JPH08168645A - Ammonia adsorption device - Google Patents

Ammonia adsorption device

Info

Publication number
JPH08168645A
JPH08168645A JP7266980A JP26698095A JPH08168645A JP H08168645 A JPH08168645 A JP H08168645A JP 7266980 A JP7266980 A JP 7266980A JP 26698095 A JP26698095 A JP 26698095A JP H08168645 A JPH08168645 A JP H08168645A
Authority
JP
Japan
Prior art keywords
ammonia
adsorption
gas
duct
adsorption tower
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7266980A
Other languages
Japanese (ja)
Inventor
Mitsuko Shimada
晃子 嶋田
Toshiyuki Onishi
利幸 大西
Akira Serizawa
暁 芹澤
Atsushi Morii
淳 守井
Osamu Naito
内藤  治
Shigeyuki Nishijima
茂行 西島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP7266980A priority Critical patent/JPH08168645A/en
Publication of JPH08168645A publication Critical patent/JPH08168645A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)
  • Separation Of Gases By Adsorption (AREA)

Abstract

PURPOSE: To effectively desorb ammonia in an ammonia adsorption device installed downstream of a denitrifying device for reduction and decomposition of NOx contained in exhaust gas using ammonia. CONSTITUTION: Ammonia adsorption columns 5A, 5B, in at least two series, which are installed downstream of a denitrifying device 4 for reducing and decomposing NOx contained in exhaust gas using ammonia are formed into a vertical type, and at the time of regeneration, high temperature gas is caused to flow from the top of each of the columns 5A, 5B downwardly, while cooling gas is caused to flow from the bottom of each of the columns 5A, 5B upwardly.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、アンモニアを還元
剤とする脱硝装置の下流に設置するアンモニア吸着設備
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ammonia adsorption facility installed downstream of a denitration device using ammonia as a reducing agent.

【0002】[0002]

【従来の技術】図4は、従来のアンモニア吸着設備を備
えた脱硝装置の系統図である。この従来の装置では、ガ
スタービン1より発生した排ガスは、煙道より排熱回収
ボイラ2に導入され、内部に設けられたアンモニア注入
装置3により注入されたアンモニアと混合して後流に設
けられた脱硝装置4に導入され、ここで排ガス中の窒素
酸化物(NOx )を無害な窒素及び水分に分解する。排
ガスは、その後排ガスダクト7A,7Bより並列に配置
された2基の水平型の吸着塔5,5の一方に導入され、
残留アンモニアを吸着させた後、排ガスダクト8より煙
突6を経て大気に放出される。吸着塔5内部にはアンモ
ニア吸着剤が充填されているが、一定量以上のアンモニ
アを吸着した後は吸着が行われなくなる。従って、吸着
塔5の前後のダンパを閉じてガスタービン1で発生した
高温の排ガスを脱着ガスとして脱着ガスダクト9より吸
着塔5に導入してアンモニア吸着剤を昇温させてアンモ
ニアを脱着し、煙突6へ放出している。
2. Description of the Related Art FIG. 4 is a system diagram of a conventional denitration device equipped with an ammonia adsorption facility. In this conventional device, the exhaust gas generated from the gas turbine 1 is introduced into the exhaust heat recovery boiler 2 from the flue, mixed with the ammonia injected by the ammonia injection device 3 provided inside, and provided in the downstream. The nitrogen oxide (NO x ) in the exhaust gas is decomposed into harmless nitrogen and water. The exhaust gas is then introduced into one of the two horizontal adsorption towers 5 and 5 arranged in parallel from the exhaust gas ducts 7A and 7B,
After the residual ammonia is adsorbed, it is discharged from the exhaust gas duct 8 to the atmosphere through the chimney 6. The inside of the adsorption tower 5 is filled with an ammonia adsorbent, but after adsorption of a certain amount or more of ammonia, the adsorption is not performed. Therefore, the dampers before and after the adsorption tower 5 are closed, and the high-temperature exhaust gas generated in the gas turbine 1 is introduced as the desorption gas into the adsorption tower 5 through the desorption gas duct 9 to raise the temperature of the ammonia adsorbent to desorb ammonia and to remove the chimney. It is released to 6.

