JP3164764B2 - Exhaust gas exhaust structure - Google Patents

Exhaust gas exhaust structure

Info

Publication number
JP3164764B2
JP3164764B2 JP14917996A JP14917996A JP3164764B2 JP 3164764 B2 JP3164764 B2 JP 3164764B2 JP 14917996 A JP14917996 A JP 14917996A JP 14917996 A JP14917996 A JP 14917996A JP 3164764 B2 JP3164764 B2 JP 3164764B2
Authority
JP
Japan
Prior art keywords
furnace
exhaust
supply
exhaust gas
side opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP14917996A
Other languages
Japanese (ja)
Other versions
JPH09273741A (en
Inventor
智彦 西山
和久 三谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP14917996A priority Critical patent/JP3164764B2/en
Publication of JPH09273741A publication Critical patent/JPH09273741A/en
Application granted granted Critical
Publication of JP3164764B2 publication Critical patent/JP3164764B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Landscapes

  • Air Supply (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、排気ガス排出部構
造に関し、とくに蓄熱燃焼式バーナに適用される排気ガ
ス排出部構造に関する。
The present invention relates to relates to an exhaust gas discharge portion structure, an exhaust gas outlet structure that is particularly applicable to a regenerative-combustion burners.

【0002】[0002]

【従来の技術】蓄熱燃焼式バーナは給排気孔が形成され
たバーナタイルを有し、給排気孔を通して燃焼用エアを
炉内に給気するとともに排気ガスを炉内から排出する
従来の排気ガス排出部構造では、蓄熱燃焼式バーナの給
排気孔の排気ポートの炉側開口端縁部の断面形状は、丸
みをもたず角付きのままとされている。
2. Description of the Related Art A regenerative combustion type burner has a burner tile in which a supply / exhaust hole is formed, and supplies combustion air into the furnace through the supply / exhaust hole and discharges exhaust gas from the furnace .
In the conventional exhaust gas outlet structure, the cross-sectional shape of the furnace side opening edge of the exhaust port of the air supply and exhaust holes of the regenerative combustion burner is kept with corners without rounded.

【0003】[0003]

【発明が解決しようとする課題】しかし、従来の排気ガ
ス排出部構造には、つぎの問題がある。排気ガス流速が
高くなると、燃焼流が炉内を十分に循環する前に排気流
に引き込まれる量が増え、その結果、大気に排出される
排気ガス中のCO(一酸化炭素)量が増加したり、排熱
損失量が増大する、といる問題が生じる。本発明の目的
は、排出ガス中のCOの量を低減でき、排熱損失量を低
減できる、排気ガス排出部構造を提供することにある。
However, the conventional exhaust gas exhaust structure has the following problems. The higher the exhaust gas flow rate, the more the combustion flow is drawn into the exhaust flow before it circulates sufficiently in the furnace, resulting in an increase in the amount of CO (carbon monoxide) in the exhaust gas exhausted to the atmosphere. Or an increase in waste heat loss. An object of the present invention is to provide an exhaust gas discharge unit structure that can reduce the amount of CO in exhaust gas and reduce the amount of exhaust heat loss.

【0004】[0004]

【課題を解決するための手段】上記目的を達成する本発
明はつぎの通りである。 (1) 給排気切替式のシングルバーナからなる蓄熱燃
焼式バーナのバーナタイルに形成された給排気孔からな
る排気ガス排出部構造であって、前記給排気孔の炉側開
口端部と、前記給排気孔のうち前記炉側開口端部から隔
たった部分と、を有し、前記給排気孔の炉側開口端部が
前記給排気孔の炉側開口端部から隔たった部分より大径
とされている、排気ガス排出部構造。 (2) 前記給排気孔の炉側開口端部を前記給排気孔の
炉側開口端部から隔たった部分より大径とする構造が、
前記炉側開口端部に形成された炉側に向かって拡径する
湾曲またはテーパからなり、前記湾曲の半径またはテー
パの径方向脚長が、前記給排気孔の炉側開口端部から隔
たった部分の径の0.1倍以上とされている(1)記載
の排気ガス排出部構造。 (3) 前記炉側開口端部の湾曲またはテーパが、前記
炉側開口端部の周縁の全 円周にわたって形成されてい
る、(2)記載の排気ガス排出部構造。 (4) 前記炉側開口端部の湾曲またはテーパが、前記
炉側開口端部の周縁の、燃料開放面から遠い側の半周に
わたって形成されている、(2)記載の排気ガス排出部
構造。
The present invention to achieve the above object is as follows. (1) An exhaust gas discharging portion structure including a supply / exhaust hole formed in a burner tile of a regenerative combustion type burner including a supply / exhaust switching type single burner , wherein a furnace-side opening end of the supply / exhaust hole; A portion of the supply / exhaust hole separated from the furnace side opening end, and a diameter of the supply / exhaust hole which is larger than a portion of the supply / exhaust hole separated from the furnace side opening end. Exhaust exhaust structure. (2) The furnace-side opening end of the air supply / exhaust hole is
The structure to make the diameter larger than the part separated from the furnace side opening end,
The diameter increases toward the furnace side formed at the furnace side opening end.
Bend or taper, said radius of curvature or taper
The radial leg length of the pump is separated from the furnace-side opening end of the air supply / exhaust hole.
(1) described that it is 0.1 times or more of the diameter of the only part
Exhaust gas exhaust structure. (3) The curvature or taper of the furnace side opening end is
It is formed over the entire circumference of the periphery of the furnace-side open end.
(2). (4) The curvature or taper of the furnace-side opening end is
On the half of the periphery of the furnace-side open end far from the fuel release surface
(2) The exhaust gas discharge part described in (2) is formed across
Construction.

