JPH08170482A - Excavating bit and manufacture thereof - Google Patents

Excavating bit and manufacture thereof

Info

Publication number
JPH08170482A
JPH08170482A JP33367694A JP33367694A JPH08170482A JP H08170482 A JPH08170482 A JP H08170482A JP 33367694 A JP33367694 A JP 33367694A JP 33367694 A JP33367694 A JP 33367694A JP H08170482 A JPH08170482 A JP H08170482A
Authority
JP
Japan
Prior art keywords
powder material
sintering
shank
crown member
hardness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP33367694A
Other languages
Japanese (ja)
Other versions
JP2896749B2 (en
Inventor
Masahiro Sakai
昌宏 酒井
Yasuki Miyakoshi
康樹 宮腰
Hidenori Takahashi
英徳 高橋
Shuichi Kamoda
秀一 鴨田
Tamotsu Akashi
保 明石
Hiroaki Takayama
紘明 高山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eagle Industry Co Ltd
Sumitomo Coal Mining Co Ltd
Original Assignee
Eagle Industry Co Ltd
Sumitomo Coal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eagle Industry Co Ltd, Sumitomo Coal Mining Co Ltd filed Critical Eagle Industry Co Ltd
Priority to JP6333676A priority Critical patent/JP2896749B2/en
Publication of JPH08170482A publication Critical patent/JPH08170482A/en
Application granted granted Critical
Publication of JP2896749B2 publication Critical patent/JP2896749B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE: To provide an excavating bit excellent in wear resistance and mechanical strength at the time of excavation while reducing the number of manufacturing processes. CONSTITUTION: Sintering powder material 11-13 are filled in a sintering die 30, with such blending gradation that the content of a Co binder is higher at the base end side part than the tip side part of a vertex member 10. Or powder material 11 with Co as a binder is filled in the tip side part of the vertex member 10, and powder material 12, 13 for hard metal sintering with Fe or Ni as a binder are filled in the other part in the sintering die. A shank member 20 is brought into pressure contact with the powder material 13 to perform sintering while applying pressure. As a result, the vertex member 10 with such hardness inclination that hardness is higher toward the tip side and tenacity is higher toward the base end side is integrally fusion-connected to the shank member 20.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、例えば掘削装置の先端
に設けられて岩盤又は地山等の掘削に用いられるビット
及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a bit provided at the tip of an excavator and used for excavating rock or rock, and a method for manufacturing the bit.

【0002】[0002]

【従来の技術】この種の掘削用ビットは、典型的には図
4に示すように、刃先としてのチップ1と、これを保持
する基体であるシャンク2とからなる。チップ1は岩盤
等の結合組織の破壊を行う主体であって、硬度が非常に
高いものである必要があるため超硬合金が使用され、シ
ャンク2には炭素鋼あるいはニッケル・クロム・モリブ
デン鋼(以下、Ni−Cr−Mo鋼という)が使用され
ている。
2. Description of the Related Art A drill bit of this type typically comprises, as shown in FIG. 4, a tip 1 as a cutting edge and a shank 2 which is a base body for holding the tip. The tip 1 is the main body that destroys the connective structure of rock, etc., and it is necessary to have a very high hardness, so cemented carbide is used, and the shank 2 is made of carbon steel or nickel-chromium-molybdenum steel ( Hereinafter, Ni-Cr-Mo steel) is used.

【0003】上述の掘削用ビットは、従来、以下のよう
な工程を経て製造される。 (1) まず、炭素鋼あるいはNi−Cr−Mo鋼からなる
素材丸棒を切削加工することによってシャンク2を切り
出し、その全体の硬度及び靭性を高めるために熱処理
(真空焼入れ及び真空焼戻し)を行う。 (2) 次に、別に準備した超硬合金(例えばJIS H5
501 G1〜3)からなるチップ1に溶融した銀ろう
材あるいは黄銅ろう材3を塗布し、これをシャンク2の
先端に形成された孔部2aに嵌合する。 (3) この工程による嵌合物を再度700〜900℃に加
熱することによって、前記ろう材3を再溶融し、前記孔
部2aとチップ1との間の隙間を埋める。 (4) 次いで、前記孔部2aからの溢出ろう材等によって
チップ1及びシャンク2の表面に付着した物質を、鋼粒
の高速吹き付け(ショットピーニング)によって除去す
る。 (5) さらに、シャンク2におけるチップ1の近傍部分を
高周波焼き入れによって部分硬化させ、前記(3) の加熱
工程でろう材3を再溶融させた際の熱履歴によって低下
した硬度を回復させることもある。 (6) 表面の研磨、塗装を行う。
[0003] The above-mentioned excavation bit is conventionally manufactured through the following steps. (1) First, a shank 2 is cut out by cutting a material round bar made of carbon steel or Ni-Cr-Mo steel, and heat treatment (vacuum quenching and vacuum tempering) is performed to enhance the hardness and toughness of the entire shank 2. . (2) Next, a separately prepared cemented carbide (for example, JIS H5
Molten silver brazing material or brass brazing material 3 is applied to the chip 1 made of 501 G1 to 501) and fitted into the hole 2a formed at the tip of the shank 2. (3) The brazing filler metal 3 is re-melted by heating the mating product obtained in this step to 700 to 900 ° C. again, and the gap between the hole 2 a and the chip 1 is filled. (4) Next, the substances adhered to the surfaces of the chip 1 and the shank 2 by the brazing filler metal or the like from the hole 2a are removed by high-speed spraying (shot peening) of steel grains. (5) Further, a portion of the shank 2 in the vicinity of the tip 1 is partially hardened by induction hardening to recover the hardness reduced by the heat history when the brazing filler metal 3 is remelted in the heating step (3). There is also. (6) Polish the surface and paint.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記従
来技術による掘削用ビットの製造方法によれば、以下に
列挙するような問題がある。
However, the method of manufacturing a drill bit according to the prior art has the following problems.

