形の演算に利用するのが望ましい。
Therefore, the measured waveforms shown in (b) and (c) of FIG. 4 are applied with the least squares method in the waveform shaping circuit 14 to obtain the amplitude and phase, and a signal having a waveform approximate to a sine curve is obtained. . The approximated waveforms after shaping are shown in (e) and (f) of FIG. When the correction amount at each position of the cutting tool 4 is calculated by the calculation circuit 12 based on the signal of this approximate waveform, (g) of FIG.
become that way. By slightly moving the cutting tool 4 based on this waveform, it is possible to suppress a decrease in processing accuracy due to a measurement error of the shaft 7, which is a processing reference surface. It should be noted that it is desirable that the measurement data of the rotational shake be recorded not only for one rotation but for an arbitrary number of rotations and used for the calculation of the approximate waveform.

【0030】出力回路13は、バイト4で被加工物3を
実際に切削加工するとき、バイト4のシャフト7の軸方
向の位置に対応する演算結果を、回転主軸1の回転位置
に同期して圧電素子18に出力する。このため、バイト
4のシャフト7の軸方向の位置は、バイト4を有する微
動調整機構15が固定されたNCテーブル5の位置とし
て制御回路6から入力すればよい。被加工物3の回転位
置は、回転主軸1に設けた回転位置検出センサ9の回転
位置を入力すればよい。以上のことを明確にしておけ
ば、この2つの信号に対する演算結果を同期して出力さ
せるのは、周知の制御技術で容易に実現できる。すなわ
ち、回転主軸1の回転角度を回転位置検出センサ9で常
時検出し、回転主軸1が一定角度回転する都度、NCテ
ーブル5が移動して加工点が変わる都度、バイト4の位
置の補正量を計算して微動調整機構15に出力させる。
When actually cutting the workpiece 3 with the cutting tool 4, the output circuit 13 synchronizes the calculation result corresponding to the axial position of the shaft 7 of the cutting tool 4 in synchronization with the rotation position of the rotary spindle 1. Output to the piezoelectric element 18. Therefore, the position of the cutting tool 4 in the axial direction of the shaft 7 may be input from the control circuit 6 as the position of the NC table 5 to which the fine adjustment mechanism 15 having the cutting tool 4 is fixed. The rotational position of the workpiece 3 may be the rotational position of the rotational position detection sensor 9 provided on the rotary spindle 1. If the above is clarified, it is possible to easily output the calculation results for these two signals in synchronization with a well-known control technique. That is, the rotation angle of the rotary spindle 1 is constantly detected by the rotary position detection sensor 9, and whenever the rotary spindle 1 rotates a fixed angle, the NC table 5 moves and the machining point changes, and the correction amount of the position of the cutting tool 4 is calculated. It is calculated and output to the fine movement adjusting mechanism 15.

【0031】微動調整機構15は、出力回路13から出
力された信号に基づきバイト4を、図2のD方向に所定
量だけ微動させる。このため、出力回路13からの信号
に対応して変位を発生させる駆動源として圧電素子18
を用いる。この圧電素子18は一端が十分な剛性を有す
る取付台17に固定され、他端がばね部16aを有する
可動台16に固定されているので、圧電素子18に出力
回路13の信号が入力されると、圧電素子18が伸縮し
てばね部16aを変形させるので、可動台16が微動す
る。圧電素子18の駆動電圧は一般に数百ボルトであ
り、ヒステリシス特性を有するので、出力回路13の信
号を増幅回路で増幅し、また可動台16の変位量を変位
計で計測しつつ所定の変位量となるようフィードバック
制御するのがよい。
The fine movement adjusting mechanism 15 finely moves the cutting tool 4 by a predetermined amount in the direction D in FIG. 2 based on the signal output from the output circuit 13. Therefore, the piezoelectric element 18 is used as a drive source for generating displacement in response to the signal from the output circuit 13.
To use. Since one end of this piezoelectric element 18 is fixed to the mount 17 having sufficient rigidity and the other end is fixed to the movable base 16 having the spring portion 16a, the signal of the output circuit 13 is input to the piezoelectric element 18. Then, the piezoelectric element 18 expands and contracts to deform the spring portion 16a, so that the movable table 16 slightly moves. The drive voltage of the piezoelectric element 18 is generally several hundred volts and has a hysteresis characteristic. Therefore, the signal of the output circuit 13 is amplified by an amplifier circuit, and the displacement amount of the movable table 16 is measured by a displacement gauge while the predetermined displacement amount is measured. It is better to perform feedback control so that

