JP2003121134A - Measuring method for geometric accuracy of motion - Google Patents

Measuring method for geometric accuracy of motion

Info

Publication number
JP2003121134A
JP2003121134A JP2001317697A JP2001317697A JP2003121134A JP 2003121134 A JP2003121134 A JP 2003121134A JP 2001317697 A JP2001317697 A JP 2001317697A JP 2001317697 A JP2001317697 A JP 2001317697A JP 2003121134 A JP2003121134 A JP 2003121134A
Authority
JP
Japan
Prior art keywords
motion
machine
accuracy
sphere
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001317697A
Other languages
Japanese (ja)
Inventor
Yoshifumi Nonaka
義史 野中
Original Assignee
Canon Inc
キヤノン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc, キヤノン株式会社 filed Critical Canon Inc
Priority to JP2001317697A priority Critical patent/JP2003121134A/en
Publication of JP2003121134A publication Critical patent/JP2003121134A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a low-cost and simple method in which the geometric accuracy of a motion and the accuracy of a locus in an actual operating shape can be measured which was incapable of being evaluated in the measurement of the geometric accuracy of the motion by a conventional DB method or the like, as well as the geometric accuracy of a motion and the accuracy of a locus with reference to an arbitrary motion in a three-dimensional space. SOLUTION: In the measuring method for the geometric accuracy of the motion and the accuracy of the locus, a recorder which can record the locus of an operator is attached instead of a tool or the like as an operator for a machine, the recording position of the recorder is adjusted so as to be situated on the symmetry plane of the operator, the machine is operated in the same manner as an actual operation, and the locus with reference to the symmetry plane is recorded by the recorder. When the locus is recorded, a pattern is generated at each definite cycle, and speed information can be measured in addition to position information. A measured result can be quantitatively evaluated by an image processing operation.

Description

【発明の詳細な説明】Detailed Description of the Invention
【0001】[0001]
【発明の属する技術分野】工作機械、溶接機械、溶接ロ
ボット、ディスペンサ装置、ディスペンサロボット、塗
装ロボット、描画装置、印刷装置や各種ロボットなどに
代表される産業機械を含む各種機械の中で、作用素の作
用方向が作用点における対象面の法線と常に一致するよ
うに駆動制御される機械に対して運動精度の測定を行う
方法に関する。
BACKGROUND OF THE INVENTION Among various machines including industrial machines represented by machine tools, welding machines, welding robots, dispenser devices, dispenser robots, painting robots, drawing devices, printing devices, various robots, etc. The present invention relates to a method for measuring motion accuracy of a machine whose drive is controlled so that the action direction always matches the normal line of the target surface at the action point.
【0002】[0002]
【従来の技術】直線運動の運動精度を測定する装置とし
てレニショウによる特許2630345号や中央精機
(株)の特公平06−017786号公報、特公平07
−031054号公報があり、商品名「ストレータ」と
して知られている。
2. Description of the Related Art Japanese Patent No. 26303345 by Renishaw and Japanese Patent Publication No. 06-017786 of Chuo Seiki Co., Ltd. and Japanese Patent Publication No. 07 as devices for measuring the accuracy of linear motion.
No. 031054 is available, and it is known as a product name “Strator”.
【0003】円弧運動の運動精度を測定する方法として
広く知られているものにDBB法があり、これにはレニ
ショウによる特開平05−256602号公報、特開平
09−229603号公報、特公平07−081804
号公報や牧野フライス製作所による特公平08−015
704や不二越らによる特開平06−091486号公
報があり、商品として聖和精機(株)の「DBB測定シ
ステム」、レニショー(株)の「QC10」等が知られ
ている。また、DBB法以外に円弧運動の運動精度を測
定する方法として、基準リングをトレースする方法で
(株)不二越の「CARYサーキュラテスト」等が商品
として知られている。
The DBB method is widely known as a method for measuring the motion accuracy of the circular arc motion. It is disclosed in JP-A-05-256602, JP-A-09-229603 and JP-B-07- by Renishaw. 081804
Japanese Patent Publication No. 08-015 by Makino Milling Co., Ltd.
704 and Fujikoshi et al. Disclose Japanese Patent Laid-Open No. 06-091486, and "DBB measurement system" by Seiwa Seiki Co., Ltd., "QC10" by Renishaw Co., Ltd., etc. are known as products. In addition to the DBB method, a method of tracing a reference ring is known as a product such as "CARY Circular Test" by Fujikoshi Co., Ltd. as a method for measuring the motion accuracy of circular motion.
【0004】格子状スケールを利用するものとしてハイ
デンハイン(株)の「KGM101」が商品と知られ、
これに類似する垣野らの方法については精密工学会誌V
ol.62、N0.11、1996 p.1612〜p.1
616にみられる。
"KGM101" manufactured by HEIDENHAIN Co., Ltd. is known as a product that utilizes a grid-like scale.
Kakino et al.'S method, which is similar to this, is published in Japan Society for Precision Engineering V
ol.62, N0.11, 1996 p.1612-p.1
616.
【0005】追尾式レーザ干渉計を用いる方法として工
業技術院、東京精密による特開平07−239209号
公報、特許2755346号がある。
As a method using a tracking laser interferometer, there are Japanese Patent Laid-Open No. 07-239209 and Japanese Patent No. 2755346 by Tokyo Institute of Technology.
【0006】[0006]
【発明が解決しようとする課題】しかしながら、上記従
来例では以下のような課題がある。
However, the above-mentioned conventional example has the following problems.
【0007】直線運動の運動精度を測定する装置である
特許2630345号、特公平06−017786号公
報、特公平07−031054号公報では測定が1軸の
直動ステージの運動精度に限定されてしまい、2軸以上
を同期させる運動では実際の運動軌跡に見合った測定が
できない。また、回転軸を有する運動機構には適用でき
ない。
In Japanese Patent No. 2630345, Japanese Patent Publication No. 06-017786, and Japanese Patent Publication No. 07-031054, which are devices for measuring the motion accuracy of linear motion, the measurement is limited to the motion accuracy of the uniaxial translation stage. With motions that synchronize two or more axes, it is not possible to perform measurements that match the actual motion locus. Moreover, it cannot be applied to a motion mechanism having a rotation axis.
【0008】円弧運動の運動精度を測定するDBB法と
しての特開平05−256602号公報、特開平09−
229603号公報、特公平07−081804号公報
や特公平08−015704号公報、特開平06−09
1486号公報等では対象が円弧補間運動に限定され
る、2次元的な軌跡に限定されるといった問題があり、
実際の機械の動きにおける測定は困難である。
JP-A-05-256602 and JP-A-09-56602 as DBB methods for measuring the motion accuracy of circular arc motion.
229603, Japanese Patent Publication No. 07-081804, Japanese Patent Publication No. 08-015704, and Japanese Patent Laid-Open No. 06-09.
In the 1486 publication, there is a problem that the target is limited to a circular interpolation motion and is limited to a two-dimensional trajectory.
It is difficult to measure the actual machine movement.
【0009】格子状スケールを利用する方法では2次元
的平面内では任意の動きに対応して測定が可能である
が、格子状スケールに直交する方向の動きを検出できず
3次元的な動きには対応できない。また、格子状スケー
ル自体を大きく製作する事が困難である。
In the method using the grid-like scale, it is possible to measure any movement in a two-dimensional plane, but the movement in the direction orthogonal to the grid-like scale cannot be detected and the movement becomes a three-dimensional movement. Cannot handle. Also, it is difficult to make the lattice scale itself large.
【0010】追尾式レーザ干渉計を用いる方法、特開平
07−239209号公報、特許2755346号は3
次元的な動きに対応した測定が可能であるが、装置自体
が高価である、追尾式レーザ干渉計を機外に設置する、
追尾式レーザ干渉計自体が大きい、回転軸を持つ機械で
は運動機構の物理的な干渉で測定ができない場合があ
る、といった問題がある。
A method using a tracking type laser interferometer, Japanese Patent Laid-Open No. 07-239209 and Japanese Patent No. 2755346, describes 3
It is possible to measure in response to dimensional movements, but the device itself is expensive.Install a tracking laser interferometer outside the machine,
There are problems that the tracking type laser interferometer itself is large, and in a machine having a rotation axis, measurement may not be possible due to physical interference of the motion mechanism.
【0011】また、以上に述べた従来技術では測定装置
を取り付けるために例えば工作機械のテーブルにワーク
を載せられない、ロボットのハンドにワークを把持させ
たままで動かせない等、実際の運用形態と異なる状態で
測定する事になり、正確な評価とはなりにくい。
Further, in the above-mentioned conventional technique, since the measuring device is attached, for example, the work cannot be placed on the table of the machine tool, and the robot hand cannot move while holding the work, which is different from the actual operation mode. It will be measured in the state, so it is difficult to obtain an accurate evaluation.
【0012】そのため例えば工作機械では実際の加工時
とは異なる状態で運動精度の測定を行う工程と、加工後
の測定で明らかになるワークの加工誤差を運動精度補正
にフィードバックする工程の繰り返しが避けられない。
Therefore, for example, in a machine tool, the repetition of the step of measuring the motion accuracy in a state different from that during actual machining and the step of feeding back the machining error of the work which becomes apparent in the measurement after machining to the motion accuracy correction are avoided. I can't.
【0013】[0013]
【課題を解決するための手段】本発明では従来技術の課
題を解決するために 1.機械の運動精度を測定する方法で、該機械が該機械
の作用素を、該作用素が作用を及ぼす対象面に対して、
該作用素の作用方向と、前記作用素が前記対象面に対し
て作用を及ぼす位置における前記対象面の法線方向が一
致するように駆動制御される機械において、前記作用素
が取り付く部分に外径寸法が既知の基準球を備え、該基
準球の変位を検出する変位検出手段を1つ以上備え、前
記変位検出手段の出力を記録する記録装置を備え、前記
基準球の中心は前記作用素の作用点が前記基準球の球面
上に等しくなるよう調整され、前記変位検出手段は通常
の運用時に対象面が固定される場所に固定され、前記変
位検出手段は所望の方向から前記基準球の変位を検出可
能に検出方向が調整され、前記機械を前記基準球の前記
球面を前記対象面として駆動制御を行い、この時の前記
変位検出手段の出力を前記記録装置に記録する事を特徴
とする運動精度の測定方法を提供し、 2.1に記載の変位検出手段が接触式である事を特徴と
する運動精度の測定方法を提供し、 3.1の記載の変位検出手段が非接触式である事を特徴
とする運動精度の測定方法を提供、 4.1〜3に記載の運動精度の測定方法により運動精度
が保証された機械を提供し、 5.4に記載の機械で製造された製造物を提供するもの
である。
SUMMARY OF THE INVENTION In order to solve the problems of the prior art, the present invention is as follows. A method of measuring the motion accuracy of a machine, wherein the machine applies an operator of the machine to a target surface on which the operator acts.
In a machine that is drive-controlled so that the action direction of the operator and the normal direction of the target surface at the position where the operator acts on the target surface match, the outer diameter dimension is the outer diameter of the part to which the operator is attached. A known reference sphere is provided, one or more displacement detection means for detecting the displacement of the reference sphere is provided, and a recording device for recording the output of the displacement detection means is provided, and the center of the reference sphere is the operating point of the operator. It is adjusted to be equal on the spherical surface of the reference sphere, the displacement detecting means is fixed at a position where the target surface is fixed during normal operation, and the displacement detecting means can detect the displacement of the reference sphere from a desired direction. The detection direction is adjusted to, the machine is driven and controlled with the spherical surface of the reference sphere as the target surface, and the output of the displacement detection means at this time is recorded in the recording device. A method for measuring motion accuracy, characterized in that the displacement detecting means described in 2.1 is a contact type, and the displacement detecting means described in 3.1 is a non-contact type. And a machine whose movement accuracy is guaranteed by the movement accuracy measuring method described in 4.1 to 3, and a product manufactured by the machine described in 5.4. Is provided.
【0014】[0014]
【発明の実施の形態】図1に本発明の特徴を最も良く表
わす実施例を示す。ここではXYZの直交3軸と回転2
軸の座標系を持つ5軸制御のマシニングセンタ等の工作
機械に本発明を適用している。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows an embodiment that best represents the features of the present invention. Here, three orthogonal axes of XYZ and rotation 2
The present invention is applied to a machine tool such as a 5-axis control machining center having an axis coordinate system.
【0015】1−1は工作機械の作用素である工具に変
わって取り付けられた外径寸法が既知の基準球である。
1−2a、bは該基準球の変位を検出する変位検出手
段、1−3は前記作用素の対象面を持つ工作物が固定さ
れるテーブル、1−4は基準球1−1が取り付けられる
主軸、1−5は主軸1−4を回転可動にする第1の回転
機構、1−6は主軸1−4、第1の回転機構1−5を搭
載し回転可動にする第2の回転機構、1−7は主軸1−
4、第1の回転機構1−5、第2の回転機構1−6が取
り付けられるZ軸移動体である。1−8はZ軸移動体が
移動可能に取り付けられるコラム、1−9はテーブル1
−3を搭載するサドルである。テーブル1−3とサドル
1−9により対象面を持つ工作物はX軸及びY軸方向に
移動可能である。1−10はベッドで1−1〜1−9が
搭載される。1−11は変位検出手段1−2a、bの出
力を記録する記録装置である。
Reference numeral 1-1 is a reference sphere having a known outer diameter, which is attached in place of a tool which is an operator of a machine tool.
1-2a and b are displacement detecting means for detecting the displacement of the reference sphere, 1-3 is a table on which a workpiece having a target surface of the operator is fixed, 1-4 is a spindle to which the reference sphere 1-1 is attached. , 1-5 is a first rotating mechanism that makes the spindle 1-4 rotatably movable, 1-6 is a second rotating mechanism that has the spindle 1-4 and the first rotating mechanism 1-5 mounted therein and is rotatably movable, 1-7 is the spindle 1-
4, the 1st rotation mechanism 1-5, and the 2nd rotation mechanism 1-6 are Z axis moving bodies attached. 1-8 is a column on which the Z-axis moving body is movably mounted, and 1-9 is a table 1
It is a saddle equipped with -3. The workpiece having the target surface can be moved in the X-axis and Y-axis directions by the table 1-3 and the saddle 1-9. 1-10 is a bed on which 1-1 to 1-9 are mounted. Reference numeral 1-11 is a recording device for recording the outputs of the displacement detecting means 1-2a and 1-2b.
【0016】フライス盤やマシニングセンタ等の工作機
械における本来の加工では、主軸1−4に取り付けられ
た作用素である工具とテーブル1−3上に固定された工
作物が相対運動を行い材料を除去し所望の形状を得る。
本発明における運動精度測定の方法では作用素が取り付
く部分に外径寸法が既知の基準球1−1を備え、作用素
の作用点が基準球の球面上に位置するようにその中心位
置が調整されている。
In the original machining of a machine tool such as a milling machine or a machining center, a tool, which is an operator attached to the spindle 1-4, and a workpiece fixed on the table 1-3 make a relative motion to remove the material, which is desired. Get the shape of.
In the method of measuring motion accuracy according to the present invention, the portion to which the operator is attached is provided with the reference sphere 1-1 whose outer diameter is known, and the center position of the operator is adjusted so that the action point of the operator is located on the spherical surface of the reference sphere. There is.
【0017】本実施例において、この基準球1−1に対
して変位検出手段1−2a、bはテーブル1−3及びサ
ドル1−9の移動方向、X軸及びY軸方向から基準球1
−1の変位を検出可能なように調整され、テーブル1−
3に固定されている。運動精度測定時において前記機械
は基準球1−1がテーブル1−3に固定された工作物で
あるかのように駆動制御され、変位検出手段1−2a、
bにより検出された変位出力が運動精度として記録装置
1−11に記録される。
In the present embodiment, the displacement detecting means 1-2a, b with respect to the reference sphere 1-1 is based on the moving direction of the table 1-3 and the saddle 1-9, the X-axis and the Y-axis direction, and the reference sphere 1.
-1 is adjusted so that the displacement can be detected, and the table 1-
It is fixed at 3. At the time of measuring the motion accuracy, the machine is driven and controlled as if the reference sphere 1-1 is a workpiece fixed to the table 1-3, and the displacement detecting means 1-2a,
The displacement output detected by b is recorded in the recording device 1-11 as motion accuracy.
【0018】測定時の様子をより詳しく説明したのが図
4である。4−1は基準球、4−2は基準球4−1を機
械に取り付けるための部材、4−3a、b、cは変位検
出手段である。4−4は説明のために示した作用素の軌
跡で、測定時の機械の動きを、基準球4−1がテーブル
に固定されているとみなした場合に作用素が基準球4−
1上に描く軌跡である。L1、L2はともに機械側の作
用素が取り付けられる基準位置から見た場合の距離で、
L1は本発明による運動精度測定法の実施にあわせて調
整されて取り付けられた基準球4−1中心までの距離、
L2は機械の作用素の作用点までの距離である。
FIG. 4 is a more detailed description of the state during measurement. Reference numeral 4-1 is a reference sphere, 4-2 is a member for attaching the reference sphere 4-1 to a machine, and 4-3a, b, and c are displacement detecting means. Reference numeral 4-4 is a locus of the operator shown for the purpose of explanation, and when the movement of the machine at the time of measurement is regarded as the reference sphere 4-1 being fixed to the table, the operator is the reference sphere 4-.
It is a locus drawn on 1. Both L1 and L2 are distances when viewed from the reference position where the operator on the machine side is attached,
L1 is the distance to the center of the reference sphere 4-1 which is adjusted and attached in accordance with the implementation of the motion accuracy measuring method according to the present invention,
L2 is the distance to the point of action of the operator of the machine.
【0019】測定時の機械の動きは基準球4−1がテー
ブル側に固定された工作物とみなして、基準球4−1の
球面上に作用素が作用するように駆動制御される。この
時、機械が理想的に動けば基準球4−1が空間上でその
中心回りに自転する事になり、変位検出手段4−3a、
b、cには基準球4−1の真球度のみが検出されること
になる。
The movement of the machine at the time of measurement is controlled so that the reference sphere 4-1 is regarded as a workpiece fixed to the table side and the operator acts on the spherical surface of the reference sphere 4-1. At this time, if the machine ideally moves, the reference sphere 4-1 rotates about its center in space, and the displacement detecting means 4-3a,
Only the sphericity of the reference sphere 4-1 is detected in b and c.
【0020】しかしながら機械が理想的に動くことはな
く、実際の測定では基準球4−1の真球度に機械の運動
精度が重畳された形の出力が変位検出手段4−3a、
b、cから得られ、記録装置4−5に記録される。図中
の変位検出手段4−3a、b、cは直交座標系をなすよ
うに配置されているが、目的に応じてこの配置は自由に
換えても構わない。
However, the machine does not move ideally, and in the actual measurement, the output of the displacement detection means 4-3a, in which the motion accuracy of the machine is superimposed on the sphericity of the reference sphere 4-1 is obtained.
It is obtained from b and c and recorded in the recording device 4-5. Although the displacement detecting means 4-3a, b, c in the figure are arranged so as to form an orthogonal coordinate system, this arrangement may be freely changed according to the purpose.
【0021】また、変位検出手段4−3a、bのように
直交2軸に配置した場合は従来にDBB法と同じ測定が
可能であり、この場合の変位検出手段4−3a、bの出
力は4−5に示すリサージュを描き、DBB法と同じ評
価が可能である。また、本発明による運動精度測定方法
では軌跡4−4で示されるようにDBB法のような2次
元平面内の円弧運動精度に限らず、3次元空間内の球面
運動における運動精度を測定可能である。
When the displacement detecting means 4-3a and 4b are arranged on two orthogonal axes, the same measurement as in the conventional DBB method can be performed. In this case, the output of the displacement detecting means 4-3a and 4b is Drawing the Lissajous shown in 4-5, the same evaluation as the DBB method is possible. Further, in the motion accuracy measuring method according to the present invention, as shown by the locus 4-4, not only the arc motion accuracy in the two-dimensional plane like the DBB method but also the motion accuracy in the spherical motion in the three-dimensional space can be measured. is there.
【0022】特にDBB法では対象面の面法線を常に追
従するような機械の運動精度を測定する場合にはその測
定自体が困難で、仮にバーの両端をそれぞれ球の中心と
その球面となるように調整しても、測定装置の構成上バ
ーの長さ以上の半径を持つ球面が測定対象球面となり、
測定可能な角度範囲が制限されるが、本発明による運動
精度測定方法では、作用素の変わりに基準球を取り付け
るだけであるので、従来のDBB法のように大きな測定
空間が不要で、機械の可動可能な角度範囲での運動精度
測定が可能である。
Particularly in the DBB method, when measuring the motion accuracy of a machine that always follows the surface normal of the target surface, the measurement itself is difficult. If both ends of the bar are the center of the sphere and its spherical surface, respectively. Even if it is adjusted like this, the spherical surface having a radius equal to or longer than the length of the bar becomes the measurement target spherical surface due to the configuration of the measuring device,
Although the measurable angle range is limited, in the motion accuracy measuring method according to the present invention, only a reference sphere is attached instead of the operator, so that a large measuring space unlike the conventional DBB method is unnecessary, and the machine is movable. It is possible to measure the motion accuracy in the possible angle range.
【0023】図2は本発明による第2の実施例である。
ここではパラレルリンク機構による工作機械に適用した
例を示してある。2−1は基準球、2−2a、bは変位
検出手段、2−3は本発明による運動精度測定方法を実
施する測定空間、2−4は工作物を搭載するテーブル、
2−5は可動プレート、2−6は固定プレート、2−7
a〜2−7fはパラレルリンク機構の各リンクである。
2−8は変位検出手段2−2a、bの出力を記録する記
録装置。パラレルリンク機構は各リンク2−7a〜fの
長さを調節する事で移動プレート2−5に直線運動及び
回転運動を与え、任意の6自由度の運動を可能にする。
パラレルリンク機構のように各運動機構の動きが直接作
用素の運動と一致しない場合において本発明による運動
精度の測定方法の効果がより一層顕著である。
FIG. 2 shows a second embodiment according to the present invention.
Here, an example applied to a machine tool with a parallel link mechanism is shown. 2-1 is a reference sphere, 2-2a and b are displacement detecting means, 2-3 is a measurement space for carrying out the motion accuracy measuring method according to the present invention, 2-4 is a table on which a workpiece is mounted,
2-5 is a movable plate, 2-6 is a fixed plate, 2-7
Reference symbols a to 2-7f are links of the parallel link mechanism.
A recording device 2-8 records the output of the displacement detecting means 2-2a and 2b. The parallel link mechanism gives a linear motion and a rotary motion to the moving plate 2-5 by adjusting the length of each link 2-7a to 2f, and enables the motion of arbitrary 6 degrees of freedom.
The effect of the motion accuracy measuring method according to the present invention is more remarkable in the case where the motion of each motion mechanism does not match the motion of the direct operator like the parallel link mechanism.
【0024】図3は本発明による第3の実施例である。
ここではロボットアームの運動精度を測定している。3
−1は基準球であり、ロボットアームの用途によって溶
接用トーチ、ディスペンサ、ハンド等の作用素が取り付
けられる場所に取り付けられている。3−2a、bは変
位検出手段、3−3は変位検出手段の出力を記録する記
録装置、3−4は運動精度の測定対象であるロボットア
ームである。
FIG. 3 shows a third embodiment according to the present invention.
Here, the motion accuracy of the robot arm is measured. Three
Reference numeral -1 is a reference sphere, which is attached to a place where an operator such as a welding torch, a dispenser, or a hand is attached depending on the purpose of the robot arm. 3-2a and 3b are displacement detecting means, 3-3 is a recording device for recording the output of the displacement detecting means, and 3-4 is a robot arm whose movement accuracy is to be measured.
【0025】この実施例でも図1、図2と同様に運動精
度が測定可能である。ここでも運動機構が直動であるか
回転であるかに関わらず適用が可能である。また、運動
精度の測定結果によって溶接位置やディスペンサでの材
料供給などの位置ずれやムラの発生が予測でき、あらか
じめ対象機械に補正を施す事で損品の無い作業が実現で
きる。
Also in this embodiment, the motion accuracy can be measured as in FIGS. 1 and 2. Also in this case, it is applicable regardless of whether the motion mechanism is linear motion or rotation. Further, it is possible to predict the occurrence of positional deviation or unevenness such as welding position or material supply by a dispenser based on the measurement result of motion accuracy, and it is possible to realize work without loss by correcting the target machine in advance.
【0026】以上の実施例からも明らかなように運動精
度の測定の対象となる機械の運動機構はどのような形態
であっても本発明の実施を妨げる事はない。また、2次
元平面内の円弧運動の測定にとどまらず容易に3次元空
間における測定が可能である。さらに作用素の変わりに
基準球を持たせるだけであるため機械の可動角度範囲全
般にわたって運動精度の測定が可能であり、また、運用
形態に極めて近い状態での測定の実施が可能で機械の状
態をより正確に反映している。従来の追尾式レーザ干渉
計による方法、装置と比較しても基準球と変位検出手段
が必要なだけで測定可能であるためより簡便かつ安価で
ある。
As is clear from the above embodiments, the motion mechanism of the machine whose motion accuracy is to be measured does not hinder the practice of the present invention in any form. Further, it is possible to easily measure not only the circular motion in the two-dimensional plane but also the three-dimensional space. Furthermore, since only a reference sphere is provided instead of the operator, it is possible to measure the motion accuracy over the entire movable angle range of the machine.In addition, it is possible to perform measurement in a state very close to the operation mode and It reflects more accurately. Compared with the conventional tracking type laser interferometer method and apparatus, it is simpler and cheaper because the measurement can be performed by only requiring the reference sphere and the displacement detecting means.
【0027】ここで、変位検出手段は接触式のダイヤル
や電気マイクロ及び非接触式の渦電流変位計、静電容量
変位計等が使用可能で、この点からも従来のDBB法な
どに比較して簡便かつ安価な運動精度の測定方法であ
る。
Here, as the displacement detecting means, a contact type dial, an electric micro or non-contact type eddy current displacement meter, a capacitance displacement meter, etc. can be used. From this point as well, it is possible to compare with the conventional DBB method. It is a simple and inexpensive method of measuring motion accuracy.
【0028】以上、本発明の実施例について説明をして
きたが、本発明による実施例はこれらにとどまらず本発
明の趣旨を逸脱しない範囲で様々な実施形態を取る事が
可能である。
Although the embodiments of the present invention have been described above, the embodiments according to the present invention are not limited to these and can take various embodiments without departing from the spirit of the present invention.
【0029】[0029]
【発明の効果】以上説明したように、本発明によれば、
機械の運動精度の測定において、直動機構や回転機構と
いった運動機構の構成や同時制御軸数等の制約を受けず
に測定が可能であり、機械に作用素の代わりに基準球を
取り付けるだけで、特別な測定装置を取り付ける事が無
いため実際の機械の動きをより運用時に近い形態で直接
測定ができ、2次元平面内の直線運動や円弧運動に限定
される事無く3次元空間での球面運動に対して測定が可
能であり、対象機械の運動精度及び移動速度の評価及び
補正あるいは対象機械への移動指令値を作成するプログ
ラムの評価及びデバッグあるいは各移動軸の制御系の評
価及びデバッグが容易に行え、従来行われた運動精度の
測定、実際の加工、加工品の測定、その測定結果のフィ
ードバックによる補正といった一連の煩雑な工程が大幅
に簡素化され、測定結果から運用時の不具合が予想さ
れ、実際の運用前に対策を施す事で対象機械による製造
物の品質維持、向上が容易に達成でき、機械の運動精度
及び移動速度の実際の運用に沿った保証が可能となり、
機械のより一層の高精度化が図られ、それに伴いその機
械による製造物もより一層高精度なものとなるという効
果が得られる。
As described above, according to the present invention,
In measuring the motion accuracy of the machine, it is possible to measure without being restricted by the configuration of the motion mechanism such as the linear motion mechanism and the rotation mechanism, the number of simultaneous control axes, etc., just by attaching the reference sphere to the machine instead of the operator. Since no special measuring device is attached, the actual machine movement can be directly measured in a form closer to that during operation, and spherical movement in a three-dimensional space is not limited to linear movement and circular movement in a two-dimensional plane. It is possible to measure, and it is easy to evaluate and correct the motion accuracy and movement speed of the target machine, or to evaluate and debug the program that creates the movement command value to the target machine or the control system of each moving axis. It is possible to perform a series of complicated processes such as motion accuracy measurement, actual machining, workpiece measurement, and correction by feedback of the measurement results, which has been greatly simplified. From the results, malfunctions are expected to occur, and by taking measures before actual operation, it is possible to easily maintain and improve the quality of the product manufactured by the target machine, and in line with the actual operation of the machine's motion accuracy and movement speed. Warranty becomes possible,
It is possible to obtain the effect that the accuracy of the machine is further improved and the products manufactured by the machine are also highly accurate accordingly.
【図面の簡単な説明】[Brief description of drawings]
【図1】 本発明による第1の実施例で、5軸制御の工
作機械に適用した例を示す図
FIG. 1 is a diagram showing an example applied to a machine tool of 5-axis control in a first embodiment according to the present invention.
【図2】 本発明による第2の実施例で、パラレルリン
ク機構を有する工作機械に適用した例を示す図
FIG. 2 is a diagram showing an example applied to a machine tool having a parallel link mechanism in a second embodiment according to the present invention.
【図3】 本発明による第3の実施例で、ロボットアー
ムに適用した例を示す図
FIG. 3 is a diagram showing an example applied to a robot arm in a third embodiment according to the present invention.
【図4】 本発明による測定の様子をより詳しく説明し
た例を示す図
FIG. 4 is a diagram showing an example in which the state of measurement according to the present invention is described in more detail.
【図5】 従来技術の例で直線運動測定方法の例を示す
FIG. 5 is a diagram showing an example of a linear motion measuring method in the example of the related art.
【図6】 従来技術の例でDBB法による運動精度測定
方法の例を示す図
FIG. 6 is a diagram showing an example of a motion accuracy measuring method by a DBB method in an example of a conventional technique.
【図7】 従来技術の例で追尾式レーザを用いる運動精
度測定方法の例を示す図
FIG. 7 is a diagram showing an example of a motion accuracy measuring method using a tracking laser in an example of a conventional technique.
【符号の説明】[Explanation of symbols]
1−1 工作機械の作用素である工具に変わって取り付
けられた外径寸法が既知の基準球 1−2a、b 該基準球の変位を検出する変位検出手段 1−3 前記作用素の対象面を持つ工作物が固定される
テーブル 1−4 基準球1−1が取り付けられる主軸 1−5 主軸1−4を回転可動にする第1の回転機構 1−6 主軸1−4、第1の回転機構1−5を搭載し回
転可動にする第2の回転機構 1−7 主軸1−4、第1の回転機構1−5、第2の回
転機構1−6が取り付けられるZ軸移動体 1−8 Z軸移動体が移動可能に取り付けられるコラ
ム。 1−9 テーブル1−3を搭載するサドル 1−10 1−1〜1−9が搭載されるベッド 1−11は変位検出手段1−2a、bの出力を記録する
記録装置
1-1 Reference spheres 1-2a, b having known outer diameter dimensions, which are attached instead of a tool which is an operator of a machine tool, and displacement detecting means 1-3 for detecting the displacement of the reference sphere. A table 1-4 on which a workpiece is fixed A spindle 1-5 to which a reference sphere 1-1 is attached A first rotating mechanism 1-6 for rotatably moving a spindle 1-4 A spindle 1-4, a first rotating mechanism 1 Second rotation mechanism 1-7 that mounts -5 and is rotatably movable Main shaft 1-4, first rotation mechanism 1-5, Z-axis moving body 1-8 Z to which second rotation mechanism 1-6 is attached A column to which the axis moving body is movably attached. 1-9 Bed 1-31 on which a saddle 1-10 that mounts a table 1-3 is mounted, and a bed 1-11 that records the output of displacement detection means 1-2a, b
フロントページの続き Fターム(参考) 2F062 AA04 BB09 BC54 BC56 CC26 DD03 EE01 EE62 EE63 EE66 FF05 FF07 GG09 GG18 GG44 GG61 GG68 LL07 2F069 AA04 AA06 BB02 BB04 CC08 DD12 GG01 GG04 GG06 GG12 GG14 GG62 HH01 HH09 JJ15 MM02 PP01 3C029 EE02 Continued front page    F term (reference) 2F062 AA04 BB09 BC54 BC56 CC26                       DD03 EE01 EE62 EE63 EE66                       FF05 FF07 GG09 GG18 GG44                       GG61 GG68 LL07                 2F069 AA04 AA06 BB02 BB04 CC08                       DD12 GG01 GG04 GG06 GG12                       GG14 GG62 HH01 HH09 JJ15                       MM02 PP01                 3C029 EE02

Claims (5)

    【特許請求の範囲】[Claims]
  1. 【請求項1】 機械の運動精度を測定する方法で、該機
    械が該機械の作用素を、該作用素が作用を及ぼす対象面
    に対して、該作用素の作用方向と、前記作用素が前記対
    象面に対して作用を及ぼす位置における前記対象面の法
    線方向が一致するように駆動制御される機械において、 前記作用素が取り付く部分に外径寸法が既知の基準球を
    備え、該基準球の変位を検出する変位検出手段を1つ以
    上備え、前記変位検出手段の出力を記録する記録装置を
    備え、前記作用素の作用点が前記基準球の球面上に等し
    くなるよう前記基準球の中心が調整され、前記変位検出
    手段は通常の運用時に対象面が固定される場所に固定さ
    れ、前記変位検出手段は所望の方向から前記基準球の変
    位を検出可能に検出方向が調整され、前記機械を前記基
    準球の前記球面を前記対象面として駆動制御を行い、こ
    の時の前記変位検出手段の出力を前記記録装置に記録す
    る事を特徴とする運動精度の測定方法。
    1. A method for measuring the motion accuracy of a machine, wherein the machine applies an operator of the machine to an object surface on which the operator acts, and an action direction of the operator and the operator to the object surface. In a machine that is drive-controlled so that the normal direction of the target surface at a position that exerts an action against each other coincides, a portion to which the operator is attached is provided with a reference sphere with a known outer diameter dimension, and the displacement of the reference sphere is detected. One or more displacement detecting means for recording the output of the displacement detecting means, and the center of the reference sphere is adjusted so that the action points of the operators are equal to the spherical surface of the reference sphere. The displacement detecting means is fixed to a place where the target surface is fixed during normal operation, the displacement detecting means adjusts the detection direction so that the displacement of the reference sphere can be detected from a desired direction, and the machine is set to the reference sphere. The spherical surface Serial performs drive control as the target surface, the measuring method of the motion accuracy, characterized in that for recording the output of the displacement detecting means when the said recording device.
  2. 【請求項2】 請求項1記載の変位検出手段が接触式で
    ある事を特徴とする運動精度の測定方法。
    2. A movement accuracy measuring method, wherein the displacement detecting means according to claim 1 is a contact type.
  3. 【請求項3】 請求項1記載の変位検出手段が非接触式
    である事を特徴とする運動精度の測定方法。
    3. A method of measuring motion accuracy, wherein the displacement detecting means according to claim 1 is a non-contact type.
  4. 【請求項4】 請求項1,2又は3記載の運動精度の測
    定方法により運動精度が保証された事を特徴とする機
    械。
    4. A machine characterized in that the accuracy of movement is guaranteed by the method of measuring the accuracy of movement according to claim 1, 2.
  5. 【請求項5】 請求項4記載の機械で製造された事を特
    徴とする製造物。
    5. A product manufactured by the machine according to claim 4.
JP2001317697A 2001-10-16 2001-10-16 Measuring method for geometric accuracy of motion Pending JP2003121134A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001317697A JP2003121134A (en) 2001-10-16 2001-10-16 Measuring method for geometric accuracy of motion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001317697A JP2003121134A (en) 2001-10-16 2001-10-16 Measuring method for geometric accuracy of motion

Publications (1)

Publication Number Publication Date
JP2003121134A true JP2003121134A (en) 2003-04-23

Family

ID=19135528

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001317697A Pending JP2003121134A (en) 2001-10-16 2001-10-16 Measuring method for geometric accuracy of motion

Country Status (1)

Country Link
JP (1) JP2003121134A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009057229A1 (en) * 2007-11-02 2009-05-07 Makino Milling Machine Co., Ltd. Method and device for preparing error map and numerically controlled machine tool having error map preparation function
JP2009202257A (en) * 2008-02-27 2009-09-10 Jtekt Corp Evaluation method for simultaneous multi-spindle control
JP2010105117A (en) * 2008-10-29 2010-05-13 Makino Milling Mach Co Ltd Accuracy measuring method, error correction method for numerically controlled machine tool and numerically controlled machine tool with error correcting function
JP2012079358A (en) * 2012-01-27 2012-04-19 Makino Milling Mach Co Ltd Error map creation method, device, and numerical control machine tool with an error map creation function
JP2012104153A (en) * 2012-01-27 2012-05-31 Makino Milling Mach Co Ltd Method and device for creating error map, and numerically controlled machine tool having error map creating function
CN106002377A (en) * 2016-06-27 2016-10-12 北京航天控制仪器研究所 Machining method for improving coaxiality accuracy of opposite holes of part
CN111958603A (en) * 2020-08-20 2020-11-20 成都卡诺普自动化控制技术有限公司 Mechanical arm kinematic parameter separation measuring device and identification method
CN112846936A (en) * 2020-12-31 2021-05-28 广州铁路职业技术学院(广州铁路机械学校) Method for calibrating accuracy of trigger type measuring head in on-machine detection

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101158772B1 (en) 2007-11-02 2012-06-22 마키노 밀링 머신 주식회사 Numerically controlled machine tool and numerically control device
US8786243B2 (en) 2007-11-02 2014-07-22 Makino Milling Machine Co., Ltd. Method and device for preparing error map and numerically controlled machine tool having error map preparation function
US8680806B2 (en) 2007-11-02 2014-03-25 Makino Milling Machine Co., Ltd. Numerically controlled machine tool and numerical control device
KR101088843B1 (en) 2007-11-02 2011-12-06 마키노 밀링 머신 주식회사 Method and device for preparing error map and numerically controlled machine tool having error map preparation function
JP5058270B2 (en) * 2007-11-02 2012-10-24 株式会社牧野フライス製作所 How to create an error map
WO2009057229A1 (en) * 2007-11-02 2009-05-07 Makino Milling Machine Co., Ltd. Method and device for preparing error map and numerically controlled machine tool having error map preparation function
JP2009202257A (en) * 2008-02-27 2009-09-10 Jtekt Corp Evaluation method for simultaneous multi-spindle control
JP2010105117A (en) * 2008-10-29 2010-05-13 Makino Milling Mach Co Ltd Accuracy measuring method, error correction method for numerically controlled machine tool and numerically controlled machine tool with error correcting function
JP2012104153A (en) * 2012-01-27 2012-05-31 Makino Milling Mach Co Ltd Method and device for creating error map, and numerically controlled machine tool having error map creating function
JP2012079358A (en) * 2012-01-27 2012-04-19 Makino Milling Mach Co Ltd Error map creation method, device, and numerical control machine tool with an error map creation function
CN106002377A (en) * 2016-06-27 2016-10-12 北京航天控制仪器研究所 Machining method for improving coaxiality accuracy of opposite holes of part
CN111958603A (en) * 2020-08-20 2020-11-20 成都卡诺普自动化控制技术有限公司 Mechanical arm kinematic parameter separation measuring device and identification method
CN111958603B (en) * 2020-08-20 2021-06-01 成都卡诺普自动化控制技术有限公司 Mechanical arm kinematic parameter separation measuring device and identification method
CN112846936A (en) * 2020-12-31 2021-05-28 广州铁路职业技术学院(广州铁路机械学校) Method for calibrating accuracy of trigger type measuring head in on-machine detection

Similar Documents

Publication Publication Date Title
JP6126067B2 (en) Collaborative system with machine tool and robot
US8494800B2 (en) Method and program for identifying mechanical errors
JP2008275624A (en) Coordinate measuring method and device
JP2015203567A (en) Metrology system
JP2015109023A (en) Multi-shaft machine tool geometrical error identification method and multi-shaft machine tool
CN102207731B (en) Machine tool having function of setting measurement reference point of workpiece
JP2006212765A (en) Thermal displacement correcting method of machine tool
JP2018151965A (en) Control system for machine tool
JP2017217748A (en) Method and system for press-fitting components
JP2014215079A (en) Geometric deviation measurement method, and geometric deviation measurement device
JP2831610B2 (en) measuring device
JP5317627B2 (en) Error correction method
JP2003121134A (en) Measuring method for geometric accuracy of motion
JP5201871B2 (en) Shape measuring method and apparatus
JP2004322255A (en) Machine tool with straight line position measuring instrument
JP5071250B2 (en) Parallel mechanism and calibration method thereof
JP5359651B2 (en) Shape measuring device
JP6803043B2 (en) How to measure geometric error of machine tools
JP2007144542A (en) Parallel mechanism and its calibration method
JP2003121545A (en) Method for measuring motion accuracy and traveling speed
JP3660920B2 (en) Machine tool and processing method
JP2004154907A (en) Thermal displacement correction method and device for multishaft machining tool
JP2006334683A (en) Polar coordinate control type machining center
JP3604473B2 (en) Machine Tools
JP6816060B2 (en) Work robot system and work robot