【0005】a.上述のような多くの工程を必要とする
ので作業が煩雑であり、とくに(2)(3)の工程によるろう
付けは熟練を要する作業であるため、品質のばらつきが
大きくなることが避けられない。 b.チップ1とシャンク2の孔部2aとの間の隙間に
は、ろう材3が完全に充填される必要があるが、チップ
1の圧入嵌合の際に閉じ込められる空気等によって、チ
ップ1と前記孔部2aとの間にある程度の空隙が発生す
ることは避けられず、実際に製品を切断してその断面を
観察してみると、ろう材3は70〜80%程度しか充填
されておらず、したがって接合強度のばらつきが大き
く、掘削時に、チップ1に対する保持強度の不足によっ
て破損される恐れがある。 c.チップ1を空気中で加熱するので、これを構成する
超硬合金の組織に熱劣化を起こし(η相の発生)、耐摩
耗性の低下を招来する。 d.ろう付けによってチップを保持した構造のビット
は、過酷な条件で使用されると、ビットの表面温度が摩
擦熱によって700〜800℃に上昇して、ろう材3の
軟化温度域あるいは融点温度に達してしまうことがあ
り、このためチップ1に対するシャンク2の保持能力が
低下し、チップ1が脱落してしまうことがある。また、
製造上の制約によりシャンク2の硬度の上限はHR C4
5〜50程度に過ぎず、使用時にはその支持肩部2bも
地山の土石に接触されるから、この部分の摩耗によって
もチップ1に対する支持強度が低下する。 e.チップ1ばかりでなくシャンク2の支持肩部2bも
摩耗するので、ある程度摩耗が進行したらビット全体を
交換する必要があり、不経済である。 f.土石や岩盤を破砕するチップの掘削性能は、硬度が
高ければ高いほど優れているが、一方、その先端から基
端に至る軸方向においては、振動、衝撃等に対する耐負
荷特性(靭性)が求められ、一般には、硬度と靭性は反
比例する。従来の製造方法では、チップ全体を物性の均
一なバルク材として製作せざるを得ないため、掘削対象
の地盤等の質によっては、硬度のみを重視したチップは
前記負荷によって破壊されてしまうことがある。したが
って、このような地盤を掘削対象とする場合には、硬度
を低くして靭性を向上させたチップを選定したものを用
いる必要があり、煩雑な対応を余儀なくされている。
A. Since many steps as described above are required, the work is complicated, and brazing in the steps of (2) and (3) is an operation that requires skill, so it is unavoidable that there will be large variations in quality. . b. The brazing filler metal 3 needs to be completely filled in the gap between the tip 1 and the hole 2a of the shank 2, but due to air or the like trapped during the press-fitting of the tip 1, the tip 1 and It is unavoidable that a certain amount of voids are generated between the holes 2a, and when actually cutting the product and observing the cross section, the brazing filler metal 3 is filled only to about 70 to 80%. Therefore, there is a large variation in bonding strength, and there is a risk of damage due to insufficient holding strength for the chip 1 during excavation. c. Since the chip 1 is heated in the air, the structure of the cemented carbide forming the chip 1 is thermally deteriorated (occurrence of the η phase) and the wear resistance is deteriorated. d. When used under severe conditions, the bit that holds the chip by brazing raises the surface temperature of the bit to 700 to 800 ° C due to frictional heat and reaches the softening temperature range or melting point of the brazing filler metal 3. In some cases, the holding ability of the shank 2 with respect to the tip 1 is reduced, and the tip 1 may fall off. Also,
Due to manufacturing restrictions, the maximum hardness of shank 2 is H R C4
It is only about 5 to 50, and since the supporting shoulder portion 2b also comes into contact with the earth and stones in the ground at the time of use, the supporting strength for the chip 1 is also reduced due to wear of this portion. e. Since not only the tip 1 but also the support shoulder portion 2b of the shank 2 is worn, if the wear progresses to some extent, it is necessary to replace the entire bit, which is uneconomical. f. The higher the hardness, the better the excavation performance of chips for crushing debris and rock, but the axial direction from the tip to the base end requires load-bearing characteristics (toughness) against vibration, shock, etc. In general, hardness and toughness are inversely proportional. In the conventional manufacturing method, since the entire chip has to be manufactured as a bulk material having uniform physical properties, depending on the quality of the ground or the like to be excavated, the chip focusing only on hardness may be destroyed by the load. is there. Therefore, when excavating such a ground, it is necessary to use a chip with a low hardness and an improved toughness, which complicates the handling.

【0006】本発明は、上記のような事情のもとになさ
れたもので、その技術的課題とするところは、製造工程
数を減少させ、掘削時の耐摩耗性及び機械的強度に優れ
た掘削用ビットを提供することにある。
The present invention has been made under the circumstances as described above, and its technical problems are to reduce the number of manufacturing steps and to have excellent wear resistance and mechanical strength during excavation. To provide a drill bit.