【0005】上記(1)〜()のいずれの排気ガス排
出部構造においても、給排気孔の炉側開口端部を炉側開
口端部から隔たった部分より大径としたので、排気ガス
が給排気孔周辺から給排気孔に流入しやすくなって、給
排気孔前方から給排気孔に流入する排気ガス流速と排気
ガス流量が相対的に低減する。そのため、燃焼流が炉内
を十分に循環する前に排気流に引き込まれる量が減り、
その結果、大気に排出される排気ガス中のCOの量が減
少し、排熱損失量も減少する。
[0005] In any of the exhaust gas discharge structures described in the above (1) to ( 4 ), since the diameter of the furnace-side opening end of the supply / exhaust hole is made larger than that of the part separated from the furnace-side opening end, the exhaust gas is exhausted. There is likely to flow into the supply and exhaust hole from the air supply and exhaust Anashu sides, the exhaust gas flow rate and the exhaust gas flow rate flowing into the supply and exhaust hole from the side before the sheet discharge hole is relatively reduced. This reduces the amount that the combustion stream is drawn into the exhaust stream before it circulates sufficiently in the furnace,
As a result, the amount of CO in the exhaust gas discharged to the atmosphere decreases, and the amount of heat loss lost also decreases.

【0006】[0006]

【発明の実施の形態】本発明実施例に係る排気ガス排出
部構造を図1〜図3および図5〜図を参照して説明す
る(図4は比較例)。図1および図2は本発明の第1実
施例を示しており、図3は本発明の第2実施例を示し
る。また、図は本発明の第1実施例を給排気切替式
のシングル蓄熱燃焼式バーナのバーナタイルの給排気孔
に適用した場合を示している。図〜図は第1実施例
で測定したテストデータを示す。本発明の全実施例に共
通する部分には、本発明の全実施例にわたって同じ符号
を付してある。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The structure of an exhaust gas discharge section according to an embodiment of the present invention will be described with reference to FIGS. 1 to 3 and FIGS. 5 to 8 (FIG. 4 is a comparative example). 1 and 2 show a first embodiment of the present invention, and FIG. 3 shows a second embodiment of the present invention.
There Ru. Further, FIG. 5 shows the case of applying the first embodiment of the present invention to supply and exhaust holes of the intake and exhaust switched single regenerative combustion burner of the burner tile. 6 to 8 show test data measured in the first embodiment. Portions common to all embodiments of the present invention are denoted by the same reference numerals throughout all embodiments of the present invention.

【0007】まず、本発明の全実施例に共通する部分の
構成を、たとえば図1、図2を参照して説明する。図
1、図2に示すように、本発明実施例の排気ガス排出部
構造は、排気ガスを通す手段1からなる。手段1は、第
1実施例および第2実施例では蓄熱燃焼式バーナ3(給
排気切替式のシングル蓄熱燃焼式バーナ)のバーナタイ
ル2に形成された給排気孔(符号は1を付す)から
First, the configuration of a portion common to all embodiments of the present invention will be described with reference to, for example, FIGS. As shown in FIG. 1 and FIG. 2, the exhaust gas discharging portion structure of the embodiment of the present invention comprises means 1 for passing exhaust gas. Means 1, in the first embodiment and the second embodiment the air supply and exhaust holes (code formed in the burner tile 2 for regenerative-combustion burner 3 (fed <br/> exhaust switchable single regenerative-combustion burners of) the 1 I from the subjecting)
You .

【0008】手段1は、手段1の炉側開口端部1aと、
手段1のうち炉側開口端部から隔たった部分1bと、を
有する。手段1の炉側開口端部1aは炉側開口端部から
隔たった部分1bより大径とされている。炉側端部1a
を炉側開口端部から隔たった部分1bより大径とする構
造は、炉側端部1aを炉側に向かって拡径する湾曲から
なってもよいし、あるいは炉側端部1aを炉側に向かっ
て拡径するテーパからなってもよい。炉側端部1aの湾
曲の半径rまたはテーパの径方向脚長は、炉側開口端部
から隔たった部分1bの内径をDとした場合、本発明の
効果(排出ガス中のCO低減、排熱損失低減)を明確に
得るためには、0.1D以上とされることが望ましい。
The means 1 comprises a furnace-side opening end 1a of the means 1,
And means 1b separated from the furnace-side opening end of the means 1. The furnace-side open end 1a of the means 1 has a larger diameter than a portion 1b separated from the furnace-side open end. Furnace side end 1a
Is larger than the portion 1b separated from the furnace-side opening end, the furnace-side end 1a may have a curved shape in which the diameter increases toward the furnace side, or the furnace-side end 1a may have a larger diameter. It may be formed of a taper whose diameter increases toward. When the radius r of the curvature of the furnace side end 1a or the radial leg length of the taper is D, the inner diameter of the portion 1b separated from the furnace side open end is D, the effect of the present invention (reduction of CO in exhaust gas, exhaust heat In order to obtain (loss reduction) clearly, it is desirable to set it to 0.1D or more.

【0009】上記共通構成による作用を説明する。上記
排気ガス排出部構造においては、手段(給排気孔または
排気ポート)1の炉側開口端部1aを炉側開口端部から
隔たった部分1bより大径としたので、給排気孔または
排気ポートの周辺から給排気孔または排気ポートに流入
する排気ガス流Dの流量が増え、給排気孔または排気ポ
ート前方から給排気孔または排気ポートに流入する排気
ガス流Cの流量および流速が相対的に減少する。そのた
め、燃焼流Aが炉内を十分に循環する前に排気流Cに引
き込まれる流れ(ミドルパスEおよびショートパスF)
の量が減少する。その結果、流れE,Fに多量含まれる
未燃燃料によって生成される、大気への排出ガス中のC
Oの量が減少し、かつ、燃焼流Aの炉内循環量が増大す
ることにより排熱損失量も減少する。
The operation of the above common configuration will be described. In the above exhaust gas discharge section structure, the furnace side opening end 1a of the means (supply / exhaust hole or exhaust port) 1 has a larger diameter than the portion 1b separated from the furnace side opening end. , The flow rate of the exhaust gas flow D flowing into the supply / exhaust hole or the exhaust port from the vicinity increases, and the flow rate and the flow rate of the exhaust gas flow C flowing into the supply / exhaust hole or the exhaust port from the front of the supply / exhaust hole or the exhaust port are relatively high. Decrease. Therefore, the flow (the middle path E and the short path F) in which the combustion flow A is drawn into the exhaust flow C before sufficiently circulating in the furnace.
The amount of is reduced. As a result, C in the exhaust gas to the atmosphere generated by the unburned fuel contained in the streams E and F in a large amount.
As the amount of O decreases and the amount of combustion flow A circulated in the furnace increases, the amount of waste heat loss also decreases.

【0010】つぎに、本発明の各実施例に特有な構成、
作用を説明する。本発明の第1実施例の排気ガス排出部
構造は、図1および図2に示すように、蓄熱燃焼式バー
ナ3のバーナタイル2に形成された給排気孔1からな
る。バーナタイル2は、中央に形成された、燃料(たと
えばガス状燃料、ただしガス状燃料に限るものではな
い)とパイロットエアを噴出する燃料開放面25を有す
る。給排気孔1は燃料開放面25のまわりに少なくとも
1個形成されており、炉内に供給されるメインエアを通
すとともに、炉内から排出される排気ガスを通す。メイ
ンエアと排気ガスは給排気孔1を交互に流れる。第1実
施例では、給排気孔1の炉内側端部1aの湾曲またはテ
ーパは、給排気孔1の周縁の全円周にわたって形成され
ている。
Next, a configuration specific to each embodiment of the present invention,
The operation will be described. As shown in FIGS. 1 and 2, the exhaust gas discharge portion structure of the first embodiment of the present invention includes a supply / exhaust hole 1 formed in a burner tile 2 of a regenerative combustion type burner 3. The burner tile 2 has a fuel release surface 25 formed in the center and for discharging fuel (for example, gaseous fuel, but not limited to gaseous fuel) and pilot air. At least one supply / exhaust hole 1 is formed around the fuel release surface 25, and allows the passage of main air supplied into the furnace and the passage of exhaust gas discharged from the furnace. Main air and exhaust gas flow alternately through the supply / exhaust holes 1. In the first embodiment, the curve or taper of the furnace inner end portion 1 a of the supply / exhaust hole 1 is formed over the entire circumference of the periphery of the supply / exhaust hole 1.

【0011】本発明の第1実施例の作用を、図1、図
2、図4、図〜図を参照して説明する。給排気孔1
の炉内側端部1aの湾曲またはテーパが、給排気孔1の
周縁の全円周にわたって形成されているので、図4のよ
うに全円周にわたって角付きのままとした給排気孔1´
に比べて、まわりから給排気孔1に流入する排気ガスの
流れDが多く、給排気孔1の前方から給排気孔1に流入
する排気ガスの流れCがもっとも弱まる(流れの強さが
緩和される)。
[0011] The operation of the first embodiment of the present invention, FIGS. 1, 2, 4, will be described with reference to FIGS. Supply / exhaust hole 1
Is formed over the entire circumference of the periphery of the air supply / exhaust hole 1, so that the air supply / exhaust hole 1 'which remains squared over the entire circumference as shown in FIG.
The flow D of the exhaust gas flowing into the supply / exhaust hole 1 from the surroundings is larger than that of the above, and the flow C of the exhaust gas flowing into the supply / exhaust hole 1 from the front of the supply / exhaust hole 1 is the weakest (the flow intensity is reduced). Is done).

【0012】全円周にわたって湾曲またはテーパが形成
された場合は、図に示すように、大気への排出ガス中
のCO濃度がもっとも低減され、図4の角付きのままの
場合に比べて約1/3になる。そして、この傾向は総燃
焼量が多くなるほど(大型炉ほど)顕著になる。また、
炉壁面に沿って流れてくる流れDが増えるとともに、前
方からの流れCが弱まって燃焼流Aの排気流れCへの巻
き込みが減少することによって、燃焼流Aの炉内循環が
強まり、それだけ多く燃焼流Aが炉内で仕事をするた
め、排気ガスの温度が、図4の角付きのままの場合に比
べて減少する。図は、排気ガス温が約15°C〜20
°C減少することを、示している。排気ガス温度が下が
ることは、排熱損失量が減少し、熱効率が向上すること
を意味している。また、給排気孔1の炉内側端部1aに
湾曲またはテーパがつけられているため、図4の角付き
のままの場合に比べて、排気ガスの流れ抵抗が減少し、
その分、炉内圧も低減する。図は炉内圧の低減を示し
ている。炉内圧の低減により、ブロワ容量が低減され、
炉に要求される耐圧強度も小さくなり、設備のコストダ
ウンがはかられる。
[0012] When the curved or tapered is formed over the entire circumference, as shown in FIG. 6, CO concentration in the exhaust gas to the atmosphere is the most reduced, as compared with the case of the left with the corner of FIG. 4 About 1/3. This tendency becomes more remarkable as the total combustion amount increases (larger furnace). Also,
As the flow D flowing along the furnace wall increases, the flow C from the front weakens and the entrainment of the combustion flow A into the exhaust flow C decreases, so that the circulation of the combustion flow A in the furnace is strengthened, and Since the combustion flow A works in the furnace, the temperature of the exhaust gas is reduced as compared with the case where the corner is left in FIG. FIG. 7 shows that the exhaust gas temperature is about 15 ° C. to 20 ° C.
° C is shown. A decrease in the exhaust gas temperature means that the amount of exhaust heat loss is reduced and the thermal efficiency is improved. Further, since the furnace inner end 1a of the supply / exhaust hole 1 is curved or tapered, the flow resistance of the exhaust gas is reduced as compared with the case where the corner is left in FIG.
The furnace pressure is reduced accordingly. FIG. 8 shows the reduction of the furnace pressure. By reducing the furnace pressure, the blower capacity is reduced,
The pressure resistance required for the furnace is also reduced, and equipment costs can be reduced.