【0003】一方の吸着塔5内のアンモニアが充分に脱
着した後には、次回の吸着に備えて吸着塔5内に図示し
ない冷却ガスダクトより上部から下部へ向って低温ガス
を流し、又は図示しないファンにより空気を吸着塔5の
頂部に送り込み吸着塔5の冷却を行う。以上の各工程が
各吸着塔で繰り返して行われる。なお、図4において、
一方の吸着塔5が吸着工程にある場合には、他の吸着塔
5は脱着工程にあり、これらの工程が2基の吸着塔5に
おいて交互に繰り返して行われるようになっている。
After the ammonia in one of the adsorption towers 5 is sufficiently desorbed, a low-temperature gas is made to flow from the upper part to the lower part through a cooling gas duct (not shown) in the adsorption tower 5 in preparation for the next adsorption, or a fan (not shown). Thus, the air is sent to the top of the adsorption tower 5 to cool the adsorption tower 5. The above steps are repeated in each adsorption tower. In addition, in FIG.
When one adsorption tower 5 is in the adsorption step, the other adsorption tower 5 is in the desorption step, and these steps are alternately repeated in the two adsorption towers 5.

【0004】[0004]

【発明が解決しようとする課題】前記の従来のアンモニ
アの吸着設備のように吸着塔が水平式の場合、アンモニ
アを脱着するためにはメインガスの1/50量ガスを吸
着時と同一方向に昇温用として流しているが、ガス量が
小さいために偏流が生じ吸着塔内の温度上昇にばらつき
が生ずる。そのため吸着剤に吸着されたアンモニアは昇
温脱離時間内に充分脱離できず次回の吸着量が減少す
る。また、冷却時には上部から下部へ向って低温のガス
を導入しているので、低温ガスが吸着塔内を偏って通過
するため塔全体が冷えず、冷却時間が長くなっている。
このため吸脱着タイムスケジュールの見直し、吸着塔数
の見直し、吸脱着制御の複雑化が生じ設備運用上の課題
となっていた。
When the adsorption tower is of a horizontal type as in the conventional ammonia adsorption equipment described above, in order to desorb ammonia, 1/50 of the main gas is directed in the same direction as when adsorbing. Although the flow is for temperature raising, a small amount of gas causes a non-uniform flow, resulting in uneven temperature rise in the adsorption tower. Therefore, the ammonia adsorbed by the adsorbent cannot be sufficiently desorbed within the temperature programmed desorption time, and the amount of adsorption next time decreases. Further, since the low-temperature gas is introduced from the upper part to the lower part during cooling, the low-temperature gas unevenly passes through the adsorption tower, so that the whole tower is not cooled and the cooling time is long.
Therefore, the adsorption / desorption time schedule was reviewed, the number of adsorption towers was revised, and adsorption / desorption control became complicated, which was a problem in facility operation.

【0005】本発明は、従来のアンモニア吸着設備にお
ける以上の問題点を解決することができるアンモニア吸
着設備を提供しようとするものである。
The present invention is intended to provide an ammonia adsorption equipment which can solve the above problems in the conventional ammonia adsorption equipment.

【0006】[0006]

【課題を解決するための手段】本発明は、排ガス中に含
まれる窒素酸化物をアンモニアを還元剤として分解する
脱硝装置の下流に設置されるアンモニア吸着設備におい
て、アンモニアを含んだ排ガスを鉛直方向に導入してア
ンモニアを吸脱着するアンモニア吸着塔を少なくとも2
系列設け、前記吸着塔の再生時に、脱着用の高温ガスを
吸着塔の上部より下部へ流し、冷却ガスを吸着塔の下部
より上部へ流すようにしたことを特徴とする。
According to the present invention, in an ammonia adsorption facility installed downstream of a denitration device for decomposing nitrogen oxides contained in exhaust gas with ammonia as a reducing agent, exhaust gas containing ammonia is vertically directed. At least two ammonia adsorption towers are installed to adsorb and desorb ammonia.
It is characterized in that the high temperature gas for desorption is caused to flow from the upper portion to the lower portion of the adsorption tower and the cooling gas is caused to flow from the lower portion to the upper portion of the adsorption tower when the adsorption tower is regenerated.

【0007】吸着時間にアンモニアを充分吸着した吸着
塔内に脱着用の高温ガス(通常メインガス量の1/5
0)を吸着塔の上部より下方へ流すことによって、差圧
の小さいガスでも吸着剤層で成層化され吸着塔内の昇温
が均一となり、脱着が円滑に進行する。また、冷却ガス
を吸着塔の下部より上方へ流すことによって、低温の冷
却ガスが吸着塔全体を通るため塔全体の冷却が短時間で
終了可能となり、吸脱着サイクルが円滑化し、かつ制御
も単純化される。
[0007] Desorption high-temperature gas (usually 1/5 of the main gas amount) in the adsorption tower that has sufficiently adsorbed ammonia during the adsorption time.
By causing (0) to flow downward from the upper part of the adsorption tower, even a gas having a small differential pressure is stratified by the adsorbent layer, the temperature inside the adsorption tower becomes uniform, and desorption proceeds smoothly. Further, by flowing the cooling gas upward from the lower part of the adsorption tower, the cooling gas of low temperature passes through the entire adsorption tower, so that the entire tower can be cooled in a short time, the adsorption / desorption cycle is smoothed, and the control is simple. Be converted.

