JPH08166123A - Industrial furnace, burner for heat storage combustion and combustion method for the industrial furnace - Google Patents

Industrial furnace, burner for heat storage combustion and combustion method for the industrial furnace

Info

Publication number
JPH08166123A
JPH08166123A JP7232136A JP23213695A JPH08166123A JP H08166123 A JPH08166123 A JP H08166123A JP 7232136 A JP7232136 A JP 7232136A JP 23213695 A JP23213695 A JP 23213695A JP H08166123 A JPH08166123 A JP H08166123A
Authority
JP
Japan
Prior art keywords
furnace
supply
air
burner
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7232136A
Other languages
Japanese (ja)
Other versions
JP3267839B2 (en
Inventor
Kazuhisa Mitani
和久 三谷
Tomohiko Nishiyama
智彦 西山
Ryoichi Tanaka
良一 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Furnace Co Ltd
Toyota Motor Corp
Original Assignee
Nippon Furnace Co Ltd
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Furnace Co Ltd, Toyota Motor Corp filed Critical Nippon Furnace Co Ltd
Priority to JP23213695A priority Critical patent/JP3267839B2/en
Priority to TW084110321A priority patent/TW278124B/zh
Priority to DE69515810T priority patent/DE69515810T2/en
Priority to DE69525780T priority patent/DE69525780T2/en
Priority to EP99200851A priority patent/EP0931983B1/en
Priority to EP95307066A priority patent/EP0715123B1/en
Priority to AU33132/95A priority patent/AU678729B2/en
Priority to US08/540,832 priority patent/US5628629A/en
Priority to CA002160433A priority patent/CA2160433C/en
Priority to CNB031412165A priority patent/CN1226551C/en
Priority to KR1019950035255A priority patent/KR0171959B1/en
Priority to CN95118495A priority patent/CN1127638C/en
Publication of JPH08166123A publication Critical patent/JPH08166123A/en
Priority to AU17870/97A priority patent/AU686067B2/en
Application granted granted Critical
Publication of JP3267839B2 publication Critical patent/JP3267839B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Landscapes

  • Gas Burners (AREA)
  • Air Supply (AREA)

Abstract

PURPOSE: To suppress the amounts of CO2 and NOx generated during combustion by fixing a burner tile having a air supply/exhaust surface with a plurality of air holes so arranged thereon as to switch between supply and exhaust, a protruded part projecting from the air supply/exhaust surface and a fuel releasing surface formed from the inside to tip of the protruded part in a furnace body. CONSTITUTION: An industrial furnace and a burner for heat storage combustion comprise a burner tile 22 through which is inserted a fuel jetting nozzle 20, a heat storage body 30 separated into a plurality of parts, for example, with a partition 31 surrounding the fuel jetting nozzle 20 and a changeover mechanism 40 which is arranged at one end in the axial direction of the heat storage body 30 and has an air supply/ exhaust partition wall 41, an opening part 42 for feed air ventilation on one side of the partition wall 41 and an opening 43 for exhaust ventilation on the other side thereof. The burner tile 22 has an air supply/exhaust surface 23 with a plurality of air holes 26 so arranged thereon as to switch between supply and exhaust, a protruded part 24 projecting into the furnace from the air supply/exhaust surface 23 and a fuel releasing surface 25 which is formed from the inside to tip of the protruded part 24 to release a fuel/primary air mixture.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、排気を蓄熱体に通
して排気の熱を蓄熱体に蓄熱し給気と排気の流れを交互
に切替え排気の熱を蓄熱した蓄熱体に給気を通して給気
をあたためる蓄熱燃焼を実行する工業用炉、およびその
蓄熱燃焼用バーナ、並びに工業用炉の燃焼方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to supplying heat to a heat storage body which stores heat of exhaust gas in a heat storage body and stores heat of exhaust gas in the heat storage body to alternately switch between air supply and exhaust gas flow. TECHNICAL FIELD The present invention relates to an industrial furnace that performs heat storage combustion that warms up the heat, a burner for the heat storage combustion thereof, and a combustion method of the industrial furnace.

【0002】[0002]

【従来の技術】特開平5−256423号公報は、交互
切替式燃焼用バーナを開示している。そこでは、バーナ
先端部において、燃料噴射面と、空気を給排する通気孔
が開口した給排気面とは、バーナ軸芯に直交する同一平
面にある。
2. Description of the Related Art Japanese Unexamined Patent Publication No. 5-256423 discloses an alternate switching burner for combustion. Here, at the tip of the burner, the fuel injection surface and the air supply / exhaust surface where the vent holes for supplying / exhausting air are opened are on the same plane orthogonal to the burner axis.

【0003】[0003]

【発明が解決しようとする課題】しかし、従来のバーナ
で燃焼を行うと、排気中のCO(一酸化炭素)、NOX
(窒素酸化物)の量が大で、実用化に供することができ
ないか、あるいは大気解放前にCO、NOX 低減処理が
必要となる場合がある。また、火焔が炉の奥にまで届き
にくいという問題もある。本発明の目的は、燃焼中のC
O、NOX の生成量を抑制でき、しかも火焔が炉の奥に
まで届く工業用炉、および蓄熱燃焼用バーナ、並びに工
業用炉の燃焼方法を提供することにある。
However, when combustion is performed with a conventional burner, CO (carbon monoxide) and NO x in exhaust gas are discharged.
In an amount large of (nitrogen oxides), or can not be subjected to practical use, or it may before the air release CO, NO X reduction processing is required. There is also a problem that it is difficult for the flame to reach the back of the furnace. The purpose of the present invention is
An object of the present invention is to provide an industrial furnace in which the amount of O and NO X produced can be suppressed and the flame reaches the depth of the furnace, a burner for heat storage combustion, and a combustion method for the industrial furnace.

【0004】[0004]

【課題を解決するための手段】上記目的を達成するため
の本発明は、次の通りである。 (1) 給排が切替えられる通気孔が複数開口された給
排気面と、該給排気面から突出された突出部と、該突出
部の内側から先端にわたって形成された噴射燃料を開放
する燃料開放面と、を有するバーナタイルを有し、該バ
ーナタイルが炉体に固定されている、工業用炉。 (2) 前記燃料開放面を前記突出部先端に向かって末
拡がりに形成した(1)記載の工業用炉。 (3) 前記突出部の外周側部に前記通気孔と同芯状に
かつ軸方向に延びるガイド溝を形成した(1)記載の工
業用炉。 (4) 前記給排気面に、前記通気孔の間の部位に、前
記突出部の突出方向に突出するエアノズルセパレータを
形成した(1)記載の工業用炉。 (5) 前記通気孔を前記給排気面に近づく程絞り、か
つ通気孔中心を前記給排気面に近づく程前記突出部の軸
芯側に近づけた(1)記載の工業用炉。 (6) 前記通気孔と前記燃料開放面をバーナタイルに
形成し、前記燃料開放面に一次(パイロット)空気供給
パイプを連通させてその内部に燃料噴射ノズルを配設
し、給排の切替えを回転ディスク切替式とした切替機構
を設け、前記燃料噴射ノズルを回転ディスクの回転に合
わせて回転可能とした(1)記載の工業用炉。 (7) 前記複数の通気孔を外周側から囲みかつ前記突
出部と同芯状に軸方向に突出部の先端より前方位置まで
延びる、直円筒状の副燃焼筒をさらに有する(1)記載
の工業用炉。 (8) 前記複数の通気孔を外周側から囲みかつ前記突
出部と同芯状に軸方向に突出部の先端より前方位置まで
延びる、先端部が絞られた筒状の副燃焼筒をさらに有
し、該副燃焼筒の後端部に排ガス戻り穴を設けた(1)
記載の工業用炉。 (9) 前記給排気面に、前記通気孔の間の部位に、前
記突出部の突出方向に突出するエアノズルセパレータを
形成し、前記ガイド溝を有する前記突出部を外周側から
囲みかつ前記エアノズルセパレータの前端から前記突出
部と同芯状に軸方向に前記突出部の先端より前方位置ま
で延びる、筒状の副燃焼筒をさらに有する(3)記載の
工業用炉。 (10) 前記通気孔の下流端部の内面と前記突出部の
外面とは、バーナタイル半径方向に、互いに隔たってい
る(1)記載の工業用炉。 (11) 前記通気孔は、給気流れ方向下流側に位置す
る第1の部分と、該第1の部分に給気流れ方向上流側か
らつらなる第2の部分を有しており、前記第1の部分は
その軸芯が下流方向に向って突出部軸芯の延長に近づく
方向に第1の角度で傾けられており、前記第2の部分の
うちバーナタイル軸芯に近い側の内面は前記第1の角度
より大きな第2の角度で前記第1の部分の傾き方向と反
対方向に傾けられている(1)記載の工業用炉。 (12) 前記通気孔が、円筒状ノズルを斜めに延びる
平面で切った形状を有しており、前記平面は、通気孔内
面のうちバーナタイル軸芯から遠い部分に形成されてい
て、下流方向に向って突出部軸芯の延長に近づく方向に
傾けられている(1)記載の工業用炉。 (13) 前記バーナタイルには、前記突出部の先端面
に開口して、通気孔を通る給気の一部を前記突出部の先
端面の前方に供給することができる副通気孔が設けられ
ている(1)記載の工業用炉。 (14) 前記工業用炉が、溶解炉、焼結炉、予熱炉、
均熱炉、鍛造炉、加熱炉、焼鈍炉、容体化炉、メッキ
炉、乾燥炉、調質炉、焼入れ炉、焼もどし炉、酸化還元
炉、焼成炉、焼付炉、焙焼炉、溶解保持炉、前炉、ルツ
ボ炉、ホモジナイジング炉、エージング炉、反応炉、蒸
留炉、取鍋乾燥予熱炉、鋳型焼成予熱炉、焼準炉、ロー
付け炉、浸炭炉、塗装乾燥炉、保持炉、窒化炉、ソルト
バス炉、ガラス溶解炉、発電用ボイラを含むボイラ、ご
み焼却炉を含む焼却炉、給湯装置、の何れか1種の炉で
ある(1)記載の工業用炉。 (15) 給排が切替えられる通気孔が複数開口された
給排気面と、該給排気面から突出された突出部と、該突
出部の内側から先端にわたって形成された噴射燃料を開
放する燃料開放面と、を有する蓄熱燃焼用バーナ。 (16) 前記燃料開放面を前記突出部先端に向かって
末拡がりに形成した(15)記載の蓄熱燃焼用バーナ。 (17) 前記突出部の外周側部に前記通気孔と同芯状
にかつ軸方向に延びるガイド溝を形成した(15)記載
の蓄熱燃焼用バーナ。 (18) 前記給排気面に、前記通気孔の間の部位に、
前記突出部の突出方向に突出するエアノズルセパレータ
を形成した(15)記載の蓄熱燃焼用バーナ。 (19) 前記通気孔を前記給排気面に近づく程絞り、
かつ通気孔中心を前記給排気面に近づく程前記突出部の
軸芯側に近づけた(15)記載の蓄熱燃焼用バーナ。 (20) 前記通気孔と前記燃料開放面をバーナタイル
に形成し、前記燃料開放面に一次パイロット)空気供給
パイプを連通させてその内部に燃料噴射ノズルを配設
し、給排の切替えを回転ディスク切替式とした切替機構
を設け、前記燃料噴射ノズルを回転ディスクの回転に合
わせて回転可能とした(15)記載の蓄熱燃焼用バー
ナ。 (21) 前記複数の通気孔を外周側から囲みかつ前記
突出部と同芯状に軸方向に突出部の先端より前方位置ま
で延びる、直円筒状の副燃焼筒をさらに有する(15)
記載の蓄熱燃焼用バーナ。 (22) 前記複数の通気孔を外周側から囲みかつ前記
突出部と同芯状に軸方向に突出部の先端より前方位置ま
で延びる、先端部が絞られた筒状の副燃焼筒をさらに有
し、該副燃焼筒の後端部に排ガス戻り穴を設けた(1
5)記載の蓄熱燃焼用バーナ。 (23) 前記給排気面に、前記通気孔の間の部位に、
前記突出部の突出方向に突出するエアノズルセパレータ
を形成し、前記ガイド溝を有する前記突出部を外周側か
ら囲みかつ前記エアノズルセパレータの前端から前記突
出部と同芯状に軸方向に前記突出部の先端より前方位置
まで延びる、筒状の副燃焼筒をさらに有する(17)記
載の蓄熱燃焼用バーナ。 (24) 前記通気孔の下流端部の内面と前記突出部の
外面とは、バーナタイル半径方向に、互いに隔たってい
る(15)記載の蓄熱燃焼用バーナ。 (25) 前記通気孔は、給気流れ方向下流側に位置す
る第1の部分と、該第1の部分に給気流れ方向上流側か
らつらなる第2の部分を有しており、前記第1の部分は
その軸芯が下流方向に向って突出部軸芯の延長に近づく
方向に第1の角度で傾けられており、前記第2の部分の
うちバーナタイル軸芯に近い側の内面は前記第1の角度
より大きな第2の角度で前記第1の部分の傾き方向と反
対方向に傾けられている(15)記載の蓄熱燃焼用バー
ナ。 (26) 前記通気孔が、円筒状ノズルを斜めに延びる
平面で切った形状を有しており、前記平面は、通気孔内
面のうちバーナタイル軸芯から遠い部分に形成されてい
て、下流方向に向って突出部軸芯の延長に近づく方向に
傾けられている(15)記載の蓄熱燃焼用バーナ。 (27) 前記バーナタイルには、前記突出部の先端面
に開口して、通気孔を通る給気の一部を前記突出部の先
端面の前方に供給することができる副通気孔が設けられ
ている(15)記載の蓄熱燃焼用バーナ。 (28) 給排気面に形成された給排が切替えられる複
数の通気孔のうち給気孔として働らいている通気孔から
給気を炉内に供給し、前記給気が前記給排気面から前方
に突出する突出部の側面に沿って該突出部の先端に流れ
る間に炉内排ガスを該給気の流れに巻込んで炉内排ガス
の一部を炉内に循環させ、前記給気と該給気に巻込んだ
炉内排ガスの一部との流れが前記突出部の先端まで流れ
てきたときに前記突出部の内側に形成した燃料開放面か
ら開放される燃料の流れと混合して前記突出部の前方に
流し、炉の奥の方向に延びた燃焼領域を形成しつつ燃料
を燃焼させる、工程からなる工業用炉の燃焼方法。 (29) 炉内で燃焼した排ガスを前記給排が切替えら
れる複数の通気孔のうち排気孔として働らいている通気
孔を通して炉外に排出する工程をさらに有し、該排出工
程では前記燃料開放面から炉内に開放される燃料の前記
通気孔への短絡が燃料開放面先端が給排気面より前記突
出部の長さだけ隔たっていることにより抑制される、
(28)記載の工業用炉の燃焼方法。
[Means for Solving the Problems] The present invention for achieving the above object is as follows. (1) Air supply / exhaust surface having a plurality of vent holes for switching supply / exhaust, a protrusion protruding from the air supply / exhaust surface, and fuel release for releasing injected fuel formed from the inside to the tip of the protrusion. An industrial furnace having a burner tile having a surface, the burner tile being fixed to a furnace body. (2) The industrial furnace according to (1), wherein the fuel release surface is formed so as to widen toward the tip of the protrusion. (3) The industrial furnace according to (1), wherein a guide groove that is concentric with the vent hole and extends in the axial direction is formed on an outer peripheral side portion of the protruding portion. (4) The industrial furnace according to (1), wherein an air nozzle separator is formed on the air supply / exhaust surface between the ventilation holes so as to project in the projecting direction of the projecting portion. (5) The industrial furnace according to (1), wherein the vent hole is narrowed as it approaches the air supply / exhaust surface, and the vent hole center is closer to the axial core side of the protrusion as it approaches the air supply / exhaust surface. (6) The vent hole and the fuel release surface are formed in a burner tile, and a primary (pilot) air supply pipe is connected to the fuel release surface and a fuel injection nozzle is disposed inside the pipe to switch between supply and discharge. The industrial furnace according to (1), wherein a switching mechanism of a rotary disk switching type is provided, and the fuel injection nozzle is rotatable in accordance with the rotation of the rotary disk. (7) A straight combustion auxiliary combustion cylinder that surrounds the plurality of vent holes from the outer peripheral side and extends axially concentrically with the projection from the tip of the projection to a position forward of the projection. Industrial furnace. (8) There is further provided a cylindrical auxiliary combustion cylinder that surrounds the plurality of vent holes from the outer peripheral side and extends concentrically with the protrusion in the axial direction from the tip of the protrusion to a position forward of the protrusion. Then, an exhaust gas return hole was provided at the rear end of the auxiliary combustion cylinder (1).
Industrial furnace described. (9) On the air supply / exhaust surface, an air nozzle separator that protrudes in the protruding direction of the protrusion is formed between the ventilation holes, and the protrusion having the guide groove is surrounded from the outer peripheral side and the air nozzle separator is provided. (3) The industrial furnace as set forth in (3), further comprising a tubular auxiliary combustion tube that extends axially from the front end of the front end of the protrusion to the front position from the front end of the protrusion. (10) The industrial furnace according to (1), wherein the inner surface of the downstream end of the vent hole and the outer surface of the protrusion are separated from each other in the radial direction of the burner tile. (11) The ventilation hole has a first portion located on the downstream side in the supply air flow direction and a second portion connected to the first portion from the upstream side in the supply air flow direction. Of the second part is inclined at a first angle in a direction in which the axis of the second part approaches the extension of the protruding part axis, and the inner surface of the second part on the side closer to the burner tile axis is the The industrial furnace according to (1), wherein the industrial furnace is inclined at a second angle larger than the first angle in a direction opposite to the inclination direction of the first portion. (12) The ventilation hole has a shape obtained by cutting a cylindrical nozzle with a plane that extends obliquely, and the plane is formed in a portion of the inner surface of the ventilation hole that is far from the burner tile axis, and is in the downstream direction. The industrial furnace according to (1), wherein the industrial furnace is inclined toward the direction toward the extension of the protrusion axis. (13) The burner tile is provided with a sub-ventilation hole that is opened in the tip end surface of the protrusion and can supply a part of the air supply passing through the ventilator to the front of the tip end surface of the protrusion part. (1) The industrial furnace described in (1). (14) The industrial furnace is a melting furnace, a sintering furnace, a preheating furnace,
Soaking furnace, forging furnace, heating furnace, annealing furnace, tempering furnace, plating furnace, drying furnace, tempering furnace, quenching furnace, tempering furnace, redox furnace, firing furnace, baking furnace, roasting furnace, melting and holding Furnace, front furnace, crucible furnace, homogenizing furnace, aging furnace, reaction furnace, distillation furnace, ladle drying preheating furnace, mold firing preheating furnace, normalizing furnace, brazing furnace, carburizing furnace, coating drying furnace, holding furnace The industrial furnace according to (1), which is any one of a nitriding furnace, a salt bath furnace, a glass melting furnace, a boiler including a power generation boiler, an incinerator including a refuse incinerator, and a water heater. (15) Fuel supply / exhaust surface having a plurality of vent holes for switching supply / discharge, a protrusion protruding from the air supply / exhaust surface, and fuel release for releasing injected fuel formed from the inside to the tip of the protrusion. A burner for heat storage combustion having a surface. (16) The burner for heat storage combustion according to (15), wherein the fuel release surface is formed to widen toward the tip of the protrusion. (17) The heat storage combustion burner according to (15), wherein a guide groove that is concentric with the vent hole and extends in the axial direction is formed on an outer peripheral side portion of the protruding portion. (18) On the air supply / exhaust surface, at a portion between the ventilation holes,
(15) The burner for heat storage combustion according to (15), wherein an air nozzle separator protruding in the protruding direction of the protruding portion is formed. (19) The vent hole is narrowed toward the air supply / exhaust surface,
The heat storage combustion burner according to (15), wherein the vent hole center is closer to the axial center side of the projecting portion as it approaches the air supply / exhaust surface. (20) The vent hole and the fuel release surface are formed in a burner tile, the fuel release surface is connected to a primary pilot air supply pipe, and a fuel injection nozzle is disposed inside the pipe to rotate the supply / discharge switching. (15) The burner for heat storage combustion according to (15), wherein a disc switching type switching mechanism is provided, and the fuel injection nozzle is rotatable according to the rotation of the rotating disc. (21) A sub-combustion cylinder having a right cylindrical shape is further provided that surrounds the plurality of ventilation holes from the outer peripheral side and extends concentrically with the projecting portion in the axial direction to a position forward of the tip of the projecting portion.
Burner for heat storage combustion described. (22) There is further provided a cylindrical auxiliary combustion cylinder that surrounds the plurality of vent holes from the outer peripheral side and extends concentrically with the projecting portion in the axial direction from the tip of the projecting portion to a position ahead of the projecting portion. Then, an exhaust gas return hole was provided at the rear end of the auxiliary combustion cylinder (1
The burner for heat storage combustion according to 5). (23) On the air supply / exhaust surface, at a site between the ventilation holes,
An air nozzle separator protruding in the protruding direction of the protruding portion is formed, the protruding portion having the guide groove is surrounded from the outer peripheral side, and the front end of the air nozzle separator is concentric with the protruding portion in the axial direction of the protruding portion. The heat storage combustion burner according to (17), further including a tubular auxiliary combustion tube extending from the tip to a position forward. (24) The heat storage combustion burner according to (15), wherein the inner surface of the downstream end of the vent hole and the outer surface of the protrusion are separated from each other in the burner tile radial direction. (25) The vent has a first portion located on the downstream side in the air supply flow direction and a second portion connected to the first portion from the upstream side in the air supply flow direction. Of the second part is inclined at a first angle in a direction in which the axis of the second part approaches the extension of the protruding part axis, and the inner surface of the second part on the side closer to the burner tile axis is the The burner for heat storage combustion according to (15), wherein the burner is inclined at a second angle larger than the first angle in a direction opposite to the inclination direction of the first portion. (26) The ventilation hole has a shape obtained by cutting a cylindrical nozzle with a plane that extends obliquely, and the plane is formed in a portion of the inner surface of the ventilation hole that is far from the burner tile axis, and is in the downstream direction. The burner for heat storage combustion according to (15), wherein the burner for heat storage combustion is inclined toward a direction approaching the extension of the axis of the protrusion. (27) The burner tile is provided with a sub-ventilation hole which is opened in the tip end surface of the protrusion and can supply a part of the air supply passing through the ventilator in front of the tip end surface of the protrusion part. (15) The burner for heat storage combustion according to (15). (28) Supply air is supplied to the inside of the furnace through a ventilation hole functioning as a supply hole, out of a plurality of ventilation holes formed on the supply / exhaust surface, the supply / exhaust surface being forward from the supply / exhaust surface. The exhaust gas in the furnace is entrained in the flow of the supply air while flowing to the tip of the projection along the side surface of the projection part that protrudes to circulate a part of the exhaust gas in the furnace in the furnace, When a flow with a part of the exhaust gas in the furnace entrained in the supply air flows to the tip of the protrusion, the mixture is mixed with the flow of fuel released from the fuel opening surface formed inside the protrusion. A combustion method for an industrial furnace comprising the steps of flowing fuel in front of a protrusion and forming a combustion region extending in the depth direction of the furnace to burn fuel. (29) The method further includes the step of discharging the exhaust gas burned in the furnace to the outside of the furnace through a vent hole that functions as an exhaust hole among the plurality of vent holes that can be switched between supply and discharge, and in the discharging step, the fuel is released. A short circuit of the fuel released from the surface into the furnace to the vent hole is suppressed by the fuel release surface tip being separated from the air supply / exhaust surface by the length of the protrusion,
(28) The method for burning an industrial furnace according to the above item.

【0005】低温時の着火安定性を向上させるには、給
気ノズルと燃料ノズルの間隔を小さくして近づければよ
いが、同一平面に給排気孔と燃料ノズルがあると、燃料
が排気孔に逆流してCOを増大させてしまうし、また炉
内排ガスの再循環が弱く高温時には強い燃焼反応による
NOx増大が問題となる。上記(1)の工業用炉、上記
(15)の蓄熱燃焼用バーナ、上記(28)、(29)
の工業用炉の燃焼方法では、燃料開放面が給排気面から
突出した突出部に形成されているため、燃料開放面から
開放された燃料が給排気面に開口している通気孔のうち
排気孔として働いている通気孔に流れていく排気に巻き
込まれること(燃料が排気通気孔に短絡して流れるこ
と)が抑制される。その結果、燃料が排気に巻き込まれ
た場合に生じる燃料の不完全燃焼とそれによるCOの生
成が抑制される。さらに、突出部の軸方向の突出によっ
て給気が炉内排気ガスの一部を巻きこんだ後に燃料と出
会い、その結果炉内排ガスが強循環し燃焼が緩慢燃焼と
なるので、高温時のNOx生成を抑制できる。また、燃
焼の緩慢化によって、燃焼領域(温度場)が炉の奥に向
って長く延びるとともに燃焼領域の温度が平均化する。
したがって、温度差の大きい従来の燃焼領域に比べて燃
焼領域全体の温度を許容温度近く迄上げることができ、
その結果平均熱流束を増大でき、高効率伝熱(ふく射伝
熱を大幅に向上できる)が可能になり、同じ伝熱量を達
成させる場合には炉体のコンパクト化、スペース効率向
上、イニシャルコスト低減がはかられる。また、燃焼領
域温度の平均化によって、炉壁が局所的に高温になるこ
とが回避され、炉体の長寿命化、メンテナンスコストの
低減、イニシャルコストの低減がはかられる。さらに、
燃焼の緩慢により、燃焼騒音も小さくなる。上記(2)
の工業用炉、上記(16)の蓄熱燃焼用バーナでは、燃
料開放面が突出部先端に向かって末拡がりとなっている
ため、燃料の、給気流れへの随伴性が高まる。逆に、燃
料の、排気流れへの巻き込まれは抑制される。何となれ
ば、燃料開放面が突出部軸芯に直交する面の場合は、燃
料は排気に引かれると直交面に沿って排気側に移動でき
るが、テーパまたはR面等の末拡がり面からなる場合
は、面が燃料の排気側への移動を阻止する壁となって作
用するためである。燃料の排気への巻き込み抑制によっ
て、COの生成がさらに抑制される。上記(3)の工業
用炉、上記(17)の蓄熱燃焼用バーナでは、突出部の
側面に軸方向に延びるガイド溝があるため、給排気面に
開口した通気孔のうち給気孔として働いている通気孔か
ら流出する給気の少なくとも一部がガイド溝を通って流
れる。給気のうちガイド溝を通る流れは強い指向性をも
ちかつ流速も速いので、燃料流を随伴し、燃料流が排気
に巻き込まれるのを抑制してCOの生成を低減する。ま
た、平行流の随伴混合の特性としてガイド溝の外側から
は炉内排ガスが空気に巻きこまれ燃料流との混合以前に
排ガスが再循環されるため、また指向性によって給気が
かたまりになって流れ、燃料流との混合が遅れるため、
燃焼は緩慢になり、N2 とO2 との結合が遅くなってN
X の生成も低減される。また、流速が大のため、火焔
が炉の奥まで延び、炉内での加熱の均一化がはかれる。
上記(4)の工業用炉、上記(18)の蓄熱燃焼用バー
ナでは、バーナタイルの給排気面には、通気孔の間の部
位に、エアノズルセパレータを設けたので、給気孔から
噴出された燃焼空気が排気孔に流れることが防止され、
燃焼空気の全てが燃焼に寄与できるようになる。上記
(5)の工業用炉、上記(19)の蓄熱燃焼用バーナで
は、通気孔を給排気面に近づく程絞ったので、給気の流
速がさらに増される。また通気孔中心を突出部軸芯側に
近づけたので、燃料の随伴性がさらに高まる。上記
(6)の工業用炉、上記(20)の蓄熱燃焼用バーナで
は、燃料噴射ノズルを回転ディスクの回転に合わせて回
転させるようにしたので、パイロット火炎を常に給気孔
側に向けることができ、着火が安定される。上記(7)
の工業用炉、上記(21)の蓄熱燃焼用バーナでは、副
燃焼筒を設けたので、低温時においても、燃焼空気が散
ることを抑制でき、燃焼が安定して、CO、NOxとも
減少する。上記(8)の工業用炉、上記(22)の蓄熱
燃焼用バーナでは、副燃焼筒を設け、その先端部を絞っ
たので、燃焼空気の散りをさらに抑制でき、燃焼が安定
して、CO、NOxとも減少する。また、排ガス戻り穴
を設けたので、排ガスを副燃焼筒内に導入でき、NOx
がさらに減少する。上記(9)の工業用炉、上記(2
3)の蓄熱燃焼用バーナでは、副燃焼筒を設けたので、
低温時においても、燃焼空気が散ることを抑制でき、燃
焼が安定して、CO、NOxとも減少する。(7)、
(21)に比べて、副燃焼筒の長さは短くてもよい。上
記(10)の工業用炉、上記(24)の蓄熱燃焼用バー
ナでは、通気孔の内面と突出部の内面との間に隔たりを
設けたので、A領域の圧力をまわりより低くすることが
でき、通気孔を出た直後の給気をA領域に向って押すこ
とにより通気孔を出た直後の給気の散りを抑制すること
ができる。上記(11)の工業用炉、上記(25)の蓄
熱燃焼用バーナでは、通気孔の第1の部分を斜め内側に
傾けるとともに、第2の部分のバーナタイル軸芯に近い
側の壁面を第1の部分の傾きと反対側に傾けたので、低
温時には給気が燃料流の方向を指向し、燃料と給気の混
合が強まり、高温時には給気がのぼ燃料流とほぼ平行流
となって、低NOx化がはかられる。上記(12)の工
業用炉、上記(26)の蓄熱燃焼用バーナでは、通気孔
のバーナでは、通気孔の内面のうちバーナタイル軸芯か
ら遠い部分に斜めの平面を設けたので、低温時には通気
孔を出た直後の給気が燃料流に斜めに衝突する方向に流
れて燃料と給気の混合が強まり、高温時には上記斜めの
平面の作用によって給気の散りが増大して低NOx化が
はかられる。上記(13)の工業用炉、上記(27)の
蓄熱燃焼用バーナでは、通気孔と燃料吐出口との間に給
気の一部を供給する副通気孔を設けたので、低温時には
パイロット火炎領域とメイン火炎領域とのつながりが改
善されて燃焼が安定する。また、高温時には給気流速が
増して副通気孔の上流端の静圧がさがって副給気孔を通
して供給される空気量が低減するので、NOx増大が防
止できる。上記(14)は本発明が適用され得る種種の
工業用炉を例示している。
In order to improve the ignition stability at low temperature, the air supply nozzle and the fuel nozzle may be arranged close to each other with a small distance therebetween. However, there is a problem that the amount of NOx increases due to a strong combustion reaction when the exhaust gas in the furnace is weakly recirculated and the temperature is high. Industrial furnace of the above (1), burner for heat storage combustion of the above (15), (28), (29)
In the combustion method of the industrial furnace, the fuel release surface is formed on the projecting portion protruding from the air supply / exhaust surface, so that the fuel released from the fuel open surface is exhausted from the vent holes that open on the air supply / exhaust surface. It is possible to prevent the exhaust gas from flowing into the vent hole functioning as a hole (fuel is short-circuited to the exhaust vent hole and flows). As a result, incomplete combustion of fuel that occurs when the fuel is entrained in the exhaust gas and generation of CO due to the incomplete combustion are suppressed. Furthermore, the axial projection of the protruding portion causes the supply air to enclose a part of the exhaust gas in the furnace and then encounter the fuel. As a result, the exhaust gas in the furnace circulates strongly and combustion becomes slow combustion. Generation can be suppressed. Further, due to the slower combustion, the combustion region (temperature field) extends longer toward the back of the furnace and the temperature of the combustion region is averaged.
Therefore, it is possible to raise the temperature of the entire combustion region to near the allowable temperature as compared with the conventional combustion region where the temperature difference is large,
As a result, the average heat flux can be increased, and highly efficient heat transfer (radiative heat transfer can be greatly improved) becomes possible. When achieving the same heat transfer amount, the furnace body is made compact, space efficiency is improved, and initial cost is reduced. It comes off. Further, by averaging the combustion region temperature, it is possible to avoid locally raising the temperature of the furnace wall, and thus to prolong the life of the furnace body, reduce the maintenance cost, and reduce the initial cost. further,
Due to the slow combustion, the combustion noise is also reduced. Above (2)
In the industrial furnace of (1) and the burner for heat storage and combustion of (16) above, since the fuel open surface is widened toward the tip of the protruding portion, the concomitant property of the fuel to the supply air flow is increased. Conversely, the entrainment of fuel in the exhaust stream is suppressed. If the fuel release surface is a surface orthogonal to the axis of the protruding portion, the fuel can move to the exhaust side along the orthogonal surface when drawn by the exhaust gas, but it is composed of a taper or a flared surface such as an R surface. In this case, the surface acts as a wall that prevents the fuel from moving to the exhaust side. By suppressing the entrainment of fuel into the exhaust gas, the production of CO is further suppressed. In the industrial furnace of (3) above and the heat storage and combustion burner of (17) above, since there is a guide groove that extends in the axial direction on the side surface of the protruding portion, it functions as an air supply hole of the ventilation holes opened on the air supply and exhaust surface. At least a part of the supply air flowing out from the vent hole flowing through the guide groove flows. Since the flow of the supply air through the guide groove has a strong directivity and a high flow velocity, the flow of the fuel is entrained, the fuel flow is suppressed from being caught in the exhaust gas, and the production of CO is reduced. In addition, as a characteristic of the admixture of parallel flow, the exhaust gas in the furnace is entangled in the air from the outside of the guide groove and is recirculated before mixing with the fuel flow. Flow, mixing with the fuel flow is delayed,
Combustion becomes slower, the bond between N 2 and O 2 slows down, and N
Generation of O X is also reduced. Further, since the flow velocity is high, the flame extends to the inside of the furnace, and the heating in the furnace is made uniform.
In the industrial furnace of the above (4) and the heat storage combustion burner of the above (18), since the air nozzle separator is provided on the air supply / exhaust surface of the burner tile between the ventilation holes, the air is ejected from the air supply holes. Combustion air is prevented from flowing to the exhaust holes,
All of the combustion air can contribute to combustion. In the industrial furnace of (5) above and the burner for heat storage combustion of (19) above, since the vent holes are narrowed toward the air supply / exhaust surface, the flow rate of air supply is further increased. Further, since the center of the vent hole is brought closer to the axial center of the protrusion, the fuel entrainment is further enhanced. In the industrial furnace of the above (6) and the burner for heat storage combustion of the above (20), the fuel injection nozzle is rotated in accordance with the rotation of the rotating disk, so that the pilot flame can always be directed to the air supply hole side. , Ignition is stabilized. Above (7)
In the industrial furnace of (1) and the burner for heat storage and combustion of (21) above, since the sub-combustion tube is provided, it is possible to suppress the diffusion of combustion air even at low temperature, stabilize combustion, and reduce both CO and NOx. . In the industrial furnace of (8) and the burner for heat storage and combustion of (22), since the auxiliary combustion cylinder is provided and the tip portion thereof is narrowed, the dispersion of combustion air can be further suppressed, combustion is stabilized, and CO , NOx are also reduced. Further, since the exhaust gas return hole is provided, the exhaust gas can be introduced into the auxiliary combustion cylinder, and NOx
Is further reduced. The industrial furnace of the above (9), the above (2
In the heat storage combustion burner of 3), since the auxiliary combustion cylinder is provided,
Even when the temperature is low, the combustion air can be prevented from being scattered, the combustion is stable, and both CO and NOx are reduced. (7),
The length of the auxiliary combustion cylinder may be shorter than that in (21). In the industrial furnace of (10) and the burner for heat storage and combustion of (24), since the space is provided between the inner surface of the ventilation hole and the inner surface of the protrusion, the pressure in the area A can be made lower than the surroundings. It is possible to suppress the dispersion of the air supply immediately after leaving the air vent by pushing the air supply immediately after exiting the air vent toward the area A. In the industrial furnace of the above (11) and the burner for heat storage and combustion of the above (25), the first portion of the ventilation hole is inclined obliquely inward, and the wall surface of the second portion on the side close to the burner tile axis is set to the first wall. Since it is inclined to the side opposite to the inclination of part 1, the charge air is directed in the direction of the fuel flow at low temperature, the mixture of fuel and charge air is strengthened, and the charge air becomes almost parallel to the flow fuel flow at high temperature. As a result, NOx reduction can be achieved. In the industrial furnace of the above (12) and the heat storage combustion burner of the above (26), in the burner of the ventilation hole, an inclined flat surface is provided on a portion of the inner surface of the ventilation hole far from the burner tile axis. Immediately after exiting the ventilation hole, the supply air flows in a direction in which it obliquely collides with the fuel flow and the mixing of the fuel and the supply air is strengthened, and at high temperatures, the distribution of the supply air increases due to the action of the above-mentioned oblique plane, resulting in low NOx It comes off. In the industrial furnace of the above (13) and the burner for heat storage combustion of the above (27), the auxiliary vent hole for supplying a part of the air supply is provided between the vent hole and the fuel discharge port. The connection between the area and the main flame area is improved and combustion is stabilized. Further, when the temperature is high, the flow rate of the supply air increases, the static pressure at the upstream end of the auxiliary air vent decreases, and the amount of air supplied through the auxiliary air supply hole decreases, so that the increase in NOx can be prevented. The above (14) exemplifies various kinds of industrial furnaces to which the present invention can be applied.

【0006】[0006]

【発明の実施の形態】以下に、本発明の望ましい実施例
を図面を参照して説明する。図1〜図6および図21、
図22は本発明の第1実施例の工業用炉および蓄熱燃焼
用バーナ並びに工業用炉の燃焼方法を示し、図7、図8
は本発明の第2実施例の工業用炉および蓄熱燃焼用バー
ナを示し、図9は本発明の第3実施例の工業用炉および
蓄熱燃焼用バーナを示し、図10は本発明の第4実施例
の工業用炉および蓄熱燃焼用バーナを示し、図11は本
発明の第5実施例の工業用炉および蓄熱燃焼用バーナを
示し、図12、図13は本発明の第6実施例の工業用炉
および蓄熱燃焼用バーナを示し、図14は本発明の第7
実施例の工業用炉および蓄熱燃焼用バーナを示し、図1
5〜図17は本発明の第8実施例の工業用炉および蓄熱
燃焼用バーナを示し、図18〜図20は本発明の第9実
施例の工業用炉および蓄熱燃焼用バーナを示し、図23
は比較例(従来例)を示している。共通構成部分には本
発明の全実施例にわたって同じ符号を付してある。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT A preferred embodiment of the present invention will be described below with reference to the drawings. 1 to 6 and 21,
FIG. 22 shows the combustion method of the industrial furnace, the burner for heat storage combustion, and the industrial furnace of the first embodiment of the present invention, and FIGS.
Shows an industrial furnace and a heat storage combustion burner of a second embodiment of the present invention, FIG. 9 shows an industrial furnace and a heat storage combustion burner of a third embodiment of the present invention, and FIG. 10 shows a fourth embodiment of the present invention. 11 shows an industrial furnace and a heat storage and combustion burner of an embodiment, FIG. 11 shows an industrial furnace and a heat storage and combustion burner of a fifth embodiment of the present invention, and FIGS. 12 and 13 show a sixth embodiment of the present invention. FIG. 14 shows an industrial furnace and a burner for heat storage combustion, and FIG.
1 shows an industrial furnace and a burner for heat storage combustion of an embodiment, and FIG.
5 to 17 show an industrial furnace and a heat storage combustion burner of an eighth embodiment of the present invention, and FIGS. 18 to 20 show an industrial furnace and a heat storage combustion burner of a ninth embodiment of the present invention. 23
Indicates a comparative example (conventional example). Common components have the same reference numerals throughout the embodiments of the present invention.

【0007】本発明は、工業用炉100および蓄熱燃焼
用バーナ1の何れにも適用可能である。本発明が工業用
炉に適用される場合は、たとえば、蓄熱燃焼用バーナが
複数の部分に分離可能な構造を有し、そのうちの一部
(たとえば、後述するバーナタイル、またはバーナタイ
ルと枠体、等)が工業用炉の炉体に固定されて炉体側の
部材または炉体の一部を構成している場合を含む。ま
た、工業用炉100には、溶解炉、焼結炉、予熱炉、均
熱炉、鍛造炉、加熱炉、焼鈍炉、容体化炉、メッキ炉、
乾燥炉、調質炉、焼入れ炉、焼もどし炉、酸化還元炉、
焼成炉、焼付炉、焙焼炉、溶解保持炉、前炉、ルツボ
炉、ホモジナイジング炉、エージング炉、反応炉、蒸留
炉、取鍋乾燥予熱炉、鋳型焼成予熱炉、焼準炉、ロー付
け炉、浸炭炉、塗装乾燥炉、保持炉、窒化炉、ソルトバ
ス炉、ガラス溶解炉、発電用ボイラを含むボイラ、ごみ
焼却炉を含む焼却炉、給湯装置、等が含まれる。
The present invention can be applied to both the industrial furnace 100 and the regenerative combustion burner 1. When the present invention is applied to an industrial furnace, for example, a heat storage combustion burner has a structure that can be separated into a plurality of parts, and a part of them (for example, a burner tile or a burner tile and a frame body described later). , Etc.) are fixed to the furnace body of the industrial furnace to form a member on the furnace body side or a part of the furnace body. Further, the industrial furnace 100 includes a melting furnace, a sintering furnace, a preheating furnace, a soaking furnace, a forging furnace, a heating furnace, an annealing furnace, a tempering furnace, a plating furnace,
Drying furnace, tempering furnace, quenching furnace, tempering furnace, redox furnace,
Baking furnace, baking furnace, roasting furnace, melting and holding furnace, former furnace, crucible furnace, homogenizing furnace, aging furnace, reaction furnace, distillation furnace, ladle drying preheating furnace, mold firing preheating furnace, normalizing furnace, raw It includes an attaching furnace, a carburizing furnace, a coating drying furnace, a holding furnace, a nitriding furnace, a salt bath furnace, a glass melting furnace, a boiler including a power generation boiler, an incinerator including a refuse incinerator, a hot water supply device, and the like.

【0008】まず、本発明の全実施例に共通な構成を、
たとえば図1〜図6および図21、図22を参照して説
明する。図1、図2、および図21に示すように、本発
明実施例の工業用炉100および蓄熱燃焼用バーナ1
は、燃料噴射ノズル20を挿通させるバーナタイル22
と、燃料噴射ノズル20を囲みたとえば隔壁31によっ
て複数の部分に分離された蓄熱体30と、蓄熱体30の
軸方向一端に配置され給排気の仕切壁41を有し仕切壁
41の一側に給気通気用開口部42と他側に排気通気用
開口部43を有する切替機構40と、からなる。工業用
炉100および蓄熱燃焼用バーナ1は、さらに、燃料噴
射ノズル20、蓄熱体30、および切替機構40を内部
に組みつけた枠体10を有していてもよい。工業用炉1
00の場合は、バーナタイル22、またはバーナタイル
22と枠体10が炉壁5側に固定されて炉100側の部
材を構成していてもよい。
First, the structure common to all the embodiments of the present invention will be described.
For example, description will be made with reference to FIGS. 1 to 6 and FIGS. 21 and 22. As shown in FIGS. 1, 2 and 21, the industrial furnace 100 and the heat storage combustion burner 1 according to the embodiment of the present invention.
Is a burner tile 22 through which the fuel injection nozzle 20 is inserted.
A heat storage body 30 that surrounds the fuel injection nozzle 20 and is divided into a plurality of parts by, for example, partition walls 31, and a partition wall 41 that is arranged at one end of the heat storage body 30 in the axial direction to supply and exhaust air. It comprises an air supply ventilation opening 42 and a switching mechanism 40 having an exhaust air ventilation opening 43 on the other side. The industrial furnace 100 and the heat storage combustion burner 1 may further have a frame body 10 in which the fuel injection nozzle 20, the heat storage body 30, and the switching mechanism 40 are assembled. Industrial furnace 1
In the case of 00, the burner tile 22, or the burner tile 22 and the frame body 10 may be fixed to the furnace wall 5 side to form a member on the furnace 100 side.

【0009】工業用炉100および蓄熱燃焼用バーナ1
は、給気通路2を介して送風手段(たとえば、ブロワ、
コンプレッサ等)4に接続されており、排気通路3を介
して大気に解放されている。一方、燃料噴射ノズル20
からの燃料および一次空気(パイロット空気ともいう)
と、給気通気用開口部42から蓄熱体30を通って流れ
てきた給気は、炉100内に送り込まれる。切替機構4
0は、給気と排気の蓄熱体分割部分への流れを、所定時
間間隔毎(たとえば、20秒〜数分毎)に切替える。給
気は蓄熱体30の上流側でたとえば約20℃であったも
のが、蓄熱体30を通るときに温められ、空気噴射ノズ
ル(通気孔)26から燃焼用空気となって流れるときに
はたとえば約900℃となり、排ガス流となって蓄熱体
30に入るときはたとえば約1000℃となり、蓄熱体
30を通るときに蓄熱体の温度を上げて自身はたとえば
約200℃に温度が低下される。ついで、切替機構40
が給排気を切替え、それまで排気が流れていたところに
給気を通し、それまで給気が流れていたところに排気を
通す。かくして排気の熱は蓄熱体30に蓄熱され、給気
に切替えられたときに蓄熱した熱で給気を温める。
Industrial furnace 100 and heat storage combustion burner 1
Is a ventilation means (for example, a blower,
A compressor or the like) 4 and is opened to the atmosphere via the exhaust passage 3. On the other hand, the fuel injection nozzle 20
Fuel from and primary air (also called pilot air)
Then, the supply air flowing from the supply air ventilation opening 42 through the heat storage body 30 is fed into the furnace 100. Switching mechanism 4
0 switches the flow of the supply air and the exhaust gas to the divided portion of the heat storage body at predetermined time intervals (for example, every 20 seconds to several minutes). The supply air, which was at about 20 ° C. on the upstream side of the heat storage body 30, is warmed when passing through the heat storage body 30, and is heated at about 900 when it flows from the air injection nozzle (vent) 26 into combustion air. When the temperature of the exhaust gas reaches the heat storage body 30, the temperature of the heat storage body rises to, for example, about 1000 ° C. When the heat storage body 30 passes through the heat storage body 30, the temperature of the heat storage body is raised to about 200 ° C. Then, the switching mechanism 40
Switches the air supply / exhaust, passes the air supply to the place where the exhaust gas had been flowing until then, and passes the exhaust gas to the place where the air supply had been flowing until then. Thus, the heat of the exhaust gas is stored in the heat storage body 30, and the supply air is warmed by the heat stored when the supply air is switched.

【0010】図2は工業用炉100の一部および蓄熱燃
焼用バーナ1の一例を拡大して示している。燃料噴射ノ
ズル20は、バーナ中心部で軸方向に延び、それと同芯
状に一次空気(パイロットエア)パイプ21が延びてい
て、燃料噴射ノズル20の外周面と一次空気(パイロッ
トエア)パイプ21の内周面との間の環状通路を一次空
気(パイロットエア)が流れるようになっている。燃料
噴射ノズル20の外周面には先端部を除いて電気絶縁用
の碍子が設けられており、碍子が設けられていない先端
部には、側部に燃料の一部(約10%)をパイロット燃
料として吐出するパイロット燃料吐出口が設けられてい
て、そこから噴射されるパイロット燃料に、燃料噴射ノ
ズル20の碍子が設けられていない先端部と一次空気パ
イプ21との間に電気的に火花をとばすことにより、着
火するようになっている。
FIG. 2 is an enlarged view showing an example of a part of the industrial furnace 100 and the burner 1 for heat storage combustion. The fuel injection nozzle 20 extends in the axial direction at the center of the burner, and a primary air (pilot air) pipe 21 extends concentrically with the burner. The outer peripheral surface of the fuel injection nozzle 20 and the primary air (pilot air) pipe 21 are connected to each other. Primary air (pilot air) flows through an annular passage between the inner peripheral surface and the inner peripheral surface. An insulator for electrical insulation is provided on the outer peripheral surface of the fuel injection nozzle 20 except for the tip portion, and a portion (about 10%) of the fuel is piloted to the side portion at the tip portion where the insulator is not provided. A pilot fuel discharge port for discharging as fuel is provided, and the pilot fuel injected from there is electrically sparked between the tip end portion of the fuel injection nozzle 20 where the insulator is not provided and the primary air pipe 21. It is designed to ignite when it is skipped.

【0011】図3、図4は、バーナタイル22の部分の
詳細構造を示している。バーナタイル22は、給排が切
替えられる通気孔26が複数開口された給排気面23
と、給排気面23から炉内に向って突出された突出部2
4と、突出部24の内側から先端にわたって形成され
た、燃料/一次空気混合物を開放する燃料開放面25を
有している。突出部24の給排気面23からの突出距離
は、後で述べる突出部24の効果を持たせるために、任
意の一つの通気孔26の直径の1/3以上、望ましくは
1/2以上とされている。通気孔26はある時は給気孔
として働き、ある時は排気孔として働き、給排が切替え
られる。給排の切替は後述の切替機構40による。バー
ナタイル22の給排気面23には、通気孔26間に、エ
アノズルセパレータ29が突出させて設けられており、
給気孔から噴出された燃焼空気が排気孔に流れることを
防止し、燃焼空気が全て燃焼に寄与できるようにしてあ
る。燃料開放面25は突出部24の先端に向かって末拡
がりに形成されている。末拡がり構造は、テーパであっ
てもよいし、R(湾曲)であってもよいし、またテーパ
面、R面はなめらかな面であってもよいし、ぎざぎざを
付された(接触面積を大とするため)面であってもよ
い。
3 and 4 show the detailed structure of the burner tile 22. The burner tile 22 has an air supply / exhaust surface 23 having a plurality of ventilation holes 26 for switching between air supply and exhaust.
And the protruding portion 2 protruding from the air supply / exhaust surface 23 toward the inside of the furnace.
4 and a fuel opening surface 25 formed from the inside of the protrusion 24 to the tip to open the fuel / primary air mixture. The protrusion distance of the protrusion 24 from the air supply / exhaust surface 23 is 1/3 or more, preferably 1/2 or more, of the diameter of any one vent hole 26 in order to obtain the effect of the protrusion 24 described later. Has been done. The vent hole 26 functions as an air supply hole at one time and as an exhaust hole at another time, and supply / discharge is switched. Switching between supply and discharge is performed by a switching mechanism 40 described later. On the air supply / exhaust surface 23 of the burner tile 22, an air nozzle separator 29 is provided so as to protrude between the ventilation holes 26,
Combustion air ejected from the air supply holes is prevented from flowing to the exhaust holes, and all the combustion air can contribute to combustion. The fuel release surface 25 is formed so as to widen toward the tip of the protrusion 24. The divergent structure may be tapered, R (curved), the tapered surface or the R surface may be a smooth surface, and may be jagged (contact area is It may be a surface (to make it large).

【0012】突出部24の外周側部に、通気孔26と同
芯状に、軸方向に延びるガイド溝27が形成されていて
もよい(ただし、ガイド溝27は必須のものではな
い)。ガイド溝27が設けられている場合は、通気孔2
6のうち給気孔として働いている通気孔26を通って流
出される給気(2次空気、メインエア)は、少なくとも
一部がガイド溝27を通って指向性の強い、流速の速い
流れ28Aとなる。通気孔26は給気流れ方向に給排気
面23に近づく程なめらかに絞られており(ただし、通
気孔26の給排気面23への開口端部は排気の通気孔2
6への流入を円滑にするためにR部26R部としてもよ
い)、蓄熱体30を通過した給気が通気孔26を通る時
に、流速が増加されるようになっている。また、通気孔
26は給気流れ方向に給排気面23に近づく程通路中心
が突出部24の軸芯側に近づけられている。通気孔26
は給排気面23において通気孔26の断面の少なくとも
一部が突出部24と重なることが望ましく、この重なっ
た部分の突出部側面にガイド溝27が形成されている。
したがって、通気孔26は突出部24によって閉塞され
ない。ただし、通気孔26を、給排気面23において通
気孔26の断面が突出部24の外周に接するように配設
してもよく、その場合は突出部24の側面にガイド溝を
設ける必要はない。
A guide groove 27 extending in the axial direction may be formed on the outer peripheral side of the protrusion 24 so as to be concentric with the vent hole 26 (however, the guide groove 27 is not essential). When the guide groove 27 is provided, the ventilation hole 2
In the air supply (secondary air, main air) outflowing through the air vents 26, which function as air supply holes, at least a part of the air supply passes through the guide grooves 27 and has a strong directivity and a high flow velocity 28A. Becomes The vent hole 26 is smoothly narrowed as it approaches the air supply / exhaust surface 23 in the air supply flow direction (however, the opening end of the vent hole 26 to the air supply / exhaust surface 23 is the vent hole 2 of the exhaust gas).
6 may be used as the R portion 26R for smoothing the inflow into the chamber 6.) When the supply air that has passed through the heat storage body 30 passes through the ventilation hole 26, the flow velocity is increased. Further, the vent hole 26 has a passage center closer to the axial center side of the protrusion 24 as it approaches the air supply / exhaust surface 23 in the air supply flow direction. Vent hole 26
It is desirable that at least a part of the cross section of the vent hole 26 on the air supply / exhaust surface 23 overlaps with the projecting portion 24, and a guide groove 27 is formed on the side surface of the projecting portion of this overlapping portion.
Therefore, the vent hole 26 is not blocked by the protrusion 24. However, the ventilation hole 26 may be arranged so that the cross section of the ventilation hole 26 on the air supply / exhaust surface 23 is in contact with the outer periphery of the protruding portion 24. In that case, it is not necessary to provide a guide groove on the side surface of the protruding portion 24. .

【0013】蓄熱体30はハニカム状のセラミック、耐
熱金属、等の耐熱材からなり、ガスとの接触面積を大と
するために、望ましくはモノリスハニカム構造としてあ
る。ただし、ガスとの接触面積を大とする構造はハニカ
ム構造に限るものではなく、たとえば線材や細い径のパ
イプを束ねた構造等であってもよい。蓄熱体30は軸方
向にガスを通過させる。蓄熱体30は、隔壁31によっ
てあるいは互いに独立のスリーブに内蔵されることによ
り、周方向に互いに分離された複数の蓄熱体部分からな
っている。蓄熱体30は、温度勾配によるクラックの発
生防止および製作容易上軸方向にも複数の蓄熱体部分に
分割されていてもよい。蓄熱体30が軸方向に複数の蓄
熱体部分に分割されている場合は、組み立てるときに蓄
熱体部分間に耐熱材からなるスペーサ32を介在させて
蓄熱体部分間に若干の(たとえば、約3〜5mm)の隙
間33を形成し、乱流を発生させるようにしてもよい。
乱流場を設けることによって排気から蓄熱体30への、
かつ蓄熱体30から給気への熱伝達が向上される。
The heat storage body 30 is made of a heat-resistant material such as honeycomb-shaped ceramic or heat-resistant metal, and preferably has a monolith honeycomb structure in order to increase the contact area with gas. However, the structure in which the contact area with the gas is large is not limited to the honeycomb structure, and may be, for example, a structure in which wire rods or pipes having a small diameter are bundled. The heat storage body 30 allows gas to pass in the axial direction. The heat storage body 30 is composed of a plurality of heat storage body portions that are separated from each other in the circumferential direction by the partition wall 31 or by being built in a sleeve independent of each other. The heat storage body 30 may be divided into a plurality of heat storage body portions in the axial direction in order to prevent the occurrence of cracks due to a temperature gradient and facilitate manufacturing. When the heat storage body 30 is divided into a plurality of heat storage body portions in the axial direction, a spacer 32 made of a heat-resistant material is interposed between the heat storage body portions at the time of assembly so that a small amount (for example, about 3 A turbulent flow may be generated by forming a gap 33 of 5 mm).
By providing a turbulent flow field, from the exhaust gas to the heat storage body 30,
In addition, heat transfer from the heat storage body 30 to the supply air is improved.

【0014】図5、図6は、切替機構40側の詳細を示
している。蓄熱体30および隔壁31は静止部材であ
り、切替機構40のうち少なくとも一部の部材は可動部
材である。たとえば図5の例では仕切壁41、ディスク
44は可動部材である。また、図7の例では、回転ディ
スク44は可動部材であり、回転ディスク44に摺動接
触し穴47を有する固定ディスク46は静止部材であ
る。切替機構40のうちの可動部材は、駆動手段(たと
えば、モータ、シリンダ等)45によって回転駆動され
る。蓄熱体30はたとえば隔壁31により複数の部分に
分離されている。隔壁31は、図6に示すように放射状
に延びて、蓄熱体30を周方向に複数(2以上、図6の
実施例では4)に分割している。これに対し、切替機構
40の仕切壁41は、周方向に延びていて、内周面の一
方に給気通路2、他方に排気通路3を形成する。ディス
ク44のうち、仕切壁41の内外周の一方に給気通気用
開口部42があけられており、他方に排気通気用開口部
43があけられている。給気通気用開口部42は給気通
路2側に設けられ、排気通気用開口部43は排気通路3
側に設けられる。ディスク44はばね51で仕切壁41
の端面に押しつけられている(図11参照)。ディスク
44が回転されて給、排気通気開口部42、43が蓄熱
体30の隔壁31を通過したときに、蓄熱体30の分割
された部分の給、排気の流れが切替わる。
5 and 6 show details of the switching mechanism 40 side. The heat storage body 30 and the partition wall 31 are stationary members, and at least a part of the switching mechanism 40 is a movable member. For example, in the example of FIG. 5, the partition wall 41 and the disk 44 are movable members. Further, in the example of FIG. 7, the rotary disk 44 is a movable member, and the fixed disk 46 that is in sliding contact with the rotary disk 44 and has the hole 47 is a stationary member. A movable member of the switching mechanism 40 is rotationally driven by a driving unit (for example, a motor, a cylinder, etc.) 45. The heat storage body 30 is separated into a plurality of parts by a partition wall 31, for example. The partition wall 31 extends radially as shown in FIG. 6, and divides the heat storage body 30 into a plurality of (2 or more, 4 in the embodiment of FIG. 6) circumferentially. On the other hand, the partition wall 41 of the switching mechanism 40 extends in the circumferential direction, and forms the air supply passage 2 on one of the inner peripheral surfaces and the exhaust passage 3 on the other. Of the disc 44, an air supply ventilation opening 42 is formed in one of the inner and outer circumferences of the partition wall 41, and an exhaust air ventilation opening 43 is formed in the other. The air supply ventilation opening 42 is provided on the air supply passage 2 side, and the exhaust air ventilation opening 43 is provided on the exhaust passage 3 side.
Provided on the side. The disk 44 is a spring 51 and a partition wall 41.
Is pressed against the end surface of the (see FIG. 11). When the disk 44 is rotated and the air supply / exhaust ventilation openings 42, 43 pass through the partition wall 31 of the heat storage body 30, the flow of supply / exhaust of the divided portion of the heat storage body 30 is switched.

【0015】複数に分割された蓄熱体部分のうち排気通
気用開口部43でカバーされる部分の容積は給気通気用
開口部42でカバーされる部分の容積以上となるように
給、排気通気用開口部42、43の個数、形状が設定さ
れている。たとえば、蓄熱体30が隔壁31によって4
個に分割された場合、排気通気用開口部43でカバーさ
れるのは3個または2個で、給気通気用開口部42でカ
バーされるのは1個または2個である。排気容積を大き
くすることによって排気圧損が減少し、したがって、全
圧損も小となって、ブロワ容量も小にできる。また、排
気流速も低減するため、蓄熱体30が蓄熱しやすくな
り、熱回収率が向上する。また、駆動手段45がモータ
からなる場合、モータが排気の熱の影響を受けないよう
にするために、仕切壁41より給気通路2側に設置され
ている。また、複数に分離された蓄熱体部分には、それ
ぞれに対して、下流側にバーナタイル22の通気孔26
が設けられている。この通気孔26のうち、排気通気用
開口部43でカバーされる通気孔26の通路断面積の和
が給気通気用開口部42でカバーされる通気孔26の通
路断面積の和以上となるように、給、排気通気用開口部
42、43の個数、形状が設定されている。たとえば、
図4〜図6の例では、排気通気用開口部43でカバーさ
れる通気孔は3個または2個で、給気通気用開口部42
でカバーされる通気孔は1個または2個である。
In the heat storage portion divided into a plurality of parts, the volume of the portion covered by the exhaust ventilation opening 43 is equal to or larger than the volume of the portion covered by the supply ventilation opening 42. The number and shape of the openings 42, 43 for use are set. For example, the heat storage body 30 is divided into four by the partition wall 31.
When divided into three pieces, three or two are covered by the exhaust ventilation opening 43, and one or two are covered by the supply ventilation opening 42. By increasing the exhaust volume, the exhaust pressure loss is reduced, and therefore the total pressure loss is also reduced and the blower capacity can be reduced. Further, since the exhaust gas flow velocity is also reduced, the heat storage body 30 can easily store heat, and the heat recovery rate is improved. Further, when the driving means 45 is composed of a motor, it is installed closer to the air supply passage 2 than the partition wall 41 in order to prevent the motor from being affected by the heat of the exhaust gas. In addition, in the heat storage part separated into a plurality, the ventilation holes 26 of the burner tile 22 are provided on the downstream side of each of the heat storage parts.
Is provided. Of the ventilation holes 26, the sum of the passage sectional areas of the ventilation holes 26 covered by the exhaust ventilation opening 43 is equal to or more than the sum of the passage sectional areas of the ventilation holes 26 covered by the air supply ventilation opening 42. As described above, the numbers and shapes of the supply and exhaust ventilation openings 42 and 43 are set. For example,
In the example of FIGS. 4 to 6, the number of ventilation holes covered by the exhaust ventilation opening 43 is three or two, and the supply ventilation opening 42 is 42.
There are one or two vent holes covered by.

【0016】つぎに、上記共通構成によって実施される
工業用炉および蓄熱燃焼用バーナの燃焼方法を説明す
る。本発明実施例の工業用炉および蓄熱燃焼用バーナの
燃焼方法は、給排気面23に形成された給排が切替えら
れる複数の通気孔26のうち給気孔として働らいている
通気孔から給気を炉内に供給し、給気が前記給排気面2
3から前方に突出する突出部24の側面に沿って突出部
24の先端に流れる間に炉内排ガスを給気の流れに巻込
んで炉内排ガスの一部を炉内に循環させ、給気と給気に
巻込んだ炉内排ガスの一部との流れが突出部24の先端
まで流れてきたときに突出部24の内側に形成した燃料
開放面25から開放される燃料の流れと混合して突出部
24の前方に流し、炉5の奥の方向に長く延びた燃料領
域を形成しつつ燃料を燃焼させる、工程からなる。ま
た、本発明実施例の工業用炉および蓄熱燃焼用バーナの
燃焼方法は、炉内で燃焼した排ガスを給排が切替えられ
る複数の通気孔26のうち排気孔として働らいている通
気孔を通して炉外に排出する工程をさらに有し、この排
出工程では燃料開放面25から炉内に開放される燃料の
通気孔26への短絡が燃料開放面25の先端が給排気面
23より突出部24の長さだけ隔たっていることにより
抑制される。
Next, the combustion method of the industrial furnace and the burner for heat storage combustion, which is implemented by the above-described common structure, will be described. In the combustion method of the industrial furnace and the burner for heat storage combustion of the embodiment of the present invention, the air is supplied from the vent hole which is formed in the air supply / exhaust surface 23 and which is switched between the supply and discharge, and which functions as the air supply hole. Is supplied to the furnace, and the supply air is the supply / exhaust surface 2
3, the furnace exhaust gas is entrained in the flow of supply air while flowing to the tip of the projection 24 along the side surface of the projection 24 protruding forward, and a part of the furnace exhaust gas is circulated in the furnace to supply air. And a part of the in-furnace exhaust gas entrained in the supply air mixes with the flow of fuel released from the fuel release surface 25 formed inside the protrusion 24 when the flow reaches the tip of the protrusion 24. The fuel is burned while forming a fuel region that extends in the depth direction of the furnace 5 by flowing it forward of the protrusion 24. Further, the combustion method of the industrial furnace and the burner for heat storage combustion of the embodiment of the present invention is such that the exhaust gas burned in the furnace is ventilated through the vent holes 26 which serve as exhaust holes among the plural vent holes 26 which can be switched between supply and discharge. In the discharging step, a short circuit from the fuel opening surface 25 to the vent hole 26 of the fuel released into the furnace is caused in the discharging step. It is suppressed by being separated by the length.

【0017】つぎに、上記共通構成による作用を図1〜
図6および図21〜図23を参照して説明する。給排気
面23から突出部24が突出され、その内側に燃料開放
面25が形成されているため、燃料開放面25と、通気
孔26のうち排気孔として働いている通気孔とが離れ、
燃料開放面25から出た燃料と一次空気との混合物の流
れ28Bが排気孔に流れる排気の流れ28Cに巻き込ま
れにくくなる。排気流れ28Cは排気孔近辺で排気孔に
向かってまわりから集まり、突出部先端では排気流れは
強くない。燃料が排気に巻き込まれると、燃料はほとん
ど燃焼せずに燃料開放面25から排気孔に短絡して流
れ、しかも排気中の酸素量が少ないため燃料は不完全燃
焼となり、COを多量に生成するが、本発明実施例では
燃料の排気への巻き込みが抑えられるので、COは大幅
に少なくなる。図22は本発明の工業用炉、および蓄熱
燃焼用バーナの100,000Kcal/h燃焼テスト
結果を示している。図22に示す如く、CO排出量は極
めて少ない。
Next, the operation of the above common structure will be described with reference to FIGS.
This will be described with reference to FIGS. 6 and 21 to 23. Since the projecting portion 24 is projected from the air supply / exhaust surface 23 and the fuel open surface 25 is formed inside the projecting portion 24, the fuel open surface 25 and the vent hole of the vent hole 26 which functions as an exhaust hole are separated,
The flow 28B of the mixture of the fuel and the primary air that has exited from the fuel opening surface 25 is less likely to be entrained in the exhaust flow 28C that flows through the exhaust holes. The exhaust flow 28C gathers from the surroundings toward the exhaust hole near the exhaust hole, and the exhaust flow is not strong at the tip of the protruding portion. When the fuel is entrained in the exhaust gas, the fuel hardly burns and flows from the fuel open surface 25 to the exhaust hole by short-circuiting. Further, the amount of oxygen in the exhaust gas is small, so the fuel is incompletely burned and a large amount of CO is generated. However, in the embodiment of the present invention, since the entrainment of fuel into the exhaust gas is suppressed, CO is significantly reduced. FIG. 22 shows 100,000 Kcal / h combustion test results of the industrial furnace and the burner for heat storage combustion of the present invention. As shown in FIG. 22, CO emission is extremely small.

【0018】また、燃料開放面25が給排気面23から
離れていること、および通気孔26のうち給気孔として
働いている通気孔の断面積の和が排気孔として働いてい
る通気孔の断面積の和以下であるため給気流速が高くさ
れていること、等により、給気が突出部24の側面に沿
って流れる時に炉内排気ガスが給気に巻込まれて強循環
し(図21)、燃焼が緩慢となる。その結果、NOx生
成量が図22に示すように約20ppmに減少する。従
来の蓄熱燃焼用バーナ1´を備えた工業用炉5´(図2
3)では約200ppmのNOxが生成し、通常のバー
ナの炉では約2000ppmのNOxが生成するので、
それらに比べて、NOx生成量が大幅に減少する。
Further, the fuel release surface 25 is separated from the air supply / exhaust surface 23, and the sum of the cross-sectional areas of the vent holes which function as the air supply holes among the air holes 26 indicates the disconnection of the air holes which function as the exhaust holes. Due to the fact that the supply air velocity is high because it is less than the sum of the areas, when the supply air flows along the side surface of the protrusion 24, the exhaust gas in the furnace is entrained in the supply air and strongly circulated (see FIG. 21). ), Combustion becomes slow. As a result, the NOx generation amount is reduced to about 20 ppm as shown in FIG. An industrial furnace 5'provided with a conventional heat storage combustion burner 1 '(Fig. 2
In 3), about 200 ppm NOx is produced, and in a normal burner furnace, about 2000 ppm NOx is produced.
Compared with them, the amount of NOx produced is greatly reduced.

【0019】また、燃焼が緩慢になることによって、燃
焼領域Rが従来炉の燃焼領域R´に比べて炉の奥の方に
向って延び、燃焼領域の温度Tが図12に示すように平
均化する。すなわち、温度差ΔTが従来の炉の温度差Δ
T´(図23)に比べて少なくなる。そのため、最高温
度を炉壁許容温度Ta以下にするという条件下で、燃焼
領域Rの温度Tを従来のT´に比べて全体的に上げるこ
とができる。その結果、燃焼領域Rのほぼ全域にわたっ
て平均熱流束を上げることができ、高効率伝熱が可能に
なり、同じ伝熱を達成する場合、炉体のコンパクト化、
スペース効率向上、イニシャルコスト低減がはかられ
る。また、燃焼領域温度Tの平均化によって、炉壁が局
所的に高温になることが回避され、炉の長寿命化、メン
テナンスコストの低減がはかられる。さらに、燃焼の緩
慢によって、燃焼騒音も小さくなる。
Further, as the combustion becomes slower, the combustion region R extends toward the back of the furnace as compared with the combustion region R'of the conventional furnace, and the temperature T of the combustion region is averaged as shown in FIG. Turn into. That is, the temperature difference ΔT is the temperature difference Δ of the conventional furnace.
It is smaller than T ′ (FIG. 23). Therefore, under the condition that the maximum temperature is equal to or lower than the furnace wall allowable temperature Ta, the temperature T in the combustion region R can be raised as a whole as compared with the conventional temperature T '. As a result, the average heat flux can be increased over almost the entire combustion region R, highly efficient heat transfer is possible, and when the same heat transfer is achieved, the furnace body is made compact,
Space efficiency can be improved and initial cost can be reduced. Further, by averaging the combustion region temperature T, it is possible to avoid locally raising the temperature of the furnace wall, thereby extending the life of the furnace and reducing the maintenance cost. Further, the combustion noise is reduced due to the slow combustion.

【0020】また、燃料開放面25が突出部先端に向か
って末拡がり状とされているため、燃料と一次空気とが
燃料開放面25の内側を流れている間は、排気流れ28
Cから排気孔側に誘引されても燃料開放面25が邪魔に
なって排気流れ28Cへの巻き込みが抑えられる。ま
た、燃料開放面25が末拡がり状となっているため、燃
料の給気流れ28Aへの随伴性が高まり、給気と混合さ
れて完全燃焼されやすくなる。これによって、さらにC
Oの生成が少なくなる。突出部24と、燃料開放面25
の末拡がり構造によって、従来構造では排気中に約30
00ppmあったCOが、約200ppm以下に低減さ
れる。
Further, since the fuel opening surface 25 is formed in a divergent shape toward the tip of the protruding portion, while the fuel and the primary air are flowing inside the fuel opening surface 25, the exhaust flow 28
Even if the fuel is attracted from C to the exhaust hole side, the fuel release surface 25 becomes an obstacle and the entrainment in the exhaust flow 28C is suppressed. Further, since the fuel release surface 25 has a flared shape, the fuel is more likely to accompany the supply air flow 28A, and is easily mixed with the supply air to be completely combusted. By this, C
Less O is produced. Projection 24 and fuel release surface 25
Due to the structure that spreads toward the end, about 30
CO, which was 00 ppm, is reduced to about 200 ppm or less.

【0021】また、突出部24の側部にガイド溝27が
形成されているため、通気孔26から流れ出た給気は、
少なくとも一部がガイド溝27に入る。ガイド溝27に
入った給気は、ガイド溝27内を直線状に流れて突出部
先端から前方に向かって指向性をもって流出する。この
流れはガイド溝27を流れている間はほとんど拡散がな
いので流速のおとろえない、流速大の流れである。この
流れの、燃料を誘引して随伴させる力は大きい。この随
伴力は燃料が排気に巻き込まれるのをさらに抑制し、上
記のCOの約200ppm以下を、さらに約100pp
m以下に低減する。燃料が、指向性大かつ流速大の給気
と混合しても、燃料と給気との混合は瞬時には促進され
ず、給気の流れが下流に移るとともに徐々に混合してい
って、緩慢に燃焼し、その過程で完全燃焼していく。ま
た、ガイド溝27を流れる流れは外側から排ガスを巻き
込むため酸素不足によっても燃焼が緩慢となる。この緩
慢燃焼によってもN2 とO2 との結合も緩慢になり、N
X の生成も大幅に低減される。さらに、流速大、緩慢
燃焼によって、さらに火焔が炉中、奥深いところ迄延
び、炉内が全体にわたって加熱されるようになり、より
均一加熱が可能になるとともに、炉の奥に置かれた被加
熱物をも十分に加熱できるようになる。
Further, since the guide groove 27 is formed on the side portion of the projecting portion 24, the supply air flowing out from the ventilation hole 26 is
At least a part thereof enters the guide groove 27. The supply air that has entered the guide groove 27 flows linearly in the guide groove 27 and flows out from the tip of the protruding portion forward with directivity. This flow is a flow with a large flow velocity, because the flow velocity does not remain constant because there is almost no diffusion while flowing through the guide groove 27. The force of this flow to attract and accompany the fuel is great. This associated force further suppresses the inclusion of fuel in the exhaust gas, and reduces the above-mentioned CO of about 200 ppm or less to about 100 pp.
m or less. Even if the fuel is mixed with the charge air having a large directivity and a large flow velocity, the mixing of the fuel and the charge air is not instantaneously promoted, and the flow of the charge air is gradually mixed as the flow of the charge air moves downstream. It burns slowly and in the process burns completely. Further, since the flow of the guide groove 27 entrains the exhaust gas from the outside, the combustion becomes slow due to lack of oxygen. This slow combustion also slows the bond between N 2 and O 2 ,
Generation of O X is also greatly reduced. Furthermore, due to the high flow velocity and slow combustion, the flame further extends deep inside the furnace and the inside of the furnace is heated over the whole area, which enables more uniform heating and the heating of the inside of the furnace. You will be able to heat things sufficiently.

【0022】また、通気孔26が給排気面23に近づく
につれて絞られているので、給気が通気孔26を通ると
きに給気の流速が増大される。これによって、上記の給
気流速大による作用がさらに強められる。また、通気孔
26の中心が突出部軸芯側に寄せられているので、給気
が通気孔26から出るときには、かなりの部分がガイド
溝27の中に入っていく。そして、上記の指向性のある
給気流れがより強く生成される。また、反応性をさらに
高めるために、必要に応じて、通気孔26の軸芯をやや
(10〜20度)内向き(給気が突出部軸芯に近づく方
向)にしてもよい。
Further, since the ventilation hole 26 is narrowed as it approaches the air supply / exhaust surface 23, the flow velocity of the supply air is increased when the supply air passes through the ventilation hole 26. As a result, the action due to the high supply air flow velocity is further strengthened. Further, since the center of the vent hole 26 is located closer to the axis of the protruding portion, when the air supply exits the vent hole 26, a considerable part of the air enters the guide groove 27. Then, the above-mentioned directional air supply flow is generated more strongly. Further, in order to further improve the reactivity, the axis of the vent hole 26 may be slightly inward (10 to 20 degrees) inward (the direction in which the air supply approaches the axis of the protrusion).

【0023】つぎに、本発明の工業用炉および蓄熱燃焼
用バーナの各実施例に特有な構成、作用について説明す
る。本発明の第1実施例では、バーナタイル22は静止
部材であり、枠体10または炉体5に固定されている。
このため、通気孔26は、切替機構40のディスク44
の回転による給排の切替に従って、同じ通気孔26があ
る時は給気孔として働き、ある時は排気孔として働く。
その他の構成、作用は、共通構成、共通作用で説明した
通りである。
Next, the construction and action peculiar to each embodiment of the industrial furnace and the burner for heat storage combustion of the present invention will be explained. In the first embodiment of the present invention, the burner tile 22 is a stationary member and is fixed to the frame body 10 or the furnace body 5.
Therefore, the vent hole 26 is formed by the disc 44 of the switching mechanism 40.
When the same vent hole 26 is provided, it functions as an air supply hole, and when it is the same, it functions as an exhaust hole according to the switching of supply and discharge by rotation of.
Other configurations and actions are as described in the common configuration and actions.

【0024】本発明の第2実施例では、図7、図8に示
すように、一次空気パイプ21と燃料噴射ノズル20は
一体回転可能に互いに電気絶縁材20bで連結されてい
る。そして、一次空気パイプ21は、回転ディスク44
と連結されており、ディスク44の回転に合わせて、燃
料噴射ノズル20も同期して回転するようになってい
る。また、パイロット燃料吐出口20aは給気孔として
働く通気孔26の方向に向けられている。燃料噴射ノズ
ル20がディスク44と同期して回転することによっ
て、通気孔26のうち給気孔として働く給気孔とパイロ
ット燃料吐出口20aの方向が常に一致し、着火火炎に
燃焼空気が常に供給され、着火時の燃焼が安定する。
In the second embodiment of the present invention, as shown in FIGS. 7 and 8, the primary air pipe 21 and the fuel injection nozzle 20 are integrally rotatably connected to each other by an electric insulating material 20b. Then, the primary air pipe 21 is connected to the rotary disc 44.
The fuel injection nozzle 20 also rotates in synchronization with the rotation of the disk 44. Further, the pilot fuel discharge port 20a is directed toward the vent hole 26 which functions as an air supply hole. By rotating the fuel injection nozzle 20 in synchronism with the disk 44, the direction of the air supply hole in the air hole 26, which functions as an air supply hole, and the direction of the pilot fuel discharge port 20a always match, and combustion air is constantly supplied to the ignition flame. Combustion at ignition is stable.

【0025】本発明の第3実施例では、図9に示すよう
に、給排気面23に、複数の通気孔26を外周側から囲
みかつ突出部24と同芯状に軸方向に突出部24の先端
より前方位置まで延びる、直円筒状の副燃焼筒60が設
けられている。この副燃焼筒60は金属製で、枠体10
に固定される。燃焼ガスは副燃焼筒60の先端から出て
いき、排ガスは副燃焼筒60の先端から入る。燃焼空気
の温度が低い時は給気孔での空気の速度は遅いので、給
気孔を出た時に燃焼空気が散り(拡散)しやすいが、副
燃焼筒60を設けることによって、空気の散りを抑制す
ることができ、空気不足が生じにくく、燃焼が安定す
る。その結果、COがさらに減少し、約10ppm以下
にすることができる。また、NOxは約30ppm以下
になる。
In the third embodiment of the present invention, as shown in FIG. 9, the air supply / exhaust surface 23 surrounds a plurality of ventilation holes 26 from the outer peripheral side and is coaxial with the projection 24 in the axial direction. A sub-combustion cylinder 60 having a right cylindrical shape is provided extending from the tip to the front position. The auxiliary combustion cylinder 60 is made of metal and has a frame 10
Fixed to. The combustion gas goes out from the tip of the auxiliary combustion cylinder 60, and the exhaust gas enters from the tip of the auxiliary combustion cylinder 60. When the temperature of the combustion air is low, the velocity of the air in the air supply hole is slow, so the combustion air easily disperses (diffuses) when it exits the air supply hole. However, by providing the auxiliary combustion cylinder 60, the air scattering is suppressed. Therefore, air shortage is unlikely to occur, and combustion is stable. As a result, CO can be further reduced to about 10 ppm or less. Moreover, NOx becomes about 30 ppm or less.

【0026】本発明の第4実施例では、図10に示すよ
うに、給排気面23に、複数の通気孔26を外周側から
囲みかつ突出部24と同芯状に軸方向に突出部24の先
端より前方位置まで延びる、先端が絞られた筒状の副燃
焼筒61が設けられている。この副燃焼筒61は金属製
で、枠体10に固定される。燃焼ガスは副燃焼筒61の
先端から出ていき、排ガスは副燃焼筒61の後端から入
る。副燃焼筒61の後端には、ガイド溝27に対応させ
て、排ガス戻り穴62がガイド溝27の数だけ設けられ
ている。副燃焼筒61を設けることによって、空気の散
りを抑制することができる。副燃焼筒61の先端が絞ら
れているので、第3実施例にくらべて、さらに空気の広
がりを抑制できる。その結果、空気不足が生じにくく、
燃焼が安定し、COがさらに減少する(10ppm以
下)。副燃焼筒61の先端が絞られている分、副燃焼筒
61の先端から副燃焼筒61内に入る排ガスは少ない
が、排ガスは排ガス戻り穴62からも副燃焼筒61内に
入るので、圧損は増えない。高温時には排ガス戻り穴6
2から副燃焼筒61内に入る排ガス量も増えるので、燃
焼も緩慢になり、NOxは増えない。
In the fourth embodiment of the present invention, as shown in FIG. 10, the air supply / exhaust surface 23 surrounds a plurality of ventilation holes 26 from the outer peripheral side and is coaxial with the projection 24 in the axial direction. A cylindrical sub-combustion cylinder 61 having a narrowed tip is provided extending from the tip to the front position. The auxiliary combustion cylinder 61 is made of metal and is fixed to the frame body 10. The combustion gas flows out from the tip of the auxiliary combustion cylinder 61, and the exhaust gas enters from the rear end of the auxiliary combustion cylinder 61. Exhaust gas return holes 62 corresponding to the guide grooves 27 are provided at the rear end of the auxiliary combustion cylinder 61 in the same number as the guide grooves 27. By providing the auxiliary combustion cylinder 61, it is possible to suppress air scattering. Since the tip of the auxiliary combustion cylinder 61 is narrowed, it is possible to further suppress the spread of air as compared with the third embodiment. As a result, air shortage is less likely to occur,
Combustion is stabilized and CO is further reduced (10 ppm or less). The amount of exhaust gas that enters the auxiliary combustion cylinder 61 from the end of the auxiliary combustion cylinder 61 is small because the tip of the auxiliary combustion cylinder 61 is narrowed, but since the exhaust gas also enters the auxiliary combustion cylinder 61 through the exhaust gas return hole 62, there is a pressure loss. Does not increase. Exhaust gas return hole 6 at high temperature
Since the amount of exhaust gas entering the sub-combustion cylinder 61 from 2 also increases, combustion becomes slower and NOx does not increase.

【0027】本発明の第5実施例では、図11に示すよ
うに、ガイド溝27を有する突出部24を外周側から囲
みかつ突出部24と同芯状に軸方向に突出部24の先端
より前方位置まで延びる、筒状の副燃焼筒63が、突出
部24と一体に設けられている。副燃焼筒63は第3実
施例の副燃焼筒60よりも短い。副燃焼筒63はバーナ
タイル22と同じ材料(セラミックス)から構成されて
いる。副燃焼筒63の後端は給排気面23からエアノズ
ルセパレータ29の厚さだけ離れている。副燃焼筒63
を設けたので、第3実施例と同じように、燃焼空気の散
り(広がり)が抑制される。その結果、空気不足が生じ
にくく、燃焼が安定し、COがさらに減少する(10p
pm以下)。また、副燃焼筒63の後端と給排気面23
との間の空間は、第4実施例の排ガス戻り穴62と同じ
ように機能する。
In the fifth embodiment of the present invention, as shown in FIG. 11, the projection 24 having the guide groove 27 is surrounded from the outer peripheral side and is coaxial with the projection 24 in the axial direction from the tip of the projection 24. A cylindrical auxiliary combustion cylinder 63 extending to the front position is provided integrally with the protrusion 24. The auxiliary combustion cylinder 63 is shorter than the auxiliary combustion cylinder 60 of the third embodiment. The sub combustion cylinder 63 is made of the same material (ceramics) as the burner tile 22. The rear end of the auxiliary combustion cylinder 63 is separated from the air supply / exhaust surface 23 by the thickness of the air nozzle separator 29. Secondary combustion cylinder 63
As described above, the dispersion (spreading) of the combustion air is suppressed as in the third embodiment. As a result, air shortage is less likely to occur, combustion is stabilized, and CO is further reduced (10 p
pm or less). Further, the rear end of the auxiliary combustion cylinder 63 and the air supply / exhaust surface 23
The space between and functions similarly to the exhaust gas return hole 62 of the fourth embodiment.

【0028】本発明の第6実施例では、図12、図13
に示すように、バーナタイル22の通気孔26の下流側
端部の内面と突出部24の外面との間には、バーナタイ
ル半径方向に隔たりAが設けられている。また、突出部
24の外面から半径方向外方に向ってエアノズルセパレ
ータ29が延びている。エアノズルセパレータ29は各
通気孔26を通る給気と排気の流れを分離している。隔
たりAを設けることにより、通気孔26から出た給気が
突出部26の側面から離れる方向に散りにくくなる。こ
れは、隔たりAにある空気が給気に巻き込まれるととも
に周囲から隔たりAの領域への空気の供給が自由ではな
いため、給気流れの周囲のスペースのうち突出部24お
よびエアノズルセパレータ29側(A領域)がそれと反
対側に比べて圧力が相対的に低くなり、給気流が給気流
れとほぼ直角方向にA領域に向って押されるからである
と考えられる。この給気の散り抑制によって、副燃焼筒
61、63を設けなくても済むようになる。また、給気
散り抑制によって、火炎が炉の奥にさらに深く延びるよ
うになる。
In the sixth embodiment of the present invention, FIGS.
As shown in FIG. 4, a space A is provided in the burner tile radial direction between the inner surface of the downstream end of the vent hole 26 of the burner tile 22 and the outer surface of the protrusion 24. An air nozzle separator 29 extends radially outward from the outer surface of the protrusion 24. The air nozzle separator 29 separates the flow of the air supply and the flow of the exhaust air that pass through each vent hole 26. By providing the gap A, it is difficult for the air supplied from the vent hole 26 to be scattered in the direction away from the side surface of the protruding portion 26. This is because the air in the gap A is entrained in the air supply and the air is not freely supplied to the region of the distance A from the surroundings, so that the protrusion 24 and the air nozzle separator 29 side (in the space around the air supply flow) ( It is considered that this is because the pressure in the (A region) becomes relatively lower than that on the opposite side, and the air supply flow is pushed toward the A region in a direction substantially perpendicular to the air supply flow. By suppressing the dispersion of the supply air, it becomes unnecessary to provide the auxiliary combustion cylinders 61 and 63. Further, the suppression of air supply dispersion allows the flame to extend further deep into the furnace.

【0029】本発明の第7実施例では、図14に示すよ
うに、バーナタイル22の通気孔26は、給気流れ方向
下流側に位置する第1の部分26Dと、第1の部分26
Dに上流側からつらなる第2の部分26Uと、を有す
る。第1の部分26Dは、その軸芯の下流側の延長が突
出部24の軸芯に近づく(燃料流に近づく)ように、第
1の角度θD (θD は2〜10度)だけ突出部24の軸
芯と平行方向から傾けられている。また、第2の部分2
6Uの内面のうちバーナタイル軸芯に近い側の壁面は第
2の角度θU (ただし、θU >θD )だけ、第1の部分
26DのθD の傾きと反対側に傾けられている。第1部
分26Dの傾きによって、給気が燃料流と衝突する方向
に傾けられ、給気の散りが抑制されるので、副燃焼筒6
1、63は設けなくても済む。また、低温時には、通気
孔26を出た直後の給気は、第1の部分26Dによって
流れの方向を斜め内側に向けられ燃料流と衝突する。そ
の結果、燃料と給気との混合が強まり、火炎および燃焼
が安定する。高温時には、蓄熱体から給気に与えられる
熱量が大となり、給気温度が上昇して給気ボリュームが
増大して給気流速が増大し、第2の部分26Uの、給気
流れを外側に向ける作用が強まって、第1の部分26D
による給気流れを内側に向ける作用を相殺する。その結
果、給気流は全体として燃料流にほぼ平行な流れとな
り、燃料と給気との混合が抑制されて、NOx生成が抑
制される。
In the seventh embodiment of the present invention, as shown in FIG. 14, the vent hole 26 of the burner tile 22 has a first portion 26D and a first portion 26 which are located on the downstream side in the supply air flow direction.
D has a second portion 26U extending from the upstream side. The first portion 26D protrudes by a first angle θ DD is 2 to 10 degrees) so that the extension on the downstream side of the axis thereof approaches the axis of the protrusion 24 (approaches the fuel flow). It is inclined from the direction parallel to the axis of the portion 24. Also, the second part 2
Of the inner surface of 6U, the wall surface on the side closer to the burner tile axis is inclined by a second angle θ U (where θ U > θ D ) to the opposite side of the inclination of θ D of the first portion 26D. . Due to the inclination of the first portion 26D, the supply air is inclined in the direction in which it collides with the fuel flow, and the dispersion of the supply air is suppressed.
It is not necessary to provide 1 and 63. Further, when the temperature is low, the supply air immediately after exiting the vent hole 26 has its flow direction directed obliquely inward by the first portion 26D and collides with the fuel flow. As a result, the mixing of fuel and charge air is strengthened, and flame and combustion are stabilized. When the temperature is high, the amount of heat supplied from the heat storage body to the supply air becomes large, the supply air temperature rises, the supply air volume increases, and the supply air flow velocity increases, so that the supply air flow in the second portion 26U is moved to the outside. The directing action is strengthened, and the first portion 26D
The effect of directing the air supply flow inward is canceled out. As a result, the supply airflow as a whole becomes substantially parallel to the fuel flow, the mixing of the fuel and the supply air is suppressed, and NOx generation is suppressed.

【0030】本発明の第8実施例では、図15〜図17
に示すように、バーナタイル22の通気孔26は、円筒
を斜めの平面26Fでカットした形状のノズルからな
る。斜めの平面26Fは、通気孔26の内面のうちバー
ナタイル軸芯から遠い部分に形成されている。斜めの平
面26Fの傾きの方向は、斜めの平面26Fの下流側の
延長が突出部24の軸芯の延長に近づく方向である。斜
めの平面26Fを設けたことにより、通気孔26を出た
直後の給気の流れ方向が斜め内側に向けられて給気の散
りが抑制されるので、副燃焼筒61、63は設けなくて
済む。また、低温時には、給気はその流れ方向を平面2
6Fによって斜め内側に向けられるので、通気孔26を
出た給気は燃料流と衝突し、燃料と給気の混合が強ま
り、火炎、燃焼が安定する。高温時には、蓄熱体から給
気に与えられる熱量が大になり給気温度が上昇して給気
流速が増大し、図17に示すように、平面26Fによる
流れの散り成分Sが増すため、リーンバーンが可能にな
り、低NOx化が達成される。
In the eighth embodiment of the present invention, FIGS.
As shown in FIG. 5, the vent hole 26 of the burner tile 22 is formed of a nozzle having a shape in which a cylinder is cut along an oblique plane 26F. The diagonal flat surface 26F is formed on a portion of the inner surface of the vent hole 26, which is far from the burner tile axis. The direction of inclination of the oblique plane 26F is such that the downstream extension of the oblique plane 26F approaches the extension of the axial center of the protrusion 24. Since the oblique flat surface 26F is provided, the flow direction of the supply air immediately after exiting the vent hole 26 is directed obliquely inward and the dispersion of the supply air is suppressed. Therefore, the auxiliary combustion cylinders 61 and 63 are not provided. I'm done. Also, at low temperatures, the supply air flows in a plane 2 direction.
Since the air is directed diagonally inward by the 6F, the charge air exiting the vent hole 26 collides with the fuel flow, the mixture of the fuel and the charge air is strengthened, and the flame and combustion are stabilized. When the temperature is high, the amount of heat supplied to the supply air from the heat storage body becomes large, the supply air temperature rises and the supply air flow velocity increases, and as shown in FIG. Burning is possible and NOx reduction is achieved.

【0031】本発明の第9実施例では、図18〜図20
に示すように、バーナタイル22には、通気孔26と燃
料吐出口との間に、給気の一部を突出部24の先端面の
前方に供給する副通気孔26Sが設けられている。副通
気孔26Sの数は任意である。副通気孔26Sの上流端
は通気孔26の内面に開口し、副通気孔26Sの下流端
は突出部24の先端面に開口している。通気孔26の内
面のうち副通気孔26Sの上流開口端より上流側部分の
接線は副通気孔26Sの上流開口端より下流側部分より
も通気孔26の内方にせりだしている。通気孔26と燃
料吐出口の間の部分は空気不足領域であるが、そこに副
通気孔26Sを通して給気の一部を導くことにより、火
炎が安定する。図20に示すように、燃料ノズルの先端
近傍にパイロット火炎領域Pが存在し、メイン燃料と通
気孔26からの給気との混合領域に二次火炎(メイン火
炎)領域Mが存在するが、パイロット火炎領域Pと二次
火炎(メイン火炎)領域Mとの間の領域に副通気孔26
Sを通して給気の一部を供給することによって火炎のつ
ながりが改善され、火炎が安定する。低温時には、給気
の流速が低いので、副通気孔26Sの上流端の静圧は高
くなり、副通気孔26Sを通して給気の一部が流れ、上
記の火炎の安定化が得られる。高温時には、蓄熱体から
給気に与えられる熱量が大になって給気流速が増し、給
気流速が高くなるので、副通気孔26Sの上流開口端の
静圧が低くなり、副通気孔26Sを通しての給気の流れ
が少なくなり、NOx増大を防止できる。
In the ninth embodiment of the present invention, FIGS.
As shown in FIG. 7, the burner tile 22 is provided with a sub-ventilation hole 26S between the vent hole 26 and the fuel discharge port for supplying a part of the supply air to the front of the tip surface of the protrusion 24. The number of the sub vent holes 26S is arbitrary. The upstream end of the sub-vent hole 26S is opened to the inner surface of the vent hole 26, and the downstream end of the sub-vent hole 26S is opened to the tip surface of the protrusion 24. A tangent line of a portion of the inner surface of the vent hole 26 on the upstream side of the upstream opening end of the sub-ventilation hole 26S protrudes inward of the ventilation hole 26 from a portion on the downstream side of the upstream opening end of the sub-ventilation hole 26S. Although a portion between the vent hole 26 and the fuel discharge port is an air-deficient region, by guiding a part of the air supply through the sub-vent hole 26S, the flame is stabilized. As shown in FIG. 20, a pilot flame region P exists near the tip of the fuel nozzle, and a secondary flame (main flame) region M exists in the mixed region of the main fuel and the supply air from the vent hole 26. The sub-ventilation hole 26 is provided in a region between the pilot flame region P and the secondary flame (main flame) region M.
By supplying a part of the supply air through S, the flame connection is improved and the flame is stabilized. When the temperature is low, the flow velocity of the supply air is low, so the static pressure at the upstream end of the sub-ventilation hole 26S becomes high, and a part of the supply air flows through the sub-ventilation hole 26S, so that the stabilization of the flame is obtained. When the temperature is high, the amount of heat supplied to the supply air from the heat storage body is large, the supply air flow velocity is increased, and the supply air flow velocity is increased, so that the static pressure at the upstream opening end of the sub air vent 26S is reduced, and the sub air vent 26S. The flow of supply air through the exhaust gas is reduced, and NOx increase can be prevented.

【0032】[0032]

【発明の効果】請求項1の工業用炉、請求項15の蓄熱
燃焼用バーナ、請求項28、29の工業用炉の燃焼方法
によれば、突出部を設けて燃料開放面の先端と給排気面
とを軸方向に隔てたので、燃料の排気流れへの巻き込
み、排気孔への短絡流れが抑制され、COの生成を大幅
に抑制できる。さらに、高温時には軸方向の突出距離に
よって空気に炉内排気ガスを巻きこんだ後に燃料と出会
う緩慢燃焼となるので、NOxの生成を抑制できる。さ
らに、緩慢燃焼によって燃焼領域を炉の奥に向って延ば
すことができるとともに燃焼領域温度を平均化できる。
その結果、燃焼領域の温度を全体的に上げることがで
き、平均熱流束を増大でき、高効率熱伝達が可能にな
り、同じ伝熱に対して炉体のコンパクト化、スペース効
率向上、イニシャルコスト低減がはかられる。また、燃
焼領域温度の平均化によって、炉壁が局所的に高温にな
ることが回避され、炉体の長寿命化、メンテナンスコス
トの低減がはかられる。また、燃焼の緩慢により、燃焼
騒音も小さくなる。請求項2の工業用炉、請求項16の
蓄熱燃焼用バーナによれば、燃料開放面を末拡がり状と
したので、燃料の給気への随伴性を高めることができる
とともに、燃料の排気への巻き込みをさらに抑制でき
る。請求項3の工業用炉、請求項17の蓄熱燃焼用バー
ナによれば、突出部外周側部にガイド溝を設けたので、
給気の指向性と流速を高めることができ、燃料の給気へ
の随伴性が強まってCOの生成がさらに抑制できるとと
もに、ガイド溝の外側からの排ガスの巻き込み作用とあ
いまって緩慢燃焼となり、NOX の生成も低減できる。
また、火焔も炉奥に延ばすことができる。請求項4の工
業用炉、請求項18の蓄熱燃焼用バーナによれば、バー
ナタイルの給排気面に、通気孔の間の部位に、エアノズ
ルセパレータを設けたので、給気孔から噴出された燃焼
空気が排気孔に流れることを防止でき、燃焼空気の全て
を燃焼に寄与させることができる。請求項5の工業用
炉、請求項19の蓄熱燃焼用バーナによれば、通気孔を
絞ったので、給気の流速を上げることができ、給気流速
大によって得られる効果をさらに強めることができる。
請求項6の工業用炉、請求項20の蓄熱燃焼用バーナに
よれば、燃料噴射ノズルをディスクの回転に合わせて回
転可能としたので、常にパイロット燃料吐出方向と給気
孔の位置を合わすことができ、着火時の燃焼を安定させ
ることができる。請求項7の工業用炉、請求項21の蓄
熱燃焼用バーナによれば、副燃焼筒を設けたので、低温
時の燃焼空気の散りを抑制でき、空気不足を生じさせ
ず、COをさらに低減できる。請求項8の工業用炉、請
求項22の蓄熱燃焼用バーナによれば、副燃焼筒を設け
てその先端部を絞ったので低温時の燃焼空気の散りを抑
制でき、空気不足を生じさせず、COをさらに低減でき
る。請求項9の工業用炉、請求項23の蓄熱燃焼用バー
ナによれば、突出部に副燃焼筒を設けたので、低温時の
燃焼空気の散りを抑制でき、空気不足を生じさせず、C
Oをさらに低減できる。上記(10)の工業用炉、上記
(24)の蓄熱燃焼用バーナでは、通気孔の内面と突出
部の内面との間に隔たりを設けたので、A領域の圧力を
まわりより低くすることができ、通気孔を出た直後の給
気をA領域に向って押すことにより通気孔を出た直後の
給気の散りを抑制することができる。請求項11の工業
用炉、請求項25の蓄熱燃焼用バーナによれば、通気孔
の第1の部分を斜め内側に傾けるとともに、第2の部分
のバーナタイル軸芯に近い側の壁面を第1の部分の傾き
と反対側に傾けたので、低温時には給気が燃料流の方向
を指向し、燃料と給気の混合が強まり、高温時には給気
がのぼ燃料流とほぼ平行流となって、低NOx化がはか
られる。請求項12の工業用炉、請求項26の蓄熱燃焼
用バーナでは、通気孔のバーナでは、通気孔の内面のう
ちバーナタイル軸芯から遠い部分に斜めの平面を設けた
ので、低温時には通気孔を出た直後の給気が燃料流に斜
めに衝突する方向に流れて燃料と給気の混合が強まり、
高温時には上記斜めの平面の作用によって給気の散りが
増大して低NOx化がはかられる。請求項13の工業用
炉、請求項27の蓄熱燃焼用バーナでは、通気孔と燃料
吐出口との間に給気の一部を供給する副通気孔を設けた
ので、低温時にはパイロット火炎領域とメイン火炎領域
とのつながりが改善されて燃焼が安定する。また、高温
時には給気流速が増して副通気孔の上流端の静圧がさが
って副給気孔を通して供給される空気量が低減するの
で、NOx増大が防止できる。請求項14に例示した種
種の工業用炉に本発明は適用され得る。
According to the industrial furnace of claim 1, the burner for heat storage combustion of claim 15, and the method of burning the industrial furnace of claims 28 and 29, the protrusion is provided and the tip of the fuel release surface is supplied. Since the exhaust surface is separated from the exhaust surface in the axial direction, the entrainment of fuel into the exhaust flow and the short-circuit flow to the exhaust hole are suppressed, and the production of CO can be significantly suppressed. Further, when the temperature is high, due to the axial projection distance, the exhaust gas in the furnace is entrained in the air, and then the slow combustion occurs in which the fuel is encountered, so that the generation of NOx can be suppressed. Furthermore, the slow combustion allows the combustion zone to be extended further into the furnace and the combustion zone temperature to be averaged.
As a result, the temperature in the combustion region can be raised overall, the average heat flux can be increased, and high-efficiency heat transfer can be achieved, making the furnace body compact, improving space efficiency, and initial cost for the same heat transfer. Can be reduced. Further, by averaging the combustion region temperature, it is possible to avoid locally raising the temperature of the furnace wall, thereby extending the life of the furnace body and reducing the maintenance cost. Further, the combustion noise is reduced due to the slow combustion. According to the industrial furnace of claim 2 and the heat storage and combustion burner of claim 16, since the fuel release surface has a flared shape, it is possible to enhance the concomitant property of fuel supply to the exhaust air. Can be further suppressed. According to the industrial furnace of claim 3 and the heat storage and combustion burner of claim 17, since the guide groove is provided on the outer peripheral side of the protrusion,
It is possible to increase the directivity and flow velocity of the charge air, enhance the entrainment of the fuel to the charge air, and further suppress the generation of CO, and, in combination with the effect of entraining the exhaust gas from the outside of the guide groove, slow combustion, generation of NO X can be reduced.
The flame can also be extended to the back of the furnace. According to the industrial furnace of claim 4 and the burner for heat storage and combustion of claim 18, since the air nozzle separator is provided on the air supply / exhaust surface of the burner tile between the ventilation holes, the combustion ejected from the air supply holes. Air can be prevented from flowing to the exhaust holes, and all of the combustion air can be contributed to combustion. According to the industrial furnace of claim 5 and the burner for heat storage and combustion of claim 19, since the vent holes are narrowed, the flow rate of the supply air can be increased, and the effect obtained by the large supply air flow rate can be further enhanced. it can.
According to the industrial furnace of Claim 6 and the burner for heat storage combustion of Claim 20, since the fuel injection nozzle can be rotated in accordance with the rotation of the disk, the pilot fuel discharge direction and the position of the air supply hole can always be aligned. It is possible to stabilize combustion at the time of ignition. According to the industrial furnace of claim 7 and the heat storage and combustion burner of claim 21, since the sub-combustion tube is provided, it is possible to suppress the dispersion of combustion air at low temperature, prevent air shortage, and further reduce CO. it can. According to the industrial furnace of claim 8 and the heat storage and combustion burner of claim 22, since the auxiliary combustion cylinder is provided and the tip thereof is squeezed, it is possible to suppress the dispersion of combustion air at low temperature and to prevent air shortage. , CO can be further reduced. According to the industrial furnace of claim 9 and the burner for heat storage and combustion of claim 23, since the sub-combustion cylinder is provided in the protruding portion, it is possible to suppress the dispersion of combustion air at low temperatures and to prevent air shortage, and to reduce C
O can be further reduced. In the industrial furnace of (10) and the burner for heat storage and combustion of (24), since the space is provided between the inner surface of the ventilation hole and the inner surface of the protrusion, the pressure in the area A can be made lower than the surroundings. It is possible to suppress the dispersion of the air supply immediately after leaving the air vent by pushing the air supply immediately after exiting the air vent toward the area A. According to the industrial furnace of claim 11 and the burner for heat storage and combustion of claim 25, the first portion of the ventilation hole is inclined obliquely inward, and the wall surface of the second portion close to the burner tile axis is formed into the first wall portion. Since it is inclined to the side opposite to the inclination of part 1, the charge air is directed in the direction of the fuel flow at low temperature, the mixture of fuel and charge air is strengthened, and the charge air becomes almost parallel to the flow fuel flow at high temperature. As a result, NOx reduction can be achieved. In the industrial furnace according to claim 12 and the burner for heat storage combustion according to claim 26, in the burner of the vent hole, an oblique flat surface is provided in a portion of the inner surface of the vent hole far from the burner tile axis, so that the vent hole is provided at a low temperature. Immediately after leaving the air, the charge air flows in the direction in which it obliquely collides with the fuel flow, and the mixing of fuel and charge air is strengthened,
At high temperatures, the action of the above-mentioned oblique plane increases the dispersion of the supply air to achieve low NOx. In the industrial furnace according to claim 13 and the burner for heat storage combustion according to claim 27, since the auxiliary vent hole for supplying a part of the supply air is provided between the vent hole and the fuel discharge port, when the temperature is low, the auxiliary flame region and the pilot flame region are provided. The connection with the main flame area is improved and combustion is stabilized. Further, when the temperature is high, the flow rate of the supply air increases, the static pressure at the upstream end of the auxiliary air vent decreases, and the amount of air supplied through the auxiliary air supply hole decreases, so that the increase in NOx can be prevented. The present invention can be applied to various kinds of industrial furnaces exemplified in claim 14.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の工業用炉および蓄熱燃焼用バーナの全
体概略断面図である。
FIG. 1 is an overall schematic sectional view of an industrial furnace and a burner for heat storage combustion of the present invention.

【図2】図1のうち工業用炉の一部および蓄熱燃焼用バ
ーナの拡大断面図である。
FIG. 2 is an enlarged cross-sectional view of a part of the industrial furnace and the burner for heat storage combustion in FIG.

【図3】本発明の第1実施例に係わり、図2のうちバー
ナタイル部の断面図である。
FIG. 3 is a cross-sectional view of the burner tile portion in FIG. 2 according to the first embodiment of the present invention.

【図4】図3の平面図である。FIG. 4 is a plan view of FIG. 3;

【図5】図2のうち切替機構とその近傍に対応する部分
の断面図である。
5 is a cross-sectional view of a portion corresponding to the switching mechanism and its vicinity in FIG. 2. FIG.

【図6】図5の平面図である。FIG. 6 is a plan view of FIG.

【図7】本発明の第2実施例に係る工業用炉の一部およ
び蓄熱燃焼用バーナのうち切替機構とその近傍の拡大断
面図である。
FIG. 7 is an enlarged cross-sectional view of a part of an industrial furnace according to a second embodiment of the present invention and a switching mechanism of a burner for heat storage combustion and the vicinity thereof.

【図8】本発明の第2実施例に係わり、図7のうちバー
ナタイルとその近傍の拡大断面図である。
FIG. 8 is an enlarged cross-sectional view of the burner tile and its vicinity in FIG. 7 according to the second embodiment of the present invention.

【図9】本発明の第3実施例に係る工業用炉の一部およ
び蓄熱燃焼用バーナのうちバーナタイルとその近傍の拡
大断面図である。
FIG. 9 is an enlarged cross-sectional view of a part of an industrial furnace and a burner tile for heat storage and combustion according to a third embodiment of the present invention and its vicinity.

【図10】本発明の第4実施例に係る工業用炉の一部お
よび蓄熱燃焼用バーナのうちバーナタイルとその近傍の
拡大断面図である。
FIG. 10 is an enlarged cross-sectional view of a part of an industrial furnace according to a fourth embodiment of the present invention and a burner tile of a burner for heat storage combustion and the vicinity thereof.

【図11】本発明の第5実施例に係る工業用炉の一部お
よび蓄熱燃焼用バーナのうちバーナタイルとその近傍の
拡大断面図である。
FIG. 11 is an enlarged cross-sectional view of a part of an industrial furnace according to a fifth embodiment of the present invention and a burner tile of a burner for heat storage combustion and the vicinity thereof.

【図12】本発明の第6実施例に係る工業用炉の一部お
よび蓄熱燃焼用バーナのうちバーナタイルとその近傍の
拡大断面図である。
FIG. 12 is an enlarged cross-sectional view of a part of an industrial furnace according to a sixth embodiment of the present invention and a burner tile of a burner for heat storage combustion and the vicinity thereof.

【図13】図12の平面図である。FIG. 13 is a plan view of FIG.

【図14】本発明の第7実施例に係る工業用炉の一部お
よび蓄熱燃焼用バーナのうちバーナタイルとその近傍の
拡大断面図である。
FIG. 14 is an enlarged cross-sectional view of a part of an industrial furnace according to a seventh embodiment of the present invention and a burner tile of a burner for heat storage combustion and the vicinity thereof.

【図15】本発明の第8実施例に係る工業用炉の一部お
よび蓄熱燃焼用バーナのうちバーナタイルとその近傍の
拡大断面図である。
FIG. 15 is an enlarged cross-sectional view of a part of an industrial furnace according to an eighth embodiment of the present invention and a burner tile of a burner for heat storage combustion and the vicinity thereof.

【図16】図15の平面図である。16 is a plan view of FIG.

【図17】図15のうち通気孔の斜視図である。FIG. 17 is a perspective view of a vent hole in FIG. 15.

【図18】本発明の第9実施例に係る工業用炉の一部お
よび蓄熱燃焼用バーナのうちバーナタイルとその近傍の
拡大断面図である。
FIG. 18 is an enlarged cross-sectional view of a part of an industrial furnace according to a ninth embodiment of the present invention and a burner tile of a burner for heat storage combustion and the vicinity thereof.

【図19】図18の平面図である。FIG. 19 is a plan view of FIG. 18.

【図20】図18において、パイロット火炎とメイン火
炎との位置関係を示す図である。
FIG. 20 is a diagram showing a positional relationship between the pilot flame and the main flame in FIG. 18.

【図21】本発明の工業用炉とその炉内の熱流束分布の
概略図である。
FIG. 21 is a schematic view of an industrial furnace of the present invention and heat flux distribution in the furnace.

【図22】図21の工業用炉のCO、NOx生成量と炉
温との関係を示す図である。
22 is a diagram showing the relationship between CO and NOx production amounts and furnace temperature in the industrial furnace of FIG. 21.

【図23】従来の蓄熱燃焼用バーナをもつ工業用炉とそ
の炉内の熱流束分布の概略図である。
FIG. 23 is a schematic view of an industrial furnace having a conventional heat storage and combustion burner and heat flux distribution in the furnace.

【符号の説明】[Explanation of symbols]

1 蓄熱燃焼用バーナ 2 給気通路 3 排気通路 4 送風手段 5 炉体 10 枠体 20 燃料噴射ノズル 21 一次空気パイプ 22 バーナタイル 23 給排気面 24 突出部 25 燃料開放面 26 通気孔 26D 第1の部分 26F 平面 26S 副通気孔 26U 第2の部分 27 ガイド溝 30 蓄熱体 31 隔壁 40 切替機構 42 給気通気用開口部 43 排気通気用開口部 44 ディスク 60、61、63 副燃焼筒 100 工業用炉 1 Burner for Heat Storage Combustion 2 Air Supply Passage 3 Exhaust Passage 4 Blower Means 5 Furnace Body 10 Frame 20 Fuel Injection Nozzle 21 Primary Air Pipe 22 Burner Tile 23 Supply / Exhaust Surface 24 Projection 25 Fuel Opening Surface 26 Vent 26D First Part 26F Plane 26S Sub-ventilation hole 26U Second part 27 Guide groove 30 Heat storage body 31 Partition wall 40 Switching mechanism 42 Air supply ventilation opening 43 Exhaust ventilation opening 44 Disc 60, 61, 63 Secondary combustion cylinder 100 Industrial furnace

フロントページの続き (72)発明者 田中 良一 神奈川県横浜市鶴見区尻手2丁目1番53号 日本ファーネス工業株式会社内Continuation of the front page (72) Inventor Ryoichi Tanaka 2-53, Shirate, Tsurumi-ku, Yokohama-shi, Kanagawa Japan Furnace Industry Co., Ltd.

Claims (29)

【特許請求の範囲】[Claims] 【請求項1】 給排が切替えられる通気孔が複数開口さ
れた給排気面と、 該給排気面から突出された突出部と、 該突出部の内側から先端にわたって形成された噴射燃料
を開放する燃料開放面と、を有するバーナタイルを有
し、該バーナタイルが炉体に固定されている、工業用
炉。
1. A supply / exhaust surface having a plurality of vent holes for switching supply / discharge, a protrusion protruding from the supply / exhaust surface, and an injection fuel formed from the inside to the tip of the protrusion to release the injected fuel. An industrial furnace having a burner tile having a fuel release surface, the burner tile being fixed to a furnace body.
【請求項2】 前記燃料開放面を前記突出部先端に向か
って末拡がりに形成した請求項1記載の工業用炉。
2. The industrial furnace according to claim 1, wherein the fuel opening surface is formed so as to spread toward the tip of the protruding portion.
【請求項3】 前記突出部の外周側部に前記通気孔と同
芯状にかつ軸方向に延びるガイド溝を形成した請求項1
記載の工業用炉。
3. A guide groove, which is concentric with the vent hole and extends in the axial direction, is formed on an outer peripheral side portion of the projecting portion.
Industrial furnace described.
【請求項4】 前記給排気面に、前記通気孔の間の部位
に、前記突出部の突出方向に突出するエアノズルセパレ
ータを形成した請求項1記載の工業用炉。
4. The industrial furnace according to claim 1, wherein an air nozzle separator is formed on the air supply / exhaust surface in a portion between the ventilation holes, the air nozzle separator protruding in a protruding direction of the protruding portion.
【請求項5】 前記通気孔を前記給排気面に近づく程絞
り、かつ通気孔中心を前記給排気面に近づく程前記突出
部の軸芯側に近づけた請求項1記載の工業用炉。
5. The industrial furnace according to claim 1, wherein the vent hole is narrowed as it approaches the air supply / exhaust surface, and the vent hole center is made closer to the axial core side of the protrusion as it approaches the air supply / exhaust surface.
【請求項6】 前記通気孔と前記燃料開放面をバーナタ
イルに形成し、前記燃料開放面に一次(パイロット)空
気供給パイプを連通させてその内部に燃料噴射ノズルを
配設し、給排の切替えを回転ディスク切替式とした切替
機構を設け、前記燃料噴射ノズルを回転ディスクの回転
に合わせて回転可能とした請求項1記載の工業用炉。
6. The vent hole and the fuel release surface are formed in a burner tile, and a primary (pilot) air supply pipe is communicated with the fuel release surface and a fuel injection nozzle is disposed therein to supply and discharge the fuel. The industrial furnace according to claim 1, wherein a switching mechanism is provided for switching the rotary disk, and the fuel injection nozzle is rotatable according to the rotation of the rotary disk.
【請求項7】 前記複数の通気孔を外周側から囲みかつ
前記突出部と同芯状に軸方向に突出部の先端より前方位
置まで延びる、直円筒状の副燃焼筒をさらに有する請求
項1記載の工業用炉。
7. A straight combustion sub-combustion cylinder that surrounds the plurality of ventilation holes from the outer peripheral side and extends axially concentrically with the projection from the tip of the projection to the front position. Industrial furnace described.
【請求項8】 前記複数の通気孔を外周側から囲みかつ
前記突出部と同芯状に軸方向に突出部の先端より前方位
置まで延びる、先端部が絞られた筒状の副燃焼筒をさら
に有し、該副燃焼筒の後端部に排ガス戻り穴を設けた請
求項1記載の工業用炉。
8. A cylindrical sub-combustion tube having a narrowed front end, which surrounds the plurality of vent holes from the outer peripheral side and extends axially concentrically with the projection from the front end of the projection. The industrial furnace according to claim 1, further comprising an exhaust gas return hole provided at a rear end portion of the auxiliary combustion cylinder.
【請求項9】 前記給排気面に、前記通気孔の間の部位
に、前記突出部の突出方向に突出するエアノズルセパレ
ータを形成し、前記ガイド溝を有する前記突出部を外周
側から囲みかつ前記エアノズルセパレータの前端から前
記突出部と同芯状に軸方向に前記突出部の先端より前方
位置まで延びる、筒状の副燃焼筒をさらに有する請求項
3記載の工業用炉。
9. An air nozzle separator is formed on the air supply / exhaust surface between the ventilation holes, the air nozzle separator projecting in a projecting direction of the projecting portion, and the projecting portion having the guide groove is surrounded from the outer peripheral side and The industrial furnace according to claim 3, further comprising a tubular auxiliary combustion cylinder that extends axially from the front end of the air nozzle separator to the front position of the protrusion in the axial direction concentrically with the protrusion.
【請求項10】 前記通気孔の下流端部の内面と前記突
出部の外面とは、バーナタイル半径方向に、互いに隔た
っている請求項1記載の工業用炉。
10. The industrial furnace according to claim 1, wherein an inner surface of the downstream end of the vent hole and an outer surface of the protrusion are separated from each other in the burner tile radial direction.
【請求項11】 前記通気孔は、給気流れ方向下流側に
位置する第1の部分と、該第1の部分に給気流れ方向上
流側からつらなる第2の部分を有しており、前記第1の
部分はその軸芯が下流方向に向って突出部軸芯の延長に
近づく方向に第1の角度で傾けられており、前記第2の
部分のうちバーナタイル軸芯に近い側の内面は前記第1
の角度より大きな第2の角度で前記第1の部分の傾き方
向と反対方向に傾けられている請求項1記載の工業用
炉。
11. The vent has a first portion located on the downstream side in the supply air flow direction and a second portion connected to the first portion from the upstream side in the supply air flow direction, The first portion is inclined at a first angle in a direction in which its axis extends toward the downstream and approaches the extension of the protrusion axis, and the inner surface of the second portion closer to the burner tile axis. Is the first
The industrial furnace according to claim 1, wherein the industrial furnace is tilted in a direction opposite to a tilt direction of the first portion at a second angle larger than the angle.
【請求項12】 前記通気孔が、円筒状ノズルを斜めに
延びる平面で切った形状を有しており、前記平面は、通
気孔内面のうちバーナタイル軸芯から遠い部分に形成さ
れていて、下流方向に向って突出部軸芯の延長に近づく
方向に傾けられている請求項1記載の工業用炉。
12. The ventilation hole has a shape obtained by cutting a cylindrical nozzle with a plane extending obliquely, and the plane is formed in a portion of an inner surface of the ventilation hole far from a burner tile axis. The industrial furnace according to claim 1, wherein the industrial furnace is inclined in a direction toward the extension of the protrusion axis toward the downstream direction.
【請求項13】 前記バーナタイルには、前記突出部の
先端面に開口して、通気孔を通る給気の一部を前記突出
部の先端面の前方に供給することができる副通気孔が設
けられている請求項1記載の工業用炉。
13. The burner tile is provided with a sub-ventilation hole which is opened at a tip end surface of the projecting portion and can supply a part of the air supply passing through the vent hole to the front side of the tip end surface of the projecting portion. The industrial furnace according to claim 1, which is provided.
【請求項14】 前記工業用炉が、溶解炉、焼結炉、予
熱炉、均熱炉、鍛造炉、加熱炉、焼鈍炉、容体化炉、メ
ッキ炉、乾燥炉、調質炉、焼入れ炉、焼もどし炉、酸化
還元炉、焼成炉、焼付炉、焙焼炉、溶解保持炉、前炉、
ルツボ炉、ホモジナイジング炉、エージング炉、反応
炉、蒸留炉、取鍋乾燥予熱炉、鋳型焼成予熱炉、焼準
炉、ロー付け炉、浸炭炉、塗装乾燥炉、保持炉、窒化
炉、ソルトバス炉、ガラス溶解炉、発電用ボイラを含む
ボイラ、ごみ焼却炉を含む焼却炉、給湯装置、の何れか
1種の炉である請求項1記載の工業用炉。
14. The industrial furnace is a melting furnace, a sintering furnace, a preheating furnace, a soaking furnace, a forging furnace, a heating furnace, an annealing furnace, a tempering furnace, a plating furnace, a drying furnace, a tempering furnace, a hardening furnace. , Tempering furnace, redox furnace, firing furnace, baking furnace, roasting furnace, melting and holding furnace, front furnace,
Crucible furnace, homogenizing furnace, aging furnace, reaction furnace, distillation furnace, ladle drying preheating furnace, mold preheating furnace, leveling furnace, brazing furnace, carburizing furnace, coating drying furnace, holding furnace, nitriding furnace, salt The industrial furnace according to claim 1, which is one of a bath furnace, a glass melting furnace, a boiler including a power generation boiler, an incinerator including a refuse incinerator, and a water heater.
【請求項15】 給排が切替えられる通気孔が複数開口
された給排気面と、 該給排気面から突出された突出部と、 該突出部の内側から先端にわたって形成された噴射燃料
を開放する燃料開放面と、を有する蓄熱燃焼用バーナ。
15. A supply / exhaust surface having a plurality of vent holes for switching supply / discharge, a projection protruding from the supply / exhaust surface, and an injection fuel formed from the inside to the tip of the projection is released. A burner for heat storage combustion having a fuel open surface.
【請求項16】 前記燃料開放面を前記突出部先端に向
かって末拡がりに形成した請求項15記載の蓄熱燃焼用
バーナ。
16. The burner for heat storage combustion according to claim 15, wherein the fuel release surface is formed to widen toward the tip of the protruding portion.
【請求項17】 前記突出部の外周側部に前記通気孔と
同芯状にかつ軸方向に延びるガイド溝を形成した請求項
15記載の蓄熱燃焼用バーナ。
17. The burner for heat storage combustion according to claim 15, wherein a guide groove that is concentric with the vent hole and extends in the axial direction is formed on an outer peripheral side portion of the protruding portion.
【請求項18】 前記給排気面に、前記通気孔の間の部
位に、前記突出部の突出方向に突出するエアノズルセパ
レータを形成した請求項15記載の蓄熱燃焼用バーナ。
18. The heat storage combustion burner according to claim 15, wherein an air nozzle separator is formed on the air supply / exhaust surface at a portion between the ventilation holes so as to project in a projecting direction of the projecting portion.
【請求項19】 前記通気孔を前記給排気面に近づく程
絞り、かつ通気孔中心を前記給排気面に近づく程前記突
出部の軸芯側に近づけた請求項15記載の蓄熱燃焼用バ
ーナ。
19. The heat storage combustion burner according to claim 15, wherein the vent hole is narrowed as it approaches the air supply / exhaust surface, and the vent hole center is made closer to the axial center of the protrusion as it approaches the air supply / exhaust surface.
【請求項20】 前記通気孔と前記燃料開放面をバーナ
タイルに形成し、前記燃料開放面に一次パイロット)空
気供給パイプを連通させてその内部に燃料噴射ノズルを
配設し、給排の切替えを回転ディスク切替式とした切替
機構を設け、前記燃料噴射ノズルを回転ディスクの回転
に合わせて回転可能とした請求項15記載の蓄熱燃焼用
バーナ。
20. The vent hole and the fuel release surface are formed in a burner tile, a primary pilot) air supply pipe is connected to the fuel release surface, and a fuel injection nozzle is arranged inside the pipe to switch between supply and discharge. 16. The burner for heat storage combustion according to claim 15, wherein a switching mechanism of a rotary disk switching type is provided, and the fuel injection nozzle is rotatable in accordance with the rotation of the rotary disk.
【請求項21】 前記複数の通気孔を外周側から囲みか
つ前記突出部と同芯状に軸方向に突出部の先端より前方
位置まで延びる、直円筒状の副燃焼筒をさらに有する請
求項15記載の蓄熱燃焼用バーナ。
21. A sub-cylinder auxiliary combustion cylinder that surrounds the plurality of ventilation holes from the outer peripheral side and extends axially concentrically with the projection from the tip of the projection to the front position. Burner for heat storage combustion described.
【請求項22】 前記複数の通気孔を外周側から囲みか
つ前記突出部と同芯状に軸方向に突出部の先端より前方
位置まで延びる、先端部が絞られた筒状の副燃焼筒をさ
らに有し、該副燃焼筒の後端部に排ガス戻り穴を設けた
請求項15記載の蓄熱燃焼用バーナ。
22. A cylindrical sub-combustion tube having a narrowed front end, which surrounds the plurality of vent holes from the outer peripheral side and extends axially concentrically with the projection to a position forward of the front end of the projection. The burner for heat storage combustion according to claim 15, further comprising an exhaust gas return hole provided at a rear end portion of the auxiliary combustion cylinder.
【請求項23】 前記給排気面に、前記通気孔の間の部
位に、前記突出部の突出方向に突出するエアノズルセパ
レータを形成し、前記ガイド溝を有する前記突出部を外
周側から囲みかつ前記エアノズルセパレータの前端から
前記突出部と同芯状に軸方向に前記突出部の先端より前
方位置まで延びる、筒状の副燃焼筒をさらに有する請求
項17記載の蓄熱燃焼用バーナ。
23. An air nozzle separator is formed on the air supply / exhaust surface between the ventilation holes so as to project in the projecting direction of the projecting portion, and the projecting portion having the guide groove is surrounded from the outer peripheral side and The burner for heat storage combustion according to claim 17, further comprising a tubular auxiliary combustion cylinder that extends axially from the front end of the air nozzle separator in a concentric manner with the protrusion to a position forward of the tip of the protrusion.
【請求項24】 前記通気孔の下流端部の内面と前記突
出部の外面とは、バーナタイル半径方向に、互いに隔た
っている請求項15記載の蓄熱燃焼用バーナ。
24. The burner for heat storage combustion according to claim 15, wherein an inner surface of the downstream end portion of the ventilation hole and an outer surface of the protruding portion are separated from each other in the radial direction of the burner tile.
【請求項25】 前記通気孔は、給気流れ方向下流側に
位置する第1の部分と、該第1の部分に給気流れ方向上
流側からつらなる第2の部分を有しており、前記第1の
部分はその軸芯が下流方向に向って突出部軸芯の延長に
近づく方向に第1の角度で傾けられており、前記第2の
部分のうちバーナタイル軸芯に近い側の内面は前記第1
の角度より大きな第2の角度で前記第1の部分の傾き方
向と反対方向に傾けられている請求項15記載の蓄熱燃
焼用バーナ。
25. The vent has a first portion located downstream in a supply air flow direction and a second portion connected to the first portion from an upstream side in the supply air flow direction, The first portion is inclined at a first angle in a direction in which its axis extends toward the downstream and approaches the extension of the protrusion axis, and the inner surface of the second portion closer to the burner tile axis. Is the first
16. The burner for heat storage combustion according to claim 15, wherein the burner is tilted in a direction opposite to the tilt direction of the first portion at a second angle larger than the angle.
【請求項26】 前記通気孔が、円筒状ノズルを斜めに
延びる平面で切った形状を有しており、前記平面は、通
気孔内面のうちバーナタイル軸芯から遠い部分に形成さ
れていて、下流方向に向って突出部軸芯の延長に近づく
方向に傾けられている請求項15記載の蓄熱燃焼用バー
ナ。
26. The ventilation hole has a shape obtained by cutting a cylindrical nozzle with a plane extending obliquely, and the plane is formed in a portion of the inner surface of the ventilation hole far from the burner tile axis. The burner for heat storage combustion according to claim 15, wherein the burner for heat storage combustion is inclined in a direction approaching the extension of the projection axis toward the downstream direction.
【請求項27】 前記バーナタイルには、前記突出部の
先端面に開口して、通気孔を通る給気の一部を前記突出
部の先端面の前方に供給することができる副通気孔が設
けられている請求項15記載の蓄熱燃焼用バーナ。
27. The burner tile is provided with a sub-ventilation hole which is opened at a tip end surface of the projecting portion and can supply a part of air supplied through the vent hole to a front side of the tip end surface of the projecting portion. The burner for heat storage combustion according to claim 15, which is provided.
【請求項28】 給排気面に形成された給排が切替えら
れる複数の通気孔のうち給気孔として働らいている通気
孔から給気を炉内に供給し、 前記給気が前記給排気面から前方に突出する突出部の側
面に沿って該突出部の先端に流れる間に炉内排ガスを該
給気の流れに巻込んで炉内排ガスの一部を炉内に循環さ
せ、 前記給気と該給気に巻込んだ炉内排ガスの一部との流れ
が前記突出部の先端まで流れてきたときに前記突出部の
内側に形成した燃料開放面から開放される燃料の流れと
混合して前記突出部の前方に流し、炉の奥の方向に延び
た燃焼領域を形成しつつ燃料を燃焼させる、工程からな
る工業用炉の燃焼方法。
28. The supply air is supplied into the furnace through a ventilation hole functioning as a supply hole among a plurality of ventilation holes formed on the supply / exhaust surface for switching supply / discharge, and the supply air is the supply / exhaust surface. From the inside of the furnace into the flow of the supply air while flowing to the tip of the projection along the side surface of the projection protruding forward from And a part of the in-furnace exhaust gas entrained in the air supply mixes with the flow of fuel released from the fuel release surface formed inside the protrusion when the flow reaches the tip of the protrusion. And burning the fuel while forming a combustion region extending in the depth direction of the furnace by flowing the fuel toward the front of the protruding portion.
【請求項29】 炉内で燃焼した排ガスを前記給排が切
替えられる複数の通気孔のうち排気孔として働らいてい
る通気孔を通して炉外に排出する工程をさらに有し、該
排出工程では前記燃料開放面から炉内に開放される燃料
の前記通気孔への短絡が燃料開放面先端が給排気面より
前記突出部の長さだけ隔たっていることにより抑制され
る、請求項28記載の工業用炉の燃焼方法。
29. The method further comprises the step of discharging the exhaust gas burned in the furnace to the outside of the furnace through a vent hole which functions as an exhaust hole among the plurality of vent holes which can be switched between supply and discharge. 29. The industry according to claim 28, wherein a short circuit of the fuel released from the fuel open surface into the furnace to the vent hole is suppressed by the tip of the fuel open surface being separated from the air supply / exhaust surface by the length of the protrusion. Burning method of furnace.
JP23213695A 1994-10-14 1995-09-11 Industrial furnace, regenerative combustion burner, and method of burning industrial furnace Expired - Fee Related JP3267839B2 (en)

Priority Applications (13)

Application Number Priority Date Filing Date Title
JP23213695A JP3267839B2 (en) 1994-10-14 1995-09-11 Industrial furnace, regenerative combustion burner, and method of burning industrial furnace
TW084110321A TW278124B (en) 1994-10-14 1995-10-03
DE69525780T DE69525780T2 (en) 1994-10-14 1995-10-05 Burner, industrial furnace, and regenerative combustion process
EP99200851A EP0931983B1 (en) 1994-10-14 1995-10-05 A burner, an industrial furnace and a method for conducting regenerative combustion
EP95307066A EP0715123B1 (en) 1994-10-14 1995-10-05 Regenerative burner and industrial furnace
DE69515810T DE69515810T2 (en) 1994-10-14 1995-10-05 Regenerative burner and industrial furnace
AU33132/95A AU678729B2 (en) 1994-10-14 1995-10-09 An industrial furnace and a burner for conducting regenerative combustion and a combustion method therefor
US08/540,832 US5628629A (en) 1994-10-14 1995-10-11 Industrial furnace and a burner for conducting regenerative combustion and a combustion method therefor
CA002160433A CA2160433C (en) 1994-10-14 1995-10-12 Industrial furnace and a burner for conducting regenerative combustion and a combustion method therefor
CNB031412165A CN1226551C (en) 1994-10-14 1995-10-13 Industrial furnace and burner for regeneration combustion and burning method thereof
KR1019950035255A KR0171959B1 (en) 1994-10-14 1995-10-13 An industrial furnace and a burner for conducting regenerative combustion and a combustion method thereof
CN95118495A CN1127638C (en) 1994-10-14 1995-10-13 An industrial furnace and a burner for conducting regenerative combustion and a combustion method therefor
AU17870/97A AU686067B2 (en) 1994-10-14 1997-04-14 An industrial furnace and a burner for conducting regenerative combustion and a combustion method therefor

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP24935794 1994-10-14
JP6-249357 1994-10-14
JP23213695A JP3267839B2 (en) 1994-10-14 1995-09-11 Industrial furnace, regenerative combustion burner, and method of burning industrial furnace

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2001348178A Division JP3481611B2 (en) 1994-10-14 2001-11-14 Industrial furnaces and burners for regenerative combustion

Publications (2)

Publication Number Publication Date
JPH08166123A true JPH08166123A (en) 1996-06-25
JP3267839B2 JP3267839B2 (en) 2002-03-25

Family

ID=26530303

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23213695A Expired - Fee Related JP3267839B2 (en) 1994-10-14 1995-09-11 Industrial furnace, regenerative combustion burner, and method of burning industrial furnace

Country Status (1)

Country Link
JP (1) JP3267839B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007271134A (en) * 2006-03-30 2007-10-18 Jfe Steel Kk Regenerative burner
WO2009085595A3 (en) * 2007-12-20 2009-08-27 3M Innovative Properties Company Attenuating combustion noise of premixed flames
KR101403642B1 (en) * 2014-04-28 2014-06-05 홍순승 Roasting kiln for plastic billet
WO2017056318A1 (en) * 2015-10-02 2017-04-06 大阪瓦斯株式会社 Regenerative burner and metal furnace

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007271134A (en) * 2006-03-30 2007-10-18 Jfe Steel Kk Regenerative burner
WO2009085595A3 (en) * 2007-12-20 2009-08-27 3M Innovative Properties Company Attenuating combustion noise of premixed flames
KR101403642B1 (en) * 2014-04-28 2014-06-05 홍순승 Roasting kiln for plastic billet
WO2017056318A1 (en) * 2015-10-02 2017-04-06 大阪瓦斯株式会社 Regenerative burner and metal furnace

Also Published As

Publication number Publication date
JP3267839B2 (en) 2002-03-25

Similar Documents

Publication Publication Date Title
KR0171959B1 (en) An industrial furnace and a burner for conducting regenerative combustion and a combustion method thereof
JP3460441B2 (en) Combustion device and thermal equipment equipped with the combustion device
US6872070B2 (en) U-tube diffusion flame burner assembly having unique flame stabilization
EP0819885B1 (en) Combustion apparatus
KR100659678B1 (en) Combustion method and burner
JPH07208744A (en) Combustion equipment
JPH08166123A (en) Industrial furnace, burner for heat storage combustion and combustion method for the industrial furnace
JP3812638B2 (en) Combustor for exhaust gas treatment
JP3481611B2 (en) Industrial furnaces and burners for regenerative combustion
JPH09229349A (en) Heating fluid generating furnace
TWI623706B (en) Radiant tube burner
JP3254337B2 (en) Low NOx burner
KR20000019109A (en) Flame holder for heater
JP3164764B2 (en) Exhaust gas exhaust structure
JP3259843B2 (en) Combustion furnace and combustion method
JP2001124307A (en) Anoxidation-reduction combustion method and burner
KR20030023693A (en) Nitrogen oxide reduced introduction of fuel in combustion air ports of a glass furnace
JPH08166124A (en) Industrial furnace, burner for heat storage combustion and combustion method for the industrial furnace
JP3851831B2 (en) Combustion device
JP3511586B2 (en) Single-type heat storage combustion equipment
JPH0616263Y2 (en) Catalytic combustion device
JP2001050506A (en) All primary air type burner and boiler provided the same
JPS58140551A (en) Warm air space heating device
JP2003130338A (en) Single type regenerative combustion burner, and furnace and indirect heating radiator having the burner
JPH10205744A (en) Regenerative combustion burner device

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080111

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090111

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090111

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090111

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100111

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120111

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees