JPH0929201A - Method for removal of salt and potassium salt from collected ash of sode recovery boiler - Google Patents

Method for removal of salt and potassium salt from collected ash of sode recovery boiler

Info

Publication number
JPH0929201A
JPH0929201A JP7184138A JP18413895A JPH0929201A JP H0929201 A JPH0929201 A JP H0929201A JP 7184138 A JP7184138 A JP 7184138A JP 18413895 A JP18413895 A JP 18413895A JP H0929201 A JPH0929201 A JP H0929201A
Authority
JP
Japan
Prior art keywords
slurry
salt
water
solid content
collected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7184138A
Other languages
Japanese (ja)
Inventor
Kikuo Tokunaga
喜久男 徳永
Masakazu Tateishi
正和 立石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP7184138A priority Critical patent/JPH0929201A/en
Publication of JPH0929201A publication Critical patent/JPH0929201A/en
Pending legal-status Critical Current

Links

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Paper (AREA)

Abstract

PROBLEM TO BE SOLVED: To recover effectively salt and potassium salt by a method wherein a collected ash collected from an exhaust gas of a soda recovery boiler is mixed with water to make slurry, salt in the collected ash is dissolved in water, and when a solid content is separated from the liquid after depositing the solid content, temperature and pH of the slurry are respectively specified. SOLUTION: When salt and potassium salt are removed from a collected ash collected from an exhaust gas in a pulp manufacturing plant, at first, the collected ash of an electric static precipitator and water are fed to a first agitating bath 1 to make slurry. In this case, temperature of the slurry is kept at 20 deg.C or above with a heat exchanger 4, and pH of the slurry is adjusted at 10 or above, by feeding diluted sulfuric acid 12 controlled with a pH adjustor 15. after keeping this state for 1-2h, the slurry is fed to a second agitating bath 6, water or ice is fed therein to keep temperature at 20 deg.C or below, and crystallization of Na2 SO4 is accelerated. Then, after separating a solid content in the slurry with a decanter 10, sludge is dissolved again in black liquor before concentration, and the solid content is recovered by returning it to a front courrent of a black liquor concentrator.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明はパルプ製造工場のソ
ーダ回収ボイラに適用されるもので、パルプ蒸解薬品中
に濃縮・蓄積される不純物としての食塩及びカリウム塩
を燃焼排ガスから捕集した捕集灰から除去する方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is applied to a soda recovery boiler in a pulp manufacturing plant, and collects salt and potassium salts as impurities that are concentrated and accumulated in pulp cooking chemicals from combustion exhaust gas. It relates to a method of removing ash.

【0002】[0002]

【従来の技術】パルプ蒸解薬品中のカリウム塩を除去す
る方法として、従来実機に適用された方法はないが類似
の技術として食塩除去方法がある。すなわち、ソーダ回
収ボイラの排ガスからの捕集灰を少量の水と循環液を用
いてスラリ化させ、60〜70℃の温度で食塩を水に溶
解し、スラリ中の固形分を分離・回収する方法である。
しかし、この方法では薬品中の食塩は容易に除去できる
が、カリウム塩の溶解度が小さいため、カリウム塩を除
去しようとする場合有効薬品であるNa2 SO 4 が同時
に失われるので薬品損失が大きくなる欠点を有する。
2. Description of the Related Art Removal of potassium salts in pulp cooking chemicals
There is no method that has been applied to actual equipment as a conventional method, but it is similar
There is a salt removal method as the technique. That is, soda times
Uses a small amount of water and circulating liquid to collect the collected ash from the exhaust gas of the collecting boiler.
To make it into a slurry and dissolve the salt in water at a temperature of 60-70 ℃.
It is a method to separate and recover the solid content in the slurry.
However, this method can easily remove the salt in the drug.
However, since the solubility of potassium salt is low, potassium salt is removed.
Na is an effective drug when trying to leaveTwoSO FourBut at the same time
However, it has a drawback that the chemical loss becomes large.

【0003】[0003]

【発明が解決しようとする課題】パルプ蒸解薬品中に
は、不純物としての食塩やカリウム塩が主としてパルプ
原木からもたらされる。これらの不純物は製品であるパ
ルプや系統外に出る損失薬品に随伴して薬品回収系統を
出て行くが、薬品回収のクローズド化が進み薬品回収率
が上昇するに従って薬品回収系統中に濃縮・蓄積する傾
向が生じる。
In pulp cooking chemicals, salt and potassium salts as impurities are mainly brought from pulp logs. These impurities leave the chemical recovery system along with the pulp that is the product and the lost chemical that goes out of the system, but as the chemical recovery becomes closed and the chemical recovery rate increases, it is concentrated and accumulated in the chemical recovery system. There is a tendency to

【0004】濃縮・蓄積した食塩やカリウム塩はイナー
ト物質として薬品の循環負荷を高め、デッドロード増加
による経済性の低下につながるだけでなく、薬品回収系
統の腐食性を著しく高めることはよく知られている。特
にパルプ廃液を燃焼するソーダ回収ボイラにおいては、
食塩及びカリウム塩の存在によりボイラ高温部の伝熱管
の腐食性を高めるだけでなく、伝熱管表面に付着する燃
焼灰の付着性を著しく高め、ソーダ回収ボイラの煙道圧
力損失を増しボイラの連続操業を阻害するに至る。
It is well known that concentrated and accumulated salt or potassium salt, as an inert substance, not only increases the circulation load of chemicals and leads to a decrease in economic efficiency due to an increase in dead load, but also significantly increases the corrosiveness of the chemical recovery system. ing. Especially in soda recovery boilers that burn pulp waste liquid,
The presence of sodium chloride and potassium salt not only enhances the corrosiveness of the heat transfer tube in the high temperature part of the boiler, but also significantly increases the adhesion of the combustion ash adhering to the surface of the heat transfer tube, increasing the flue pressure loss of the soda recovery boiler and continuing the boiler. Leading to disruption of operations.

【0005】本発明はこのような従来技術における問題
点を解決し、薬品回収系から食塩及びカリウム塩を除去
するとともに効率よく薬品回収を行うことができるソー
ダ回収ボイラの捕集灰からの食塩及びカリウム塩の除去
方法を提供するものである。
The present invention solves the above problems in the prior art, removes salt and potassium salt from the chemical recovery system, and is capable of efficiently recovering chemicals. A method for removing potassium salt is provided.

【0006】[0006]

【課題を解決するための手段】本発明はソーダ回収ボイ
ラの燃焼排ガスから捕集した捕集灰を、水と混合してス
ラリ化し、該スラリのpHを硫酸添加により10以下
に、温度を20℃以上に調整し、一定時間保持して捕集
灰中の食塩及びカリウム塩を水に溶解させ、該スラリを
20℃未満の温度に冷却して固形分を析出させた後、固
形分と液体に分離して液体は系外に廃棄し、固形分は濃
縮前の黒液に再溶解させ、その黒液を黒液濃縮器の前流
に戻すことによって固形分を回収することを特徴とする
ソーダ回収ボイラの捕集灰からの食塩及びカリウム塩の
除去方法である。
According to the present invention, the collected ash collected from the combustion exhaust gas of a soda recovery boiler is mixed with water to form a slurry, and the pH of the slurry is adjusted to 10 or less by adding sulfuric acid, and the temperature is set to 20. After adjusting the temperature to ℃ or more and maintaining it for a certain period of time to dissolve the salt and potassium salt in the collected ash in water and cooling the slurry to a temperature of less than 20 ° C. to precipitate the solid content, the solid content and liquid The liquid is discarded to the outside of the system, the solid content is redissolved in the black liquor before concentration, and the solid content is recovered by returning the black liquor to the upstream of the black liquor concentrator. It is a method of removing salt and potassium salts from the collected ash of a soda recovery boiler.

【0007】[0007]

【発明の実施の形態】前述したように、従来の食塩除去
方法ではソーダ回収ボイラの捕集灰を60〜70℃の少
量の水に接触させて食塩を除去するが、カリウム塩の場
合は水に対する溶解度が小さいため、必要な除去量を得
るまで水を添加すると、有効薬品である硫酸ソーダの溶
出量が増加し経済性が悪くなる。
BEST MODE FOR CARRYING OUT THE INVENTION As described above, in the conventional salt removal method, the ash collected from the soda recovery boiler is contacted with a small amount of water at 60 to 70 ° C. to remove the salt. Therefore, if water is added until the required removal amount is obtained, the amount of sodium sulfate, which is an effective chemical, is eluted and the economy is deteriorated.

【0008】そこで、本発明はカリウム塩の除去を主目
的として、捕集灰を水でスラリ化するとともに、硫酸で
中和して該スラリのpHを10以下(10〜7)にし
て、硫酸塩を主体とした捕集灰中に含まれる炭酸塩もそ
の殆どを硫酸塩にする。このようにして捕集灰中に含ま
れるカリウムやナトリウムを硫酸カリウム及び硫酸ソー
ダとして溶出させ、捕集灰の顕熱、溶解熱、中和熱など
を生じさせた後、工業用水などで該スラリの温度を20
℃以上(望ましくはNa2 SO4 の溶解度の低下が少な
い30℃前後)に調節する。次に該スラリを硫酸ソーダ
の溶解度が小さく、従って薬品損失がより少ない20℃
未満(一般的に20℃未満10℃以上)の低温にして硫
酸ソーダを析出させて分離・回収し、硫酸カリウムを溶
解・除去する。このように捕集灰が溶解した20℃以上
(望ましくは30℃前後)の水溶液を20℃未満の温度
に冷却することによって、溶液の過飽和度を増し粗大結
晶の析出を促すことができ、また、析出した結晶の粒径
が大きいので、その後の分離・回収も容易となる。
Therefore, in the present invention, the main purpose is to remove potassium salts, and the collected ash is slurried with water and neutralized with sulfuric acid to adjust the pH of the slurry to 10 or less (10 to 7). Most of the carbonates contained in the collected ash mainly composed of salt are also sulfates. In this way, potassium and sodium contained in the collected ash are eluted as potassium sulfate and sodium sulfate to generate sensible heat, heat of dissolution, heat of neutralization, etc. of the collected ash, and then the slurry is washed with industrial water or the like. The temperature of 20
° C. or higher (preferably Na 2 SO 30 ° C. before and after reduction in solubility is less in 4) is adjusted to. The slurry is then treated at 20 ° C., where the solubility of sodium sulfate is low and therefore chemical loss is lower.
At a low temperature of less than (generally less than 20 ° C. and 10 ° C. or higher), sodium sulfate is precipitated, separated and recovered, and potassium sulfate is dissolved / removed. By cooling the aqueous solution of 20 ° C. or more (preferably around 30 ° C.) in which the collected ash is dissolved to a temperature of less than 20 ° C., the degree of supersaturation of the solution can be increased and the precipitation of coarse crystals can be promoted. Since the precipitated crystal grains have a large particle size, subsequent separation / recovery becomes easy.

【0009】このようにして分離・回収した固形分はN
2 SO4 ・10H2 O及び固液分離時の付着水を含む
ため固形分中の水分は約60%前後に達する。この固形
分を回収ボイラ直前の濃縮された黒液中に戻すと回収ボ
イラへの持ち込み水分が増加しボイラ効率が低下する。
そのため、この固形分を濃縮前の黒液に溶解させ、黒液
濃縮器の前流に戻し、黒液濃縮器で濃縮するようにす
る。これにより回収ボイラへの持ち込み水分の増加はな
く、固形分回収によるボイラ効率の低下をなくすことが
できる。
The solid content thus separated and recovered is N
Since it contains a 2 SO 4 · 10H 2 O and water adhering during solid-liquid separation, the water content in the solid content reaches about 60%. When this solid content is returned to the concentrated black liquor immediately before the recovery boiler, the amount of water brought into the recovery boiler increases and the boiler efficiency decreases.
Therefore, this solid content is dissolved in the black liquor before concentration, returned to the upstream of the black liquor concentrator, and concentrated in the black liquor concentrator. As a result, the amount of water brought into the recovery boiler does not increase, and the decrease in boiler efficiency due to solid content recovery can be eliminated.

【0010】(作用)図1はNa2 SO4 −K2 SO4
混合系の溶解度を温度に対してプロットしたものであ
る。図1中、Na2 SO4 (混合系)、K2 SO4 (混
合系)とはNa 2 SO4 −K2 SO4 混合系中のNa2
SO4 、K2 SO4 の溶解度曲線、Na 2 SO4 (単
独)、K2 SO4 (単独)とは夫々の単独系のNa2
4 、K2SO4 の溶解度曲線を示す。図1においてK
2 SO4 の溶解度は温度に対する変化が少ないが、Na
2 SO4 の溶解度は温度に対する変化が大きく、低温で
溶解度が著しく小さくなる。
(Operation) FIG. 1 shows NaTwoSOFour-KTwoSOFour
Is a plot of the solubility of a mixed system against temperature.
You. 1, NaTwoSOFour(Mixed system), KTwoSOFour(Mixed
Combined system) is Na TwoSOFour-KTwoSOFourNa in mixed systemTwo
SOFour, KTwoSOFourSolubility curve, Na TwoSOFour(single
Germany), KTwoSOFour(Single) means each individual NaTwoS
OFour, KTwoSOFourShows the solubility curve of K in FIG.
TwoSOFourThe solubility of Na changes little with temperature, but
TwoSOFourThe solubility of is highly dependent on temperature,
The solubility is significantly reduced.

【0011】同じ組成の捕集灰の一定量を使用して80
℃と10℃のスラリを作製する。この場合、両者の水添
加量を変えて水側に溶け出すNa2 SO4 の量を同一と
したスラリとする。すると80℃のスラリの場合、溶解
したNa2 SO4 の約1/4量のK2 SO4 しか溶解し
ないが、10℃の場合、Na2 SO4 とほゞ同量のK 2
SO4 が溶解する。従って、スラリ中の固形物に残るK
2 SO4 はNa2 SO 4 に対してK2 SO4 が多く溶け
出した方が少なくなるので、10℃のスラリ中の固形物
中のK2 SO4 は80℃のそれと比較した場合、約1/
4となる。
Using a fixed amount of the collected ash of the same composition, 80
Make slurries at 10 ° C and 10 ° C. In this case, hydrogenation of both
Na that melts on the water side by changing the amount addedTwoSOFourThe same amount of
Slurry Then, in the case of 80 ℃ slurry, it melts
NaTwoSOFourAbout 1/4 amount of KTwoSOFourOnly melted
No, but at 10 ° C, NaTwoSOFourThe same amount of K Two
SOFourDissolves. Therefore, K that remains in the solid matter in the slurry
TwoSOFourIs NaTwoSO FourAgainst KTwoSOFourMelts a lot
Solids in the slurry at 10 ° C are reduced as less is discharged
K insideTwoSOFourIs about 1 / compared to that at 80 ℃
It becomes 4.

【0012】しかし、回収ボイラの捕集灰を初めから低
温の水に接触させた場合、未溶解の粗大粒子が残りやす
く、攪拌・ポンプ移送などのスラリハンドリングが困難
である。これに対し、本発明のように、あらかじめスラ
リを20℃以上(望ましくはNa2 SO4 の溶解度の低
下が少ない30℃前後)に調整して引続き20℃未満の
低温にする場合は、捕集灰が一旦溶液化しているのでハ
ンドリングが容易である。
However, when the collected ash of the recovery boiler is brought into contact with low temperature water from the beginning, undissolved coarse particles are likely to remain, and slurry handling such as stirring and pumping is difficult. On the other hand, as in the present invention, when the slurry is previously adjusted to 20 ° C. or higher (preferably around 30 ° C. in which the decrease in the solubility of Na 2 SO 4 is small) and subsequently kept at a low temperature of less than 20 ° C. Since the ash is once in solution, it is easy to handle.

【0013】以上の操作において、集塵灰(電気集塵
灰)は一旦水に溶解後、結晶化するわけであるが、この
溶解の際に電気集塵灰(以下、EP灰という)中の塩、
特にNa2 CO3 等は次式のように大きな溶解熱を発生
する。
In the above operation, the dust collecting ash (electrostatic dust collecting ash) is once dissolved in water and then crystallized. During this dissolution, the dust collecting ash (hereinafter referred to as EP ash) is dissolved. salt,
Particularly, Na 2 CO 3 and the like generate a large heat of solution as shown in the following equation.

【化1】 Embedded image

【0014】また、図2はスラリ分離液のpHと分離液
中のNa2 CO3 及びNa2 SO4の濃度を示したもの
であるが、EP灰中のNa2 CO3 が増加するとスラリ
のpHが上昇するとともに溶液中へNa2 CO3 が溶解
するので全体的にNa回収率が低下してしまう。これを
防止するためには図2から判るように、スラリのpHを
10以下に中和する必要があるが、この中和の際にも次
式の如く大きな中和熱が発生する。
[0014] Figure 2 but shows the pH and concentration of Na 2 CO 3 and Na 2 SO 4 in the separation liquid of the slurry separation liquid, the slurry when Na 2 CO 3 in EP ash increases Since Na 2 CO 3 dissolves in the solution as the pH rises, the Na recovery rate decreases overall. In order to prevent this, as shown in FIG. 2, it is necessary to neutralize the pH of the slurry to 10 or less, but during this neutralization, a large heat of neutralization is generated as in the following equation.

【化2】Na2 CO3 +H2 SO4 →Na2 SO4 +H
2 O+CO2 −61.6Kcal/kg そしてEP灰は排ガス温度約200℃前後の温度域で回
収されたものであり、その自体の持込顕熱も大きい。
Embedded image Na 2 CO 3 + H 2 SO 4 → Na 2 SO 4 + H
2 O + CO 2 -61.6 Kcal / kg And EP ash is one collected in a temperature range around an exhaust gas temperature of about 200 ° C., and its own sensible heat is also large.

【0015】従っていきなり20℃未満のスラリにして
結晶を析出させる場合、冷却器で20℃未満に冷却され
た高価な冷熱でEP灰の顕熱、溶解熱、中和熱、結晶化
熱等全てを冷却する必要があり、冷却コストが増大す
る。
Therefore, when the crystals are suddenly deposited into a slurry of less than 20 ° C., all of the sensible heat, the heat of dissolution, the heat of crystallization, the heat of crystallization, etc. of the EP ash are all consumed by the expensive cold heat cooled to less than 20 ° C. in the cooler. Need to be cooled, which increases the cooling cost.

【0016】これに対し、本発明の方法のように、まず
第一段階でEP灰を溶解、スラリ化後、中和して20℃
以上(望ましくは30℃前後)とし、第2段階で20℃
未満の温度に冷却して更に結晶を析出させて固液分離を
行う。この場合第1段階でのEP灰の顕熱、溶解熱、中
和熱等は通常の冷却水による熱交換で冷却でき、第2段
階の結晶化熱を主に冷却器を用いた冷却で20℃未満に
冷却することとなる。このように通常の工業用水等の冷
却水による冷却でEP灰の顕熱、溶解熱、中和熱等を冷
却することにより冷却コストを大巾に減じることができ
る。
On the other hand, as in the method of the present invention, EP ash is first dissolved and slurried in the first step, and then neutralized at 20 ° C.
Above (preferably around 30 ℃), 20 ℃ in the second stage
The mixture is cooled to a temperature below the temperature to precipitate crystals, and solid-liquid separation is performed. In this case, the sensible heat, the heat of dissolution, the heat of neutralization, etc. of the EP ash in the first stage can be cooled by heat exchange with ordinary cooling water, and the crystallization heat in the second stage can be mainly cooled by using a cooler. It will be cooled below ℃. Thus, the cooling cost can be greatly reduced by cooling the sensible heat, the heat of dissolution, the heat of neutralization, etc. of the EP ash by cooling with cooling water such as ordinary industrial water.

【0017】そして本発明の方法はEP灰中のNa2
3 濃度が高くなる程、その効果が大きくなる。なお、
あらかじめ20℃以上にした捕集灰の水溶液を次の段階
で20℃未満に冷却するので、溶液の過飽和度を増しN
2 SO4 の粗大結晶の析出を促すことができる。
The method of the present invention is then applied to Na 2 C in EP ash.
The higher the O 3 concentration, the greater the effect. In addition,
Since the aqueous solution of the collected ash which has been heated to 20 ° C. or higher in advance is cooled to below 20 ° C. in the next step, the supersaturation degree of the solution is increased and N
Precipitation of coarse crystals of a 2 SO 4 can be promoted.

【0018】このようにして固形分を析出させ、これを
分離・回収して得られる、約60%と水分含有率の高い
固形分を、回収ボイラ投入前の濃黒液に戻さず、濃縮前
の黒液に戻して黒液濃縮器で濃縮することにより、回収
ボイラへの持ち込み水分の増加をなくすことができ、ボ
イラ効率の低下をきたすこともない。
Solid matter having a high water content of about 60% obtained by precipitating solid matter in this way and separating and recovering it is not returned to the dark black liquor before charging the recovery boiler, but before concentration. By returning to the black liquor and concentrating it with the black liquor concentrator, it is possible to eliminate an increase in the amount of water brought into the recovery boiler, and the efficiency of the boiler is not lowered.

【0019】[0019]

【実施例】本発明の具体的実施例について、図3を用い
て説明する。第1攪拌槽1に電気集塵機の捕集灰1.0
トン/時(捕集灰の組成は重量%でNaCl:9.7
%、Na2 SO4 :67.2%、Na2 CO3 :10.
1%、KCl:1.5%、K 2 SO4 :9.9%、K2
CO3 :1.6%)をコンベア2から連続的に投下供給
し、それと並行して該第1攪拌槽1に水:1.0トン/
時を供給する。第1攪拌槽1では攪拌機3を強力に攪拌
して捕集灰と水とを充分混合しスラリ化する。この際、
冷却水を用いた熱交換器4により第1攪拌槽1内のスラ
リ温度を25℃に保つようにする。この時に、スラリの
pHがNa2 CO3 により10以上を示すので、希硫酸
タンク11内の希硫酸12をpH計14の指示によりp
H調整器15で薬注ポンプ13を制御して第1攪拌槽1
内へ供給し、スラリのpHを9になるように調整する。
これによりスラリ中のNa2 CO3 の大部分をNa2
4 に転換する。この状態で1〜2時間滞留させ、その
後ポンプ5でスラリ約2.0トン/時を第2攪拌槽6に
移送する。
EXAMPLE A concrete example of the present invention will be described with reference to FIG.
Will be explained. Collected ash from the electrostatic precipitator 1.0 in the first stirring tank 1.
Tons / hour (The composition of the collected ash is wt% NaCl: 9.7
%, NaTwoSOFour: 67.2%, NaTwoCOThree: 10.
1%, KCl: 1.5%, K TwoSOFour: 9.9%, KTwo
COThree: 1.6%) continuously supplied from conveyor 2.
In parallel with that, water: 1.0 ton / in the first stirring tank 1
Supply time. Strongly stir the stirrer 3 in the first stirring tank 1.
Then, the collected ash and water are thoroughly mixed to form a slurry. On this occasion,
With the heat exchanger 4 using cooling water, the slurry in the first stirring tank 1 is
Keep the temperature at 25 ° C. At this time, the slurry
pH is NaTwoCOThreeSince it shows 10 or more, dilute sulfuric acid
Dilute the sulfuric acid 12 in the tank 11 with the instruction of the pH meter 14
The H regulator 15 controls the chemical injection pump 13 to control the first stirring tank 1
And the pH of the slurry is adjusted to 9.
As a result, Na in the slurryTwoCOThreeMost of the NaTwoS
O FourConvert to In this state, stay for 1-2 hours,
Approximately 2.0 tons / hour of slurry is supplied to the second stirring tank 6 by the rear pump 5.
Transfer.

【0020】次に第2攪拌槽6に水又は氷を合計約1ト
ン/時供給し、攪拌機7によるゆるやかな攪拌を行い4
〜8時間滞留させ、Na2 SO4 の結晶成長を促す。こ
の際、氷の供給及び冷却機8により第2攪拌槽6内のス
ラリ温度が15℃を保つようにする。
Next, water or ice is supplied to the second stirring tank 6 in a total amount of about 1 ton / hour and gently stirred by the stirrer 7.
8 hours allowed to stay, encourage crystal growth of Na 2 SO 4. At this time, the temperature of the slurry in the second stirring tank 6 is kept at 15 ° C. by the supply of ice and the cooler 8.

【0021】次に、ポンプ9により第2攪拌槽6内のス
ラリ約3.0トン/時をデカンタ10に移送しスラリ中
の固形分を分離した。その結果、2.1トン/時のスラ
ッジと0.9トン/時の分離液を得た。分離液0.9ト
ン/時は水で希釈後工場内の廃水処理装置に送った。な
お、2.1トン/時のスラッジは0.9トン/時の固形
分と、1.2トン/時の結晶水及び付着液よりなる。こ
のスラッジを攪拌機17を備えた溶解タンク16へ送
り、濃縮前の黒液に溶解させて黒液濃縮器の前流の黒液
中に戻した。なお、この場合もスラッジを戻さない場合
と同様に黒液濃縮器出口の黒液濃度を固形分濃度として
75%まで濃縮できることを確認した。
Next, about 3.0 tons / hour of the slurry in the second stirring tank 6 was transferred to the decanter 10 by the pump 9 to separate the solid content in the slurry. As a result, 2.1 ton / hour of sludge and 0.9 ton / hour of the separated liquid were obtained. The separated liquid 0.9 ton / hour was diluted with water and then sent to the wastewater treatment device in the factory. The 2.1 ton / hour sludge is composed of 0.9 ton / hour of solid content, 1.2 ton / hour of water of crystallization and adhering liquid. This sludge was sent to a dissolution tank 16 equipped with a stirrer 17, dissolved in the black liquor before concentration, and returned to the black liquor in the front stream of the black liquor concentrator. In this case as well, it was confirmed that the black liquor concentration at the outlet of the black liquor concentrator could be concentrated to 75% as the solid content concentration, as in the case where sludge was not returned.

【0022】この例におけるNa2 SO4 回収率は約8
5%、KCl、K2 SO4 等のカリウム分の除去率は約
95%、NaCl除去率は約97%であった。
The Na 2 SO 4 recovery in this example is about 8
5%, the removal rate of potassium components such as KCl and K 2 SO 4 was about 95%, and the removal rate of NaCl was about 97%.

【0023】次に、150℃のNa2 CO3 を15%含
んだEP灰(残りはNa2 SO4 :85%と仮定)1ト
ンに水2トンを用いてスラリ化し、これを全て冷却器に
て15℃まで冷却した場合の冷却熱量と、冷却水と冷却
器を用いた本発明の好ましい方法の冷却熱量とを比較し
て表1に示した。なお、表1では表2に示す値(実測
値)を用いた。
Next, 1 ton of EP ash containing 15% of Na 2 CO 3 at 150 ° C. (assuming the rest to be Na 2 SO 4 : 85%) was slurried with 2 tons of water, and this was all cooled. Table 1 shows a comparison between the amount of cooling heat when cooled to 15.degree. C. and the amount of cooling heat of the preferred method of the present invention using cooling water and a cooler. In Table 1, the values (measured values) shown in Table 2 were used.

【0024】[0024]

【表1】 [Table 1]

【0025】[0025]

【表2】 [Table 2]

【0026】表1から明らかなように冷却水と冷却器と
を使用した方法は全冷却熱量の約半分(59155/1
27855×100=46.3%)の冷却熱量を安価な
冷却水により冷却し、残りを冷却器にて冷却するため冷
却コストの大巾な低減が可能なことがわかる。そして本
発明野方法である分離・回収したスラッジ(固形分)を
濃縮前の黒液に戻して黒液濃縮器で濃縮する方法は、回
収ボイラへの持ち込み水分を増加させず、ボイラ効率を
低下させることがない。
As is clear from Table 1, the method using the cooling water and the cooler is about half of the total cooling heat amount (59155/1).
It is understood that the cooling heat amount of (27855 × 100 = 46.3%) is cooled by inexpensive cooling water, and the rest is cooled by the cooler, whereby the cooling cost can be greatly reduced. And the method of returning sludge (solid content) that has been separated and recovered to the black liquor before concentration and concentrating it with the black liquor concentrator, which is the method of the present invention, does not increase the amount of water brought into the recovery boiler and reduces boiler efficiency. There is nothing to do.

【0027】[0027]

【発明の効果】【The invention's effect】

1.回収ボイラ排ガスの捕集灰から食塩およびカリウム
塩を除去することにより、薬品系統の塩素およびカリウ
ムの濃度を低下させることができる。その結果、回収ボ
イラ煙道の燃焼灰の付着性を低下させ、従来3ケ月程度
の連続操業が6カ月〜1カ年に延長できた。 2.同時に、伝熱面に付着する灰の除去のためのスーツ
ブローに消費する蒸気量が大幅に低減できた。 3.食塩及びカリウム塩の除去により付着灰の融点低下
がなくなり、ボイラ高温部での伝熱管の腐食が低減し
た。スメルトスパウトの耐用期間が約3倍に延長される
など、回収ボイラ各部の腐食性が改善された。 4.冷却水による冷却により冷却器の動力が半減し、大
巾な冷却コストの低減を可能とした。 5.分離・回収したスラッジ(固形分)を黒液濃縮器前
流の黒液に戻すことにより、効率よく薬品回収を行うこ
とができる。この方法によれば、回収ボイラへの持ち込
み水分を増加させることがなく、ボイラ投入前の黒液に
スラッジを戻す方法のようにボイラ効率を低下させるこ
とはない。
1. By removing salt and potassium salt from the collected ash of the recovered boiler exhaust gas, it is possible to reduce the concentration of chlorine and potassium in the chemical system. As a result, the adhesion of the combustion ash of the recovery boiler flue was reduced, and the conventional continuous operation of about 3 months could be extended to 6 months to 1 year. 2. At the same time, the amount of steam consumed in the suit blow for removing the ash adhering to the heat transfer surface was significantly reduced. 3. By removing the salt and potassium salt, the melting point of the adhered ash was not lowered, and the corrosion of the heat transfer tube in the high temperature part of the boiler was reduced. The corrosiveness of each part of the recovery boiler has been improved, for example, the service life of the smelt spout has been extended about three times. 4. Cooling with cooling water cuts the power of the cooler in half, making it possible to greatly reduce cooling costs. 5. Chemicals can be efficiently recovered by returning the separated and recovered sludge (solid content) to the black liquor in the upstream of the black liquor concentrator. According to this method, the amount of water brought into the recovery boiler is not increased, and the boiler efficiency is not reduced unlike the method of returning sludge to black liquor before the boiler is charged.

【図面の簡単な説明】[Brief description of drawings]

【図1】Na2 SO4 −K2 SO4 混合系のNa2 SO
4 、K2 SO4 の溶解度及びNa2 SO4 単独系、K2
SO4 の単独系の夫々の溶解度を示す図表。
FIG. 1 Na 2 SO 4 mixed system of Na 2 SO 4 —K 2 SO 4
4 , solubility of K 2 SO 4 and Na 2 SO 4 alone system, K 2
Sole system diagram showing the solubility of each of the SO 4.

【図2】スラリ分離液のpHと分離液中のNa2
4 、Na2 CO3 の濃度の関係を示す図表。
FIG. 2 pH of slurry separation liquid and Na 2 S in the separation liquid
O 4, table showing the relationship between the concentration of Na 2 CO 3.

【図3】本発明の1実施例を説明するための工程の概略
図。
FIG. 3 is a schematic view of a process for explaining one embodiment of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 ソーダ回収ボイラの燃焼排ガスから捕集
した捕集灰を、水と混合してスラリ化し、該スラリのp
Hを硫酸添加により10以下に、温度を20℃以上に調
整し、一定時間保持して捕集灰中の食塩及びカリウム塩
を水に溶解させ、該スラリを20℃未満の温度に冷却し
て固形分を析出させた後、固形分と液体に分離して液体
は系外に廃棄し、固形分は濃縮前の黒液に再溶解させ、
その黒液を黒液濃縮器の前流に戻すことによって固形分
を回収することを特徴とするソーダ回収ボイラの捕集灰
からの食塩及びカリウム塩の除去方法。
1. The collected ash collected from the combustion exhaust gas of a soda recovery boiler is mixed with water to form a slurry, and p of the slurry is mixed.
H was adjusted to 10 or less by adding sulfuric acid and the temperature was adjusted to 20 ° C. or more, and the salt and potassium salt in the collected ash were dissolved in water by maintaining for a certain time, and the slurry was cooled to a temperature of less than 20 ° C. After precipitating the solid content, it is separated into the solid content and the liquid, the liquid is discarded outside the system, and the solid content is redissolved in the black liquor before concentration,
A method for removing salt and potassium salt from the collected ash of a soda recovery boiler, which comprises recovering the solid content by returning the black liquor to the upstream of the black liquor concentrator.
JP7184138A 1995-07-20 1995-07-20 Method for removal of salt and potassium salt from collected ash of sode recovery boiler Pending JPH0929201A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7184138A JPH0929201A (en) 1995-07-20 1995-07-20 Method for removal of salt and potassium salt from collected ash of sode recovery boiler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7184138A JPH0929201A (en) 1995-07-20 1995-07-20 Method for removal of salt and potassium salt from collected ash of sode recovery boiler

Publications (1)

Publication Number Publication Date
JPH0929201A true JPH0929201A (en) 1997-02-04

Family

ID=16148042

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7184138A Pending JPH0929201A (en) 1995-07-20 1995-07-20 Method for removal of salt and potassium salt from collected ash of sode recovery boiler

Country Status (1)

Country Link
JP (1) JPH0929201A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010012406A (en) * 2008-07-03 2010-01-21 Oji Paper Co Ltd Ash treatment method
JP2011148646A (en) * 2010-01-20 2011-08-04 Taiheiyo Cement Corp Apparatus and method for recovering potassium chloride
JP2016501319A (en) * 2012-11-16 2016-01-18 アンドリツ オサケユキチュア Method for eluting recovered boiler ash

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010012406A (en) * 2008-07-03 2010-01-21 Oji Paper Co Ltd Ash treatment method
JP2011148646A (en) * 2010-01-20 2011-08-04 Taiheiyo Cement Corp Apparatus and method for recovering potassium chloride
JP2016501319A (en) * 2012-11-16 2016-01-18 アンドリツ オサケユキチュア Method for eluting recovered boiler ash

Similar Documents

Publication Publication Date Title
CN106007133B (en) A kind of desulfurization wastewater concentration and evaporation, crystallization, salt separating technology
US5208004A (en) Method for the recovery of zinc oxide
JP6877459B2 (en) Methods and arrangements for salt recovery
CN112374521A (en) Process for extracting calcium chloride from waste incineration fly ash
CN105821215A (en) Method for recycling metal bismuth from anode slime
JPH08170288A (en) Removal of sodium salt and potassium salt from caught ash of soda-recovering boiler
CN109437137A (en) A kind of method that the purification of crude product sodium pyrophosphate produces tertiary sodium phosphate and sodium chloride
JP3306471B2 (en) Treatment method of exhaust gas from cement kiln
CN112225242A (en) Resourceful treatment device and process for mother liquor generated by reaction of waste incineration fly ash and hydrochloric acid
CN115818671A (en) Method for crystallizing and purifying sodium carbonate of incineration product
JPH0929201A (en) Method for removal of salt and potassium salt from collected ash of sode recovery boiler
JP3612543B2 (en) Method for fractional collection of aluminum and phosphorus
CN116199377B (en) Incineration fly ash resource utilization method for quality control of washing waste salt
CN213701193U (en) Resourceful treatment device for mother liquor generated by reaction of waste incineration fly ash and hydrochloric acid
CN115159554B (en) System and method for recycling waste incineration fly ash and recycling calcium salt
CN110683698A (en) Wet smelting wastewater zero-discharge recycling production process
JPH0624739A (en) Method of separating sulfate
JP5114820B2 (en) Sodium chloride purification method and sodium hydroxide production method
JP2637573B2 (en) Method for removing salt and potassium salt from pulp cooking chemicals
JPH0236524B2 (en)
FI81612C (en) Methods of preparing alkali metal chlorate
JPH091105A (en) Method for recovering potassium chloride in flying ash
JPH04146284A (en) Recovery of glauber's salt from alkali metal salt-containing ash and device therefor
JPH11209121A (en) Concentrating and crystallizing device of mineral component
JP2578199B2 (en) Method for removing salt and potassium salt from pulp cooking chemicals

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20021022