【0013】本発明の第2実施例の排気ガス排出部構造
は、図3に示すように、蓄熱燃焼式バーナ3のバーナタ
イル2に形成された給排気孔1からなる。バーナタイル
2は、中央に形成された、燃料(たとえばガス状燃料、
ただしガス状燃料に限るものではない)とパイロットエ
アを噴出する燃料開放面25を有する。給排気孔1は燃
料開放面25のまわりに少なくとも1個形成されてお
り、炉内に供給されるメインエアを通すとともに、炉内
から排出される排気ガスを通す。メインエアと排気ガス
は給排気孔1を交互に流れる。第2実施例では、給排気
孔1の炉内側端部1aの湾曲またはテーパは、給排気孔
1の周縁のうち、燃料開放面25から遠い側の約半円に
わたって形成されている。そして、給排気孔1の周縁の
うち、燃料開放面25に近い側の約半円の部分は、角付
きのままとしてある。
As shown in FIG. 3, the structure of the exhaust gas discharge portion of the second embodiment of the present invention comprises a supply / exhaust hole 1 formed in a burner tile 2 of a regenerative combustion type burner 3. The burner tile 2 has a centrally formed fuel (eg, gaseous fuel,
However, it is not limited to gaseous fuel) and has a fuel release surface 25 for ejecting pilot air. At least one supply / exhaust hole 1 is formed around the fuel release surface 25, and allows the passage of main air supplied into the furnace and the passage of exhaust gas discharged from the furnace. Main air and exhaust gas flow alternately through the supply / exhaust holes 1. In the second embodiment, the curve or taper of the furnace inner end portion 1a of the supply / exhaust hole 1 is formed in the peripheral edge of the supply / exhaust hole 1 over a semicircle farther from the fuel release surface 25. In the peripheral edge of the air supply / exhaust hole 1, a portion of the semicircle on the side close to the fuel release surface 25 remains square.

【0014】本発明の第2実施例の作用を、図3、図
4、図〜図を参照して説明する。給排気孔1の炉内
側端部1aの湾曲またはテーパが、給排気孔1の周縁の
約半円周にわたって形成されているので、図4のように
全円周にわたって角付きのままとした給排気孔1´に比
べて、まわりから給排気孔1に流入する排気ガスの流れ
Dが多く、給排気孔1の前方から給排気孔1に流入する
排気ガスの流れCが弱まる。ただし、第1実施例ほどに
は弱まらない。その結果、図に示すように、排出ガス
中に含まれるCO量が低減し、図に示すように、排出
ガス温度が低減し、図に示すように、炉内圧が低減す
る。ただし、CO量の低減、排出ガス温度の低減、炉内
圧の低減、の何れの度合いも、第1実施例の場合と図4
の全円周角付きのままの場合との中間程度となる。その
他の作用は、第1実施例に準じる。
The operation of the second embodiment of the present invention will be described with reference to FIGS. 3, 4, and 6 to 8 . Since the curved or tapered inner end 1a of the supply / exhaust hole 1 is formed over about half the circumference of the periphery of the supply / exhaust hole 1, as shown in FIG. The flow D of the exhaust gas flowing into the supply / exhaust hole 1 from the periphery is larger than that of the exhaust hole 1 ′, and the flow C of the exhaust gas flowing into the supply / exhaust hole 1 from the front of the supply / exhaust hole 1 is weakened. However, it is not weakened as in the first embodiment. As a result, as shown in FIG. 6, CO amount is reduced to be contained in the exhaust gas, as shown in FIG. 7, the exhaust gas temperature is reduced, as shown in FIG. 8, the furnace pressure is reduced. However, the degree of reduction of the amount of CO, the reduction of the exhaust gas temperature, and the reduction of the furnace pressure are all different from those of the first embodiment in FIG.
Is about the middle of the case where the entire circumferential angle is maintained. Other operations are the same as in the first embodiment.