【0032】上述した実施形態においては、被加工物3
の外周面をシャフト7を基準にして切削する場合につい
て述べたが、基本的には、シャフト7の振れ量と振れの
中心が回転主軸1の回転位置と対応して振れ検出センサ
10の信号から演算できるので、被加工物3の任意の方
向での補正量も演算できる。このため、被加工物3の端
面部の補正量を同様に演算し、この方向へ微動できる微
動調整機構およびバイト4をNCテーブル5上に設けて
おけば、この面の軸基準加工も可能となることは言うま
でもない。逆に、加工基準面が被削物のシャフト7でな
くても、旋盤の回転主軸1を回転させて、図示しない振
れセンサで加工基準面を測定すれば、その波形が理想的
にはサインカーブとなる場合、測定波形のサインカーブ
による近似で加工精度を上げることが可能である。ま
た、従来例の説明で用いた図7に示す棒状の被加工物を
加工する場合でも容易に適用できることは明確である。
In the embodiment described above, the workpiece 3
The case where the outer peripheral surface of the shaft is cut with the shaft 7 as a reference has been described, but basically, the shake amount of the shaft 7 and the center of the shake correspond to the rotation position of the rotary spindle 1 and Since the calculation can be performed, the correction amount of the workpiece 3 in any direction can also be calculated. Therefore, if the correction amount of the end surface of the workpiece 3 is calculated in the same manner and the fine movement adjusting mechanism capable of finely moving in this direction and the cutting tool 4 are provided on the NC table 5, the axis reference processing of this surface is also possible. Needless to say. On the contrary, even if the machining reference plane is not the shaft 7 of the work piece, if the rotating spindle 1 of the lathe is rotated and the machining reference plane is measured by a shake sensor (not shown), the waveform is ideally a sine curve. In this case, it is possible to improve the processing accuracy by approximating the sine curve of the measured waveform. Further, it is clear that it can be easily applied to the case of processing the rod-shaped workpiece shown in FIG. 7 used in the description of the conventional example.

【0033】なお、本実施形態で用いた振れ検出センサ
10は、非接触式の静電容量式の距離センサであった
が、接触式のセンサを用いてもよい。また、回転主軸1
に回転位置検出センサ9を設けたが、NC切削装置自体
に回転主軸1の回転位置検出センサが内蔵されている場
合は、これを兼用させてもよい。また、被加工物3やシ
ャフト7の回転位置を直接的に測定してもよい。さら
に、本実施形態では演算結果をいったん記録し、その後
必要な補正量を同期して出力する構成としたが、バイト
4の位置と回転主軸1の位置をもとに補正量を瞬時に計
算して、出力させてもよい。
The shake detection sensor 10 used in this embodiment is a non-contact type electrostatic capacitance type distance sensor, but a contact type sensor may be used. In addition, the rotary spindle 1
Although the rotational position detection sensor 9 is provided in the above, if the NC cutting device itself has a built-in rotational position detection sensor for the rotary spindle 1, this may also be used. Alternatively, the rotational positions of the work piece 3 and the shaft 7 may be directly measured. Furthermore, in the present embodiment, the calculation result is once recorded and then the necessary correction amount is output in synchronization. However, the correction amount is instantly calculated based on the position of the cutting tool 4 and the position of the rotary spindle 1. And output it.

【0034】以下に、本発明の第2の実施形態について
述べる。
The second embodiment of the present invention will be described below.

【0035】本発明の第2の実施形態では、前記回転主
軸の軸中心の変化の量を検出するとともに、前記変化の
量を前記振れ量から除いてバイト4により被加工物3を
より正確に加工するようにしている。
In the second embodiment of the present invention, the amount of change in the axis center of the rotary main shaft is detected, and the amount of change is excluded from the runout amount to make the work piece 3 more accurate by the cutting tool 4. I am trying to process it.

【0036】すなわち、一般に、前記振れ検出センサ1
0と前記微動調整機構15との間には応答速度に差があ
る。よって、検出時の回転主軸1の回転数は加工時の回
転数とは異なっている。そして、図8に示すように回転
主軸1の回転数によって回転主軸1の軸中心は通常の旋
盤では物理的に変化する。1000rpm、2000r
pm、3000rpmの回転数によって軸中心がXY座
標において変化することは図8から明らかである。これ
は、加工時の被加工物3の基準加工面と加工時の基準加
工面とでは異なることを意味する。従って、回転主軸1
の軸中心の変化が大きくなればなるほど、加工精度は悪
くなる。
That is, in general, the shake detection sensor 1
There is a difference in response speed between 0 and the fine movement adjusting mechanism 15. Therefore, the rotational speed of the rotary spindle 1 at the time of detection is different from the rotational speed at the time of processing. Then, as shown in FIG. 8, the axis center of the rotary spindle 1 physically changes in a normal lathe depending on the number of rotations of the rotary spindle 1. 1000 rpm, 2000r
It is clear from FIG. 8 that the axis center changes in the XY coordinates depending on the rotation speed of pm and 3000 rpm. This means that the reference processing surface of the workpiece 3 during processing is different from the reference processing surface during processing. Therefore, the rotary spindle 1
The greater the change in the axis center of, the worse the machining accuracy.

【0037】このような加工精度の悪化を防止するた
め、図9の(B)に示すように検出及び加工動作前に回
転主軸1の軸中心の変化を予め振れ検出センサ10によ
って検出し、図9の(B)の軸中心変化の検出量を、基
準加工面の各検出毎にオフセットとして、振れ検出セン
サ10によって検出された基準加工面の図9の(A)の
振れ量から演算回路12によって除去して、図9の
(C)に示されたように補正量をより精度良く演算す
る。従って、回転主軸1の軸中心の変化に対応して加工
精度を向上させることができる。回転主軸1のバランス
修正を行わない限り、軸中心の変化を再測定する必要は
ない。
In order to prevent such deterioration of machining accuracy, as shown in FIG. 9B, a change in the axis center of the rotary spindle 1 is detected by the shake detecting sensor 10 in advance before the detection and machining operations. 9B is used as an offset for each detection of the reference machining surface, and the arithmetic circuit 12 is operated from the deflection amount of the reference machining surface detected by the shake detection sensor 10 in FIG. 9A. Then, the correction amount is calculated more accurately as shown in FIG. Therefore, the processing accuracy can be improved in response to the change in the axis center of the rotary spindle 1. Unless the balance of the rotary spindle 1 is corrected, it is not necessary to remeasure the change of the axis center.

【0038】なお、振れ検出センサ10は前記実施形態
では単一のセンサにより構成されたが、異なる検出位置
10a、10bに単一のセンサ10を移動させることな
く、2つの振れ検出センサ10、10をその測定位置1
0a、10bに配置することもできる。
Although the shake detection sensor 10 is composed of a single sensor in the above-mentioned embodiment, the two shake detection sensors 10, 10 can be moved without moving the single sensor 10 to different detection positions 10a, 10b. The measurement position 1
It can also be arranged at 0a and 10b.

【0039】[0039]

【発明の効果】以上のように本発明によると、加工基準
面が振れを有していても、これに同期して加工工具を微
動させつつ加工を施すことができる。また、加工基準面
の形状精度が低かったり、測定方式によって誤差が生じ
る場合でも、加工精度の高い加工工具移動式切削装置及
び加工方法を得ることができる。
As described above, according to the present invention, even if the machining reference plane has a runout, it is possible to perform machining while synchronizing with this, the machining tool is finely moved. Further, even when the shape accuracy of the machining reference surface is low or an error occurs due to the measurement method, it is possible to obtain a machining tool moving type cutting device and a machining method with high machining accuracy.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施形態のバイト移動式切削装置の
概略平面図。
FIG. 1 is a schematic plan view of a cutting tool moving type cutting apparatus according to an embodiment of the present invention.

【図2】本発明の一実施形態における微動調整機構の概
略側面図。
FIG. 2 is a schematic side view of a fine movement adjustment mechanism according to the embodiment of the present invention.

【図3】本発明の一実施形態におけるバイトの同期駆動
の説明図。
FIG. 3 is an explanatory diagram of byte synchronous driving according to the embodiment of the present invention.

【図4】本発明の一実施形態における波形整形回路の動
作説明図。
FIG. 4 is an operation explanatory diagram of the waveform shaping circuit according to the embodiment of the present invention.

【図5】従来のバイト移動式切削装置の概略平面図。FIG. 5 is a schematic plan view of a conventional cutting tool moving type cutting device.

【図6】被加工物たるヘッドシリンダの完成図。FIG. 6 is a completed view of a head cylinder that is a workpiece.

【図7】被加工物たる棒状体の平面図。FIG. 7 is a plan view of a rod-shaped body that is a workpiece.

【図8】回転主軸の回転数による回転主軸の軸中心の変
化を示すグラフ。
FIG. 8 is a graph showing changes in the axis center of the rotating spindle according to the number of rotations of the rotating spindle.

【図9】(A)、(B)、(C)は振れ検出センサによ
って検出された被加工物の基準加工面の振れ、回転主軸
の軸中心の変化、図9の(A)の振れ量から図9の
(B)の軸中心の変化量を除いた後の振れをそれぞれ示
す波形を示すグラフ。
9A, 9B, and 9C are shakes of a reference machining surface of a workpiece detected by a shake detection sensor, changes in the axis center of a rotary spindle, and shake amounts of FIG. 9A. 10 is a graph showing waveforms showing the shake after removing the amount of change in the axis center of FIG. 9B from FIG.

【符号の説明】[Explanation of symbols]

1 回転主軸 2 チャック(保持部材) 3 被加工物 4 バイト(加工工具) 5 NCテーブル 9 回転位置検出センサ 10 振れ検出センサ 12 演算回路 13 出力回路 14 波形整形回路 15 微動調整機構 1 Rotating Spindle 2 Chuck (Holding Member) 3 Workpiece 4 Bit (Processing Tool) 5 NC Table 9 Rotation Position Detection Sensor 10 Shake Detection Sensor 12 Arithmetic Circuit 13 Output Circuit 14 Waveform Shaping Circuit 15 Fine Motion Adjustment Mechanism

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 回転主軸に設けられた保持部材で保持さ
れる被加工物の回転位置を検出する回転位置検出センサ
と、 前記被加工物の加工基準面の振れ量を検出する振れ検出
センサと、 振れ検出センサの出力信号波形をサインカーブに近似し
た波形に整形する波形整形手段と、 波形整形手段の出力信号に基づき前記被加工物の加工点
における加工工具の位置補正量を回転主軸の回転に同期
して算出する演算手段と、 演算手段の出力信号に基づき前記位置補正量を前記回転
位置および前記加工点ごとに出力する出力手段と、 出力手段の出力信号に基づき加工工具を微動させる微動
調整機構と、 微動調整機構を搭載して二次元的に移動して前記被加工
物の加工を行うNCテーブルとを備えてなることを特徴
とする加工工具移動式加工装置。
1. A rotation position detection sensor for detecting a rotation position of a workpiece held by a holding member provided on a rotary spindle, and a shake detection sensor for detecting a shake amount of a machining reference surface of the workpiece. , A waveform shaping means for shaping the output signal waveform of the shake detection sensor into a waveform similar to a sine curve, and a position correction amount of the machining tool at the machining point of the workpiece based on the output signal of the waveform shaping means is rotated. Calculating means in synchronism with the output means, output means for outputting the position correction amount for each of the rotational position and the machining point based on an output signal of the calculating means, and a fine movement for finely moving the machining tool based on the output signal of the output means A machining tool moving type machining apparatus comprising: an adjusting mechanism; and an NC table that is equipped with a fine movement adjusting mechanism and moves two-dimensionally to machine the workpiece.
【請求項2】 前記波形整形手段は波形整形回路であ
り、前記演算手段は演算回路であり、前記出力手段は出
力回路である請求項1記載の加工工具移動式加工装置。
2. The machining tool moving type machining apparatus according to claim 1, wherein the waveform shaping means is a waveform shaping circuit, the computing means is a computing circuit, and the output means is an output circuit.
【請求項3】 前記振れ検出センサは異なる検出位置間
を移動しかつ該位置で固定されるようにした請求項1又
は2記載の加工工具移動式加工装置。
3. The machining tool moving type machining apparatus according to claim 1, wherein the shake detection sensor moves between different detection positions and is fixed at the position.
【請求項4】 前記振れ検出センサと同一の機能を備え
る振れ検出センサをさらに備え、前記2つの振れ検出セ
ンサを別々の検出位置に配置するようにした請求項1又
は2記載の加工工具移動式加工装置。
4. The machining tool moving type according to claim 1, further comprising a shake detecting sensor having the same function as that of the shake detecting sensor, wherein the two shake detecting sensors are arranged at different detection positions. Processing equipment.
【請求項5】 前記加工工具はバイドである請求項1〜
4のいずれかに記載の加工工具移動式加工装置。
5. The machining tool is a binder.
The machining tool moving machining apparatus according to any one of 4 above.
【請求項6】 前記振れ検出センサは、前記回転主軸の
軸中心の変化の量を検出するとともに、前記演算手段に
よって、前記変化の量を、前記微動調整機構を微動させ
る前に、前記振れ量から除くようにした請求項1〜6の
いずれかに記載の加工工具移動式加工装置。
6. The shake detection sensor detects the amount of change in the axis center of the rotating main shaft, and the amount of change is calculated by the computing means before the fine adjustment mechanism is finely moved. The machining tool moving machining apparatus according to any one of claims 1 to 6, wherein the machining tool is movable.
【請求項7】 被加工物を回転させ、 前記被加工物の回転位置を検出し、 前記被加工物の加工基準面の振れ量を検出し、 前記振れ量の信号をサインカーブに近似した波形に整形
し、 前記近似された波形の信号に基づき前記被加工物の加工
点における加工工具の位置補正量を回転主軸の回転に同
期して算出し、 前記位置補正量の信号に基づき前記位置補正量を前記回
転位置および前記加工点ごとに出力し、 微動調整機構によって前記出力された位置補正量の信号
に基づき加工工具を微動させ、 微動調整機構を二次元的に移動させて前記被加工物の加
工を行うようにしたことを特徴とする加工工具移動式加
工方法。
7. A waveform in which a workpiece is rotated, a rotational position of the workpiece is detected, a deflection amount of a machining reference surface of the workpiece is detected, and a signal of the deflection amount is approximated to a sine curve. The position correction amount of the machining tool at the machining point of the workpiece based on the signal of the approximated waveform is calculated in synchronization with the rotation of the rotary spindle, and the position correction amount is calculated based on the signal of the position correction amount. The amount is output for each of the rotational position and the machining point, the machining tool is finely moved based on the signal of the position correction amount output by the fine movement adjustment mechanism, and the fine movement adjustment mechanism is two-dimensionally moved to move the workpiece. Machining tool moving type machining method characterized by performing the machining of.
【請求項8】 前記加工工具はバイトである請求項7記
載の加工工具移動式加工方法。
8. The machining tool moving machining method according to claim 7, wherein the machining tool is a cutting tool.
【請求項9】 さらに、前記被加工物が保持部材で保持
される回転主軸の軸中心の変化の量を検出し、 前記変化の量を、前記微動調整機構を微動させる前に、
前記振れ量から除くようにした請求項7又は8に記載の
加工工具移動式加工方法。
9. The amount of change in the shaft center of the rotating main shaft held by the holding member by the workpiece is detected, and the amount of change is finely moved before finely moving the fine adjustment mechanism.
The machining tool moving machining method according to claim 7, wherein the machining amount is excluded from the shake amount.
JP26707395A 1994-10-19 1995-10-16 Machining tool shift type machining device and its method Pending JPH08171407A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26707395A JPH08171407A (en) 1994-10-19 1995-10-16 Machining tool shift type machining device and its method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP6-253275 1994-10-19
JP25327594 1994-10-19
JP26707395A JPH08171407A (en) 1994-10-19 1995-10-16 Machining tool shift type machining device and its method