【0008】[0008]

【発明の実施の形態】本発明の実施の一形態を、図1に
よって説明する。図1において、1はガスタービン、2
はガスタービンの排ガスが導入される排熱回収ボイラ、
3は排熱回収ボイラ2内に設けられたアンモニア注入装
置、4はアンモニア注入装置の後流側に設けられた脱硝
装置、5A,5Bは脱硝装置4の後流側に並列に配置さ
れアンモニア吸着剤が充填された2基の吸着塔、6は吸
着塔5A,5Bの後流側に設けられた煙突である。前記
吸着塔5A,5Bは鉛直型のものであり、後記するよう
にアンモニアを含む排ガスは同吸着塔5内を鉛直方向の
下降流として流れるようになっている。
BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of the present invention will be described with reference to FIG. In FIG. 1, 1 is a gas turbine, 2
Is an exhaust heat recovery boiler into which the exhaust gas of the gas turbine is introduced,
Reference numeral 3 is an ammonia injection device provided in the exhaust heat recovery boiler 2, 4 is a denitration device provided on the downstream side of the ammonia injection device, and 5A and 5B are arranged in parallel on the downstream side of the denitration device 4 to adsorb ammonia. Two adsorption towers filled with the agent, and 6 are chimneys provided on the downstream side of the adsorption towers 5A and 5B. The adsorption towers 5A and 5B are of a vertical type, and as will be described later, the exhaust gas containing ammonia flows in the adsorption tower 5 as a vertical downward flow.

【0009】脱硝装置4より出る排ガスが流れる分岐し
た2本の排ガスダクト7A,7Bは、それぞれ吸着塔5
A,5Bの頂部に接続され、同排ガスダクト7A,7B
にはそれぞれダンパD1 ,D6 が設けられている。ま
た、吸着塔5A,5Bの底部は、それぞれダンパD2
7 をもつ排ガスダクト8A,8B、及び同ダクト8
A,8Bが合流した排ガスダクト8Cによって煙突6に
接続されている。
The two branched exhaust gas ducts 7A and 7B through which the exhaust gas from the denitration device 4 flows are respectively provided in the adsorption tower 5.
The exhaust gas ducts 7A, 7B are connected to the tops of A, 5B
Are provided with dampers D 1 and D 6 , respectively. Further, the bottoms of the adsorption towers 5A and 5B have dampers D 2 and
Exhaust gas ducts 8A, 8B having D 7 and the same duct 8
It is connected to the chimney 6 by an exhaust gas duct 8C where A and 8B merge.

【0010】12は前記排ガスダクト7AのダンパD1
の下流側の部分と前記排ガスダクト7BのダンパD6
下流側の部分とを接続するダクトであり、ダンパD3
8が設けられている。ガスタービン1と排熱回収ボイ
ラ2との間からガスタービン1の排ガスを分岐する脱着
ガスダクト9にはダンパD13が設けられている。排ガス
ダクト8Cの煙突の上流側の部分から分技するダクト1
1にはダンパD14,D 15が設置され、脱着ガスダクト9
とダクト11は、ダンパD13とダンパD15の下流で合流
してダクト18となり、同ダクト18内を流れるガスは
ダンパD13,D 15によって流量が調整されて所定温度と
なるようになっている。同ダクト18は、ダンパD3
8 の間で前記ダクト12に接続されている。
Reference numeral 12 is a damper D of the exhaust gas duct 7A.1
On the downstream side of the exhaust gas and the damper D of the exhaust gas duct 7B6of
It is a duct that connects the downstream side part and damper D3,
D8Is provided. Gas turbine 1 and exhaust heat recovery boiler
Desorption by branching the exhaust gas of the gas turbine 1 from between
Damper D in gas duct 913Is provided. Exhaust gas
Duct 1 divided from the upstream side of the stack of duct 8C
Damper D for 114, D FifteenInstalled, desorption gas duct 9
And duct 11 are dampers D13And damper DFifteenMerges downstream of
Becomes duct 18 and the gas flowing in the duct 18 becomes
Damper D13, D FifteenThe flow rate is adjusted by the specified temperature
It is supposed to be. The duct 18 is a damper D.3,
D8It is connected to the duct 12 between.

【0011】前記排ガスダクト8AのダンパD2 の上流
側の部分と前記ガスダクト8BのダンパD7 の上流側の
部分とはダンパD4 ,D9 をもつダクト14で接続され
ており、同ダクト14のダンパD4 ,D9 の間の部分よ
りダクト10が分岐し、同ダクト10は排熱回収ボイラ
2のアンモニア注入装置3と脱硝装置4の間の部分に接
続される。
The portion of the exhaust gas duct 8A on the upstream side of the damper D 2 and the portion of the gas duct 8B on the upstream side of the damper D 7 are connected by a duct 14 having dampers D 4 and D 9. The duct 10 is branched from the portion between the dampers D 4 and D 9 of the exhaust heat recovery boiler 2, and the duct 10 is connected to the portion between the ammonia injection device 3 and the denitration device 4 of the exhaust heat recovery boiler 2.

【0012】前記排ガスダクト7AのダンパD1 の下流
側の部分と前記排ガスダクト7BのダンパD6 の下流側
の部分とはダンパD11,D12をもつダクト15で接続さ
れており、同ダクト15のダンパD11,D12の間の部分
よりダクト16が分岐し、同ダクト16は煙突6に接続
されている。また、前記ダクト8AのダンパD2 の上流
側の部分と前記ダクト8BのダンパD7 の上流側の部分
とはダンパD5 ,D10をもつダクト17で接続されてお
り、前記ダクト11のダンパD15とダンパD14との間よ
り分岐した冷却ガスダクト13が前記ダクト17のダン
パD5 とダンパD10の間の部分に接続されている。
The portion of the exhaust gas duct 7A on the downstream side of the damper D 1 and the portion of the exhaust gas duct 7B on the downstream side of the damper D 6 are connected by a duct 15 having dampers D 11 and D 12. A duct 16 branches from a portion between the dampers D 11 and D 12 of 15, and the duct 16 is connected to the chimney 6. Moreover, the the upstream portion of the damper D 7 of the upstream-side portion of the damper D 2 of the duct 8A and the duct 8B are connected by a duct 17 with a damper D 5, D 10, the damper of the duct 11 The cooling gas duct 13 branched from between D 15 and the damper D 14 is connected to a portion of the duct 17 between the damper D 5 and the damper D 10 .

【0013】本実施の形態では、ガスタービン1で発生
した高温でNOx を含む排ガスは、後流側に設けられた
排熱回収ボイラ2に導き入れられ、図示しない熱交換器
で熱交換されて低温となった上、アンモニア注入装置3
で注入されたアンモニアと混合して脱硝装置4において
NOx は無害な窒素及び水に分解される。この時アンモ
ニアの注入量はNOx と反応する量より過剰に注入して
高脱硝率を達成するようになっている。このため脱硝装
置4において反応に供しなかった残留アンモニアが脱硝
装置後流の排ガス中に残っている。
In the present embodiment, the exhaust gas containing NO x at a high temperature generated in the gas turbine 1 is introduced into the exhaust heat recovery boiler 2 provided on the downstream side and heat-exchanged by a heat exchanger (not shown). It became a low temperature and ammonia injection device 3
The NO x is decomposed into harmless nitrogen and water in the denitration device 4 by mixing with the ammonia injected in the above. At this time, the injection amount of ammonia is set to be higher than that which reacts with NO x to achieve a high denitration rate. Therefore, the residual ammonia that has not been used in the reaction in the denitration device 4 remains in the exhaust gas downstream of the denitration device.

【0014】一方の吸着塔5A側のダンパD1 ,D2
開くことによって、アンモニア注入装置3で過剰に注入
されたアンモニアを含む前記の排ガスは、脱硝装置4の
下流側の一方の吸着塔5Aの頂部に導入される。
By opening the dampers D 1 and D 2 on one side of the adsorption tower 5A, the above-mentioned exhaust gas containing ammonia excessively injected by the ammonia injection device 3 becomes one of the adsorption towers on the downstream side of the denitration device 4. Introduced on top of 5A.

【0015】このように、一方の吸着塔5Aに導入され
たアンモニアを含む排ガスは、吸着塔5A内を鉛直方向
の下降流として流れ、吸着塔5Aに充填された吸着剤に
排ガス中のアンモニアが吸着された上、排気ガスダクト
8Aを経て煙突6より大気に放出される。
In this way, the exhaust gas containing ammonia introduced into one of the adsorption towers 5A flows in the adsorption tower 5A as a vertical downward flow, and the ammonia in the exhaust gas is adsorbed in the adsorbent filled in the adsorption tower 5A. After being adsorbed, it is discharged to the atmosphere from the chimney 6 through the exhaust gas duct 8A.

【0016】この際に、ダンパD13,D14およびD15
開く。これによって、脱着ガスダクト9からのガスター
ビン1の高温の排気の一部とダクト11からの煙突入口
の低温の排気の一部がダクト18において混合され、開
かれたダンパD8 を経て脱着ガスとして他方の吸着塔5
Bの頂部に導入され、同吸着塔5B内を鉛直方向の下降
流として流れ、吸着塔5Bに充填された吸着剤を昇温さ
せて吸着剤に吸着されたアンモニアを脱着する。この脱
着されアンモニアを含む脱着ガスは、吸着塔5Bの底部
から排気ガスダクト8B、ダンパD9 が開かれたダクト
14及びダクト10を経て排熱回収ボイラ2へ導入さ
れ、脱着されたアンモニアはリサイクルされて有効に利
用される。なお、前記の脱着ガスとしては、排熱回収ボ
イラ2へ導入されるメイン排ガスの1/50量程度のガ
スタービン1の排気が使用される。
At this time, the dampers D 13 , D 14 and D 15 are opened. As a result, a part of the high temperature exhaust gas of the gas turbine 1 from the desorption gas duct 9 and a part of the low temperature exhaust gas of the chimney inlet from the duct 11 are mixed in the duct 18 and are desorbed as desorption gas through the opened damper D 8. The other adsorption tower 5
It is introduced at the top of B and flows in the adsorption tower 5B as a downward flow in the vertical direction to raise the temperature of the adsorbent filled in the adsorption tower 5B to desorb the ammonia adsorbed by the adsorbent. This desorbed desorbed gas containing ammonia is introduced into the exhaust heat recovery boiler 2 from the bottom of the adsorption tower 5B through the exhaust gas duct 8B, the duct 14 in which the damper D 9 is opened, and the duct 10, and the desorbed ammonia is recycled. Be used effectively. As the desorption gas, the exhaust gas of the gas turbine 1 which is about 1/50 of the main exhaust gas introduced into the exhaust heat recovery boiler 2 is used.

【0017】以上のようにして、吸着塔5Bにおいてア
ンモニアが充分に脱着されると、ダンパD13及びD15
閉、ダンパD14,D10を開とすると共に他のダンパを作
動させ、吸着塔5Bへ低温のガスをダクト11、冷却ガ
スダクト13、ダクト17及び排気ガスダクト8Bを介
して吸着塔5Bの底部に冷却ガスとして導入し、この冷
却ガスは、吸着塔5B内を上昇して同塔内の吸着剤を冷
却した上、頂部から排ガスダクト7B、ダクト15及び
ダクト16を介して煙突6へ排出される。
When the ammonia is sufficiently desorbed in the adsorption tower 5B as described above, the dampers D 13 and D 15 are closed, the dampers D 14 and D 10 are opened, and the other dampers are operated to adsorb Low-temperature gas is introduced into the tower 5B through the duct 11, the cooling gas duct 13, the duct 17 and the exhaust gas duct 8B as a cooling gas at the bottom of the adsorption tower 5B, and the cooling gas rises in the adsorption tower 5B and rises in the tower. After cooling the adsorbent therein, the adsorbent is discharged from the top to the chimney 6 through the exhaust gas duct 7B, the duct 15 and the duct 16.

【0018】前記の吸着塔5Aにおける吸着と吸着塔5
Bにおける前記冷却ガスによる冷却を含む脱着が進行す
ると、各ダンパを操作して、逆に吸着塔5Aにおいて脱
着工程、吸着塔5Bにおいて吸着工程を行うようにし
て、以下順次各吸着塔5A,5Bには吸着工程と脱着工
程が順次交互に繰り返される。なお、前記工程の説明で
は、主要なダンパの開閉を説明したが、他のダンパは前
記の工程が行われるように適宜開閉される。
Adsorption in the adsorption tower 5A and adsorption tower 5
When the desorption including the cooling by the cooling gas in B progresses, the dampers are operated so that the desorption step is performed in the adsorption tower 5A and the adsorption step is performed in the adsorption tower 5B. The adsorption step and the desorption step are sequentially repeated alternately. Although the opening and closing of the main damper has been described in the above description of the steps, other dampers are opened and closed as appropriate so that the above steps are performed.

【0019】図2(a),(b),(c)によって鉛直
に配置された吸着塔5A,5B内の脱着ガス流れの経時
的な変化を説明する。高温で少量の脱着ガスは、脱着ガ
スダクト9、ダクト18,12及び排ガスダクト7A,
7Bを経て吸着塔5A,5Bの頂部に導入され、吸着塔
5A,5B内を下向きの下降流として流れる。この際、
脱着ガスは少量で差圧が小さいため下方へ直接流出せず
上方より成層しながら塔内を下降し(図2(a)→図2
(b))、吸着塔5A,5B内が順次均一に昇温されア
ンモニア脱着温度に到達し、その上で下方の排ガスダク
ト8A,8B、ダクト14及びダクト10を経て脱着ア
ンモニアが排出される。このように、高温の脱着ガスが
成層しながら吸着塔5A,5Bの上部から下部へ向って
均一な昇温を行うことによって、小量の脱着ガスによっ
て充分に吸着塔5A,5B内を昇温させ、かつ、均一に
短時間でアンモニアの脱着を行うことができる。
2A, 2B, and 2C, the time-dependent change of the desorption gas flow in the vertically arranged adsorption towers 5A and 5B will be described. A small amount of desorbed gas at high temperature is desorbed in the desorbed gas duct 9, ducts 18 and 12 and exhaust gas duct 7A,
It is introduced into the top of the adsorption towers 5A and 5B via 7B and flows as a downward flow downward in the adsorption towers 5A and 5B. On this occasion,
Since the desorption gas is small and the differential pressure is small, it does not flow directly downward, but descends in the tower while stratifying from above (Fig. 2 (a) → Fig. 2).
(B)) The temperature inside the adsorption towers 5A, 5B is sequentially and uniformly raised to reach the ammonia desorption temperature, and then the desorbed ammonia is discharged through the lower exhaust gas ducts 8A, 8B, the duct 14 and the duct 10. In this way, by uniformly heating the adsorption towers 5A and 5B from the upper portion to the lower portion while the high-temperature desorption gas is stratified, the inside of the adsorption towers 5A and 5B is sufficiently heated by a small amount of the desorption gas. In addition, ammonia can be desorbed uniformly in a short time.

【0020】図3にアンモニア吸着塔運転時の吸着塔上
部及び下部の排ガス温度の経時変化を説明する。は本
実施の形態の冷却ガス流れが吸着塔下→上(冷却ガス上
昇方式)の場合、は逆に冷却ガス流れが吸着塔上→下
(冷却ガス下降方式)の場合をそれぞれ示し、の実線
と破線はそれぞれ吸着塔上部温度・吸着塔下部温度、
の一点鎖線と二点鎖線はそれぞれ吸着塔上部温度・吸着
塔下部温度である。吸着開始点よりアンモニアを充分吸
着して吸着工程を終え、昇温脱着工程のため高温排ガス
を吸着塔上部より導入し吸着塔を昇温する。このとき吸
着塔上部より温度は上昇し、吸着塔下部の温度が遅れて
上昇する。吸着塔内のアンモニアが充分脱着するまで
(脱着下部濃度〜0ppm)脱着工程を継続した後次回
吸着工程に備えて吸着塔内が冷却される。の冷却ガス
上昇方式では吸着塔下部より温度が下降し、吸脱着の一
周期点で吸脱着全体工程を終了し、円滑に次回周期を開
始する。一方の冷却ガス下降方式では、吸着塔上部よ
り温度が下降して徐々に塔内の温度が下降するが、低温
の冷却ガスは圧力損失の小さい方へ偏って流れるため、
吸着塔内に温度分布が生じ、塔全体に冷却ガスが流れて
次回吸着可能な温度となるまでの方式の約1.5倍の
時間を要した。従って吸脱着のサイクルが一周期毎に変
化し、実用的ではない。
FIG. 3 illustrates the change over time in the exhaust gas temperature in the upper and lower portions of the adsorption tower during operation of the ammonia adsorption tower. Shows the case where the cooling gas flow of the present embodiment is below the adsorption tower → above (cooling gas rising method), and conversely shows the case where the cooling gas flow is above the adsorption tower → below (cooling gas descending method). The broken lines indicate the upper temperature of the adsorption tower and the lower temperature of the adsorption tower,
The one-dot chain line and the two-dot chain line are the adsorption tower upper temperature and the adsorption tower lower temperature, respectively. Ammonia is sufficiently adsorbed from the adsorption start point to end the adsorption step, and high-temperature exhaust gas is introduced from the upper part of the adsorption tower to raise the temperature of the adsorption tower for the temperature rise desorption step. At this time, the temperature rises from the upper part of the adsorption tower, and the temperature of the lower part of the adsorption tower rises with a delay. The desorption process is continued until the ammonia in the adsorption column is sufficiently desorbed (desorption lower concentration to 0 ppm), and then the inside of the adsorption column is cooled in preparation for the next adsorption process. In the cooling gas rising method, the temperature is lowered from the lower part of the adsorption tower, the whole adsorption / desorption process is completed at one cycle point of adsorption / desorption, and the next cycle is smoothly started. On the other hand, in the cooling gas descending system, the temperature is lowered from the upper part of the adsorption tower and the temperature in the tower is gradually lowered.
A temperature distribution was generated in the adsorption tower, and it took about 1.5 times as long as the time required for the cooling gas to flow through the entire tower to reach the temperature at which adsorption can be performed next time. Therefore, the adsorption / desorption cycle changes every cycle, which is not practical.

【0021】なお、前記実施の形態では、脱着ガスとし
てガスタービンの排ガスを用いているが、他の高温ガス
を用いることもできる。
Although the exhaust gas from the gas turbine is used as the desorption gas in the above embodiment, other high temperature gas may be used.

【0022】[0022]

【発明の効果】本発明によれば、次の効果を奏すること
ができる。 (1)吸着塔を鉛直型とし、脱着用の高温ガスを吸着塔
の上部より下方へ流すことにより、少量のガスでも充分
吸着塔内が昇温され、かつ吸着塔内を成層しながらガス
が下降するため均一にアンモニアの脱着が行われ、短時
間でアンモニアの脱着が完了する。 (2)冷却ガスを鉛直型吸着塔の下部より上方へ流すこ
とにより冷却ガスが偏ること無く塔内を上昇し、冷却工
程を短時間で終了させることができる。 (3)前記のように脱着冷却工程に余裕があるため、吸
脱着サイクルが安定する。更にガス吸脱着システムにお
いて最も運転効率の良い2系列での運転が可能であっ
て、少ない触媒量少ない吸着塔数で効率的にシステムの
運用を行うことができる。
According to the present invention, the following effects can be obtained. (1) By making the adsorption tower a vertical type and flowing a high-temperature gas for desorption downward from the upper part of the adsorption tower, the inside of the adsorption tower is sufficiently heated even with a small amount of gas, and the gas is formed while stratifying inside the adsorption tower. Since it descends, the desorption of ammonia is uniformly performed, and the desorption of ammonia is completed in a short time. (2) By flowing the cooling gas upward from the lower portion of the vertical adsorption tower, the cooling gas rises in the tower without being biased and the cooling process can be completed in a short time. (3) Since the desorption cooling step has a margin as described above, the adsorption / desorption cycle is stable. Furthermore, the gas adsorption / desorption system can be operated in two series with the highest operation efficiency, and the system can be efficiently operated with a small amount of catalyst and a small number of adsorption towers.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施の一形態の説明図である。FIG. 1 is an explanatory diagram of an embodiment of the present invention.

【図2】前記実施例のアンモニア吸着塔内のガス流れの
説明図である。
FIG. 2 is an explanatory diagram of a gas flow in the ammonia adsorption tower of the above embodiment.

【図3】吸着塔上下部温度の経時変化の説明図である。FIG. 3 is an explanatory diagram of changes with time in the upper and lower temperatures of the adsorption tower.

【図4】従来のアンモニア吸着設備の説明図である。FIG. 4 is an explanatory diagram of a conventional ammonia adsorption facility.

【符号の説明】[Explanation of symbols]

1 ガスタービン 2 排熱回収ボイラ 3 アンモニア注入装置 4 脱硝装置 5A,5B 吸着塔 6 煙突 7A,7B,8A,8B,8C 排ガスダクト 9 脱着ガスダクト 10, 11, 12, 14, 15, 16, 17, 18 ダクト 13 冷却ダクト D1 〜D15 ダンパ1 Gas Turbine 2 Exhaust Heat Recovery Boiler 3 Ammonia Injector 4 Denitration Device 5A, 5B Adsorption Tower 6 Chimney 7A, 7B, 8A, 8B, 8C Exhaust Gas Duct 9 Desorption Gas Duct 10, 11, 12, 14, 15, 16, 17, 18 Duct 13 Cooling duct D 1 ~ D 15 Damper

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B01D 53/58 B01D 53/34 131 (72)発明者 守井 淳 長崎市飽の浦町1番1号 三菱重工業株式 会社長崎造船所内 (72)発明者 内藤 治 長崎市飽の浦町1番1号 三菱重工業株式 会社長崎造船所内 (72)発明者 西島 茂行 長崎市深堀町5丁目717番1号 三菱重工 業株式会社長崎研究所内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification number Reference number within the agency FI Technical display location B01D 53/58 B01D 53/34 131 (72) Inventor Jun Morii No. 1 Atsunoura-cho, Nagasaki-shi Mitsubishi Heavy Industry Co., Ltd. Nagasaki Shipyard (72) Inventor Osamu Naito 1-1 1-1 Atsunoura-machi, Nagasaki City Mitsubishi Heavy Industries Ltd. Nagasaki Shipyard (72) Inventor Shigeyuki Nishijima 5-717-1, Fukahori-cho, Nagasaki City Mitsubishi Heavy Industries, Ltd. Nagasaki Institute

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 排ガス中に含まれる窒素酸化物をアンモ
ニアを還元剤として分解する脱硝装置の下流に設置され
るアンモニア吸着設備において、アンモニアを含んだ排
ガスを鉛直方向に導入してアンモニアを吸脱着する吸着
塔を少なくとも2系列設け、前記吸着塔の再生時に、脱
着用の高温ガスを吸着塔の上部より下方へ流し、冷却ガ
スを吸着塔の下部より上方へ流すようにしたことを特徴
とするアンモニア吸着設備。
1. In an ammonia adsorbing facility installed downstream of a denitration device for decomposing nitrogen oxides contained in exhaust gas with ammonia as a reducing agent, the exhaust gas containing ammonia is introduced vertically to adsorb and desorb ammonia. At least two series of adsorption towers are provided, and when the adsorption tower is regenerated, the high temperature gas for desorption is made to flow downward from the upper portion of the adsorption tower and the cooling gas is made to flow upward from the lower portion of the adsorption tower. Ammonia adsorption equipment.
JP7266980A 1994-10-20 1995-10-16 Ammonia adsorption device Pending JPH08168645A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7266980A JPH08168645A (en) 1994-10-20 1995-10-16 Ammonia adsorption device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP6-255081 1994-10-20
JP25508194 1994-10-20
JP7266980A JPH08168645A (en) 1994-10-20 1995-10-16 Ammonia adsorption device

Publications (1)

Publication Number Publication Date
JPH08168645A true JPH08168645A (en) 1996-07-02

Family

ID=26542012

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7266980A Pending JPH08168645A (en) 1994-10-20 1995-10-16 Ammonia adsorption device

Country Status (1)

Country Link
JP (1) JPH08168645A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000062180A (en) * 1999-03-10 2000-10-25 야마자키로이치 Process and apparatus for recovering ammonia

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000062180A (en) * 1999-03-10 2000-10-25 야마자키로이치 Process and apparatus for recovering ammonia

Similar Documents

Publication Publication Date Title
US5607650A (en) Apparatus for removing contaminants from gaseous stream
CN204365100U (en) A kind of regenerative system of desulphurization denitration activated coke
JP3234217U (en) Low temperature moving floor integrated adsorption desulfurization / denitration system
CN112870919B (en) Flue gas CO 2 Hypergravity regeneration energy-saving process for trapping system
CN108579369A (en) A kind of coke oven flue gas multi-pollutant collaboration governing system and method
JP5525992B2 (en) Thermal power plant with carbon dioxide absorber
CN103418360A (en) Regenerative device and method for desulfurized and denitrified active coke
CN107115775A (en) A kind of agglomeration for iron mine flue gas segmentation enrichment is from the emission reduction SO of exchanging heatxAnd NOxMethod
CN203370558U (en) Desulfurization and denitrification active coke regeneration device
US5897687A (en) Ammonia adsorption apparatus
CN218637003U (en) Flue gas carbon dioxide capture system
CN211659714U (en) Combined flue gas circulation, grading purification and waste heat utilization device for multiple sintering machines
JPH08168645A (en) Ammonia adsorption device
CN216639387U (en) Decarbonization system and dry quenching system
CN206334537U (en) Vertical cylindrical flue gas desulfurization and denitrification absorption regeneration integral system
JPH07136456A (en) High desulfurization-denitration method and apparatus for exhaust gas
CN211159156U (en) Styrene waste gas molecular sieve processing apparatus
JP3029936B2 (en) Ammonia adsorption equipment
CN112180051A (en) Carbon-based catalyst performance test device
CN209456366U (en) A kind of activated coke dry gas-cleaning system
CN206508755U (en) Horizontal single hop modularization flue gas desulfurization and denitrification adsorbent equipment
JPH0568850A (en) Method for simultaneously denitrating and desulfurizing exhaust gas of combustor
CN213398431U (en) Carbon-based catalyst performance test device
CN216703849U (en) Ammonia pre-adsorption system for activated coke desulfurization and denitrification
JPH0871367A (en) Ammonia adsorbing equipment

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20030107