【0015】つぎに、本発実施例の排気ガス排出部構造
が適用された蓄熱燃焼式バーナを説明する。図は、給
排気切替式のシングル蓄熱燃焼式バーナを示しており、
そのバーナタイルの給排気孔に、本発明の第1実施例ま
たは第2実施例の構造が、適用される。図示例は本発明
の第1実施例が適用された場合を示している。図にお
いて、蓄熱燃焼式バーナ3は、ケーシング10と、ケー
シング10内に配置された蓄熱体30と、蓄熱体30の
一側に設けられたバーナタイル2と、蓄熱体30の他側
に設けられた給排気の切替機構40と、給排気の切替機
構40および蓄熱体30を貫通してバーナタイル2まで
延びる燃料噴射ノズル20と、からなる。
[0015] Next, a regenerative-combustion burners to exhaust gas outlet structure of this onset embodiment is applied. FIG. 5 shows a single regenerative combustion burner of a supply / exhaust switching type,
The structure of the first or second embodiment of the present invention is applied to the supply / exhaust holes of the burner tile. The illustrated example shows a case where the first embodiment of the present invention is applied. In FIG. 5 , a heat storage combustion type burner 3 is provided on a casing 10, a heat storage body 30 arranged in the casing 10, a burner tile 2 provided on one side of the heat storage body 30, and on another side of the heat storage body 30. And a fuel injection nozzle 20 extending through the supply / exhaust switching mechanism 40 and the heat storage body 30 to the burner tile 2.

【0016】燃料噴射ノズル20は、バーナ中心部で軸
方向に延びる。それと同芯状にパイロットエアパイプ2
1が延びている。パイロットエアは燃料噴射ノズル20
の外周面とパイロットエアパイプ21の内周面との間の
環状通路を流れる。燃料噴射ノズル20の先端にはパイ
ロット燃料吐出口20aをもうけ、そこから燃料の一部
をパイロット燃料として吐出させ、燃料噴射ノズル先端
部とパイロットエアパイプ21との間に火花を飛ばして
着火させ、パイロット炎を形成する。燃料の主要部は燃
料噴射ノズル20の先端から吐出され、バーナタイル2
の燃料解放面25から前方に噴出され、給排気孔1を通
して流出されたメインエアと混合され、燃焼されてバー
ナ前方にメイン炎を形成する。
The fuel injection nozzle 20 extends in the axial direction at the center of the burner. Pilot air pipe 2 concentric with it
One is extended. The pilot air is the fuel injection nozzle 20
Flows through the annular passage between the outer peripheral surface of the pilot air pipe 21 and the inner peripheral surface of the pilot air pipe 21. A pilot fuel outlet 20a is provided at the tip of the fuel injection nozzle 20, a part of the fuel is discharged as pilot fuel therefrom, and a spark is scattered between the tip of the fuel injection nozzle and the pilot air pipe 21 to ignite. Forms a flame. The main part of the fuel is discharged from the tip of the fuel injection nozzle 20, and the burner tile 2
The fuel is ejected forward from the fuel release surface 25, mixed with the main air flowing out through the supply / exhaust hole 1, and burned to form a main flame in front of the burner.

【0017】蓄熱体30は、排気ガスを通すときにその
熱を回収して蓄熱し、燃焼用メインエアを通すときに蓄
熱した熱を放出してメインエアを予熱する。蓄熱体30
は、バーナ周方向に複数のセクシションに区画されてお
り、その内の一部のセクシションに排気ガスが流れてい
るとき、他のセクションには給気であるメインエアが流
れる。給気、排気は切替機構40によって交互に切替え
られる。蓄熱体30は、セラミックス、耐熱金属、など
の耐熱材からなる。蓄熱体30は軸方向にガスを通す多
数の微細断面積をもつ通路を有し、たとえばハニカム構
造かなる。ただし、ハニカム構造に限るものではなく、
線材や細径パイプを束ねた構造などでもよい。蓄熱体3
0は、成形を容易とするためおよび熱応力を低減するた
めに、バーナ軸方向にも複数に分割されてもよい。
The heat storage element 30 recovers the heat when passing the exhaust gas and stores the heat, and releases the stored heat when passing the main air for combustion to preheat the main air. Heat storage element 30
Is divided into a plurality of sections in the circumferential direction of the burner, and when exhaust gas flows through some of the sections, main air serving as air supply flows into other sections. Air supply and exhaust are alternately switched by the switching mechanism 40. The heat storage body 30 is made of a heat-resistant material such as a ceramic or a heat-resistant metal. The heat storage body 30 has a passage having a large number of fine cross sections through which gas passes in the axial direction, and has, for example, a honeycomb structure. However, it is not limited to the honeycomb structure.
A structure in which wires or small diameter pipes are bundled may be used. Thermal storage 3
0 may be divided into a plurality of parts also in the burner axial direction in order to facilitate molding and reduce thermal stress.

【0018】バーナタイル2は、セラミックス、耐熱金
属などの耐熱材からなり、給排気面23から突出する突
出部24を有する。突出部24の内面から先端にかけて
燃料開放面25が形成されており、突出部24の外側の
給排気面23に給排気孔1が開口している。この給排気
孔1の炉内側の端部に本発明の第1または第2実施例の
湾曲またはテーパ構造が適用される。突出部24のまわ
りに設けられる複数の給排気孔1は蓄熱体30の周方向
の複数のセクションのそれぞれに対応するように設けら
れる。複数の給排気孔1の一部に排気ガスが流れている
とき残りの給排気孔1にはメインエアが流れている。蓄
熱体30の給気、排気の切替えに対応して給排気孔1の
給気、排気も切替わる。メインガスは蓄熱体30側から
炉内側に流れ、排気ガスは炉内側から蓄熱体30側に流
れる。バーナタイル2は、たとえばケーシング10によ
って支持されている。
The burner tile 2 is made of a heat-resistant material such as ceramics or heat-resistant metal, and has a projecting portion 24 projecting from the air supply / exhaust surface 23. A fuel release surface 25 is formed from the inner surface to the tip of the protrusion 24, and the supply / exhaust hole 1 is opened in the supply / exhaust surface 23 outside the protrusion 24. The curved or tapered structure according to the first or second embodiment of the present invention is applied to an end of the supply / exhaust hole 1 inside the furnace. The plurality of supply / exhaust holes 1 provided around the protrusion 24 are provided so as to correspond to each of the plurality of sections of the heat storage body 30 in the circumferential direction. When exhaust gas flows through a part of the plurality of supply / exhaust holes 1, main air flows through the remaining supply / exhaust holes 1. The air supply and exhaust of the air supply / exhaust hole 1 are also switched according to the switching of the air supply and exhaust of the heat storage body 30. The main gas flows from the heat storage body 30 side to the inside of the furnace, and the exhaust gas flows from the furnace inside to the heat storage body 30 side. The burner tile 2 is supported by, for example, a casing 10.

【0019】給排気の切替機構40は、可動部材44と
固定部材46と仕切壁41を有する。固定部材46は蓄
熱体30の複数の周方向セクションに対応させた複数の
貫通孔47を有する。可動部材44は仕切壁の一側に設
けられた開口部42と仕切壁の他側に設けられた開口部
43を有し、一方の開口部42は給気通路51に連通し
ており、他方の開口部43は排気通路52に連通してい
る。可動部材44が駆動手段(モータ、シリンダーな
ど)45によって、一方向にまたは往復的に回動され
て、それまで開口部42と合致していた貫通孔47を、
開口部43と合致させ、それまで開口部43と合致して
いた貫通孔47を、開口部42と合致させることによ
り、蓄熱体30および給排気孔1の給気、排気の流れが
切替わる。
The supply / exhaust switching mechanism 40 has a movable member 44, a fixed member 46, and a partition wall 41. The fixing member 46 has a plurality of through holes 47 corresponding to a plurality of circumferential sections of the heat storage body 30. The movable member 44 has an opening 42 provided on one side of the partition wall and an opening 43 provided on the other side of the partition wall, and one opening 42 communicates with the air supply passage 51, and the other. The opening 43 communicates with the exhaust passage 52. The movable member 44 is rotated in one direction or reciprocatingly by a driving means (a motor, a cylinder, or the like) 45 so that the through-hole 47 that has been aligned with the opening 42 is formed.
The flow of the air supply and exhaust of the heat storage body 30 and the air supply / exhaust hole 1 is switched by matching the through hole 47 that matches the opening 43 and the opening 47 that matches the opening 43 until then.

【0020】蓄熱燃焼式バーナ3の作用について説明す
ると、炉からの排気ガス(たとえば、900°C)が蓄
熱体30を通るときに、蓄熱体30は排気ガスの熱を奪
ってそれを蓄熱し、自身は約900°Cに昇温するとと
もに、排気ガス温度を約200°C〜250°Cに下げ
る。給排気が切り替わっていままで排気ガスが流れてい
た蓄熱体30の部分を給気が流れるとき、蓄熱体30は
メインエアに蓄熱していた熱を放出してメインエアの温
度を室温から約900°Cにあげる。かくして、排気ガ
スの熱が回収されて給気の予熱に利用され、バーナの熱
効率が約90%以上に向上される。バーナタイル2の給
排気孔1の炉側端部に湾曲またはテーパをつけたことに
よる作用は、燃料開放面25からの燃料と給気している
給排気孔1からのメインエアとの混合、燃焼によって形
成される燃焼流が、排気している給排気孔1に流入する
排気流に巻き込まれにくくなって、排出ガス中のCO量
が減少し、排熱損失が減少することである。
The operation of the regenerative combustion burner 3 will be described. When the exhaust gas (for example, 900 ° C.) from the furnace passes through the regenerator 30, the regenerator 30 takes the heat of the exhaust gas and stores it. Itself raises the temperature to about 900 ° C. and lowers the exhaust gas temperature to about 200 ° C. to 250 ° C. When the supply air flows through the portion of the heat storage body 30 where the exhaust gas is flowing while the supply and exhaust air is switched, the heat storage body 30 releases the heat stored in the main air to reduce the temperature of the main air from room temperature to about 900 degrees. ° C. Thus, the heat of the exhaust gas is recovered and used for preheating the air supply, and the thermal efficiency of the burner is improved to about 90% or more. The effect of the curved or tapered furnace-side end of the supply / exhaust hole 1 of the burner tile 2 is that the fuel from the fuel release surface 25 mixes with the main air from the supply / exhaust hole 1 being supplied. That is, the combustion flow formed by the combustion becomes difficult to be caught in the exhaust gas flowing into the exhaust / exhaust port 1, which reduces the amount of CO in the exhaust gas and reduces the exhaust heat loss.

【0021】なお、本発明実施例の給排気孔1をもつ蓄
熱燃焼式バーナ3が適用される炉は、工業炉であればよ
く、たとえば、溶解炉、焼結炉、予熱炉、均熱ろ、鍛造
炉、加熱炉、焼鈍炉、容体化炉、メッキ炉、乾燥炉、調
質炉、焼入れ炉、焼もどし炉、酸化還元炉、焼成炉、焼
付炉、焙焼炉、溶解保持炉、前炉、ルツボ炉、ホモジナ
イジング炉、エージング炉、反応炉、蒸留炉、取鍋乾燥
予熱炉、鋳型焼成予熱炉、焼準炉、ロー付け炉、浸炭
炉、塗装乾燥炉、保持炉、窒化炉、ソルトバス炉、ガラ
ス溶解炉、発電用ボイラを含むボイラ、ごみ焼却炉を含
む焼却炉、給湯装置、などを含む。
The furnace to which the regenerative combustion type burner 3 having the supply / exhaust hole 1 of the embodiment of the present invention is applied may be any industrial furnace, such as a melting furnace, a sintering furnace, a preheating furnace, and a soaking filter. , Forging furnace, heating furnace, annealing furnace, soaking furnace, plating furnace, drying furnace, tempering furnace, quenching furnace, tempering furnace, redox furnace, firing furnace, baking furnace, roasting furnace, melting and holding furnace, before Furnace, crucible furnace, homogenizing furnace, aging furnace, reaction furnace, distillation furnace, ladle drying preheating furnace, mold firing preheating furnace, normalizing furnace, brazing furnace, carburizing furnace, coating drying furnace, holding furnace, nitriding furnace , A salt bath furnace, a glass melting furnace, a boiler including a power generation boiler, an incinerator including a refuse incinerator, a hot water supply device, and the like.

【0022】[0022]

【発明の効果】請求項1〜の各項の各排気ガス排出部
構造によれば、給排気孔の炉側開口端部を炉側開口端部
から隔たった部分より大径としたので、排気ガスが給排
気孔周辺から給排気孔に流入しやすくなって、給排気孔
前方から給排気孔に流入する排気ガス流速と排気ガス流
量が相対的に低減する。そのため、燃焼流が炉内を十分
に循環する前に排気流に引き込まれる量が減り、その結
果、大気に排出される排気ガス中のCOの量が減少し、
排熱損失量も減少する
According to the exhaust gas discharge structure of each of the first to fourth aspects, the furnace-side opening end of the supply / exhaust hole has a larger diameter than the part separated from the furnace-side opening end. Exhaust gas easily flows into the supply / exhaust hole from the vicinity of the supply / exhaust hole, and the flow rate and exhaust gas flow rate of the exhaust gas flowing into the supply / exhaust hole from the front of the supply / exhaust hole are relatively reduced. As a result, the amount of the combustion stream drawn into the exhaust stream before it sufficiently circulates in the furnace is reduced, and as a result, the amount of CO in the exhaust gas discharged to the atmosphere is reduced,
Waste heat loss is also reduced .

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1実施例の排気ガス排出部構造の正
面図である。
FIG. 1 is a front view of a structure of an exhaust gas discharging portion according to a first embodiment of the present invention.

【図2】本発明の第1実施例の排気ガス排出部構造の断
面図である。
FIG. 2 is a cross-sectional view of an exhaust gas discharge unit structure according to a first embodiment of the present invention.

【図3】本発明の第2実施例の排気ガス排出部構造の断
面図である。
FIG. 3 is a sectional view of an exhaust gas discharge unit structure according to a second embodiment of the present invention.

【図4】比較例の排気ガス排出部構造の断面図である。FIG. 4 is a cross-sectional view of an exhaust gas discharge unit structure of a comparative example.

【図5】本発明の第1実施例(第2実施例でも可)を適
用した給排気切替式のシングル式蓄熱燃焼式バーナの断
面図である。
FIG. 5 is a sectional view of a single heat storage combustion burner of a supply / exhaust switching type to which the first embodiment (or the second embodiment) of the present invention is applied.

【図6】本発明第1実施例(湾曲Rが全周にあるも
の)、本発明第2実施例(湾曲Rが半周にあるもの)、
比較例(湾曲Rなしのもの)の、排出ガス中のCOの量
を示したグラフである。
FIG. 6 shows a first embodiment of the present invention (where the curvature R is on the entire circumference), a second embodiment of the invention (where the curvature R is on the half circumference),
It is a graph which showed the amount of CO in exhaust gas of a comparative example (thing without curvature R).

【図7】本発明第1実施例(湾曲Rが全周にあるも
の)、本発明第2実施例(湾曲Rが半周にあるもの)、
比較例(湾曲Rなしのもの)の、排気温度を示したグラ
フである。
FIG. 7 shows a first embodiment of the present invention (where the curvature R is on the entire circumference), a second embodiment of the invention (where the curvature R is on the half circumference),
5 is a graph showing an exhaust temperature of a comparative example (with no curvature R).

【図8】本発明第1実施例(湾曲Rが全周にあるも
の)、本発明第2実施例(湾曲Rが半周にあるもの)、
比較例(湾曲Rなしのもの)の、炉圧を示したグラフで
ある。
FIG. 8 shows a first embodiment of the present invention (where the curvature R is on the entire circumference), a second embodiment of the invention (where the curvature R is on the half circumference),
It is the graph which showed the furnace pressure of the comparative example (thing without curvature R).

【符号の説明】[Explanation of symbols]

1 排気ガスを通過させる手段(給排気孔、排気ポー
ト) 1a 手段1の炉側端部 1b 手段1の炉側端部から離れた部分 2 バーナタイル 3 蓄熱燃焼式バーナ 4 排出部部 1 給気通路 52 排気通
Means for passing the first exhaust gas (supply and exhaust hole, an exhaust port) 1a means 1 of the furnace side remote from the furnace side end portion of the end portion 1b means 1 part 2 burner tile 3 regenerative combustion burner 4 discharge section member 5 1 the supply passage 52 exhaust passage path

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平6−221545(JP,A) 特開 平7−318050(JP,A) 実開 昭52−142772(JP,U) (58)調査した分野(Int.Cl.7,DB名) F23L 15/00 - 15/02 F23L 17/00 F23J 13/06 F23G 5/00 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-6-221545 (JP, A) JP-A-7-318050 (JP, A) JP-A 52-142772 (JP, U) (58) Investigation Field (Int.Cl. 7 , DB name) F23L 15/00-15/02 F23L 17/00 F23J 13/06 F23G 5/00

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 給排気切替式のシングルバーナからなる
蓄熱燃焼式バーナのバーナタイルに形成された給排気孔
からなる排気ガス排出部構造であって、 前記給排気孔の炉側開口端部と、 前記給排気孔のうち前記炉側開口端部から隔たった部分
と、 を有し、 前記給排気孔の炉側開口端部が前記給排気孔の炉側開口
端部から隔たった部分より大径とされている、 排気ガス排出部構造。
An exhaust gas discharge unit structure comprising a supply / exhaust hole formed in a burner tile of a heat storage combustion type burner comprising a supply / exhaust switching type single burner , wherein the supply / exhaust hole is on a furnace side. An opening end, and a part of the supply / exhaust hole separated from the furnace-side opening end, wherein the furnace-side opening end of the supply / exhaust hole is separated from the furnace-side opening end of the supply / exhaust hole. Exhaust gas exhaust structure that is larger in diameter than just the part.
【請求項2】 前記給排気孔の炉側開口端部を前記給排
気孔の炉側開口端部から隔たった部分より大径とする構
造が、前記炉側開口端部に形成された炉側に向かって拡
径する湾曲またはテーパからなり、前記湾曲の半径また
はテーパの径方向脚長が、前記給排気孔の炉側開口端部
から隔たった部分の径の0.1倍以上とされている請求
項1記載の排気ガス排出部構造。
2. A furnace-side opening end of the supply / exhaust hole is provided with the supply / exhaust port.
The diameter of the pores should be larger than the part separated from the furnace-side opening end.
The structure expands toward the furnace side formed at the furnace side opening end.
The radius or radius of said curve.
Is the tapered radial leg length, the furnace-side opening end of the supply / exhaust hole
Claim that the diameter is at least 0.1 times the diameter of the part separated from
Item 2. The exhaust gas discharging portion structure according to Item 1.
【請求項3】 前記炉側開口端部の湾曲またはテーパ
が、前記炉側開口端部の周縁の全円周にわたって形成さ
れている、請求項2記載の排気ガス排出部構造。
3. The curved or tapered end of the furnace side opening.
Are formed over the entire circumference of the periphery of the furnace-side opening end.
The exhaust gas discharging part structure according to claim 2, wherein the exhaust gas discharging part structure is provided.
【請求項4】 前記炉側開口端部の湾曲またはテーパ
が、前記炉側開口端部の周縁の、燃料開放面から遠い側
の半周にわたって形成されている、請求項2記載の排気
ガス排出部構造。
4. A curved or tapered end of the furnace side opening.
Is the side of the periphery of the furnace side opening end far from the fuel release surface
3. The exhaust gas according to claim 2, wherein the exhaust gas is formed over a half circumference of the exhaust gas.
Gas outlet structure.
JP14917996A 1996-02-09 1996-06-11 Exhaust gas exhaust structure Expired - Fee Related JP3164764B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14917996A JP3164764B2 (en) 1996-02-09 1996-06-11 Exhaust gas exhaust structure

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP8-24201 1996-02-09
JP2420196 1996-02-09
JP14917996A JP3164764B2 (en) 1996-02-09 1996-06-11 Exhaust gas exhaust structure

Publications (2)

Publication Number Publication Date
JPH09273741A JPH09273741A (en) 1997-10-21
JP3164764B2 true JP3164764B2 (en) 2001-05-08

Family

ID=26361683

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14917996A Expired - Fee Related JP3164764B2 (en) 1996-02-09 1996-06-11 Exhaust gas exhaust structure

Country Status (1)

Country Link
JP (1) JP3164764B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008156146A1 (en) 2007-06-20 2008-12-24 Chiyoda Corporation Reaction furnace using a hot air burning technology

Also Published As

Publication number Publication date
JPH09273741A (en) 1997-10-21

Similar Documents

Publication Publication Date Title
JP3460441B2 (en) Combustion device and thermal equipment equipped with the combustion device
AU678729B2 (en) An industrial furnace and a burner for conducting regenerative combustion and a combustion method therefor
JP5229512B2 (en) Recuperator burner with flat heat exchange pipe
EP0791785B1 (en) Hot fluid generating apparatus
JP3164764B2 (en) Exhaust gas exhaust structure
JP3481611B2 (en) Industrial furnaces and burners for regenerative combustion
JPH066906U (en) Hot air generator
JP3375310B2 (en) Regenerative burner
JP3267839B2 (en) Industrial furnace, regenerative combustion burner, and method of burning industrial furnace
JP3254337B2 (en) Low NOx burner
JP3310503B2 (en) Industrial furnaces and burners for regenerative combustion
JP3691863B2 (en) Radiant tube burner and alternating combustion radiant tube burner system using the same
JP3423372B2 (en) Combustion equipment
JPH051807A (en) Device to incinerate exhaust gas containing organic gas
JP3370839B2 (en) Radiant tube burner and atmosphere firing furnace using the same
JP3561364B2 (en) Brazing furnace
JPH09217904A (en) Radiant tube type heat storage combustion unit
JPH11223467A (en) Ceramic burning furnace
JP3045430B2 (en) Thermal storage burner
JP3885113B2 (en) Combustion furnace
JPH07113508A (en) Catalyst combustion device
JP2000346314A (en) Alternate combustion type regenerative system and heating furnace using it
JPH09257208A (en) Cylindrical once-through boiler
JPH11173506A (en) Low nox burner
JPH10205744A (en) Regenerative combustion burner device

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090302

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090302

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100302

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110302

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120302

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees