JPH08169765A - Production of silicon nitride sintered compact - Google Patents

Production of silicon nitride sintered compact

Info

Publication number
JPH08169765A
JPH08169765A JP6315049A JP31504994A JPH08169765A JP H08169765 A JPH08169765 A JP H08169765A JP 6315049 A JP6315049 A JP 6315049A JP 31504994 A JP31504994 A JP 31504994A JP H08169765 A JPH08169765 A JP H08169765A
Authority
JP
Japan
Prior art keywords
silicon nitride
silicon
powder
less
ppm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6315049A
Other languages
Japanese (ja)
Inventor
Shoji Kosaka
祥二 高坂
Kenichi Tajima
健一 田島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP6315049A priority Critical patent/JPH08169765A/en
Publication of JPH08169765A publication Critical patent/JPH08169765A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To obtain a high purity and high strength silicon nitride sintered compact capable of producing an article of a complex shape by compacting a powdery mixture of high purity silicon nitride powder with high purity silicon powder in a prescribed shape and nitriding the silicon in the resultant compact under an elevated pressure of gaseous nitrogen. CONSTITUTION: A mixture is prepd. by mixing 20-80wt.% Si3 N4 powder contg. <=20ppm Fe and <=200ppm, in total, of metallic impurities other than Fe with 20-80wt.% (expressed in terms of Si3 N4 ) Si powder contg. <=20ppm Fe and <=200ppm, in total, of metallic impurities other than Fe. This mixture is compacted and the Si in the resultant compact is nitrided at 1,150-1,400 deg.C under >1atm pressure of gaseous nitrogen.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体製造に用いられ
る各種装置、例えば、CVD装置やエッチング装置、搬
送治具、検査台、加熱用ヒーター等に適用される高純度
の窒化珪素焼結体の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-purity silicon nitride sintered body applied to various devices used in semiconductor manufacturing, for example, a CVD device, an etching device, a carrying jig, an inspection stand, a heater for heating, etc. The present invention relates to a manufacturing method of.

【0002】[0002]

【従来の技術】従来より窒化珪素系セラミックスは、軽
量、高強度、高硬度という特性に加え、耐クリ−プ性、
耐熱性、耐食性、耐熱衝撃性等に優れた性質を有するこ
とから、自動車エンジン部品やガスタ−ビン部品、工作
機械部品、切削工具等、様々な分野に適用されている。
2. Description of the Related Art Conventionally, silicon nitride-based ceramics have characteristics such as light weight, high strength and high hardness, as well as creep resistance and
Since it has excellent properties such as heat resistance, corrosion resistance, and thermal shock resistance, it is applied to various fields such as automobile engine parts, gas turbine parts, machine tool parts, and cutting tools.

【0003】しかしながら、前述のような半導体製造装
置に関連する用途については、耐熱性や高温強度に加え
て、装置からの汚染を防止するために該装置を構成する
材料の純度に対する要求が非常に厳しく、従来からのイ
ットリア(Y2 3 )、アルミナ(Al2 3 )、マグ
ネシア(MgO)等の焼結助剤を用いた窒化珪素質焼結
体では、その焼結助剤成分が不純物的挙動を示すため、
半導体製造装置用の材料として使用できないという欠点
があった。
However, in the applications related to the semiconductor manufacturing equipment as described above, in addition to heat resistance and high temperature strength, there is a great demand for the purity of the material constituting the equipment in order to prevent contamination from the equipment. Strictly, in a conventional silicon nitride sintered body using a sintering aid such as yttria (Y 2 O 3 ), alumina (Al 2 O 3 ), magnesia (MgO), the sintering aid component is an impurity. To show dynamic behavior,
It has a drawback that it cannot be used as a material for semiconductor manufacturing equipment.

