JPH08170288A - Removal of sodium salt and potassium salt from caught ash of soda-recovering boiler - Google Patents

Removal of sodium salt and potassium salt from caught ash of soda-recovering boiler

Info

Publication number
JPH08170288A
JPH08170288A JP6311462A JP31146294A JPH08170288A JP H08170288 A JPH08170288 A JP H08170288A JP 6311462 A JP6311462 A JP 6311462A JP 31146294 A JP31146294 A JP 31146294A JP H08170288 A JPH08170288 A JP H08170288A
Authority
JP
Japan
Prior art keywords
ash
slurry
salt
caught
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6311462A
Other languages
Japanese (ja)
Inventor
Kikuo Tokunaga
喜久男 徳永
Masakazu Tateishi
正和 立石
Michimasa Yagi
通正 八木
Takayuki Maeda
隆之 前田
Yoshihisa Arakawa
善久 荒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP6311462A priority Critical patent/JPH08170288A/en
Priority to US08/538,790 priority patent/US5840085A/en
Priority to FI955105A priority patent/FI111171B/en
Priority to CA002162191A priority patent/CA2162191C/en
Priority to SE9504281A priority patent/SE515987C2/en
Publication of JPH08170288A publication Critical patent/JPH08170288A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D5/00Sulfates or sulfites of sodium, potassium or alkali metals in general
    • C01D5/02Preparation of sulfates from alkali metal salts and sulfuric acid or bisulfates; Preparation of bisulfates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D5/00Sulfates or sulfites of sodium, potassium or alkali metals in general
    • C01D5/16Purification

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Paper (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

PURPOSE: To provide the method for removing from a caught ash the sodium and potassium salts which are concentrated and accumulated in a pulp-digesting chemical as impurities. CONSTITUTION: The method for removing sodium and potassium salts from the caught ash of the soda-recovering boiler comprises slurrying the ash caught from the combustion exhaust gas of the soda-recovering boiler in water, controlling the pH of the slurry to <=10 by the addition of sulfuric acid, controlling the temperature of the slurry to >=20 deg.C, holding the mixture for a definite time to dissolve the sodium and potassium salts contained in the caught ash in water, cooling the slurry at <20 deg.C, separating and recovering the deposited solid contents from the liquid portion, and throwing away the left liquid portion outside the system.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はパルプ製造工場のソーダ
回収ボイラに適用されるもので、パルプ蒸解薬品中に濃
縮・蓄積される不純物としての食塩及びカリウム塩を燃
焼排ガスから捕集した捕集灰から除去する方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is applied to a soda recovery boiler in a pulp manufacturing plant, and collects salt and potassium salts as impurities that are concentrated and accumulated in pulp cooking chemicals from combustion exhaust gas. It relates to a method of removing ash.

【0002】[0002]

【従来の技術】パルプ蒸解薬品中のカリウム塩を除去す
る方法として、従来実機に適用された方法はないが類似
の技術として食塩除去方法がある。すなわち、ソーダ回
収ボイラの排ガスからの捕集灰を少量の水と循環液を用
いてスラリ化させ、60〜70℃の温度で食塩を水に溶
解し、スラリ中の固形分を分離・回収する方法である。
しかし、この方法では薬品中の食塩は容易に除去できる
が、カリウム塩の溶解度が小さいため、カリウム塩を除
去しようとする場合有効薬品であるNa2 SO 4 が同時
に失われるので薬品損失が大きくなる欠点を有する。
2. Description of the Related Art Removal of potassium salts in pulp cooking chemicals
There is no method that has been applied to actual equipment as a conventional method, but it is similar
There is a salt removal method as the technique. That is, soda times
Uses a small amount of water and circulating liquid to collect the collected ash from the exhaust gas of the collecting boiler.
To make it into a slurry and dissolve the salt in water at a temperature of 60-70 ℃.
It is a method to separate and recover the solid content in the slurry.
However, this method can easily remove the salt in the drug.
However, since the solubility of potassium salt is low, potassium salt is removed.
Na is an effective drug when trying to leave2SO FourAt the same time
However, it has a drawback that the chemical loss becomes large.

【0003】[0003]

【発明が解決しようとする課題】パルプ蒸解薬品中に
は、不純物としての食塩やカリウム塩が主としてパルプ
原木からもたらされる。これらの不純物は製品であるパ
ルプや系統外に出る損失薬品に随伴して薬品回収系統を
出て行くが、薬品回収のクローズド化が進み薬品回収率
が上昇するに従って薬品回収系統中に濃縮・蓄積する傾
向が生じる。
In pulp cooking chemicals, salt and potassium salts as impurities are mainly brought from pulp logs. These impurities leave the chemical recovery system along with the pulp that is the product and the lost chemical that goes out of the system, but as the chemical recovery becomes closed and the chemical recovery rate increases, it is concentrated and accumulated in the chemical recovery system. There is a tendency to

【0004】濃縮・蓄積した食塩やカリウム塩はイナー
ト物質として薬品の循環負荷を高め、デッドロード増加
による経済性の低下につながるだけでなく、薬品回収系
統の腐食性を著しく高めることはよく知られている。特
にパルプ廃液を燃焼するソーダ回収ボイラにおいては、
食塩及びカリウム塩の存在によりボイラ高温部の伝熱管
の腐食性を高めるだけでなく、伝熱管表面に付着する燃
焼灰の付着性を著しく高め、ソーダ回収ボイラの煙道圧
力損失を増しボイラの連続操業を阻害するに至る。
It is well known that concentrated and accumulated salt or potassium salt, as an inert substance, not only increases the circulation load of chemicals and leads to a decrease in economic efficiency due to an increase in dead load, but also significantly increases the corrosiveness of the chemical recovery system. ing. Especially in soda recovery boilers that burn pulp waste liquid,
The presence of sodium chloride and potassium salt not only enhances the corrosiveness of the heat transfer tube in the high temperature part of the boiler, but also significantly increases the adhesion of the combustion ash adhering to the surface of the heat transfer tube, increasing the flue pressure loss of the soda recovery boiler and continuing the boiler. Leading to disruption of operations.

【0005】[0005]

【課題を解決するための手段】本発明はパルプ蒸解薬品
回収系統中に濃縮・蓄積する食塩及びカリウム塩を除去
する方法であって、ソーダ回収ボイラの燃焼排ガスから
捕集した捕集灰を、水と混合してスラリ化し、該スラリ
のpHを10以下に、温度を20℃以上に調整し、一定
時間保持して捕集灰中の食塩及びカリウム塩を水に溶解
させ、該スラリを20℃未満の温度に冷却して固形分を
析出させた後、固形分と液体に分離して固形分は回収
し、液体は系外に廃棄することを特徴とするソーダ回収
ボイラの捕集灰からの食塩及びカリウム塩の除去方法で
ある。
The present invention is a method for removing salt and potassium salts concentrated / accumulated in a pulp cooking chemicals recovery system, in which collected ash collected from combustion exhaust gas of a soda recovery boiler is The mixture is mixed with water to form a slurry, the pH of the slurry is adjusted to 10 or lower, the temperature is adjusted to 20 ° C. or higher, and the salt and potassium salt in the collected ash are dissolved in water by maintaining the slurry for 20 hours. After precipitating solids by cooling to a temperature below ℃, the solids are separated into liquids and the solids are recovered, and the liquids are discarded outside the system. It is a method of removing common salt and potassium salt.

【0006】前述したように、従来の食塩除去方法では
ソーダ回収ボイラの捕集灰を60〜70℃の少量の水に
接触させて食塩を除去するが、カリウム塩の場合は水に
対する溶解度が小さいため、必要な除去量を得るまで水
を添加すると、有効薬品である硫酸ソーダの溶出量が増
加し経済性が悪くなる。
As described above, in the conventional salt removal method, the ash collected from the soda recovery boiler is brought into contact with a small amount of water at 60 to 70 ° C. to remove the salt, but the potassium salt has a low solubility in water. Therefore, if water is added until the required amount of removal is obtained, the amount of sodium sulfate, which is an effective chemical, is increased to elute, resulting in poor economic efficiency.

【0007】そこで、本発明はカリウム塩の除去を主目
的として、捕集灰を水でスラリ化するとともに、硫酸で
中和して該スラリのpHを10以下(10〜7)にし
て、硫酸塩を主体とした捕集灰中に含まれる炭酸塩もそ
の殆どを硫酸塩にする。このようにして捕集灰中に含ま
れるカリウムやナトリウムを硫酸カリウム及び硫酸ソー
ダとして溶出させ、捕集灰の顕熱、溶解熱、中和熱など
を生じさせた後、工業用水などで該スラリの温度を20
℃以上(望ましくはNa2 SO4 の溶解度の低下が少な
い30℃前後)に調節する。次に該スラリを硫酸ソーダ
の溶解度が小さく、従って薬品損失がより少ない20℃
未満(一般的に20℃未満10℃以上)の低温にして硫
酸ソーダを析出させて分離・回収し、硫酸カリウムを溶
解・除去しようとするものである。このように捕集灰が
溶解した20℃以上(望ましくは30℃前後)の水溶液
を20℃未満の温度に冷却することによって、溶液の過
飽和度を増し粗大結晶の析出を促すことができ、又、析
出した結晶の粒径が大きいので、その後の分離・回収も
容易となる。
Therefore, in the present invention, the main purpose is to remove potassium salts, and the collected ash is slurried with water and neutralized with sulfuric acid to adjust the pH of the slurry to 10 or less (10 to 7). Most of the carbonates contained in the collected ash mainly composed of salt are also sulfates. In this way, potassium and sodium contained in the collected ash are eluted as potassium sulfate and sodium sulfate to generate sensible heat, heat of dissolution, heat of neutralization, etc. of the collected ash, and then the slurry is washed with industrial water or the like. The temperature of 20
° C. or higher (preferably Na 2 SO 30 ° C. before and after reduction in solubility is less in 4) is adjusted to. The slurry is then treated at 20 ° C., where the solubility of sodium sulfate is low and therefore chemical loss is lower.
It is intended to precipitate sodium sulphate at a low temperature of less than 20 ° C. (generally less than 20 ° C. and 10 ° C. or higher) for separation / recovery to dissolve / remove potassium sulfate. By cooling the aqueous solution of 20 ° C. or more (preferably around 30 ° C.) in which the collected ash is dissolved to a temperature of less than 20 ° C., the degree of supersaturation of the solution can be increased and precipitation of coarse crystals can be promoted. Since the precipitated crystal grains have a large particle size, subsequent separation / recovery becomes easy.

【0008】[0008]

【作用】図1はNa2 SO4 −K2 SO4 混合系の溶解
度を温度に対してプロットしたものである。図1中、N
2 SO4 (混合系)、K2 SO4 (混合系)とはNa
2 SO4 −K2 SO4 混合系中のNa2 SO4 、K2
4 の溶解度曲線、Na 2 SO4 (単独)、K2 SO4
(単独)とは夫々の単独系のNa2 SO4 、K2SO4
の溶解度曲線を示す。図1においてK2 SO4 の溶解度
は温度に対する変化が少ないが、Na2 SO4 の溶解度
は温度に対する変化が大きく、低温で溶解度が著しく小
さくなる。
[Operation] Figure 1 shows Na2SOFour-K2SOFourDissolution of mixed system
It is a plot of degrees against temperature. In FIG. 1, N
a2SOFour(Mixed system), K2SOFourWhat is (mixed system) Na?
2SOFour-K2SOFourNa in mixed system2SOFour, K2S
OFourSolubility curve, Na 2SOFour(Alone), K2SOFour
(Single) means each individual Na2SOFour, K2SOFour
Shows the solubility curve of K in FIG.2SOFourSolubility of
Changes little with temperature, but Na2SOFourSolubility of
Has a large change with temperature, and its solubility is extremely small at low temperatures.
It gets worse.

【0009】同じ組成の捕集灰の一定量を使用して80
℃と10℃のスラリを作製する。この場合、両者の水添
加量を変えて水側に溶け出すNa2 SO4 の量を同一と
したスラリとする。すると80℃のスラリの場合、溶解
したNa2 SO4 の約1/4量のK2 SO4 しか溶解し
ないが、10℃の場合、Na2 SO4 とほゞ同量のK 2
SO4 が溶解する。従って、スラリ中の固形物に残るK
2 SO4 はNa2 SO 4 に対してK2 SO4 が多く溶け
出した方が少なくなるので、10℃のスラリ中の固形物
中のK2 SO4 は80℃のそれと比較した場合、約1/
4となる。
Using a fixed amount of the collected ash of the same composition, 80
Make slurries at 10 ° C and 10 ° C. In this case, hydrogenation of both
Na that melts on the water side by changing the amount added2SOFourThe same amount of
Slurry Then, in the case of 80 ℃ slurry, it melts
Na2SOFourAbout 1/4 amount of K2SOFourOnly melted
No, but at 10 ° C, Na2SOFourThe same amount of K 2
SOFourDissolves. Therefore, K that remains in the solid matter in the slurry
2SOFourIs Na2SO FourAgainst K2SOFourMelts a lot
Solids in the slurry at 10 ° C are reduced as less is discharged
K inside2SOFourIs about 1 / compared to that at 80 ℃
It becomes 4.

【0010】しかし、回収ボイラの捕集灰を初めから低
温の水に接触させた場合、未溶解の粗大粒子が残りやす
く、攪拌・ポンプ移送などのスラリハンドリングが困難
である。これに対し、本発明のように、あらかじめスラ
リを20℃以上(望ましくはNa2 SO4 の溶解度の低
下が少ない30℃前後)に調整して引続き20℃未満の
低温にする場合は、捕集灰が一旦溶液化しているのでハ
ンドリングが容易である。
However, when the collected ash of the recovery boiler is brought into contact with low-temperature water from the beginning, undissolved coarse particles are likely to remain, and slurry handling such as stirring and pumping is difficult. On the other hand, as in the present invention, when the slurry is previously adjusted to 20 ° C. or higher (preferably around 30 ° C. in which the decrease in the solubility of Na 2 SO 4 is small) and subsequently kept at a low temperature of less than 20 ° C. Since the ash is once in solution, it is easy to handle.

【0011】以上の操作において、集塵灰(電気集塵
灰)は一旦水に溶解後、結晶化するわけであるが、この
溶解の際に電気集塵灰(以下、EP灰という)中の塩、
特にNa2 CO3 等は次式のように大きな溶解熱を発生
する。
In the above operation, the dust collecting ash (electrostatic dust collecting ash) is once dissolved in water and then crystallized. During this dissolution, the dust collecting ash (hereinafter referred to as EP ash) is dissolved. salt,
Particularly, Na 2 CO 3 and the like generate a large heat of solution as shown in the following equation.

【化1】 Embedded image

【0012】また、図2はスラリ分離液のpHと分離液
中のNa2 CO3 及びNa2 SO4の濃度を示したもの
であるが、EP灰中のNa2 CO3 が増加するとスラリ
のpHが上昇するとともに溶液中へNa2 CO3 が溶解
するので全体的にNa回収率が低下してしまう。これを
防止するためには図2から判るように、スラリのpHを
10以下に中和する必要があるが、この中和の際にも次
式の如く大きな中和熱が発生する。
[0012] Figure 2 but shows the pH and concentration of Na 2 CO 3 and Na 2 SO 4 in the separation liquid of the slurry separation liquid, the slurry when Na 2 CO 3 in EP ash increases Since Na 2 CO 3 dissolves in the solution as the pH rises, the Na recovery rate decreases overall. In order to prevent this, as shown in FIG. 2, it is necessary to neutralize the pH of the slurry to 10 or less, but during this neutralization, a large heat of neutralization is generated as in the following equation.

【化2】Na2 CO3 +H2 SO4 →Na2 SO4 +H
2 O+CO2 −61.6Kcal/kg そしてEP灰は排ガス温度約200℃前後の温度域で回
収されたものであり、その自体の持込顕熱も大きい。
Embedded image Na 2 CO 3 + H 2 SO 4 → Na 2 SO 4 + H
2 O + CO 2 -61.6 Kcal / kg And EP ash is one collected in a temperature range around an exhaust gas temperature of about 200 ° C., and its own sensible heat is also large.

【0013】従っていきなり20℃未満のスラリにして
結晶を析出させる場合、冷却器で20℃未満に冷却され
た高価な冷熱でEP灰の顕熱、溶解熱、中和熱、結晶化
熱等全てを冷却する必要があり、冷却コストが増大す
る。
Therefore, when crystals are precipitated by suddenly making the slurry into less than 20 ° C., all of the sensible heat, the heat of dissolution, the heat of crystallization, the heat of crystallization, etc. of the EP ash are all consumed by the expensive cold heat cooled to less than 20 ° C. Need to be cooled, which increases the cooling cost.

【0014】これに対し、本発明の方法のように、まず
第一段階でEP灰を溶解、スラリ化後、中和して20℃
以上(望ましくは30℃前後)とし、第2段階で20℃
未満の温度に冷却して更に結晶を析出させて固液分離を
行う。この場合第1段階でのEP灰の顕熱、溶解熱、中
和熱等は通常の冷却水による熱交換で冷却でき、第2段
階の結晶化熱を主に冷却器を用いた冷却で20℃未満に
冷却することとなる。このように通常の工業用水等の冷
却水による冷却でEP灰の顕熱、溶解熱、中和熱等を冷
却することにより冷却コストを大巾に減じることができ
る。
On the other hand, as in the method of the present invention, EP ash is first dissolved and slurried in the first stage, and then neutralized at 20 ° C.
Above (preferably around 30 ℃), 20 ℃ in the second stage
The mixture is cooled to a temperature below the temperature to precipitate crystals, and solid-liquid separation is performed. In this case, the sensible heat, the heat of dissolution, the heat of neutralization, etc. of the EP ash in the first stage can be cooled by heat exchange with ordinary cooling water, and the crystallization heat in the second stage can be mainly cooled by using a cooler. It will be cooled below ℃. Thus, the cooling cost can be greatly reduced by cooling the sensible heat, the heat of dissolution, the heat of neutralization, etc. of the EP ash by cooling with cooling water such as ordinary industrial water.

【0015】そして本発明の方法はEP灰中のNa2
3 濃度が高くなる程、その効果が大きくなる。なお、
あらかじめ20℃以上にした捕集灰の水溶液を次の段階
で20℃未満に冷却するので、溶液の過飽和度を増しN
2 SO4 の粗大結晶の析出を促すことができる。
The method of the present invention is then applied to Na 2 C in EP ash.
The higher the O 3 concentration, the greater the effect. In addition,
Since the aqueous solution of the collected ash which has been heated to 20 ° C. or higher in advance is cooled to below 20 ° C. in the next step, the supersaturation degree of the solution is increased and N
Precipitation of coarse crystals of a 2 SO 4 can be promoted.

【0016】[0016]

【実施例】本発明の具体的実施例について、図3を用い
て説明する。第1攪拌槽1に電気集塵機の捕集灰1.0
トン/時(捕集灰の組成は重量%でNaCl:9.7
%、Na2 SO4 :67.2%、Na2 CO3 :10.
1%、KCl:1.5%、K 2 SO4 :9.9%、K2
CO3 :1.6%)をコンベア2から連続的に投下供給
し、それと並行して該第1攪拌槽1に水:1.0トン/
時を供給する。第1攪拌槽1では攪拌機3を強力に攪拌
して捕集灰と水とを充分混合しスラリ化する。この際、
冷却水を用いた熱交換器4により第1攪拌槽1内のスラ
リ温度を25℃に保つようにする。この時に、スラリの
pHがNa2 CO3 により10以上を示すので、希硫酸
タンク11内の希硫酸12をpH計14の指示によりp
H調整器15で薬注ポンプ13を制御して第1攪拌槽1
内へ供給し、スラリのpHを9になるように調整する。
これによりスラリ中のNa2 CO3 の大部分をNa2
4 に転換する。この状態で1〜2時間滞留させ、その
後ポンプ5でスラリ約2.0トン/時を第2攪拌槽6に
移送する。
EXAMPLE A concrete example of the present invention will be described with reference to FIG.
Explain. Collected ash from the electrostatic precipitator 1.0 in the first stirring tank 1.
Tons / hour (The composition of the collected ash is wt% NaCl: 9.7
%, Na2SOFour: 67.2%, Na2CO3: 10.
1%, KCl: 1.5%, K 2SOFour: 9.9%, K2
CO3: 1.6%) continuously supplied from conveyor 2.
In parallel with that, water: 1.0 ton / in the first stirring tank 1
Supply time. Strongly stir the stirrer 3 in the first stirring tank 1.
Then, the collected ash and water are thoroughly mixed to form a slurry. On this occasion,
With the heat exchanger 4 using cooling water, the slurry in the first stirring tank 1 is
Keep the temperature at 25 ° C. At this time, the slurry
pH is Na2CO3Since it shows 10 or more, dilute sulfuric acid
Dilute the sulfuric acid 12 in the tank 11 with the instruction of the pH meter 14
The H regulator 15 controls the chemical injection pump 13 to control the first stirring tank 1
And the pH of the slurry is adjusted to 9.
As a result, Na in the slurry2CO3Most of the Na2S
O FourConvert to. In this state, stay for 1-2 hours,
Approximately 2.0 tons / hour of slurry is supplied to the second stirring tank 6 by the rear pump 5.
Transfer.

【0017】次に第2攪拌槽6に水又は氷を合計約1ト
ン/時供給し、攪拌機7によるゆるやかな攪拌を行い4
〜8時間滞留させ、Na2 SO4 の結晶成長を促す。こ
の際、氷の供給及び冷却機8により第2攪拌槽6内のス
ラリ温度が15℃を保つようにする。
Next, water or ice is supplied to the second stirring tank 6 in a total amount of about 1 ton / hour and gently stirred by the stirrer 7.
8 hours allowed to stay, encourage crystal growth of Na 2 SO 4. At this time, the temperature of the slurry in the second stirring tank 6 is kept at 15 ° C. by the supply of ice and the cooler 8.

【0018】次に、ポンプ9により第2攪拌槽6内のス
ラリ約3.0トン/時をデカンタ10に移送しスラリ中
の固形分を分離した。その結果、2.1トン/時のスラ
ッジと0.9トン/時の分離液を得た。分離液0.9ト
ン/時は水で希釈後工場内の廃水処理装置に送った。な
お、2.1トン/時のスラッジは0.9トン/時の固形
分と、1.2トン/時の結晶水及び付着液よりなる。こ
のスラッジは必要に応じて乾燥し、Na2 SO4 ミキシ
ングタンクに戻される。
Next, about 3.0 tons / hour of the slurry in the second stirring tank 6 was transferred to the decanter 10 by the pump 9, and the solid content in the slurry was separated. As a result, 2.1 ton / hour of sludge and 0.9 ton / hour of the separated liquid were obtained. The separated liquid 0.9 ton / hour was diluted with water and then sent to the wastewater treatment device in the factory. The 2.1 ton / hour sludge is composed of 0.9 ton / hour of solid content, 1.2 ton / hour of water of crystallization and adhering liquid. The sludge is dried if necessary and returned to the Na 2 SO 4 mixing tank.

【0019】この例におけるNa2 SO4 回収率は約8
5%、KCl、K2 SO4 等のカリウム分の除去率は約
95%、NaCl除去率は約97%であった。
The recovery of Na 2 SO 4 in this example is about 8
5%, the removal rate of potassium components such as KCl and K 2 SO 4 was about 95%, and the removal rate of NaCl was about 97%.

【0020】次に、150℃のNa2 CO3 を15%含
んだEP灰(残りはNa2 SO4 :85%と仮定)1ト
ンに水2トンを用いてスラリ化し、これを全て冷却器に
て15℃まで冷却した場合の冷却熱量と、冷却水と冷却
器を用いた本発明の好ましい方法の冷却熱量とを比較し
て表1に示した。
Next, 1 ton of EP ash containing 15% of Na 2 CO 3 at 150 ° C. (the rest is assumed to be Na 2 SO 4 : 85%) was slurried with 2 tons of water, and this was all cooled by a cooler. Table 1 shows a comparison between the amount of cooling heat when cooled to 15.degree. C. and the amount of cooling heat of the preferred method of the present invention using cooling water and a cooler.

【0021】[0021]

【表1】 [Table 1]

【0022】表1では下記表2の値(実測値)を用い
た。
In Table 1, the values (measured values) shown in Table 2 below were used.

【0023】[0023]

【表2】 [Table 2]

【0024】表1から明らかなように本発明による冷却
水と冷却器とを使用した方法は全冷却熱量の約半分(5
9155/127855×100=46.3%)の冷却
熱量を安価な冷却水により冷却し、残りを冷却器にて冷
却するため冷却コストの大巾な低減が可能なことがわか
る。
As is apparent from Table 1, the method using the cooling water and the cooler according to the present invention has about half the total cooling heat amount (5
It is understood that the cooling heat amount of 9155/127855 × 100 = 46.3%) is cooled by inexpensive cooling water, and the rest is cooled by the cooler, so that the cooling cost can be greatly reduced.

【0025】[0025]

【発明の効果】【The invention's effect】

1.回収ボイラ排ガスの捕集灰から食塩およびカリウム
塩を除去することにより、薬品系統の塩素およびカリウ
ムの濃度を低下させることができる。その結果、回収ボ
イラ煙道の燃焼灰の付着性を低下させ、従来3ケ月程度
の連続操業が6カ月〜1カ年に延長できた。 2.同時に、伝熱面に付着する灰の除去のためのスーツ
ブローに消費する蒸気量が大幅に低減できた。 3.食塩及びカリウム塩の除去により付着灰の融点低下
がなくなり、ボイラ高温部での伝熱管の腐食が低減し
た。スメルトスパウトの耐用期間が約3倍に延長される
など、回収ボイラ各部の腐食性が改善された。 4.冷却水による冷却により冷却器の動力が半減し、大
巾な冷却コストの低減を可能とした。
1. By removing salt and potassium salt from the collected ash of the recovered boiler exhaust gas, it is possible to reduce the concentration of chlorine and potassium in the chemical system. As a result, the adhesion of the combustion ash of the recovery boiler flue was reduced, and the conventional continuous operation of about 3 months could be extended to 6 months to 1 year. 2. At the same time, the amount of steam consumed in the suit blow for removing the ash adhering to the heat transfer surface was significantly reduced. 3. By removing the salt and potassium salt, the melting point of the adhered ash was not lowered, and the corrosion of the heat transfer tube in the high temperature part of the boiler was reduced. The corrosiveness of each part of the recovery boiler has been improved, for example, the service life of the smelt spout has been extended about three times. 4. Cooling with cooling water cuts the power of the cooler in half, making it possible to greatly reduce cooling costs.

【図面の簡単な説明】[Brief description of drawings]

【図1】Na2 SO4 −K2 SO4 混合系のNa2 SO
4 、K2 SO4 の溶解度及びNa2 SO4 単独系、K2
SO4 の単独系の夫々の溶解度を示す図表。
FIG. 1 Na 2 SO 4 mixed system of Na 2 SO 4 —K 2 SO 4
4 , solubility of K 2 SO 4 and Na 2 SO 4 alone system, K 2
Sole system diagram showing the solubility of each of the SO 4.

【図2】スラリ分離液のpHと分離液中のNa2
4 、Na2 CO3 の濃度の関係を示す図表。
FIG. 2 pH of slurry separation liquid and Na 2 S in the separation liquid
O 4, table showing the relationship between the concentration of Na 2 CO 3.

【図3】本発明の1実施例を説明するための工程の概略
図。
FIG. 3 is a schematic view of a process for explaining one embodiment of the present invention.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 前田 隆之 長崎県長崎市飽の浦町1番1号 三菱重工 業株式会社長崎造船所内 (72)発明者 荒川 善久 東京都千代田区丸の内二丁目5番1号 三 菱重工業株式会社本社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Takayuki Maeda 1-1, Atsunoura-machi, Nagasaki-shi, Nagasaki Mitsubishi Heavy Industries, Ltd. Nagasaki Shipyard (72) Inventor Yoshihisa Arakawa 2-5-1 Marunouchi, Chiyoda-ku, Tokyo Sanryo Heavy Industries Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 ソーダ回収ボイラの燃焼排ガスから捕集
した捕集灰を、水と混合してスラリ化し、該スラリのp
Hを硫酸添加により10以下に、温度を20℃以上に調
整し、一定時間保持して捕集灰中の食塩及びカリウム塩
を水に溶解させ、該スラリを20℃未満の温度に冷却し
て固形分を析出させた後、固形分と液体に分離して固形
分は回収し、液体は系外に廃棄することを特徴とするソ
ーダ回収ボイラの捕集灰からの食塩及びカリウム塩の除
去方法。
1. The collected ash collected from the combustion exhaust gas of a soda recovery boiler is mixed with water to form a slurry, and p of the slurry is mixed.
H was adjusted to 10 or less by adding sulfuric acid and the temperature was adjusted to 20 ° C. or more, and the salt and potassium salt in the collected ash were dissolved in water by maintaining for a certain time, and the slurry was cooled to a temperature of less than 20 ° C. A method for removing salt and potassium salt from the collected ash of a soda recovery boiler, which comprises depositing a solid content, separating the solid content and a liquid, recovering the solid content, and discarding the liquid outside the system. .
JP6311462A 1994-12-15 1994-12-15 Removal of sodium salt and potassium salt from caught ash of soda-recovering boiler Pending JPH08170288A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP6311462A JPH08170288A (en) 1994-12-15 1994-12-15 Removal of sodium salt and potassium salt from caught ash of soda-recovering boiler
US08/538,790 US5840085A (en) 1994-12-15 1995-10-03 Process for removing sodium chloride and potassium salts from ash collected from a soda recovery boiler
FI955105A FI111171B (en) 1994-12-15 1995-10-26 Process for separating potassium salts from ash collected from a soda boiler
CA002162191A CA2162191C (en) 1994-12-15 1995-11-06 Process for removing sodium chloride and potassium salts from ash collected from a soda recovery boiler
SE9504281A SE515987C2 (en) 1994-12-15 1995-11-30 Process for removing potassium salts from ash from a soda pan

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6311462A JPH08170288A (en) 1994-12-15 1994-12-15 Removal of sodium salt and potassium salt from caught ash of soda-recovering boiler

Publications (1)

Publication Number Publication Date
JPH08170288A true JPH08170288A (en) 1996-07-02

Family

ID=18017519

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6311462A Pending JPH08170288A (en) 1994-12-15 1994-12-15 Removal of sodium salt and potassium salt from caught ash of soda-recovering boiler

Country Status (5)

Country Link
US (1) US5840085A (en)
JP (1) JPH08170288A (en)
CA (1) CA2162191C (en)
FI (1) FI111171B (en)
SE (1) SE515987C2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015093239A (en) * 2013-11-12 2015-05-18 王子ホールディングス株式会社 Processing method and processing unit for recovery boiler collection ash
JP2015522726A (en) * 2012-07-26 2015-08-06 ヴェオリア ウォーター テクノロジーズ インコーポレイテッド Method for recovering pulping chemicals and reducing the concentration of potassium and chloride in pulping chemicals

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60122336D1 (en) * 2000-03-08 2006-09-28 Isg Resources Inc CONTROL OF AMMONIA EMISSIONS FROM AMMONIA-LOADED POCKET IN CONCRETE
SE0102717L (en) * 2001-08-14 2002-06-25 Kvaerner Pulping Tech Procedure for leaching electric filter ash from a soda boiler
US7735435B2 (en) * 2006-05-24 2010-06-15 Diamond Power International, Inc. Apparatus for cleaning a smelt spout of a combustion device
CN100439249C (en) * 2006-10-25 2008-12-03 中国中轻国际工程有限公司 Process for producing sodium sulfate and sodium chloride in Na2SO4-NaCl-H2O system
SE530373C3 (en) * 2006-11-22 2008-06-10 Metso Power Ab Apparatus and method for leaching chloride and potassium from electric filter ash
BRPI0924612B1 (en) * 2009-05-06 2018-08-07 Metso Power Ab IMPROVED PROCESS FOR ELECTROSTATIC PRECIPITATOR GRAY LIXIVIATION FROM RECOVERY BOILER
SE537954C2 (en) * 2014-12-17 2015-12-01 Aprotech Engineering Ab Process for production of a fertilizer comprising potassium sulfate
CN110227702B (en) * 2019-05-17 2021-03-23 周丹丹 Method for preparing flux by using chemical waste salt

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1182668A (en) * 1915-04-30 1916-05-09 Frederic Ludwig Firebaugh Process for treating rock containing alkali metals.
US1853275A (en) * 1929-12-28 1932-04-12 Alexis C Houghton Manufacture of sodium carbonate from salt residues left by the evaporation of alkaline waters
US2970890A (en) * 1957-08-23 1961-02-07 Du Pont Method of purifying dilute sodium sulfate solution
US4724130A (en) * 1986-07-28 1988-02-09 Conoco Inc. Recovery of promoters used in flue gas desulfurization
US5126019A (en) * 1989-11-16 1992-06-30 Texas Brine Corporation Purification of chlor-alkali membrane cell brine
US5302246A (en) * 1992-07-30 1994-04-12 Kamyr, Inc. Method of managing liquid steams in a pulp mill
US5549788A (en) * 1992-07-30 1996-08-27 A. Ahlstrom Corporation Minimal effluents discharge pulp mill with chemical recovery
US5562807A (en) * 1995-03-03 1996-10-08 Baluha; Mark R. Cross direction fiber movement and dewatering device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015522726A (en) * 2012-07-26 2015-08-06 ヴェオリア ウォーター テクノロジーズ インコーポレイテッド Method for recovering pulping chemicals and reducing the concentration of potassium and chloride in pulping chemicals
JP2015093239A (en) * 2013-11-12 2015-05-18 王子ホールディングス株式会社 Processing method and processing unit for recovery boiler collection ash

Also Published As

Publication number Publication date
FI955105A (en) 1996-06-16
SE9504281L (en) 1996-06-16
FI955105A0 (en) 1995-10-26
SE515987C2 (en) 2001-11-05
US5840085A (en) 1998-11-24
SE9504281D0 (en) 1995-11-30
CA2162191C (en) 1999-09-21
FI111171B (en) 2003-06-13
CA2162191A1 (en) 1996-06-16

Similar Documents

Publication Publication Date Title
CN106007133B (en) A kind of desulfurization wastewater concentration and evaporation, crystallization, salt separating technology
CN108996785A (en) A kind of high slat-containing wastewater thoroughly divides salt crystallization processes and its system
CN112374521A (en) Process for extracting calcium chloride from waste incineration fly ash
JPH08170288A (en) Removal of sodium salt and potassium salt from caught ash of soda-recovering boiler
JP2019503859A (en) Methods and arrangements for salt recovery
CN110227702B (en) Method for preparing flux by using chemical waste salt
CN112551554A (en) Treatment method of sulfur-containing waste salt and solution thereof
CN109437137A (en) A kind of method that the purification of crude product sodium pyrophosphate produces tertiary sodium phosphate and sodium chloride
CN112225242A (en) Resourceful treatment device and process for mother liquor generated by reaction of waste incineration fly ash and hydrochloric acid
JP3306471B2 (en) Treatment method of exhaust gas from cement kiln
CN115818671A (en) Method for crystallizing and purifying sodium carbonate of incineration product
SE459665B (en) SET TO REGENATE BEATIC ACIDS
CN111484180B (en) Waste heat method recrystallization purification mode and system for zero-emission associated crystallization salt of sewage
JP3612543B2 (en) Method for fractional collection of aluminum and phosphorus
JPH0929201A (en) Method for removal of salt and potassium salt from collected ash of sode recovery boiler
CN110683698A (en) Wet smelting wastewater zero-discharge recycling production process
CN213701193U (en) Resourceful treatment device for mother liquor generated by reaction of waste incineration fly ash and hydrochloric acid
JP2637573B2 (en) Method for removing salt and potassium salt from pulp cooking chemicals
JP2578199B2 (en) Method for removing salt and potassium salt from pulp cooking chemicals
JP5114820B2 (en) Sodium chloride purification method and sodium hydroxide production method
DE102004054433B4 (en) Process for the recovery of calcium chloride from effluents of epichlorohydrin production
JPH04146284A (en) Recovery of glauber&#39;s salt from alkali metal salt-containing ash and device therefor
CN219585937U (en) BOE waste liquid recycling treatment system
JP2597023B2 (en) Temperature control method of apparatus for removing potassium salt from pulp cooking chemicals
CN217459268U (en) Waste incineration fly ash washing dechlorination and washing liquid evaporation mass-separation crystallization treatment system

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20010828