Publications (1)

Publication Number Publication Date
JPH08171407A true JPH08171407A (en) 1996-07-02

Family

ID=26541117

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26707395A Pending JPH08171407A (en) 1994-10-19 1995-10-16 Machining tool shift type machining device and its method

Country Status (1)

Country Link
JP (1) JPH08171407A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6752031B2 (en) 2000-06-07 2004-06-22 Mori Seiki Co., Ltd. NC machine tool having spindle run-out diagnosing function
JP2007198944A (en) * 2006-01-27 2007-08-09 Mitsubishi Electric Corp Deflection measuring instrument, and deflection measuring method
JP2011045962A (en) * 2009-08-27 2011-03-10 Fuji Mach Mfg Co Ltd Cutting machine and method of correcting working position of the same
DE102014111402A1 (en) 2013-08-16 2015-02-19 Fanuc Corporation Processing method with a cutting tool and wire electroerosion device
JP2017042856A (en) * 2015-08-25 2017-03-02 株式会社ディスコ Positioning device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6752031B2 (en) 2000-06-07 2004-06-22 Mori Seiki Co., Ltd. NC machine tool having spindle run-out diagnosing function
JP2007198944A (en) * 2006-01-27 2007-08-09 Mitsubishi Electric Corp Deflection measuring instrument, and deflection measuring method
JP2011045962A (en) * 2009-08-27 2011-03-10 Fuji Mach Mfg Co Ltd Cutting machine and method of correcting working position of the same
DE102014111402A1 (en) 2013-08-16 2015-02-19 Fanuc Corporation Processing method with a cutting tool and wire electroerosion device
US9760079B2 (en) 2013-08-16 2017-09-12 Fanuc Corporation Cutting tool machining method and a wire electric discharge machine
DE102014111402B4 (en) * 2013-08-16 2020-12-03 Fanuc Corporation Machining method with a cutting tool and wire electrical discharge machine
JP2017042856A (en) * 2015-08-25 2017-03-02 株式会社ディスコ Positioning device

Similar Documents

Publication Publication Date Title
JP4612086B2 (en) Machine tool with workpiece measurement reference point setting function
JP4895677B2 (en) 3-axis tool unit and processing device
JP5385330B2 (en) High precision processing equipment
EP0708391B1 (en) Processing apparatus with movable processing tool and processing method
JPH08171407A (en) Machining tool shift type machining device and its method
US5735028A (en) Processing apparatus with movable processing tool and processing method
JP2003121134A (en) Measuring method for geometric accuracy of motion
JP3660920B2 (en) Machine tool and processing method
JP3412208B2 (en) Tool cutting machine
JPH05337787A (en) Boring diameter correcting device of machine tool
JP3686450B2 (en) Rotor processing equipment with shaft
JPS59192457A (en) Positioner
JPH08141801A (en) Cutting tool moving type cutting method
JPH10277889A (en) Cutter tip position measuring device
JPH07136801A (en) Mobile turning tool type cutter
JPH03111148A (en) Machine tool
JP2001179621A (en) Displacement measurement device and grinding attachment
JPH0699336A (en) Surface roughness measuring apparatus
JPH03121751A (en) Preciseness measuring device for machine motion
JPH1133880A (en) Measuring device of nc lathe
KR100217697B1 (en) Byte moving type cutting method and device
JPH10286745A (en) Work measurement method for nc machine tool
JP2000061782A (en) Longitudinal standard position measuring method of grooved axial work
JP2007198944A (en) Deflection measuring instrument, and deflection measuring method
JPH1190788A (en) Tool blade tip position measuring device and method for numerically controlled machine tool

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040511

A02 Decision of refusal

Effective date: 20040914

Free format text: JAPANESE INTERMEDIATE CODE: A02