【0004】そこで、窒化珪素焼結体の高純度化を実現
せんとして、例えば、特開平2−243568号公報で
は、高純度の金属珪素粉末を窒化して得た窒化珪素粉末
を、焼結助剤を添加すること無く成形、焼成することに
より半導体製造装置用の材料に適した高純度の窒化珪素
焼結体を製造することや、特開平4−77365号公報
には、希土類元素酸化物を焼結助剤として添加しなが
ら、不純物としてのナトリウム(Na)とカルシウム
(Ca)のみを低減した半導体製造装置用の窒化珪素質
焼結体が開示されている。また、特公平3−21502
号公報では、焼結助剤無添加の窒化珪素粉末を熱間静水
圧焼成して緻密化させて高純度窒化珪素焼結体を得るこ
と等が開示されている。
Therefore, in order to realize high purity of a silicon nitride sintered body, for example, in Japanese Patent Laid-Open No. 2-243568, a silicon nitride powder obtained by nitriding a high purity metal silicon powder is used as a sintering aid. A high-purity silicon nitride sintered body suitable for a material for a semiconductor manufacturing apparatus is manufactured by molding and firing without adding an agent, and JP-A-4-77365 discloses a rare earth element oxide. A silicon nitride sintered body for a semiconductor manufacturing apparatus is disclosed in which only sodium (Na) and calcium (Ca) as impurities are reduced while being added as a sintering aid. In addition, Japanese Patent Publication No. 3-21502
The publication discloses that a silicon nitride powder without a sintering aid is hot isostatically fired to densify it to obtain a high-purity silicon nitride sintered body.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、前述の
如くして得られた窒化珪素焼結体または窒化珪素質焼結
体は、高純度になればなる程、強度が低くなったり、あ
るいは、高純度で高強度が実現できても複雑形状品を製
作することができない等の課題があり、未だ、高純度に
加え、高強度を有する複雑形状品を製作することが可能
な窒化珪素焼結体の製造方法は見出されていなかった。
However, the higher the purity of the silicon nitride sintered body or the silicon nitride sintered body obtained as described above, the lower the strength or the higher the strength. There is a problem that even if high strength can be realized with purity, it is impossible to manufacture a complicated shape product, and it is still possible to manufacture a complicated shape product having high strength in addition to high purity. No manufacturing method has been found.

【0006】[0006]

【課題を解決するための手段】本発明は前記課題に鑑
み、検討を重ねた結果、高純度の窒化珪素粉末と高純度
のシリコン粉末から成る混合粉末を所定形状に成形し、
該成形体中のシリコンを高圧の窒素ガス中で窒化する
か、あるいは前記窒化体に有機珪素化合物を含浸した
後、該有機珪素化合物を熱分解して更に高密度化するこ
とにより、高純度で、高強度を有する窒化珪素焼結体か
ら成る複雑形状品の製作が可能であることを知見し本発
明に至った。
The present invention has been made in view of the above problems, and as a result of repeated studies, a mixed powder composed of high-purity silicon nitride powder and high-purity silicon powder was molded into a predetermined shape,
By nitriding the silicon in the compact in a high-pressure nitrogen gas, or impregnating the nitride with an organosilicon compound, the organosilicon compound is pyrolyzed to further densify it to obtain high purity. The inventors have found that it is possible to manufacture a complex-shaped product made of a silicon nitride sintered body having high strength, and have reached the present invention.

【0007】即ち、本発明の窒化珪素焼結体の製造方法
は、鉄(Fe)が20ppm以下でその他の金属不純物
の合計量が200ppm以下の窒化珪素(Si3 4
粉末20〜80重量%と、鉄(Fe)が20ppm以下
でその他の金属不純物の合計量が200ppm以下のシ
リコン(Si)粉末を、窒化珪素(Si3 4 )に換算
して20〜80重量%の割合から成る混合粉末を所定形
状に成形後、該成形体を1気圧を越える窒素ガス加圧
下、1150〜1400℃の温度で焼成して前記シリコ
ン(Si)を窒化したことを特徴とするものである。
That is, according to the method for producing a silicon nitride sintered body of the present invention, silicon nitride (Si 3 N 4 ) containing iron (Fe) of 20 ppm or less and the total amount of other metal impurities of 200 ppm or less.
20 to 80% by weight of powder, and 20 to 80% by weight of silicon (Si) powder in which iron (Fe) is 20 ppm or less and the total amount of other metal impurities is 200 ppm or less is converted into silicon nitride (Si 3 N 4 ). % Of the mixed powder is formed into a predetermined shape, and the formed body is fired at a temperature of 1150 to 1400 ° C. under a pressure of nitrogen gas exceeding 1 atm to nitride the silicon (Si). It is a thing.

【0008】本発明の窒化珪素(Si3 4 )粉末は、
含有する鉄(Fe)が20ppm以下でその他の金属不
純物の合計量が200ppm以下であることが、半導体
製造装置用の材料として重要である。
The silicon nitride (Si 3 N 4 ) powder of the present invention is
It is important as a material for a semiconductor manufacturing apparatus that the contained iron (Fe) is 20 ppm or less and the total amount of other metal impurities is 200 ppm or less.

【0009】つまり、これらの金属量が前記より多い場
合には、半導体製造時に前記材料から金属不純物が系外
に放出されると、半導体ウェハーを汚染してその特性に
悪影響を与えることから、前記範囲に特定され、鉄(F
e)の含有量が10ppm以下でその他の金属不純物の
合計量も100ppm以下であれば更に望ましい。
That is, when the amount of these metals is larger than the above amount, when metal impurities are released from the system during semiconductor production, the semiconductor wafer is contaminated and the characteristics thereof are adversely affected. Specific to the range, iron (F
More preferably, the content of e) is 10 ppm or less and the total amount of other metal impurities is 100 ppm or less.

【0010】また、窒化珪素(Si3 4 )粉末として
は、α型、β型いずれでもよいが、平均粒子径は0.1
〜5μmが適当であり、更にイミド熱分解法、気相合成
法などで合成された粉末が特に望ましい。
The silicon nitride (Si 3 N 4 ) powder may be either α type or β type, but the average particle size is 0.1.
-5 μm is suitable, and powder synthesized by imide thermal decomposition method, gas phase synthesis method or the like is particularly desirable.

【0011】尚、窒化珪素(Si3 4 )粉末中には不
純物酸素を含むが、この量は特別限定されるものではな
い。
The silicon nitride (Si 3 N 4 ) powder contains impurity oxygen, but this amount is not particularly limited.

【0012】一方、シリコン(Si)粉末としては、鉄
(Fe)が20ppm以下でその他の金属不純物の合計
量が200ppm以下であることが、前記窒化珪素(S
34 )の場合と同様の理由により半導体製造装置用
の材料として重要であるが、その量は、鉄(Fe)が1
0ppm以下でその他の金属不純物の合計量が100p
pm以下が望ましく、特に鉄(Fe)が2ppm以下で
その他の金属不純物の合計量が20ppm以下であるこ
とが最も望ましい。
On the other hand, in the silicon (Si) powder, the iron (Fe) content is 20 ppm or less and the total amount of other metal impurities is 200 ppm or less.
For the same reason as in the case of i 3 N 4 ), it is important as a material for semiconductor manufacturing equipment, but the amount of iron (Fe) is 1
The total amount of other metallic impurities is 100p at 0ppm or less.
pm or less is preferable, and iron (Fe) is most preferably 2 ppm or less and the total amount of other metal impurities is most preferably 20 ppm or less.

【0013】また、前記シリコン(Si)粉末の平均粒
子径は1〜20μmが好適であり、更に、シリコン(S
i)粉末は電子部品用材料として高純度品が入手し易い
ことから、それらを使用する事が肝要である。
The average particle diameter of the silicon (Si) powder is preferably 1 to 20 μm.
i) It is important to use powders because high-purity powders are easily available as materials for electronic parts.

【0014】次に、窒化珪素(Si3 4 )粉末とシリ
コン(Si)粉末の混合割合は、窒化珪素(Si
3 4 )粉末が20重量%未満、又はシリコン(Si)
粉末が窒化珪素(Si3 4 )換算で80重量%を越え
ると、シリコン(Si)を完全に窒化することが困難と
なり、残留したシリコン(Si)が強度低下を引き起こ
してしまう。
Next, the mixing ratio of the silicon nitride (Si 3 N 4 ) powder and the silicon (Si) powder is
3 N 4 ) powder is less than 20% by weight, or silicon (Si)
If the powder content exceeds 80% by weight in terms of silicon nitride (Si 3 N 4 ), it becomes difficult to completely nitride silicon (Si), and the residual silicon (Si) causes strength reduction.

【0015】また、逆に、窒化珪素(Si3 4 )粉末
が80重量%を越えるか、あるいはシリコン(Si)粉
末が窒化珪素(Si3 4 )換算で20重量%未満にな
ると、シリコン(Si)の窒化後の密度が低く強度低下
を引き起こしてしまう。
On the contrary, if the silicon nitride (Si 3 N 4 ) powder exceeds 80% by weight or the silicon (Si) powder becomes less than 20% by weight in terms of silicon nitride (Si 3 N 4 ), The density of (Si) after nitriding is low, which causes a decrease in strength.

【0016】従って、窒化珪素(Si3 4 )粉末の量
は20〜80重量%で、シリコン(Si)粉末の量は窒
化珪素(Si3 4 )に換算して20〜80重量%に限
定され、とりわけ窒化珪素(Si3 4 )粉末は40〜
70重量%、シリコン(Si)粉末は窒化珪素(Si3
4 )に換算して30〜60重量%が望ましい。
Therefore, the amount of silicon nitride (Si 3 N 4 ) powder is 20 to 80% by weight, and the amount of silicon (Si) powder is 20 to 80% by weight in terms of silicon nitride (Si 3 N 4 ). It is limited, and in particular, silicon nitride (Si 3 N 4 ) powder is 40-
70% by weight, silicon (Si) powder is silicon nitride (Si 3
It is preferably 30 to 60% by weight in terms of N 4 ).

【0017】尚、これらの混合に際しては、粉砕メディ
アからの不純物の混入を避けるため、樹脂製ポット及び
ボ−ル等を使用することが重要である。
When mixing these, it is important to use a resin pot, a ball or the like in order to avoid mixing of impurities from the grinding media.

【0018】また、前記混合物の成形法は、特に限定さ
れるものではないが、例えば、プレス成形法や、鋳込み
成形法、押し出し成形法、射出成形法、冷間静水圧成形
法等により所望の形状に成形し得る。
The method for molding the mixture is not particularly limited, but may be a desired method such as a press molding method, a cast molding method, an extrusion molding method, an injection molding method, or a cold isostatic molding method. It can be formed into a shape.

【0019】本発明の窒化工程は、窒素ガス圧が1気圧
以下、例えば大気圧下では金属シリコン(Si)が残留
し、また、窒化処理温度が1150℃未満では窒化反応
が進まず、1400℃を越えるとシリコン(Si)が窒
化する前に溶出してしまうことから、1気圧を越える窒
素ガス加圧下で1150℃〜1400℃の温度範囲に特
定される。
In the nitriding step of the present invention, when the nitrogen gas pressure is 1 atm or less, for example, atmospheric pressure, metallic silicon (Si) remains, and when the nitriding temperature is less than 1150 ° C., the nitriding reaction does not proceed and 1400 ° C. When the temperature exceeds 1, the silicon (Si) elutes before nitriding. Therefore, the temperature is specified in the temperature range of 1150 ° C to 1400 ° C under the pressure of nitrogen gas exceeding 1 atm.

【0020】また、一般に、シリコン(Si)が高純度
化すればするほど窒化は遅くなり、一方、3Si+2N
2 =Si3 4 の反応からは、窒素ガス圧を増加させる
と窒化反応は進むことから、低温域では窒化反応を促進
させるために窒素ガス圧を高めることが効果的である。
Further, in general, the higher the purity of silicon (Si), the slower the nitriding, while 3Si + 2N
From the reaction of 2 = Si 3 N 4, the nitriding reaction proceeds when the nitrogen gas pressure is increased. Therefore, it is effective to increase the nitrogen gas pressure to promote the nitriding reaction in the low temperature range.

【0021】更に、窒化処理温度は1150℃から14
00℃まで段階的に上昇するか、ゆっくり昇温すること
が特性を向上させる上でより望ましい。
Further, the nitriding treatment temperature is from 1150 ° C. to 14
It is more desirable to raise the temperature stepwise to 00 ° C. or to raise the temperature slowly in order to improve the characteristics.

【0022】尚、いったん窒化を完了すると、更に高い
温度で焼成しても何等構わない。
Note that once nitriding is completed, it does not matter if firing is performed at a higher temperature.

【0023】また、本発明の窒化珪素焼結体の製造方法
は、前記同様にして得られた窒化体に、熱分解後にシリ
コン(Si)以外の金属元素を含有しない有機珪素化合
物を含侵してから、該有機珪素化合物を高温で熱分解し
て高密度化したことを特徴とするものである。
In the method for producing a silicon nitride sintered body of the present invention, the nitride obtained in the same manner as above is impregnated with an organosilicon compound containing no metal element other than silicon (Si) after thermal decomposition. Therefore, the organic silicon compound is thermally decomposed at a high temperature to have a high density.

【0024】本発明の有機珪素化合物は、熱分解後にシ
リコン(Si)以外の金属元素を含有しないことが重要
であり、シリコン(Si)以外の金属元素を含有すると
それらが半導体製造時に系外に放出された場合には、前
記同様に半導体ウェハーを汚染してその特性に悪影響を
与える。
It is important that the organosilicon compound of the present invention does not contain a metal element other than silicon (Si) after thermal decomposition. If the organosilicon compound contains a metal element other than silicon (Si), they are removed from the system during semiconductor production. When released, it contaminates the semiconductor wafer and adversely affects its characteristics as described above.

【0025】また、前記有機珪素化合物としては、ポリ
シラザン、ポリカルボシラン、ポリカルボシラザン、ポ
リシラスチレン等が上げられるが、とりわけ空気中や、
アルゴンガス、窒素ガス、アンモニアガス中で処理する
と二酸化珪素(SiO2 )や酸窒化珪素(Si2
2 O)、あるいは窒化珪素(Si3 4 )に変化して窒
化珪素焼結体本来の特性を劣化させないポリシラザンが
最も望ましい。
As the organosilicon compound, polysilazane, polycarbosilane, polycarbosilazane, polysilastyrene, etc. may be mentioned, especially in air or
When treated in argon gas, nitrogen gas, or ammonia gas, silicon dioxide (SiO 2 ) or silicon oxynitride (Si 2 N 2
The most desirable is polysilazane which does not deteriorate the original characteristics of the silicon nitride sintered body by changing to 2 O) or silicon nitride (Si 3 N 4 ).

【0026】更に、前記有機珪素化合物の含浸と熱分解
を繰り返し処理しても、何ら構わないし、また、炭化珪
素(SiC)の粒子やウィスカ−、繊維、あるいは窒化
珪素(Si3 4 )のウィスカ−や繊維を適量添加し、
複合材料として特性の改善を行うことも当然可能であ
る。
Further, the impregnation of the organosilicon compound and the thermal decomposition may be repeated, and it is also possible to use silicon carbide (SiC) particles, whiskers, fibers, or silicon nitride (Si 3 N 4 ). Add an appropriate amount of whiskers and fibers,
Naturally, it is also possible to improve the properties as a composite material.

【0027】[0027]

【作用】本発明の窒化珪素焼結体の製造方法によれば、
高純度の窒化珪素(Si3 4)粉末と高純度のシリコ
ン(Si)粉末の混合物を成形し、1気圧を越える窒素
ガス加圧下で窒化するか、あるいは得られた窒化体に高
純度の有機珪素化合物を含侵し、熱分解することによ
り、高純度で、高強度の窒化珪素焼結体が得られ、複雑
形状品を製作することが可能となり、各種半導体製造装
置用の部品として適用可能となる。
According to the method for producing a silicon nitride sintered body of the present invention,
A mixture of high-purity silicon nitride (Si 3 N 4 ) powder and high-purity silicon (Si) powder is molded and nitrided under nitrogen gas pressure exceeding 1 atm, or the obtained nitride is made into high-purity By impregnating an organic silicon compound and thermally decomposing it, a high-purity, high-strength silicon nitride sintered body can be obtained, and it becomes possible to manufacture complicated shaped products, which can be applied as parts for various semiconductor manufacturing equipment. Becomes

【0028】[0028]

【実施例】以下、本発明の窒化珪素焼結体の製造方法を
実施例に基づき詳述する。
EXAMPLES The method for producing a silicon nitride sintered body of the present invention will be described in detail below based on examples.

【0029】(実施例1)鉄(Fe)及び鉄(Fe)以
外の金属不純物の合計量を種々設定した平均粒子径が
0.7μmのイミド熱分解法で合成した高純度窒化珪素
(Si3 4 )粉末と、鉄(Fe)及び鉄(Fe)以外
の金属不純物の合計量を種々設定した平均粒子径が5μ
mの高純度シリコン(Si)粉末を、表1に示す割合で
秤量し、これをポリエチレン製ポットにてメタノールを
媒体として48時間混合を行った後、公知のバインダー
を添加して泥漿を調製し、該泥漿を用いて直径60m
m、厚さ10mmの円板を鋳込み成形した。
(Example 1) High-purity silicon nitride (Si 3) synthesized by an imide pyrolysis method with an average particle size of 0.7 μm in which the total amount of iron (Fe) and metal impurities other than iron (Fe) was variously set. N 4 ) powder and iron (Fe) and the total amount of metallic impurities other than iron (Fe) are variously set to have an average particle diameter of 5 μm.
m high-purity silicon (Si) powder was weighed at the ratio shown in Table 1, and this was mixed for 48 hours in a polyethylene pot with methanol as a medium, and then a known binder was added to prepare a slurry. , Diameter of 60m using the slurry
A disc having a thickness of 10 mm and a thickness of 10 mm was cast and molded.

【0030】次いで、前記成形体を脱バインダーした
後、表2に示す窒素ガス圧力と温度の窒化条件で窒化処
理を行った。
Next, after removing the binder from the molded body, nitriding treatment was performed under the nitriding conditions of nitrogen gas pressure and temperature shown in Table 2.

【0031】[0031]

【表1】 [Table 1]

【0032】[0032]

【表2】 [Table 2]

【0033】かくして得られた評価用試料から切り出し
た試験片で窒化後の密度を求め、更に前記評価用試料の
中心から切り出した試験片を粉砕し、粉末X線回折によ
り残留シリコンの有無を確認した。
The density after nitriding was obtained from the test piece cut out from the evaluation sample thus obtained, and the test piece cut out from the center of the evaluation sample was crushed, and the presence or absence of residual silicon was confirmed by powder X-ray diffraction. did.

【0034】一方、切り出した試験片をJIS・R16
01規格に準じて所定寸法に研磨加工し、4点曲げ強度
を測定した。
On the other hand, the cut out test piece is JIS R16.
According to the 01 standard, it was ground to a predetermined size and the 4-point bending strength was measured.

【0035】更に、半導体ウェハ−への影響を調べるた
めに、純度99.9999%の単結晶Siウェハ−に前
記試験片を乗せ、10-3torr以下の真空中、100
0℃の温度で1時間の熱処理を行った後、Siウェハ−
の試験片との接触面を二次イオン質量分析(SIMS)
によりSi以外の金属が検出されるか否かを調査し、金
属不純物による汚染の有無を評価した。
Further, in order to investigate the influence on the semiconductor wafer, the test piece was placed on a single crystal Si wafer having a purity of 99.9999%, and the test piece was placed in a vacuum of 10 -3 torr or less for 100.
After performing a heat treatment for 1 hour at a temperature of 0 ° C., a Si wafer
Secondary ion mass spectrometry (SIMS) of the contact surface with the test piece of
It was investigated whether or not a metal other than Si was detected, and the presence or absence of contamination by metal impurities was evaluated.

【0036】[0036]

【表3】 [Table 3]

【0037】表3より明らかなように、窒化珪素(Si
3 4 )粉末の量が80重量%を越える試料番号1及び
2では密度が低く、曲げ強度も150MPa以下であ
り、またシリコン(Si)粉末の量が80重量%を越え
るものや、窒化条件が1150℃未満や1400℃を越
える試料番号7、8、9、12及び13では、残留Si
が認められ、更に窒化珪素(Si3 4 )粉末の不純物
量が本発明の範囲外である試料番号15、18、19及
び20では、Siウェハーの金属不純物による汚染が検
出されている。
As is clear from Table 3, silicon nitride (Si
Sample Nos. 1 and 2 in which the amount of 3 N 4 ) powder exceeds 80% by weight have low densities and bending strengths of 150 MPa or less, and those in which the amount of silicon (Si) powder exceeds 80% by weight and nitriding conditions. Residual Si was found in sample numbers 7, 8, 9, 12 and 13 where the temperature is less than 1150 ° C or exceeds 1400 ° C
Furthermore, in sample numbers 15, 18, 19 and 20 in which the amount of impurities in the silicon nitride (Si 3 N 4 ) powder is outside the range of the present invention, contamination of the Si wafer with metallic impurities is detected.

【0038】それに対して、本発明では密度が2.03
g/cm3 以上と高く、曲げ強度も210MPa以上あ
り、残留Siも皆無であり、Siウェハーの金属不純物
による拡散も全く認められなかった。
On the other hand, in the present invention, the density is 2.03.
It was as high as g / cm 3 or more, the bending strength was 210 MPa or more, there was no residual Si, and no diffusion due to metallic impurities in the Si wafer was observed.

【0039】(実施例2)実施例1で得られた試料N
o.11と同一試料を用いて、表4に示すような各種有
機珪素化合物を真空含侵させた後、表4に示す熱処理条
件で有機珪素化合物を熱分解した。
(Example 2) Sample N obtained in Example 1
o. Using the same sample as No. 11, various organic silicon compounds shown in Table 4 were impregnated in vacuum, and then the organic silicon compounds were thermally decomposed under the heat treatment conditions shown in Table 4.

【0040】[0040]

【表4】 [Table 4]

【0041】かくして得られた評価用試料から切り出し
た試験片の密度を求め、更に切り出した試験片をJIS
・R1601規格に準じて所定寸法に研磨加工し、4点
曲げ強度を測定した。
The density of the test piece cut out from the thus-obtained evaluation sample was determined, and the cut-out test piece was JIS.
-Four-point bending strength was measured by polishing to a predetermined size according to the R1601 standard.

【0042】また、半導体ウェハ−への影響を調べるた
めに、純度99.9999%の単結晶Siウェハ−に前
記試験片を乗せ、10-3torr以下の真空中、100
0℃の温度で1時間の熱処理を行った後、Siウェハ−
の試験片との接触面を二次イオン質量分析(SIMS)
によりSi以外の金属が検出されるか否かを調査し、金
属不純物による汚染の有無を評価した。
Further, in order to investigate the influence on the semiconductor wafer, the test piece was placed on a single crystal Si wafer having a purity of 99.9999%, and the test piece was placed in a vacuum of 10 -3 torr or less for 100.
After performing a heat treatment for 1 hour at a temperature of 0 ° C., a Si wafer
Secondary ion mass spectrometry (SIMS) of the contact surface with the test piece of
It was investigated whether or not a metal other than Si was detected, and the presence or absence of contamination by metal impurities was evaluated.

【0043】[0043]

【表5】 [Table 5]

【0044】以上の結果、不純物金属としてTiを含有
する試料番号39では、Siウェハ−への不純物金属の
拡散が検出されるのに対して、本発明の試料はいずれも
曲げ強度に優れ、Siウェハ−への不純物金属の拡散は
認められなかった。
As a result, in the sample No. 39 containing Ti as the impurity metal, the diffusion of the impurity metal into the Si wafer was detected, whereas the samples of the present invention were excellent in bending strength and Si. No diffusion of impurity metal into the wafer was observed.

【0045】[0045]

【発明の効果】以上詳述したように、本発明によれば、
高純度に加え、高強度を有する複雑形状品を製作するこ
とが可能な窒化珪素焼結体の製造方法を提供することが
でき、これにより高純度の窒化珪素焼結体を半導体製造
装置用の各種部品としてその応用を拡大することができ
る。
As described in detail above, according to the present invention,
It is possible to provide a method for manufacturing a silicon nitride sintered body capable of manufacturing a complex-shaped product having high strength in addition to high purity, and thereby providing a high-purity silicon nitride sintered body for a semiconductor manufacturing apparatus. The application can be expanded as various parts.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】鉄(Fe)が20ppm以下、鉄(Fe)
以外の金属不純物の合計量が200ppm以下の窒化珪
素(Si3 4 )粉末20〜80重量%と、鉄(Fe)
が20ppm以下、鉄(Fe)以外の金属不純物の合計
量が200ppm以下のシリコン(Si)粉末を窒化珪
素(Si3 4 )換算で20〜80重量%を混合する工
程と、該混合粉末を成形する工程と、該成形体を1気圧
を越える窒素ガス加圧下で1150〜1400℃の温度
で前記シリコン(Si)を窒化する工程とから成ること
を特徴とする窒化珪素焼結体の製造方法。
1. Iron (Fe) is 20 ppm or less, iron (Fe)
20-80 wt% of silicon nitride (Si 3 N 4 ) powder having a total amount of metal impurities other than 200 ppm or less, and iron (Fe)
Is 20 ppm or less and the total amount of metal impurities other than iron (Fe) is 200 ppm or less, and a step of mixing 20 to 80% by weight in terms of silicon nitride (Si 3 N 4 ) and the mixed powder. A method for producing a silicon nitride sintered body, which comprises a step of forming and a step of nitriding the silicon (Si) at a temperature of 1150 to 1400 ° C. under a pressure of nitrogen gas exceeding 1 atm. .
【請求項2】鉄(Fe)が20ppm以下、鉄(Fe)
以外の金属不純物の合計量が200ppm以下の窒化珪
素(Si3 4 )粉末20〜80重量%と、鉄(Fe)
が20ppm以下、鉄(Fe)以外の金属不純物の合計
量が200ppm以下のシリコン(Si)粉末を窒化珪
素(Si3 4 )換算で20〜80重量%を混合する工
程と、該混合粉末を成形する工程と、該成形体を1気圧
を越える窒素ガス加圧下で1150〜1400℃の温度
で前記シリコン(Si)を窒化する工程と、該窒化体に
熱分解後にシリコン(Si)以外の金属元素を含まない
有機珪素化合物を含侵する工程と、該含浸体を熱処理し
て前記有機珪素化合物を熱分解して高密度化する工程と
から成ることを特徴とする窒化珪素焼結体の製造方法。
2. Iron (Fe) 20 ppm or less, iron (Fe)
20-80 wt% of silicon nitride (Si 3 N 4 ) powder having a total amount of metal impurities other than 200 ppm or less, and iron (Fe)
Is 20 ppm or less and the total amount of metal impurities other than iron (Fe) is 200 ppm or less, and a step of mixing 20 to 80% by weight in terms of silicon nitride (Si 3 N 4 ) and the mixed powder. A step of molding, a step of nitriding the silicon (Si) at a temperature of 1150 to 1400 ° C. under a nitrogen gas pressure of more than 1 atm, and a metal other than silicon (Si) after thermal decomposition into the nitride. Manufacture of a silicon nitride sintered body comprising a step of impregnating an organosilicon compound containing no element and a step of heat-treating the impregnated body to thermally decompose the organosilicon compound to densify it. Method.
JP6315049A 1994-12-19 1994-12-19 Production of silicon nitride sintered compact Pending JPH08169765A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6315049A JPH08169765A (en) 1994-12-19 1994-12-19 Production of silicon nitride sintered compact

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6315049A JPH08169765A (en) 1994-12-19 1994-12-19 Production of silicon nitride sintered compact

Publications (1)

Publication Number Publication Date
JPH08169765A true JPH08169765A (en) 1996-07-02

Family

ID=18060822

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6315049A Pending JPH08169765A (en) 1994-12-19 1994-12-19 Production of silicon nitride sintered compact

Country Status (1)

Country Link
JP (1) JPH08169765A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005179176A (en) * 2003-08-26 2005-07-07 Kyocera Corp Molten-metal-resistant member and method for manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005179176A (en) * 2003-08-26 2005-07-07 Kyocera Corp Molten-metal-resistant member and method for manufacturing the same

Similar Documents

Publication Publication Date Title
Kim et al. Effect of initial α‐phase content on microstructure and mechanical properties of sintered silicon carbide
EP0739326B1 (en) Low temperature, pressureless sintering of silicon nitride
TW397807B (en) Aluminium nitride sintered body
US5773733A (en) Alumina-aluminum nitride-nickel composites
Schmidt et al. Silicon nitride derived from an organometallic polymeric precursor: preparation and characterization
Lee Fabrication of Si3N4/SiC composite by reaction‐bonding and gas‐pressure sintering
JP3667121B2 (en) Boron carbide sintered body and manufacturing method thereof
Lee et al. Effect of β–Si3N4 seed crystal on the microstructure and mechanical properties of sintered reaction-bonded silicon nitride
JP3230055B2 (en) Ceramic phase in silicon nitride containing cerium
JPH08169765A (en) Production of silicon nitride sintered compact
JP2649220B2 (en) Silicon nitride / silicon carbide composite powder, composite compact, method for producing them, and method for producing silicon nitride / silicon carbide composite sintered body
JPS6212663A (en) Method of sintering b4c base fine body
JP3297740B2 (en) Low temperature sintering method of silicon carbide powder.
JPH1179848A (en) Silicon carbide sintered compact
JP4292255B2 (en) α-sialon sintered body and method for producing the same
JP3932349B2 (en) Reaction synthesis of non-oxide boron nitride composites
JPH0733528A (en) Composite sintered ceramic, its production and semiconductor production jig made therefrom
JP2826080B2 (en) Silicon nitride / silicon carbide composite sintered body and method for producing composite powder
JP3241215B2 (en) Method for producing silicon nitride based sintered body
Yuan et al. Reaction‐Formed Processes for AlN/Al Ceramic Composites
Okhovat Ghahfarokhi et al. The Effect of Gas Pressure on the Nitridation of Silicon Bodies
JP2002293638A (en) Silicon nitride sintered compact
Mitra et al. REACTION hot pressed silicides and silicide matrix composites: processing, microstructure and properties
JPH05279130A (en) Silicon carbide-silicon nitride composite material and its production
JPH02107359A (en) Crushing instrument