JP3029936B2 - Ammonia adsorption equipment - Google Patents

Ammonia adsorption equipment

Info

Publication number
JP3029936B2
JP3029936B2 JP5013577A JP1357793A JP3029936B2 JP 3029936 B2 JP3029936 B2 JP 3029936B2 JP 5013577 A JP5013577 A JP 5013577A JP 1357793 A JP1357793 A JP 1357793A JP 3029936 B2 JP3029936 B2 JP 3029936B2
Authority
JP
Japan
Prior art keywords
ammonia
desorption
adsorption
gas
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP5013577A
Other languages
Japanese (ja)
Other versions
JPH06226044A (en
Inventor
晃子 嶋田
利幸 大西
淳 守井
敏彦 今本
内藤  治
暁 芹澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP5013577A priority Critical patent/JP3029936B2/en
Publication of JPH06226044A publication Critical patent/JPH06226044A/en
Application granted granted Critical
Publication of JP3029936B2 publication Critical patent/JP3029936B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明はアンモニアを還元剤とす
る脱硝装置のガス流れ下流に設置するアンモニア吸着設
備に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ammonia adsorbing apparatus installed downstream of a gas flow of a denitration apparatus using ammonia as a reducing agent.

【0002】[0002]

【従来の技術】図4に従来のアンモニア吸着設備を備え
た脱硝装置の系統図を示し、従来技術を説明する。ガス
タービン1より発生した排ガスは煙道より排熱回収ボイ
ラ2に導入され、内部に設けられたアンモニア注入装置
3により注入されたアンモニアと混合して後流に設けら
れた脱硝装置4にてNOxを無害な窒素及び水分に分解
する。排ガスはその後排ガスダクト7より吸着塔A,B
よりなる吸着塔5の一方に導き入れられ、残留アンモニ
アを吸着させた後、排ガスダクト8より煙突6を経て大
気へ放出する。吸着塔5内部にはアンモニア吸着剤が充
填されているが、一定量以上のアンモニアを吸着した後
は吸着をしなくなる。吸着塔5の前後のダンパを閉じ高
温ガスを脱着ガスダクト9より吸着塔5に入れてアンモ
ニアを脱着し、脱着ガスダクト10より再び排熱回収ボ
イラ2へ戻している。図4において、吸着塔5のうちの
一方の吸着塔Aが吸着工程にある場合には吸着塔Bは脱
着工程にある。図4の従来装置は還元剤としてアンモニ
アを用いる乾式脱硝装置において、脱硝反応しなかった
残留アンモニアを吸着し、かつ脱着したガスを脱硝用ア
ンモニアとしてリサイクル使用する設備である。
2. Description of the Related Art FIG. 4 shows a system diagram of a conventional denitration apparatus provided with ammonia adsorption equipment, and the prior art will be described. Exhaust gas generated from the gas turbine 1 is introduced into the exhaust heat recovery boiler 2 from a flue, mixed with ammonia injected by an ammonia injection device 3 provided inside, and NOx is removed by a denitration device 4 provided downstream. Decomposes into harmless nitrogen and moisture. The exhaust gas is then passed from the exhaust gas duct 7 to the adsorption towers A and B.
After being introduced into one of the adsorption towers 5 and adsorbing residual ammonia, the residual ammonia is discharged from the exhaust gas duct 8 through the chimney 6 to the atmosphere. Although the inside of the adsorption tower 5 is filled with an ammonia adsorbent, it does not adsorb after adsorbing a certain amount or more of ammonia. The dampers before and after the adsorption tower 5 are closed, high-temperature gas is introduced into the adsorption tower 5 from the desorption gas duct 9 to desorb ammonia, and is returned to the exhaust heat recovery boiler 2 again from the desorption gas duct 10. In FIG. 4, when one of the adsorption towers A of the adsorption towers 5 is in the adsorption step, the adsorption tower B is in the desorption step. The conventional apparatus shown in FIG. 4 is a dry type denitration apparatus using ammonia as a reducing agent, in which residual ammonia not denitrated is adsorbed and the desorbed gas is recycled as denitration ammonia.

【0003】[0003]

【発明が解決しようとする課題】アンモニア吸着設備が
横流れ式の場合、吸着塔に吸着するアンモニアの分布に
偏りが生じた。また、アンモニアを脱着するためには1
/50量のガスを昇温用に吸着時と同一方向に流してい
るが、ガス量が小さいため流れに乱れが生じ、更にアン
モニア分布に偏りがあるため、温度上昇にばらつきが生
じた。そのため、吸着剤に吸着されたアンモニアは昇温
・脱離時間内に充分脱離できず、次回吸着容量が減少し
た。従って、吸脱着タイムスケジュールの見直し、吸着
塔数の見直し、吸脱着サイクル制御の複雑化が生じた。
その他吸着時のガス流れ方向と脱着時のガス流れ方向が
同一であるため吸着したアンモニアが全て吸着剤内を通
過するため脱着時間が長くかかっていた。又、吸着剤再
生やアンモニア回収が難しく、リサイクル量が把握でき
ないため、脱硝装置へのアンモニア注入量の制御がうま
くいかなかった。
When the ammonia adsorption equipment is of the horizontal flow type, the distribution of ammonia adsorbed on the adsorption tower is biased. To desorb ammonia, 1
Although a / 50 amount of gas was flowing in the same direction as that for adsorption for increasing the temperature, the flow was disturbed due to the small amount of gas, and the ammonia distribution was uneven, resulting in a variation in temperature rise. As a result, the ammonia adsorbed by the adsorbent could not be sufficiently desorbed within the heating / desorption time, and the next adsorption capacity decreased. Accordingly, the review of the adsorption / desorption time schedule, the number of adsorption towers, and the control of the adsorption / desorption cycle were complicated.
In addition, since the gas flow direction at the time of adsorption and the gas flow direction at the time of desorption are the same, all of the adsorbed ammonia passes through the adsorbent, so that the desorption time is long. In addition, it is difficult to regenerate the adsorbent and recover the ammonia, and it is not possible to determine the amount of the recycle. Therefore, the control of the amount of ammonia injected into the denitration apparatus has not been successful.

【0004】本発明は上記技術水準に鑑み、従来法にお
けるような不具合のないアンモニア吸着設備を提供しよ
うとするものである。
The present invention has been made in view of the above-mentioned state of the art, and aims to provide an ammonia adsorption apparatus free from the problems as in the conventional method.

【0005】[0005]

【課題を解決するための手段】本発明は排ガス中に含ま
れる窒素酸化物をアンモニアを還元剤とする脱硝装置の
下流に設置されるアンモニア吸着設備であって、アンモ
ニア吸着時の排ガスの流れを上昇流、アンモニア脱着時
の高温ガス流れを下降流になるように、ダクト及びダン
パを設けたアンモニア吸着塔を少くとも2系列設けてな
り、脱着時に排出されるアンモニア含有ガスを脱硝装置
の上流側に導く脱着ガスダクトを設けてなることを特徴
とするアンモニア吸着設備である。
SUMMARY OF THE INVENTION The present invention relates to an ammonia adsorbing facility installed downstream of a denitration apparatus using nitrogen oxides contained in exhaust gas as a reducing agent for reducing the flow of exhaust gas during ammonia adsorption. At least two lines of ammonia adsorption towers equipped with ducts and dampers are provided so that the upward flow and the high-temperature gas flow at the time of ammonia desorption become a downward flow, and the ammonia-containing gas discharged at the time of desorption is placed upstream of the denitration device. Ammonia adsorption equipment, characterized in that a desorption gas duct is provided to lead to the ammonia adsorption equipment.

【0006】[0006]

【作用】吸着時間内に一定温度でアンモニアを流すと吸
着アンモニア濃度分布は吸着剤入口付近が多く出口へ行
く程小さくなる。脱着時に吸着剤内でのアンモニアの再
吸着を防止し、脱着時間内に効率よくアンモニアを脱離
させるためには吸脱着時のガス流れを逆向きにすると次
回吸着容量を確保できる。また、昇温・脱着用のガスと
して1/50量の排ガスを通すが、従来法では差圧が小
さいため流れに乱れが生じていたが、均一流れとするた
め、脱着ガスを縦流れ下降流とし、吸着用ガスを上昇流
としたところ、吸脱着サイクルが円滑化し、かつ制御も
単純化した。
When the ammonia is flowed at a constant temperature during the adsorption time, the concentration distribution of the adsorbed ammonia increases near the inlet of the adsorbent and decreases toward the outlet. In order to prevent re-adsorption of ammonia in the adsorbent at the time of desorption and to efficiently desorb ammonia within the desorption time, the gas flow at the time of adsorption and desorption is reversed so that the next adsorption capacity can be secured. In addition, a 1/50 volume of exhaust gas is passed as a gas for heating and desorption, but in the conventional method, the flow was disturbed due to a small differential pressure. When the gas for adsorption was set to the upward flow, the adsorption / desorption cycle was smoothed and the control was simplified.

【0007】[0007]

【実施例】本発明の一実施例を図1によって説明する。
図1において、1はガスタービン、2は排熱回収ボイ
ラ、3はアンモニア注入装置、4は脱硝装置、5は吸着
塔A,Bで示されるアンモニア吸着塔、6は煙突、7,
8は排ガスダクト、11,12,13,14,16,1
7,18,19はダンパ、15は脱着ガスダクト、20
は脱着ガスダクトである。
FIG. 1 shows an embodiment of the present invention.
In FIG. 1, 1 is a gas turbine, 2 is an exhaust heat recovery boiler, 3 is an ammonia injection device, 4 is a denitration device, 5 is an ammonia adsorption tower indicated by adsorption towers A and B, 6 is a chimney, 7,
8 is an exhaust gas duct, 11, 12, 13, 14, 16, 1
7, 18, 19 are dampers, 15 is a desorption gas duct, 20
Is a desorption gas duct.

【0008】図1のアンモニア注入装置3で過剰に注入
されたアンモニアを含む排ガスは脱硝装置4の下流側の
アンモニア吸着塔A5にダンパ11,12を開の状態に
して上昇流として押し込んだ。吸着塔A5がアンモニア
を十分吸着後、ダンパ11,12を閉じ、ダンパ13,
14を開の状態にして吸着塔B5に吸着操作を切り換え
る。アンモニアを十分吸着した吸着塔A5を昇温し、脱
着ガス脱着ガスダクト20、ダンパ18を介して上方よ
り下降流として流入させ、ダンパ16を開として脱離ア
ンモニアを脱硝装置4の上流側に戻す。
Exhaust gas containing ammonia excessively injected by the ammonia injection device 3 in FIG. 1 is pushed into the ammonia adsorption tower A5 on the downstream side of the denitration device 4 as an upward flow with the dampers 11, 12 opened. After the adsorption tower A5 has sufficiently adsorbed ammonia, the dampers 11 and 12 are closed, and the dampers 13 and
14 is opened to switch the adsorption operation to the adsorption tower B5. The temperature of the adsorption tower A5 that has sufficiently adsorbed ammonia is raised, and the desorbed gas is allowed to flow downward from above via the desorption gas / desorption gas duct 20 and the damper 18, and the damper 16 is opened to return the desorbed ammonia to the upstream side of the denitration device 4.

【0009】更に、具体的に図1の操作について説明す
る。ガスタービン1にて発生した高温でNOxを含む排
ガスは、後流に設けられた排熱回収ボイラ2に導き入れ
られ、図示していない熱交換器にて熱交換されて低温と
なる。この排熱回収ボイラ2内にはアンモニア注入装置
3及びその下流に脱硝装置4が備えられているので、ア
ンモニア注入装置3により注入されたアンモニアは排ガ
スと混合して後流の脱硝装置4にてNOxは無害な窒素
及び水分に分解される。この時アンモニアの注入量はN
Oxと反応する量より過剰に注入し、脱硝率を高くする
ようになっているため、反応に供しなかった残留アンモ
ニアが排ガス中に残っている。
The operation of FIG. 1 will be described more specifically. Exhaust gas containing NOx at a high temperature generated in the gas turbine 1 is introduced into an exhaust heat recovery boiler 2 provided in the downstream, and is subjected to heat exchange in a heat exchanger (not shown) to have a low temperature. Since the exhaust heat recovery boiler 2 is provided with an ammonia injection device 3 and a denitration device 4 downstream thereof, the ammonia injected by the ammonia injection device 3 is mixed with the exhaust gas to be discharged by the downstream denitration device 4. NOx is broken down into harmless nitrogen and moisture. At this time, the injection amount of ammonia is N
Injection in excess of the amount that reacts with Ox increases the denitration rate, so that residual ammonia not subjected to the reaction remains in the exhaust gas.

【0010】このアンモニアを含んだ排ガスは排ガスダ
クト7より縦流れに配置され、並列に置かれた2つのア
ンモニア吸着塔A,Bよりなる吸着塔5の一方へ送ら
れ、吸着剤にアンモニアが吸着されて排ガスダクト8よ
り煙突6を経て大気へ放出される。前述の吸着塔5の上
側の排ガスダクト8には、ダンパ12及び14が、下側
の排ガスダクト7にはダンパ11及び13がそれぞれ備
えられていて、吸着塔A,B共にアンモニアの吸着を行
う時はこれらのダンパは全開となり、又、一方の吸着塔
Aが吸着工程、他方の吸着塔Bが脱着工程にある場合は
ダンパ11,12が開、ダンパ13,14が閉状態にな
るように構成されている。
The exhaust gas containing ammonia is arranged in a vertical flow from an exhaust gas duct 7 and sent to one of two adsorption towers 5 comprising ammonia adsorption towers A and B arranged in parallel, and the ammonia is adsorbed by the adsorbent. Then, the gas is discharged from the exhaust gas duct 8 through the chimney 6 to the atmosphere. The upper exhaust gas duct 8 of the above-mentioned adsorption tower 5 is provided with dampers 12 and 14, and the lower exhaust gas duct 7 is provided with dampers 11 and 13, and both the adsorption towers A and B adsorb ammonia. At this time, these dampers are fully opened, and when one adsorption tower A is in the adsorption step and the other adsorption tower B is in the desorption step, the dampers 11 and 12 are opened and the dampers 13 and 14 are closed. It is configured.

【0011】吸着塔5の上側の排ガスダクト8には脱着
ガスダクト20が接続されていてこれらの入口部にダン
パ18及び19が備えられている。又、下側の排ガスダ
クト7には脱着ガスダクト15が接続され、その一方は
排ガスボイラ2の脱硝装置4の上流側に接続されてい
て、これらの出口部にはダンパ16及び17が設けられ
ている。
A desorption gas duct 20 is connected to the exhaust gas duct 8 above the adsorption tower 5, and dampers 18 and 19 are provided at their inlets. A desorption gas duct 15 is connected to the lower exhaust gas duct 7, one of which is connected to the exhaust gas boiler 2 on the upstream side of the denitration device 4, and dampers 16 and 17 are provided at their outlets. I have.

【0012】脱着ガスダクト20へは高温でアンモニア
を含まないガスを導くのであるが、これはガスタービン
1より下流で排ガスボイラ2のアンモニア注入装置3ま
での間の区間から抜き出した高温排ガスを使用してもよ
く、又は別系統のガスを使用してもよい。
A high-temperature, ammonia-free gas is introduced into the desorption gas duct 20 by using high-temperature exhaust gas extracted from a section downstream of the gas turbine 1 and up to the ammonia injection device 3 of the exhaust gas boiler 2. Or a different system of gas may be used.

【0013】図2の(a),(b),(c)によって吸
着塔5内の脱着ガス流れの経時的な変化を説明する。高
温で少量の脱着ガスは吸着塔5の上側に接続された脱着
ガスダクト20より導き入れられるが、その量が少ない
ため、下方へは直接流出せず上方に留まりながら充満し
ていくことになり、((a)→(b))吸着塔5の全体
に高温ガスが充満後、下側の脱着ガスダクト15より排
出する。(c)
2 (a), 2 (b) and 2 (c), the change over time of the flow of the desorbed gas in the adsorption tower 5 will be described. At a high temperature, a small amount of desorbed gas is introduced from the desorbed gas duct 20 connected to the upper side of the adsorption tower 5, but since the amount is small, the gas does not directly flow downward but stays at the upper side and fills up. ((A) → (b)) After the entirety of the adsorption tower 5 is filled with the high-temperature gas, the gas is discharged from the lower desorption gas duct 15. (C)

【0014】この時、吸着されたアンモニアは脱着され
て脱着ガスと同時に排出されるが、吸着塔5への脱着ガ
スが上部より充満していくので、吸着剤の昇温、アンモ
ニアの脱着が多少時間がかかるが、全体に充満し流出す
るため、吸着剤全体で脱着が進むので短時間で脱着が完
了することを図3に示している。図3は昇温開始からア
ンモニアが離脱開始し、終了するのにかゝる時間を脱離
アンモニアの関係を示す図表で、が吸脱着が同一方向
の順流れの場合を示し、が吸脱着が逆方向の場合を示
す。
At this time, the adsorbed ammonia is desorbed and discharged at the same time as the desorbed gas. However, since the desorbed gas to the adsorption tower 5 is filled from the upper part, the temperature rise of the adsorbent and the desorption of ammonia are slightly increased. FIG. 3 shows that the desorption is completed in a short time because it takes time, but the entire adsorbent is desorbed because it is completely filled and flows out. FIG. 3 is a table showing the relationship between desorbed ammonia and the time taken to start and end the desorption of ammonia from the start of temperature rise. The case in the opposite direction is shown.

【0015】[0015]

【発明の効果】本発明によれば、下記の効果が奏され
る。 吸着アンモニアの濃度分布は吸着入口(脱着出口)
が高く、昇温時は濃度分布の低い方から温度上昇してア
ンモニアが脱離され、脱着出口はアンモニア濃度分布が
高く、脱離アンモニアの吸着剤への再吸着は起こらない
ことから、昇温・脱離開始までの時間はかかるが、アン
モニアは吸着剤から短時間で脱離完了するために次の吸
着のための吸着剤の冷却時間が十分とれる。 吸着剤内の残存NH3 は1%未満であり、次の吸着
容量は十分確保され、脱吸着システムのコントロールが
時間ができ、タイムスケジュールが単純であり、少ない
触媒量、少ない吸着塔で十分システム運用できる。
According to the present invention, the following effects can be obtained. The concentration distribution of adsorbed ammonia is indicated by the adsorption inlet (desorption outlet)
When the temperature rises, the temperature rises from the lower concentration distribution and ammonia is desorbed.The ammonia concentration distribution is high at the desorption outlet, and the desorbed ammonia does not re-adsorb to the adsorbent. -Although it takes time until the start of desorption, ammonia can be completely desorbed from the adsorbent in a short time, so that the adsorbent can be sufficiently cooled for the next adsorption. The remaining NH 3 in the adsorbent is less than 1%, the next adsorption capacity is sufficiently secured, the desorption system can be controlled in a long time, the time schedule is simple, a small amount of catalyst and a small amount of adsorption tower are sufficient Can operate.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例の説明図。FIG. 1 is an explanatory diagram of one embodiment of the present invention.

【図2】本発明の脱着時のアンモニア吸着塔内のガス流
れの説明図。
FIG. 2 is an explanatory diagram of a gas flow in an ammonia adsorption tower at the time of desorption according to the present invention.

【図3】昇温開始からアンモニア脱離開始・終了するの
にかゝる時間と脱離アンモニアの関係を示す図表。
FIG. 3 is a chart showing the relationship between the time required to start and end ammonia desorption from the start of temperature rise and desorbed ammonia.

【図4】従来のアンモニア吸着設備の説明図。FIG. 4 is an explanatory view of a conventional ammonia adsorption facility.

フロントページの続き (72)発明者 今本 敏彦 長崎県長崎市飽の浦町1番1号 三菱重 工業株式会社長崎造船所内 (72)発明者 内藤 治 長崎県長崎市飽の浦町1番1号 三菱重 工業株式会社長崎造船所内 (72)発明者 芹澤 暁 長崎県長崎市飽の浦町1番1号 三菱重 工業株式会社長崎造船所内 (56)参考文献 特開 平4−281819(JP,A) 特開 平4−250822(JP,A) (58)調査した分野(Int.Cl.7,DB名) B01D 53/58 B01D 53/34 B01D 53/56 Continued on the front page (72) Inventor Toshihiko Imamoto 1-1, Akunoura-cho, Nagasaki-shi, Nagasaki Mitsubishi Heavy Industries, Ltd. Nagasaki Shipyard (72) Inventor Osamu Naito 1-1, Akunoura-cho, Nagasaki-shi, Nagasaki Mitsubishi Heavy Industries Inside Nagasaki Shipyard Co., Ltd. (72) Akira Serizawa, Inventor 1-1 1-1 Akunouramachi, Nagasaki City, Nagasaki Prefecture Mitsubishi Heavy Industries, Ltd. Nagasaki Shipyard Co., Ltd. (56) References JP-A-4-281819 (JP, A) JP-A-4 -250822 (JP, A) (58) Field surveyed (Int. Cl. 7 , DB name) B01D 53/58 B01D 53/34 B01D 53/56

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 排ガス中に含まれる窒素酸化物をアンモ
ニアを還元剤とする脱硝装置の下流に設置されるアンモ
ニア吸着設備であって、アンモニア吸着時の排ガスの流
れを上昇流、アンモニア脱着時の高温ガス流れを下降流
になるように、ダクト及びダンパを設けたアンモニア吸
着塔を少くとも2系列設けてなり、脱着時に排出される
アンモニア含有ガスを脱硝装置の上流側に導く脱着ガス
ダクトを設けてなることを特徴とするアンモニア吸着設
備。
1. An ammonia adsorbing facility installed downstream of a denitration apparatus using nitrogen oxides contained in exhaust gas as a reducing agent with ammonia as a reducing agent. At least two lines of ammonia adsorption towers provided with a duct and a damper are provided so that the hot gas flow becomes a downward flow, and a desorption gas duct is provided to guide the ammonia-containing gas discharged at the time of desorption to the upstream side of the denitration device. Ammonia adsorption equipment, characterized in that:
JP5013577A 1993-01-29 1993-01-29 Ammonia adsorption equipment Expired - Lifetime JP3029936B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5013577A JP3029936B2 (en) 1993-01-29 1993-01-29 Ammonia adsorption equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5013577A JP3029936B2 (en) 1993-01-29 1993-01-29 Ammonia adsorption equipment

Publications (2)

Publication Number Publication Date
JPH06226044A JPH06226044A (en) 1994-08-16
JP3029936B2 true JP3029936B2 (en) 2000-04-10

Family

ID=11837026

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5013577A Expired - Lifetime JP3029936B2 (en) 1993-01-29 1993-01-29 Ammonia adsorption equipment

Country Status (1)

Country Link
JP (1) JP3029936B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5839275B2 (en) * 2011-12-13 2016-01-06 三菱自動車工業株式会社 Exhaust gas purification device for internal combustion engine
CN104548882B (en) * 2014-12-02 2016-06-01 北京空间飞行器总体设计部 The dry detoxified device of toxic gas
CN111991994A (en) * 2020-08-18 2020-11-27 江苏华昌化工股份有限公司 Treatment method for volatilizing ammonia gas

Also Published As

Publication number Publication date
JPH06226044A (en) 1994-08-16

Similar Documents

Publication Publication Date Title
WO2012063466A1 (en) Exhaust gas treatment method and apparatus
CN105688566A (en) Desulfurization and denitrification device and method for sintering flue gas
JPS5843222A (en) Method for removing sulfur oxide and nitrogen oxide from waste gas
CN103791488A (en) Arrangement of a flue gas treatment system and a combustion device
CN108745331A (en) A kind of novel absorbent charcoal Analytic Tower and activated carbon parsing technique
JP3029936B2 (en) Ammonia adsorption equipment
KR101144699B1 (en) A method and apparatus for catalyst regeneration
JPH067639A (en) Method for denitrifying waste combustion gas
CN205042306U (en) Flue gas dust removal SOx/NOx control integration system
CN208893900U (en) A kind of active carbon processing system improving utilization rate of waste heat and denitrification rate
US5679314A (en) Method for recovering ammonia adsorbent
US7833500B1 (en) Abatement of mercury in flue gas
JPS5511020A (en) Denitration method of combustion exhaust gas
CN208583145U (en) A kind of adsorption tower system and system for desulfuration and denitration
CN105056683A (en) Flue gas dust removal, desulfurization and denitration integrated system and method
US3791103A (en) Method of treating waste gas arising from industrial facility
JPS5864117A (en) Dry stack-gas desulfurization process
JP6655241B2 (en) Denitrification desulfurization apparatus and land and ship internal combustion engine using the same
JPH0871367A (en) Ammonia adsorbing equipment
EP0718025B1 (en) Method for the recovery of ammonia escaping from a denitrification process
JP3202419B2 (en) Method for reducing nitrogen oxides in flue gas
JPH07213859A (en) Waste gas treating device
CN216639387U (en) Decarbonization system and dry quenching system
JP2575874B2 (en) Self-regeneration type denitration method
JP3272502B2 (en) Equipment for removing nitrogen oxides from exhaust gas

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000106