【0007】[0007]

【課題を解決するための手段】上述した技術的課題を有
効に解決するための手段として、本発明に係る掘削用ビ
ットは、岩盤又は地山に対する掘削主体となる頭頂部材
及び機器への取付部であるシャンク部材からなり、前記
頭頂部材は、シャンク部材に一体的に融着接合されると
共に、このシャンク部材側の基端から先端へ向けて硬度
が高くなる硬度傾斜を与えた超硬合金からなるものであ
る。
As a means for effectively solving the above-mentioned technical problems, the excavating bit according to the present invention is provided with a crown member which is a main body for excavating rock or a rock and a mounting portion to a device. The crown member is integrally fusion-bonded to the shank member, and is made of a cemented carbide having a hardness gradient that increases in hardness from the base end to the tip on the shank member side. It will be.

【0008】また、上記掘削用ビットを得るための手段
として、本発明に係る掘削用ビットの製造方法は、頭頂
部材成形用の焼結ダイ内に前記頭頂部材の先端側となる
部分よりも基端側となる部分のバインダ含有率が高くな
るような配合傾斜で超硬合金焼結用の粉末材料を充填す
るか、あるいは前記焼結ダイ内における前記頭頂部材の
先端側となる部分にCoをバインダとする超硬合金焼結
用の粉末材料を充填すると共に前記焼結ダイ内における
他の部分にFe又はNiをバインダとする超硬合金焼結
用の粉末材料を充填し、この充填された粉末材料の基端
に鋼材からなるシャンク部材を圧接させて前記粉末材料
を加圧しながら焼結することによって頭頂部材を成形す
ると共にこの頭頂部材を前記シャンク部材に融着接合さ
せるものである。
As a means for obtaining the above-mentioned excavating bit, the method for manufacturing an excavating bit according to the present invention is based on a method in which a sintered die for molding a crown member is provided with a base rather than a portion on the tip side of the crown member. The powder material for sintering the cemented carbide is filled with a compounding gradient such that the binder content of the end side portion becomes high, or Co is added to the end side portion of the crown member in the sintering die. The powder material for sintering cemented carbide used as a binder was filled, and the powder material for sintering cemented carbide using Fe or Ni as a binder was filled in the other portion in the sintering die, and this was filled. A shank member made of steel is pressed against the base end of the powder material to sinter while pressing the powder material to form a crown member, and the crown member is fusion-bonded to the shank member.

【0009】[0009]

【作用】本発明の掘削用ビットは、掘削主体となる頭頂
部材の硬度が、先端側ほど高くなる硬度傾斜が与えられ
ているので、シャンク部材と融着接合された基端側ほど
靭性が高くなっており、掘削に必要な硬度及び耐負荷特
性を兼ね備えたものである。頭頂部材はその基端がシャ
ンク部材と融着接合されているため、ろう付けの場合の
ように掘削による発熱程度の温度で融着接合状態が破壊
されてしまうようなことはなく、摩耗によって頭頂部材
とシャンク部材との融着接合強度が低下することもな
い。
In the excavating bit of the present invention, since the hardness of the crown member, which is mainly the excavating member, has a hardness gradient such that the tip end side has a higher hardness, the tongue has a higher toughness on the base end side fusion-bonded to the shank member. It has both hardness and load bearing characteristics required for excavation. Since the base end of the crown member is fusion-bonded to the shank member, the fusion-bonded state will not be destroyed at the temperature of the heat generated by excavation as in the case of brazing. The fusion bonding strength between the member and the shank member does not decrease.

【0010】本発明の掘削用ビットの製造方法によれ
ば、頭頂部材成形用の焼結ダイ内に、頭頂部材の先端側
となる部分よりも基端側となる部分のバインダの含有率
が高くなるような配合傾斜をもって超硬合金焼結用の粉
末材料を充填し、加圧しながら焼結を行うことによっ
て、先端側の硬度が高く、基端側の硬度が低くなると共
に靭性が高くなる硬度傾斜を有する頭頂部材が得られ
る。この時の焼結法としては、例えば公知の放電プラズ
マ焼結法によることが好ましい。また、前記焼結ダイ内
における頭頂部材の先端側となる部分にはCoをバイン
ダとする粉末材料を充填し、他の部分にはFe又はNi
をバインダとする粉末材料を充填して焼結を行うことに
よっても、先端側の硬度が高く、基端側の硬度が低くな
ると共に靭性が高くなる硬度傾斜を有する頭頂部材が得
られる。前記焼結に際しては、前記焼結ダイに充填され
た粉末材料の基端に鋼材からなるシャンク部材を圧接さ
せることによって、前記粉末材料の焼結による頭頂部材
の成形と同時に前記シャンク部材との融着接合が行わ
れ、すなわち頭頂部材とシャンク部材が一体化された掘
削用ビットが得られる。
According to the method for manufacturing a drill bit of the present invention, the content of the binder in the portion on the base end side is higher than that on the tip end side of the crown member in the sintering die for forming the crown member. By filling powder material for sintering cemented carbide with such a compounding gradient and performing sintering while applying pressure, the hardness on the distal side is high and the hardness on the proximal side is low and the toughness is high. A crown member having a slope is obtained. As a sintering method at this time, for example, a known discharge plasma sintering method is preferable. Further, a powder material containing Co as a binder is filled in a portion on the tip side of the crown member in the sintering die, and Fe or Ni is filled in other portions.
Also by filling with a powder material using as a binder and performing sintering, it is possible to obtain a crown member having a hardness gradient in which the hardness on the distal end side is high, the hardness on the proximal end side is low, and the toughness is high. At the time of the sintering, a shank member made of a steel material is pressed against the base end of the powder material filled in the sintering die to form the crown member by sintering the powder material and to melt the shank member at the same time. A welding connection is performed, that is, a drilling bit in which the crown member and the shank member are integrated is obtained.

【0011】[0011]

【実施例】図1は、本発明に係る掘削用ビットの好適な
一実施例を一部切断して示すもので、すなわちこの掘削
用ビットは、超硬合金からなり岩盤又は地山に対する掘
削部となる頭頂部材10と、この頭頂部材10の基端に
一体的に融着接合され図示されていない地盤掘削装置等
に取り付けられるシャンク部材20とからなる。なお、
図1の参照符号Wは頭頂部材10の基端とシャンク部材
20との融着接合層を示す。頭頂部材10は略円錐形を
呈するものであって、最も硬度が高い先端側部分10a
と、最も硬度が低い基端側部分10cと、その中間の硬
度の中腹部分10bからなる硬度傾斜が与えられてい
る。
1 is a partially cutaway view of a preferred embodiment of a drill bit according to the present invention, that is, this drill bit is made of cemented carbide and is used for rock or rock excavation parts. And a shank member 20 integrally fused to the base end of the crown member 10 and attached to a ground excavation device (not shown) or the like. In addition,
Reference numeral W in FIG. 1 indicates a fusion bonding layer between the base end of the crown member 10 and the shank member 20. The crown member 10 has a substantially conical shape, and the tip side portion 10a having the highest hardness.
Then, a hardness gradient is formed by the base end side portion 10c having the lowest hardness and the middle portion 10b of the intermediate hardness.

【0012】上述の構造を有する掘削用ビットの製造に
おいては、まず図2(A)に示すように、頭頂部材10
と対応する円錐状に凹んだ成形面31を有するカーボン
製焼結ダイ30内の底部に、第一層目の粉末材料11と
してCoが10〜15%配合されたWC−Co粉末を充
填し、その上であって前記焼結ダイ30内の中腹部に、
第二層目の粉末材料12としてCoが20〜25%配合
されたWC−Co粉末を充填し、更にその上であって前
記焼結ダイ30内の上部に、第三層目の粉末材料13と
してCoが40〜45%配合されたWC−Co粉末を充
填し、これによって、前記頭頂部材10の先端側となる
部分よりも基端側となる部分のCoバインダ含有率が高
くなるような配合傾斜を与える。次に、図2(B)に示
すように、前記頭頂部材10の基端側部分10cとなる
前記第三層目の粉末材料13の上面に、Ni−Cr−M
o鋼、工具鋼、ダイス鋼又は炭素鋼の棒材から切り出し
切削加工したシャンク部材20の先端面21を接触さ
せ、この状態で前記焼結ダイ30内の粉末材料11〜1
3を上下から加圧しながら放電プラズマ焼結機の電極間
に挟んでパルス電圧を印加する。
In manufacturing the drill bit having the above-described structure, first, as shown in FIG.
WC-Co powder containing 10 to 15% of Co as the first layer powder material 11 is filled in the bottom of the carbon sintering die 30 having the conical concave molding surface 31 corresponding to On top of that, in the middle part of the sintering die 30,
As the powder material 12 of the second layer, WC-Co powder containing 20 to 25% of Co is filled, and the powder material 13 of the third layer is further provided on the upper part of the sintering die 30. As WC-Co powder containing 40 to 45% of Co, as a result of which the Co binder content of the portion on the base end side is higher than that on the tip end side of the crown member 10. Give a slope. Next, as shown in FIG. 2 (B), Ni-Cr-M is formed on the upper surface of the powder material 13 of the third layer to be the base end side portion 10c of the crown member 10.
o The tip surface 21 of the shank member 20 cut out from the bar material of steel, tool steel, die steel, or carbon steel is machined and brought into contact with the powder material 11 to 1 in the sintering die 30 in this state.
While pressing 3 from above and below, a pulse voltage is applied while being sandwiched between electrodes of a discharge plasma sintering machine.

【0013】この放電プラズマ焼結法によると、パルス
電圧が印加された時の粉末材料11〜13の各粒子の互
いの接触部に極めて高温の放電プラズマが生じると共
に、放電によって各粒子が瞬時に加熱され、互いに融着
状態となって焼結される。この時、電界によるイオンの
高速移動により材質の拡散が行われるので、第一層目の
粉末材料11が焼結された先端側部分10aと、それよ
りもCoの配合の多い第二層目の粉末材料12が焼結さ
れた中腹部分10bと、更にそれよりもCoの配合の多
い第三層目の粉末材料13が焼結された基端側部分10
cの間で、連続的に材質が変化する傾斜拡散結合組織を
有する頭頂部材10が得られる。そして、WC−Coの
超硬合金はCoの配合率が高いほど硬度が低くかつ靭性
が高くなることから、焼結された頭頂部材10は先端側
部分10aへ向けて硬度が高く、基端側部分10cへ向
けて靭性が高くなる硬度傾斜を有するものとなる。焼結
条件としては、焼結温度1,000〜1,200℃、圧
力100〜300kg、放電時間1〜5分で十分な硬度
と強度が発現される。
According to this discharge plasma sintering method, extremely high-temperature discharge plasma is generated at the contact portion between the particles of the powder materials 11 to 13 when a pulse voltage is applied, and the particles are instantaneously discharged by the discharge. They are heated and fused together and sintered. At this time, since the material is diffused by the high-speed movement of the ions due to the electric field, the tip side portion 10a where the powder material 11 of the first layer is sintered and the second layer of which the Co content is larger than that of the tip portion 10a. The middle portion 10b in which the powder material 12 is sintered, and the proximal portion 10b in which the powder material 13 of the third layer containing a larger amount of Co than that is sintered are further sintered.
A crown member 10 having a graded diffusion connective tissue whose material continuously changes between c is obtained. Since the WC-Co cemented carbide has a lower hardness and a higher toughness as the Co content is higher, the sintered crown member 10 has a higher hardness toward the distal end side portion 10a and a lower end side. It has a hardness gradient that increases the toughness toward the portion 10c. Sintering conditions of 1,000 to 1,200 ° C., pressure of 100 to 300 kg, and discharge time of 1 to 5 minutes exhibit sufficient hardness and strength.

【0014】また、基端側部分10cとなる第三層目の
粉末材料13の各粒子とこれに圧接したシャンク部材2
0の先端面21との接触面においても、上記と同様の作
用によって融着接合が行われ、連続的な傾斜拡散結合組
織による融着接合層Wが形成される。また、超硬合金か
らなる頭頂部材10の焼結工程と、この頭頂部材10と
シャンク部材20との融着接合工程が同時に行われるの
に加え、放電プラズマ焼結法では、通常の焼結法のよう
な、予め焼結用粉末材料を所定の形状に圧縮成形すると
いった予備成形工程が不要であるため、工程数を削減し
て製造コストを低減することができる。
Further, each particle of the powder material 13 of the third layer to be the base end side portion 10c and the shank member 2 pressed against this.
Even on the contact surface with the tip surface 21 of 0, fusion bonding is performed by the same action as described above, and a fusion bonding layer W having a continuous graded diffusion bond structure is formed. Further, in addition to the simultaneous sintering step of the crown member 10 made of cemented carbide and the fusion bonding step of the crown member 10 and the shank member 20, in the discharge plasma sintering method, a normal sintering method is used. As described above, since a preliminary molding step of previously compression-molding the powder material for sintering into a predetermined shape is unnecessary, the number of steps can be reduced and the manufacturing cost can be reduced.

【0015】なお、第一層目の粉末材料11としてCo
が10%配合されたWC−Co粉末を充填し、第二層目
の粉末材料12としてCoが20%配合されたWC−C
o粉末を充填し、第三層目の粉末材料13としてCoが
40%配合されたWC−Co粉末を充填し、上述の条件
で焼結したところ、頭頂部材10のビッカース硬度は先
端側部分10aにおいてHv1,250〜1,300、
中腹部分10bにおいてHv800〜900、基端側部
分10cにおいてHv220〜500であり、かつその
硬度変化が連続的であった。
Co is used as the powder material 11 for the first layer.
WC-Co powder containing 10% of Co is filled, and WC-C containing 20% of Co is used as the powder material 12 of the second layer.
o powder was filled, and WC-Co powder containing 40% Co as the powder material 13 of the third layer was filled and sintered under the above conditions, and the Vickers hardness of the crown member 10 was the tip side portion 10a. At Hv 1,250-1,300,
Hv 800 to 900 in the middle portion 10b, Hv 220 to 500 in the proximal portion 10c, and the hardness change was continuous.

【0016】一般に、超硬合金とはWC−Co合金をい
い、WC粒子間をCoをバインダとして結合した組成を
有するが、Coの代わりにFe又はNi等をバインダと
して用いることもできる。例えば、第一層目の粉末材料
11としてWC−Coを用い、第二層目の粉末材料12
としてWC−Niを用い、第三層目の粉末材料13とし
てWC−Feを用いるといった適宜組み合わせによる材
料傾斜を与えることによって、各層間で互いに材質の補
完が行われるので、図3(A)に示すCoの配合傾斜を
与えて焼結した頭頂部材と、図3(B)に示すCo,N
i,Feによる材料傾斜を与えて焼結した頭頂部材との
比較から明らかなように、目的に応じた硬度傾斜が得ら
れる。また、Coは近年世界的に資源不足の傾向にあ
り、市況も高騰しているため、上記のような材料傾斜に
よって硬度傾斜を与えることによってCoの使用量を低
減させることは、製造コストの低減に大いに寄与するも
のである。
In general, the cemented carbide is a WC-Co alloy and has a composition in which WC particles are bonded with Co as a binder, but Fe or Ni or the like can be used as a binder instead of Co. For example, WC-Co is used as the powder material 11 for the first layer, and the powder material 12 for the second layer is used.
As shown in FIG. 3A, the materials are complemented with each other by giving a material gradient by an appropriate combination such that WC-Ni is used as the powder material and WC-Fe is used as the powder material 13 of the third layer. The crown member shown in FIG.
As is clear from comparison with the crown member obtained by giving a material gradient by i and Fe and sintering, a hardness gradient according to the purpose can be obtained. Further, since Co has a tendency of resource shortage in the world in recent years and the market condition is also soaring, reducing the amount of use of Co by imparting a hardness gradient by the material gradient as described above reduces the manufacturing cost. It greatly contributes to.

【0017】このようにして製作された掘削用ビット
は、高硬度による耐摩耗性の向上及び強靭性による耐負
荷特性の向上といった相矛盾する要求を有効に解決する
ことができる。すなわち、優れた耐摩耗性を必要とする
頭頂部材10は、その先端側部分10aで最も硬度が高
く、基端側部分10cへ向かって靭性が高くなる。この
ため、優れた掘削性能と、振動、衝撃等に対する優れた
耐負荷特性とを兼ね備えており、頭頂部材10とシャン
ク部材20は融着接合されて連続した傾斜組織を有する
ため、掘削時の振動や衝撃等の負荷によって頭頂部材1
0がシャンク部材20から分離されてしまうこともな
い。
The excavating bit thus manufactured can effectively solve the contradictory requirements such as improvement of wear resistance due to high hardness and improvement of load resistance characteristic due to toughness. That is, the crown member 10 that requires excellent wear resistance has the highest hardness at the tip end side portion 10a, and the toughness increases toward the base end side portion 10c. Therefore, it has both excellent excavation performance and excellent load-bearing characteristics against vibration, impact, etc. Since the crown member 10 and the shank member 20 are fusion-bonded and have a continuous inclined structure, vibration during excavation Top member 1 due to load such as impact and shock
The zero is not separated from the shank member 20.

【0018】また、頭頂部材10は、図4の従来例にお
けるチップ1及びこれを支持するシャンク2の支持肩部
2bを含む部分をなすものであって、岩盤又は地山との
接触面全体を担うため、シャンク部材20は摩耗されな
い。このため、摩耗による頭頂部材10の脱落といった
事態も生じ得ない。
Further, the crown member 10 forms a portion including the supporting shoulder portion 2b of the tip 1 and the shank 2 for supporting the tip 1 in the conventional example of FIG. 4, and the entire contact surface with the rock or the natural ground is formed. Since it bears, the shank member 20 is not worn. Therefore, the situation where the crown member 10 is dropped due to wear cannot occur.

【0019】[0019]

【発明の効果】本発明によると、次のような効果を奏す
ることができる。 (1) 超硬合金からなる頭頂部材の焼結工程と、この頭頂
部材とシャンク部材との融着接合工程が同時に行われる
ので、工程数が減少し、ろう付のような人手による熟練
作業を必要としないので、製造コストを低減すると共に
品質を均一化することができる。 (2) 頭頂部材とシャンク部材の間に、ろう付けの場合の
ような空隙が発生せず、しかも頭頂部材とシャンク部材
の接合部は融着による連続した拡散結合組織が形成され
るので、掘削時の摩擦熱によって前記接合部が軟化又は
溶融して頭頂部材が脱落したりすることがない。 (3) 頭頂部材は硬度と靭性を機能傾斜させた連続組織か
らなるため、掘削対象の岩盤又は地山の質によって硬度
の高いものを選定したり靭性の高いものを選定するとい
った煩雑な対応が不要である。 (4) 頭頂部材の超硬合金にCo,Fe,Niによる材料
傾斜を与えて硬度傾斜させたことによって、Coの配合
傾斜により硬度傾斜させる場合に比較して安価に製造す
ることができる。
According to the present invention, the following effects can be obtained. (1) Since the sintering process of the crown member made of cemented carbide and the fusion bonding process of the crown member and the shank member are performed at the same time, the number of processes is reduced, and skilled manual work such as brazing is performed. Since it is not necessary, the manufacturing cost can be reduced and the quality can be made uniform. (2) Since there is no gap between the crown member and the shank member, unlike the case of brazing, and a continuous diffusion connective structure is formed by fusion at the joint between the crown member and the shank member, excavation is performed. The frictional heat at that time does not soften or melt the joint portion and the crown member does not fall off. (3) Since the crown member is composed of a continuous structure with functionally graded hardness and toughness, complicated measures such as selecting one with high hardness or one with high toughness depending on the quality of the rock or rock to be excavated are required. It is unnecessary. (4) Since the cemented carbide of the crown member is provided with a material gradient of Co, Fe, and Ni to have a hardness gradient, it can be manufactured at a lower cost as compared with the case where the hardness is gradient due to the Co compounding gradient.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る掘削用ビットの好適な一実施例を
一部切断した断面と共に示す側面図である。
FIG. 1 is a side view showing a preferred embodiment of a drill bit according to the present invention together with a partially cut cross section thereof.

【図2】上記掘削用ビットの製造方法の一実施例を示す
説明図である。
FIG. 2 is an explanatory view showing an embodiment of a method for manufacturing the excavating bit.

【図3】上記実施例において、Coの配合傾斜を与えて
焼結した頭頂部材と、Co,Ni,Feによる材料傾斜
を与えて焼結した頭頂部材との機能を比較した説明図で
ある。
FIG. 3 is an explanatory view comparing the functions of a crown member sintered by giving a Co blending gradient and a crown member sintered by giving a material gradient of Co, Ni, Fe in the above Examples.

【図4】従来の掘削用ビットの一例を一部切断した断面
と共に示す側面図である。
FIG. 4 is a side view showing an example of a conventional drill bit together with a partially cut cross section.

【符号の説明】 10 頭頂部材 10a 先端側部分 10c 基端側部分 11〜13 粉末材料 20 シャンク部材 30 焼結ダイ[Explanation of reference numerals] 10 crown member 10a tip side portion 10c base end side portion 11 to 13 powder material 20 shank member 30 sintering die

フロントページの続き (71)出願人 593226135 高橋 英徳 北海道札幌市北区北19条西11丁目1番地 北海道立工業試験場内 (71)出願人 593175903 鴨田 秀一 札幌市北区北19条西11丁目1番地 (71)出願人 595177682 住友石炭鉱業株式会社 東京都港区西新橋三丁目20番4号 (72)発明者 酒井 昌宏 北海道札幌市北区北19条西11丁目1番地 北海道立工業試験場内 (72)発明者 宮腰 康樹 北海道札幌市北区北19条西11丁目1番地 北海道立工業試験場内 (72)発明者 高橋 英徳 北海道札幌市北区北19条西11丁目1番地 北海道立工業試験場内 (72)発明者 鴨田 秀一 北海道札幌市北区北19条西11丁目1番地 北海道立工業試験場内 (72)発明者 明石 保 北海道赤平市字赤平594番地の1 住友石 炭鉱業株式会社北海道技術研究所内 (72)発明者 高山 紘明 岡山県高梁市落合町阿部1212番地 イーグ ル工業株式会社岡山工場内Continued Front Page (71) Applicant 593226135 Hidenori Takahashi 11-1, Kita 19 West, Kita-ku, Sapporo, Hokkaido Inside the Hokkaido Industrial Research Institute (71) Applicant 593175903 Shuichi Kamoda 11-11, Kita-ku Kita-ku, Sapporo (71) Applicant 595177682 Sumitomo Coal Mining Co., Ltd. 3-20-4 Nishishimbashi, Minato-ku, Tokyo (72) Inventor Masahiro Sakai 1-chome, Kita-ku, Kita-ku, Kita-ku, Sapporo 1-chome, Hokkaido 1st Industrial Testing Site (72 ) Inventor Yasuki Miyakoshi 11-chome, Kita-ku, Kita-ku, Sapporo, Hokkaido 1-chome, Hokkaido Industrial Test Station (72) Hidenori Takahashi 11-chome, Kita-ku, Kita-ku, Kita-ku, Sapporo 11-chome, Hokkaido (72) ) Inventor Hidekazu Kamoda 11-chome, Kita-ku, Kita-ku, Sapporo, Hokkaido, 1-11, Hokkaido Industrial Test Station (72) Inventor, Akashi Ho, 1 594, Akabira, Akabira-shi, Hokkaido Sumitomoishi Coal Mining Co., Ltd. 72) Inventor Hiroaki Takayama 1212 Abe, Ochiai Town, Takahashi City, Okayama Prefecture Eagle Engineering Co., Ltd. Okayama in the factory

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 岩盤又は地山に対する掘削主体となる頭
頂部材及び機器への取付部であるシャンク部材からな
り、 前記頭頂部材は前記シャンク部材に一体的に融着接合さ
れると共に、このシャンク部材側の基端から先端へ向け
て硬度が高くなる硬度傾斜を与えた超硬合金からなるこ
とを特徴とする掘削用ビット。
1. A shank member that is an excavation main body for rock mass or a rock mass and a shank member that is a mounting portion for a device, and the shank member is integrally fusion-bonded to the shank member and the shank member. A bit for excavation characterized by being made of a cemented carbide having a hardness gradient in which the hardness increases from the base end to the tip on the side.
【請求項2】 頭頂部材成形用の焼結ダイ内に前記頭頂
部材の先端側となる部分よりも基端側となる部分のバイ
ンダ材含有率が高くなるような配合傾斜で超硬合金焼結
用の粉末材料を充填し、 この充填された粉末材料の基端に鋼材からなるシャンク
部材を圧接させて前記粉末材料を加圧しながら焼結する
ことによって頭頂部材を成形すると共にこの頭頂部材を
前記シャンク部材に融着接合させることを特徴とする請
求項1に記載の掘削用ビットの製造方法。
2. A cemented carbide sintered material having a compounding gradient such that the content of the binder material in the portion on the base end side is higher than that on the tip end side of the crown member in the sintering die for forming the crown member. Is filled with a powder material for use, and a shank member made of steel is pressed against the base end of the filled powder material to sinter the powder material while pressurizing the powder material to form a crown member and the crown member. The method for manufacturing an excavating bit according to claim 1, wherein the shank member is fusion-bonded to the shank member.
【請求項3】 頭頂部材成形用の焼結ダイ内における前
記頭頂部材の先端側となる部分にCoをバインダとする
超硬合金焼結用の粉末材料を充填し、 頭頂部材成形用の焼結ダイ内における他の部分にFe又
はNiをバインダとする超硬合金焼結用の粉末材料を充
填し、 この充填された粉末材料の基端に鋼材からなるシャンク
部材を圧接させて前記粉末材料を加圧しながら焼結する
ことによって頭頂部材を成形すると共にこの頭頂部材を
前記シャンク部材に融着接合させることを特徴とする請
求項1に記載の掘削用ビットの製造方法。
3. A sintering material for forming a crown member is prepared by filling a powder material for sintering a cemented carbide with Co as a binder in a portion on the tip side of the crown member in a sintering die for forming a crown member. The powder material for sintering cemented carbide having Fe or Ni as a binder is filled in the other part of the die, and a shank member made of steel is pressed against the base end of the filled powder material to obtain the powder material. 2. The method for manufacturing an excavating bit according to claim 1, wherein the crown member is formed by sintering while pressurizing and the crown member is fusion-bonded to the shank member.
JP6333676A 1994-12-16 1994-12-16 Drilling bit and manufacturing method thereof Expired - Fee Related JP2896749B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6333676A JP2896749B2 (en) 1994-12-16 1994-12-16 Drilling bit and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6333676A JP2896749B2 (en) 1994-12-16 1994-12-16 Drilling bit and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH08170482A true JPH08170482A (en) 1996-07-02
JP2896749B2 JP2896749B2 (en) 1999-05-31

Family

ID=18268730

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6333676A Expired - Fee Related JP2896749B2 (en) 1994-12-16 1994-12-16 Drilling bit and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2896749B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6719074B2 (en) 2001-03-23 2004-04-13 Japan National Oil Corporation Insert chip of oil-drilling tricone bit, manufacturing method thereof and oil-drilling tricone bit
WO2008062505A1 (en) 2006-11-20 2008-05-29 Kabushiki Kaisha Miyanaga Superhard tip and process for producing the same
EP2074285A2 (en) * 2006-08-21 2009-07-01 Kennametal, Inc. Cutting bit body and method for making the same
JP2013517400A (en) * 2010-01-20 2013-05-16 エレメント、シックス、アブレイシブズ、ソシエテ、アノニム Super-hard insert for boring tools
EP2564010A4 (en) * 2010-04-28 2016-07-06 Baker Hughes Inc Polycrystalline diamond compacts, cutting elements and earth-boring tools including such compacts, and methods of forming such compacts and earth-boring tools
CN106270331A (en) * 2016-08-31 2017-01-04 宝鸡石油机械有限责任公司 A kind of free forging method of petroleum drilling and mining lock tongue body
US10603765B2 (en) 2010-05-20 2020-03-31 Baker Hughes, a GE company, LLC. Articles comprising metal, hard material, and an inoculant, and related methods
US11819918B2 (en) * 2017-08-01 2023-11-21 Hilti Aktiengesellschaft Method for producing a machining segment for an abrasive machining tool

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7469972B2 (en) * 2006-06-16 2008-12-30 Hall David R Wear resistant tool
US9200661B2 (en) * 2013-12-19 2015-12-01 GM Global Technology Operations LLC Flow drill screw

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6326163A (en) * 1986-07-18 1988-02-03 Matsushita Electric Ind Co Ltd Horizontal deflection output device
JPH04309698A (en) * 1991-04-09 1992-11-02 Hitachi Constr Mach Co Ltd Cutter bit for excavating earth and sand

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6326163A (en) * 1986-07-18 1988-02-03 Matsushita Electric Ind Co Ltd Horizontal deflection output device
JPH04309698A (en) * 1991-04-09 1992-11-02 Hitachi Constr Mach Co Ltd Cutter bit for excavating earth and sand

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6719074B2 (en) 2001-03-23 2004-04-13 Japan National Oil Corporation Insert chip of oil-drilling tricone bit, manufacturing method thereof and oil-drilling tricone bit
EP2074285A2 (en) * 2006-08-21 2009-07-01 Kennametal, Inc. Cutting bit body and method for making the same
EP2074285A4 (en) * 2006-08-21 2014-11-19 Kennametal Inc Cutting bit body and method for making the same
WO2008062505A1 (en) 2006-11-20 2008-05-29 Kabushiki Kaisha Miyanaga Superhard tip and process for producing the same
US9463507B2 (en) 2006-11-20 2016-10-11 Kabushiki Kaisha Miyanaga Method for producing hard tip
JP2013517400A (en) * 2010-01-20 2013-05-16 エレメント、シックス、アブレイシブズ、ソシエテ、アノニム Super-hard insert for boring tools
EP2564010A4 (en) * 2010-04-28 2016-07-06 Baker Hughes Inc Polycrystalline diamond compacts, cutting elements and earth-boring tools including such compacts, and methods of forming such compacts and earth-boring tools
US9849561B2 (en) 2010-04-28 2017-12-26 Baker Hughes Incorporated Cutting elements including polycrystalline diamond compacts for earth-boring tools
US10603765B2 (en) 2010-05-20 2020-03-31 Baker Hughes, a GE company, LLC. Articles comprising metal, hard material, and an inoculant, and related methods
CN106270331A (en) * 2016-08-31 2017-01-04 宝鸡石油机械有限责任公司 A kind of free forging method of petroleum drilling and mining lock tongue body
US11819918B2 (en) * 2017-08-01 2023-11-21 Hilti Aktiengesellschaft Method for producing a machining segment for an abrasive machining tool

Also Published As

Publication number Publication date
JP2896749B2 (en) 1999-05-31

Similar Documents

Publication Publication Date Title
AU634804B2 (en) Composite abrasive compacts
EP1716948A2 (en) Composite structure having a non-planar interface and method of making same
CN101522930B (en) Articles having improved resistance to thermal cracking
CN100358670C (en) Fusion structure and method for hard alloy and diamond piece and drilling tool and cutting piece
US20060266558A1 (en) Thermally stable ultra-hard material compact construction
JPH08170482A (en) Excavating bit and manufacture thereof
US6098731A (en) Drill bit compact with boron or beryllium for fracture resistance
KR20090086965A (en) Superhard tip and process for producing the same
CN110114176B (en) Tool with a locking mechanism
CN104646674B (en) The method and its product of a kind of diamond and metal base produced with combination wearing piece
JPH08100589A (en) Bit for excavation and manufacture thereof
US20220018251A1 (en) Disc cutter for tunnel boring machines and a method of manufacture thereof
CN101200998A (en) Bonding structure and bonding method for cemented carbide element and diamond element, cutting tip and cutting element for drilling tool, and drilling tool
US11933107B2 (en) Disc cutter for undercutting apparatus and a method of manufacture thereof
JP2008144541A (en) Drilling bit
JPH08155946A (en) Inner and outer diameter part reinforced diamond bit and production thereof
FI115702B (en) A method of making wear-resistant wear parts and a wear part
CN108412491B (en) Composite cutting tooth
WO2022266718A1 (en) Adapter and wear tool comprising same
GB2565648A (en) Super-hard bits, super-hard tips for same, tools comprising same and methods for making same
JP2001241285A (en) Excavation tool having cutting blade piece with excellent high-temperature joint strength
JPS5884188A (en) Composite sintered body tool and manufacture
JPH0886180A (en) Drilling bit
KR20020010848A (en) Material devolperment of Tungsten carbide at wear resistance tool

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990112

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees