JPH08165521A - Production of grain-oriented silicon steel sheet extremely excellent in glass coating and magnetic characteristic - Google Patents

Production of grain-oriented silicon steel sheet extremely excellent in glass coating and magnetic characteristic

Info

Publication number
JPH08165521A
JPH08165521A JP6309162A JP30916294A JPH08165521A JP H08165521 A JPH08165521 A JP H08165521A JP 6309162 A JP6309162 A JP 6309162A JP 30916294 A JP30916294 A JP 30916294A JP H08165521 A JPH08165521 A JP H08165521A
Authority
JP
Japan
Prior art keywords
annealing
steel sheet
grain
weight
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6309162A
Other languages
Japanese (ja)
Other versions
JP2781524B2 (en
Inventor
Maremizu Ishibashi
希瑞 石橋
Koji Yamazaki
幸司 山崎
Kenichi Yatsugayo
健一 八ケ代
Katsuro Kuroki
克郎 黒木
Osamu Tanaka
収 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Nippon Steel Plant Designing Corp
Original Assignee
Nittetsu Plant Designing Corp
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP6309162A priority Critical patent/JP2781524B2/en
Application filed by Nittetsu Plant Designing Corp, Nippon Steel Corp filed Critical Nittetsu Plant Designing Corp
Priority to CN951972014A priority patent/CN1065004C/en
Priority to US08/836,593 priority patent/US5840131A/en
Priority to EP95938021A priority patent/EP0789093B2/en
Priority to DE69515892T priority patent/DE69515892T3/en
Priority to KR1019970703263A priority patent/KR100245032B1/en
Priority to PCT/JP1995/002346 priority patent/WO1996015291A1/en
Publication of JPH08165521A publication Critical patent/JPH08165521A/en
Application granted granted Critical
Publication of JP2781524B2 publication Critical patent/JP2781524B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • H01F1/14775Fe-Si based alloys in the form of sheets
    • H01F1/14783Fe-Si based alloys in the form of sheets with insulating coating

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE: To obtain a magnetic steel sheet having uniform high tension glass coating and excellent in the magnetic characteristic by specifying the separation agent for annealing and the last finish annealing condition, at the time of producing the grain oriented silicon steel sheet from an electrical steel slab having a specific composition. CONSTITUTION: The silicon steel slab composed of, by wt.%, 0.010-0.0075 C, 2.0-4.5 Si, <=0.015 S, 0.01-0.035 acid soluble Al, <=0.012 N, 0.05-0.45 Mn and the balance Fe is heated at low temp., such as <=1280 deg.C. This slab is hot-rolled to make the final sheet thickness by cold-rolling at one time or two or more times inserting intermediate annealing, and decarburization-annealing and nitrogen annealing are executed, and after coating the separation agent for annealing, the finish annealing is executed and an insulation coating treatment is applied to obtain the grain-oriented silicon steel sheet. In this method, the separation agent for annealing containing 0.015-0.120wt. parts of as F, Cl, Br and I in one or more kinds of halogenide to 100wt. parts of NgO is coated, and after raising the temp. to 850-1100 deg.C the final finish annealing at <=12 deg.C/hr average raising temp. ratio, the high temp. finish annealing is executed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は方向性電磁鋼板の製造に
際し、最終仕上げ焼鈍工程において、極めて均一で、優
れた高張力のグラス被膜をコイル全面に亘って形成する
と共に、磁気特性の良好な方向性電磁鋼板を得るための
製造方法に関する。
INDUSTRIAL APPLICABILITY The present invention, in the production of grain-oriented electrical steel sheet, in the final finishing annealing step, forms an extremely uniform and excellent high-tensile glass coating over the entire surface of the coil and has good magnetic properties. The present invention relates to a manufacturing method for obtaining a grain-oriented electrical steel sheet.

【0002】[0002]

【従来の技術】通常、方向性電磁鋼板はSi2.0〜
4.5%を含有する素材スラブを熱延し、焼鈍と1回又
は中間焼鈍を挟む2回以上の冷延により最終板厚とされ
る。次いで、連続焼鈍炉においてH2 或いはN2 +H2
雰囲気中でP H2 O /P H2 を制御して脱炭焼鈍を行
い、脱炭、一次再結晶及びSiO2 を主成分とする酸化
層形成処理を行う。その後、MgOを主成分とする焼鈍
分離剤をスラリー状としてコーティングロール等により
鋼板に塗布し、乾燥後、コイルに巻取り最終仕上げ焼鈍
を行い、通常は絶縁被膜剤処理とヒートフラットニング
を行って最終製品とされる。
2. Description of the Related Art Usually, grain-oriented electrical steel sheets have a Si 2.0-
A raw material slab containing 4.5% is hot-rolled and annealed and cold-rolled once or twice with intermediate annealing to obtain a final plate thickness. Then, in a continuous annealing furnace, H 2 or N 2 + H 2
Decarburization annealing is performed by controlling P H 2 O / P H 2 in the atmosphere, and decarburization, primary recrystallization, and oxide layer forming treatment containing SiO 2 as a main component are performed. After that, an annealing separating agent containing MgO as a main component is applied in a slurry form to a steel plate by a coating roll or the like, dried, wound on a coil, and finally finished annealed, and usually an insulating coating agent treatment and heat flattening are performed. The final product.

【0003】この方向性電磁鋼板は〈001〉軸を持つ
(110)〈001〉結晶が高温の二次再結晶で優先的
に成長し、鋼中にインヒビターとして分散しているAl
N,MnS等によって、その成長を抑えられている他の
結晶を侵食するために、(110)〈001〉結晶が優
先的に成長するものと考えられている。従って、優れた
方向性電磁鋼板を製造するためには、鋼中インヒビター
の分散状態と、これらの分解までの制御が重要である。
特に、最終仕上げ焼鈍においてインヒビターは脱炭焼鈍
で形成した鋼板表面の酸化膜、焼鈍分離剤及び最終仕上
げ焼鈍での熱サイクルや雰囲気ガス条件により影響を受
ける。
In this grain-oriented electrical steel sheet, a (110) <001> crystal having a <001> axis grows preferentially by high temperature secondary recrystallization, and Al dispersed as an inhibitor in the steel.
It is considered that the (110) <001> crystal grows preferentially because it erodes other crystals whose growth is suppressed by N, MnS and the like. Therefore, in order to manufacture an excellent grain-oriented electrical steel sheet, it is important to control the dispersed state of the inhibitor in the steel and control the decomposition thereof.
In particular, in the final finish annealing, the inhibitor is affected by the oxide film on the surface of the steel sheet formed by the decarburization annealing, the annealing separator, the heat cycle in the final finishing annealing, and the atmospheric gas conditions.

【0004】仕上げ焼鈍におけるグラス被膜形成反応
は、焼鈍分離剤のMgOと脱炭焼鈍で形成されたSiO
2 主体の酸化膜と反応して通常グラス被膜と呼ぶフォル
ステライト被膜を形成する(2MgO+SiO2 →Mg
2 SiO4 )。又、この際、鋼中インヒビターとしてA
lNを用いる場合にはフォルステライト被膜直下付近に
Al2 3 とMgO,SiO2 等によるスピネル構造の
化合物を形成する。
The reaction of forming a glass film in the finish annealing is carried out by using MgO as an annealing separator and SiO formed by decarburization annealing.
It reacts with the oxide film mainly composed of 2 to form a forsterite film usually called a glass film (2MgO + SiO 2 → Mg
2 SiO 4 ). At this time, A as an inhibitor in steel
When 1N is used, a compound having a spinel structure composed of Al 2 O 3 and MgO, SiO 2 or the like is formed immediately below the forsterite coating.

【0005】このグラス被膜形成においては、MgOと
SiO2 の反応は純粋系においては1600℃近い高温
でなければ反応が生じないため、酸化膜の性状(成分、
形成状態)、仕上げ焼鈍条件の制御(ヒートサイクル、
雰囲気ガス)と共に焼鈍分離剤の性状として、主成分の
MgOの不純物の調整、粒径、粒子形状、表面状態、活
性度等の他、反応促進剤の添加剤を利用して、仕上げ焼
鈍工程において如何に低温から均一なグラス被膜形成を
行わせるかが優れたグラス被膜と良好な磁気特性を得る
ための重要なカギとなる。このように、方向性電磁鋼板
の商品価値を決定する上で重要なグラス被膜と磁気特性
に対して、脱炭酸化膜と焼鈍分離剤用の添加剤及び仕上
げ焼鈍条件の影響が大きいことから、鋼板成分にマッチ
したこれらの工程条件の開発は、方向性電磁鋼板製造技
術上重要な課題となってきている。
In the formation of this glass film, the reaction between MgO and SiO 2 does not occur in a pure system at a high temperature near 1600 ° C. Therefore, the properties of the oxide film (components,
Formation condition), control of finish annealing conditions (heat cycle,
In addition to the atmospheric gas), the properties of the annealing separator include the adjustment of impurities in the main component MgO, the particle size, the particle shape, the surface state, the activity, and the like. How to form a uniform glass film from a low temperature is an important key for obtaining an excellent glass film and good magnetic properties. Thus, for the glass coating and magnetic properties that are important in determining the commercial value of the grain-oriented electrical steel sheet, the effects of the additives for decarboxylation film and annealing separator and finish annealing conditions are large, The development of these process conditions that match the steel plate composition has become an important issue in the grain-oriented electrical steel sheet manufacturing technology.

【0006】前述のように、グラス被膜形成工程におい
て使用されるMgOは、通常、必要に応じて反応促進剤
として配合する少量の添加剤と共に水に懸濁させてスラ
リー状として鋼板に塗布される。この添加剤は通常、酸
化物、S化合物、B化合物等がフォルステライト被膜形
成の反応促進剤として利用されてきた。この際、MgO
の製造条件によっては、例えば、高活性の場合、水との
混合撹拌条件によってはMgO→Mg(OH)2 となる
水和反応が生じ、コイル内(板間)に水分を持ち込む結
果、板間露点を高め且つコイル長手方向及び幅方向にお
いて雰囲気状態を不均一にする問題がある。又、添加剤
の種類や量によっては、余剰の酸素や反応促進効果の違
いによって、グラス被膜の質、量に大きい影響を与え
る。このため、仕上げ焼鈍昇温過程において不均一で、
過剰な追加酸化を生じさせ、スケール、ガスマーク、ピ
ンホール、変色等の重度の被膜欠陥を引き起こす。
As described above, MgO used in the glass film forming step is usually suspended in water together with a small amount of an additive to be added as a reaction accelerator, if necessary, and applied to the steel sheet in the form of a slurry. . As the additives, oxides, S compounds, B compounds and the like have been usually used as reaction accelerators for forming forsterite coatings. At this time, MgO
Depending on the production conditions, for example, in the case of high activity, a hydration reaction of MgO → Mg (OH) 2 occurs depending on the mixing and stirring conditions with water, and as a result of bringing water into the coil (between plates), There is a problem that the dew point is increased and the atmosphere condition is made non-uniform in the coil longitudinal direction and width direction. Further, depending on the kind and amount of the additive, the quality and quantity of the glass film are greatly affected by the excess oxygen and the difference in the reaction promoting effect. For this reason, it is not uniform during the temperature rise process of finish annealing,
It causes excessive additional oxidation and causes severe film defects such as scales, gas marks, pinholes, and discoloration.

【0007】この高水和による問題点を解決するための
手段としては、一般的には、高温焼成のMgOの使用に
よる方法が採用される。この方法を開示したものとし
て、例えば、特開昭55−73823号公報がある。こ
のような焼成温度を上げることで得られた低活性MgO
では、水和性の低下は得られるが活性(反応性)や付着
性が低下する欠点がある。又、焼鈍分離剤中への添加剤
によるグラス被膜及び磁性の改善技術として、特公平2
−5820号公報にはSb,Sr,Ti,Zrの塩化物
の1種又は2種以上をMgO100重量部に対して0.
02〜1.5重量部添加する方法が提案されている。
As a means for solving the problem due to the high hydration, generally, a method using MgO of high temperature firing is adopted. For example, Japanese Patent Application Laid-Open No. 55-73823 discloses this method. Low activity MgO obtained by increasing the firing temperature
However, there is a drawback in that the activity (reactivity) and the adhesion are reduced although the hydration property is reduced. In addition, as a technique for improving the glass film and the magnetism by the additive in the annealing separator, Japanese Patent Publication No.
No. 5820 discloses that one or two or more chlorides of Sb, Sr, Ti, and Zr are added in an amount of 0.
A method of adding 02 to 1.5 parts by weight has been proposed.

【0008】これにより添加剤化合物が鋼板表面の酸化
層成分のSiO2 リッチ化と緻密化をもたらし、仕上げ
焼鈍において追加酸化の抑制と反応促進効果をもたらし
て、優れた鉄損特性とグラス被膜が得られるものであ
る。又、特開平3−120376号公報には前記のよう
な塩化物の添加技術の改善技術として、Mg,Na,K
及びCaから選択された金属塩化物をMgOへ添加すれ
ば硫酸アンチモン、メタ珪酸ナトリウムの併用なしに磁
気特性の改善効果が得られることが示されている。この
ように、これらのMgOの性状や反応促進剤の添加剤を
改善することでグラス被膜形成反応が改善され、効果が
得られている。
As a result, the additive compound brings about the enrichment and densification of the oxide layer component on the surface of the steel sheet with SiO 2 and suppresses the additional oxidation and the effect of accelerating the reaction in the finish annealing, so that the excellent iron loss characteristics and the glass coating film are obtained. Is what you get. Further, Japanese Patent Laid-Open No. 3-120376 discloses a technique for improving the chloride addition technique described above, which includes Mg, Na and K.
It is shown that addition of a metal chloride selected from Ca and Ca to MgO can improve the magnetic properties without using antimony sulfate and sodium metasilicate in combination. As described above, by improving the properties of these MgO and the additive of the reaction accelerator, the glass film forming reaction is improved and the effect is obtained.

【0009】又、仕上げ焼鈍サイクルを改良して方向性
電磁鋼板の品質を向上させる技術を開示したものとし
て、特開昭49−76719号公報がある。これは、S
i;4%以下、C;0.06%以下、Sb;0.005
〜0.100%及びAl;0.01〜0.05%含有す
る素材を用いて、最終仕上げ焼鈍において800〜95
0℃の温度範囲で二次再結晶を十分に発達させることを
目標とするものである。即ち、二次再結晶温度の低いこ
の発明における成分素材を、850〜950℃の温度域
で保持し、十分に二次再結晶後、引き続き1180℃以
上のような高温で純化焼鈍を行うもので、これによる、
磁気特性の向上が得られている。しかし、鋼成分、脱炭
焼鈍条件や最終仕上げ焼鈍条件によってはグラス被膜特
性や磁気特性が不安定になる場合があり、未だ十分な技
術とはいえず、更なる技術改善が望まれているところで
ある。このように、仕上げ焼鈍において安定したグラス
被膜形成技術の開発は方向性電磁鋼板の製造に関わる技
術者の長年の課題である。
Further, Japanese Patent Laid-Open No. 49-76719 discloses a technique for improving the quality of a grain-oriented electrical steel sheet by improving the finish annealing cycle. This is S
i: 4% or less, C: 0.06% or less, Sb: 0.005
˜0.100% and Al; 0.01˜0.05%, and 800-95 in final finish annealing.
The objective is to sufficiently develop the secondary recrystallization in the temperature range of 0 ° C. That is, the component material in the present invention having a low secondary recrystallization temperature is kept in a temperature range of 850 to 950 ° C., and after sufficiently secondary recrystallization, purification annealing is subsequently performed at a high temperature of 1180 ° C. or higher. , Due to this,
Improved magnetic properties have been obtained. However, the glass coating properties and magnetic properties may become unstable depending on the steel composition, decarburization annealing conditions, and final finish annealing conditions, which is not a sufficient technique yet, and further technological improvements are desired. is there. Thus, the development of a stable glass film forming technique in finish annealing has been a long-standing issue for engineers involved in the production of grain-oriented electrical steel sheets.

【0010】[0010]

【発明が解決しようとする課題】本発明は、1280℃
以下の低温スラブ加熱でAlN或いは(Al,Si)N
をインヒビターとして利用する高温二次再結晶プロセス
材のグラス被膜の均一化と高張力化及び磁気特性の向上
を得るための製造方法を提供することを目的としてなさ
れた。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention
AlN or (Al, Si) N by the following low temperature slab heating
The present invention has been made for the purpose of providing a manufacturing method for obtaining a uniform glass coating of a high-temperature secondary recrystallization process material that utilizes benzene as an inhibitor, a high tensile strength, and an improvement in magnetic properties.

【0011】[0011]

【課題を解決するための手段】本発明者等は、鋼成分と
して、重量%でC;0.010〜0.075%、Si;
2.0〜4.5%、S;0.015%以下、酸可溶A
l;0.010〜0.035%、N;0.012%以
下、Mn;0.05〜0.45%、残部をFe及び不可
避の不純物からなる電磁鋼スラブを1280℃以下の低
温でスラブ加熱を行った後、熱延し、1回又は中間焼鈍
を挟む2回以上の冷延により最終板厚とし、脱炭焼鈍と
窒素焼鈍をし、焼鈍分離剤を塗布後、仕上げ焼鈍し、絶
縁被膜処理することからなる方向性電磁鋼板の製造方法
において、グラス被膜形成反応を向上させるべく、脱炭
焼鈍及び焼鈍分離剤の塗布〜最終仕上げ焼鈍条件につい
て研究を行った。
As a steel component, the inventors of the present invention have used C: 0.010 to 0.075% by weight, Si:
2.0-4.5%, S; 0.015% or less, acid-soluble A
1; 0.010 to 0.035%, N; 0.012% or less, Mn; 0.05 to 0.45%, the balance being a magnetic steel slab consisting of Fe and unavoidable impurities at a low temperature of 1280 ° C. or less. After heating, it is hot-rolled and cold-rolled once or twice with intermediate annealing to obtain the final thickness, decarburized and nitrogen-annealed, after applying an annealing separator, finish annealing, insulation In a method for producing a grain-oriented electrical steel sheet consisting of coating treatment, decarburization annealing and application of an annealing separating agent to final finishing annealing conditions were studied in order to improve the glass coating forming reaction.

【0012】その結果、本発明適用素材のように、イン
ヒビターとしてAlN或いは(Al,Si)Nを使用す
る二次再結晶温度の高い素材においては、従来の方向性
電磁鋼板とは特別に異なって、グラス被膜形成と二次再
結晶の機能分離が可能であることを発見した。即ち、グ
ラス被膜形成反応の活発な温度領域で、焼鈍分離剤の添
加剤の反応性向上と熱サイクル効果で十分なグラス被膜
形成を行わせた後、二次再結晶を行なわせ、極めて優れ
たグラス被膜と磁気特性の両立を得られる技術の完成に
至ったのである。
As a result, a material having a high secondary recrystallization temperature using AlN or (Al, Si) N as an inhibitor, such as the material to which the present invention is applied, is particularly different from the conventional grain-oriented electrical steel sheet. , It was discovered that functional separation of glass film formation and secondary recrystallization is possible. That is, in the active temperature range of the glass film forming reaction, after sufficient glass film formation was performed by the reactivity improvement of the annealing separator and the heat cycle effect, secondary recrystallization was performed, and it was extremely excellent. We have completed a technology that can achieve both glass coating and magnetic properties.

【0013】このための焼鈍分離剤として、脱炭焼鈍に
より、酸化膜成分としてSiO2 とファイヤライト主成
分の酸化膜を形成した鋼板上にMgOに、ハロゲン化合
物とアルカリ金属或いはアルカリ土類金属を必要に応じ
て添加した焼鈍分離剤を塗布し、最終仕上げ焼鈍の昇温
時850〜1100℃における昇温率を平均12℃/Hr
以下として焼鈍することによりグラス被膜形成が均一で
優れ、磁気特性が極めて良好な方向性電磁鋼板が得られ
る。
As an annealing separator for this purpose, MgO, a halogen compound and an alkali metal or an alkaline earth metal are formed on a steel sheet on which an oxide film containing SiO 2 and firelite as an oxide film component is formed by decarburization annealing. The annealing separator added as needed is applied, and the temperature rise rate in the final finish annealing at 850 to 1100 ° C is 12 ° C / hr on average.
By annealing as described below, a grain coating is uniformly formed and excellent, and a grain-oriented electrical steel sheet having extremely good magnetic properties is obtained.

【0014】本発明は、グラス被膜形成と二次再結晶過
程における脱炭焼鈍、焼鈍分離剤、最終仕上げ焼鈍にお
ける従来技術の解決策として以下の構成を要旨とする。 (1)重量%でC;0.010〜0.075%、Si;
2.0〜4.5%、S;0.015%以下、酸可溶A
l;0.010〜0.035%、N;0.012%以
下、Mn;0.05〜0.45%、残部をFe及び不可
避の不純物からなる電磁鋼スラブを1280℃以下の低
温でスラブ加熱を行った後、熱延し、1回又は中間焼鈍
を挟む2回以上の冷延により最終板厚とし、脱炭焼鈍と
窒化焼鈍をし、焼鈍分離剤を塗布後、仕上げ焼鈍し、絶
縁被膜処理することからなる方向性電磁鋼板の製造方法
において、焼鈍分離剤としてMgO100重量部に対
し、ハロゲン化合物の1種又は2種以上をF,Cl,B
r,Iとして0.015〜0.120重量部含む焼鈍分
離剤を塗布し、最終仕上げ焼鈍の850〜1100℃の
領域の平均昇温率を12℃/Hr以下として昇熱後、高温
仕上げ焼鈍することを特徴とする、グラス被膜と磁気特
性の極めて優れる方向性電磁鋼板の製造方法。
The present invention has the following features as a solution of the prior art in decarburization annealing, annealing separator, and final finishing annealing in the glass film formation and secondary recrystallization process. (1) C by weight%; 0.010 to 0.075%; Si;
2.0-4.5%, S; 0.015% or less, acid-soluble A
1; 0.010 to 0.035%, N; 0.012% or less, Mn; 0.05 to 0.45%, the balance being a magnetic steel slab consisting of Fe and unavoidable impurities at a low temperature of 1280 ° C. or less. After heating, it is hot-rolled and cold-rolled once or twice or more with intermediate annealing sandwiched to obtain the final plate thickness, decarburization annealing and nitriding annealing, after applying an annealing separator, finish annealing, insulation In a method for producing a grain-oriented electrical steel sheet comprising coating treatment, one, two or more halogen compounds are added as F, Cl, B to 100 parts by weight of MgO as an annealing separator.
An annealing separator containing 0.015 to 0.120 parts by weight as r and I is applied, and the average temperature rising rate in the region of 850 to 1100 ° C of the final finish annealing is increased to 12 ° C / Hr or less, followed by high temperature finish annealing. A method of manufacturing a grain-coated electrical steel sheet having excellent glass properties and magnetic properties, which is characterized by:

【0015】(2)(1)に記載の製造方法において、
焼鈍分離剤MgOに添加するハロゲン物質がF,Cl,
Br,Iとして0.015〜0.012重量部に対し、
アルカリ金属化合物及びアルカリ土類金属化合物の1種
又は2種以上を0.010〜0.50重量部添加するこ
とを特徴とする、グラス被膜と磁気特性の極めて優れる
方向性電磁鋼板の製造方法。 (3)(1)又は(2)に記載の製造方法において、仕
上げ焼鈍の850〜1100℃における温度領域で5〜
20Hrの範囲で一定温度に保持することを特徴とする、
グラス被膜と磁気特性の極めて優れる方向性電磁鋼板の
製造方法。これにより、従来技術では実現できなかった
広範囲の製造条件下においてコイル全面、全幅に亘って
グラス被膜が均一で、高張力且つ密着性が優れ、更に高
磁束密度と低鉄損の方向性が得られる。
(2) In the manufacturing method described in (1),
The halogen substances added to the annealing separator MgO are F, Cl,
With respect to 0.015 to 0.012 parts by weight as Br, I,
A method for producing a grain coating and a grain-oriented electrical steel sheet having extremely excellent magnetic properties, which comprises adding one or more of an alkali metal compound and an alkaline earth metal compound in an amount of 0.010 to 0.50 parts by weight. (3) In the manufacturing method according to (1) or (2), 5 to 5 in the temperature range of 850 to 1100 ° C of finish annealing.
Characterized by maintaining a constant temperature in the range of 20 hours,
A method of manufacturing grain-oriented electrical steel sheets with extremely excellent glass coating and magnetic properties. As a result, under a wide range of manufacturing conditions that could not be realized by conventional technology, the glass coating is uniform over the entire surface and width of the coil, high tension and adhesion are excellent, and further high magnetic flux density and low iron loss directionality are obtained. To be

【0016】本発明の適用にあたっては、前記のような
成分スラブを出発材として、このスラブを1280℃以
下の低温で加熱し、熱延し、焼鈍し、冷延して最終板厚
とした後、脱炭焼鈍し、表面にSiO2 をファイヤライ
ト主成分の酸化膜を形成した後、窒化処理を行って調整
される。この鋼板上に焼鈍分離剤として、MgO100
重量部にハロゲン元素化合物の1種又は2種以上をF,
Cl,Br,Iとして0.010〜0.120重量部と
必要に応じてアルカリ金属或いはアルカリ土類金属化合
物や他の酸化物等を含む物質を純水中でスラリー状とし
て均一に分散し、コーティングロール等で一定量に塗布
し、コイルに巻取られる。
In applying the present invention, the above-mentioned component slab is used as a starting material, and the slab is heated at a low temperature of 1280 ° C. or lower, hot rolled, annealed, and cold rolled to obtain a final plate thickness. After decarburization annealing, SiO 2 is formed on the surface to form an oxide film containing firelite as a main component, and then nitriding treatment is performed to adjust. MgO100 is used as an annealing separator on this steel sheet.
One part or two or more kinds of halogen element compounds are added to parts by weight of F,
Cl, Br, I as 0.010 to 0.120 parts by weight and, if necessary, a substance containing an alkali metal or alkaline earth metal compound and other oxides are uniformly dispersed in pure water as a slurry, It is applied in a fixed amount with a coating roll or the like and wound on a coil.

【0017】次いで、最終仕上げ焼鈍として、昇温時の
850〜1100℃における温度域を平均昇温率で12
℃/Hrとなるように徐加熱或いは一定温度で均熱保持し
た後、1150〜1200℃×20Hrの高温、長時間の
熱処理を行って、グラス被膜形成、二次再結晶及び純化
が行われる。このようにして処理されたグラス被膜形成
後のコイルは、連続ラインにおいて余剰の焼鈍分離剤を
水洗により除去し、軽酸洗の後、絶縁被膜剤を塗布し、
その焼き付けと形状矯正、歪取り焼鈍を兼ねてヒートフ
ラットニングが行われ、最終製品とされる。
Then, as the final finish annealing, the temperature range from 850 to 1100 ° C. at the time of heating is 12 at an average heating rate.
After gradually heating or soaking at a constant temperature so that the temperature becomes ℃ / Hr, heat treatment at a high temperature of 1150 to 1200 ° C. × 20 Hr for a long time is performed to form a glass film, secondary recrystallization, and purification. The coil after the glass coating formed in this manner is removed by washing the surplus annealing separator in a continuous line with water, followed by light pickling, and then the insulating coating is applied,
Heat flattening is performed to combine the baking, shape correction, and strain relief annealing to obtain the final product.

【0018】方向性電磁鋼板においては、この際のグラ
ス被膜の形成時期、形成量、形成状態等がインヒビター
AlN,MnS等の分解速度に影響を与えたり、グラス
被膜の質、張力或いは純化反応等に影響をを及ぼす結
果、製品のグラス被膜特性と磁気特性を左右するもので
ある。この際、方向性電磁鋼板、とりわけ高磁束密度材
においては、被膜張力による鉄損、磁歪等の改善効果が
大きいことから、仕上げ焼鈍で形成したグラス被膜の張
力効果を更に補強するために、絶縁被膜成分として張力
付与型のものが適用される。
In the grain-oriented electrical steel sheet, the time, amount and state of formation of the glass coating at this time affect the decomposition rate of the inhibitors AlN, MnS, etc., and the quality, tension or purification reaction of the glass coating. As a result, it affects the glass coating properties and magnetic properties of the product. At this time, in the grain-oriented electrical steel sheet, especially in the high magnetic flux density material, the iron loss due to the coating tension, the effect of improving the magnetostriction, etc. is great, so in order to further reinforce the tension effect of the glass coating formed by finish annealing, insulation A tension-imparting type is applied as the coating component.

【0019】この張力付与と絶縁用被膜剤としては、固
形分でコロイダルシリカ100重量部に対し、Al,M
g,Ca等の燐酸塩の1種又は2種以上を130〜20
0重量部とクロム酸、クロム酸塩、重クロム酸塩の1種
又は2種以上をCrO3 として12〜40重量部配合し
たものを用いるのが経済的に高張力被膜を得るのに好適
である。この後、更に鉄損を改善しようとする場合に
は、仕上げ焼鈍の前又は後においてレーザー、歯形ロー
ル、エッチング、局部メッキ等により圧延方向とほぼ直
角方向に線状、点状に間隔と深さをコントロールして、
歪、疵、メッキ層等を処理して磁区細分化処理が行われ
る。
The tension-imparting and insulating coating agent is Al, M for 100 parts by weight of colloidal silica in solid content.
One or two or more phosphates such as g and Ca are added to 130 to 20
It is preferable to use 0 part by weight and one or more of chromic acid, chromate, and dichromate as CrO 3 in an amount of 12 to 40 parts by weight to economically obtain a high-strength coating. is there. After this, if it is desired to further improve the iron loss, before or after the finish annealing, laser, tooth profile rolls, etching, local plating, etc. are used to form linear or dotted intervals and depths in a direction substantially perpendicular to the rolling direction. Control
The magnetic domain subdivision processing is performed by processing the strain, the flaw, the plating layer and the like.

【0020】次に本発明の限定理由は以下の通りであ
る。Cはその含有量が0.010%未満では、二次再結
晶が不安定になる。又、二次再結晶した場合でも製品の
磁気特性の変動が大きくなるため制限される。一方、C
の含有量が0.075%超と多くなり過ぎると、脱炭焼
鈍における酸化膜の形成に不利になったり、焼鈍時間が
長くなって生産性を阻害する。Siはその含有量が2.
0%未満になると低鉄損の製品が得られ難く、一方、
4.5%超では、冷間圧延時に割れ破断が多発し、安定
した冷延作業を困難にする。
The reasons for limitation of the present invention are as follows. If the content of C is less than 0.010%, the secondary recrystallization becomes unstable. Further, even when the secondary recrystallization is performed, the variation of the magnetic properties of the product becomes large, so that it is limited. On the other hand, C
If the content of Al exceeds 0.075%, it will be disadvantageous in forming an oxide film in decarburization annealing, and the annealing time will be prolonged and productivity will be impaired. The content of Si is 2.
If it is less than 0%, it is difficult to obtain a product with low iron loss, while
If it exceeds 4.5%, cracks and fractures frequently occur during cold rolling, which makes stable cold rolling work difficult.

【0021】本発明の出発材の成分系における特徴の一
つは、Sを0.015%以下、好ましくは0.010%
にする点にある。従来の公知技術、例えば特公昭40−
15644号公報或いは特公昭47−25250号公報
又は米国特許1965559号公報に開示されている技
術においては、Sは二次再結晶を発現させるに必要な析
出物であるMnSの形成元素として必須であった。しか
しながら、インヒビターとして(Al,Si)Nを用い
る本発明においては、MnSは特に必要としない。むし
ろ、MnSが増加することは磁気特性上好ましくない。
従って本発明では、Sの含有量が0.015%以下とす
る。
One of the characteristics of the component system of the starting material of the present invention is that S is 0.015% or less, preferably 0.010%.
There is a point to. Conventional publicly known technology, for example, Japanese Patent Publication No. 40-
In the technology disclosed in Japanese Patent No. 15644, Japanese Patent Publication No. 47-25250, or US Pat. No. 1,965,559, S is indispensable as an element for forming MnS, which is a precipitate necessary for causing secondary recrystallization. It was However, MnS is not particularly required in the present invention using (Al, Si) N as the inhibitor. Rather, an increase in MnS is not preferable in terms of magnetic properties.
Therefore, in the present invention, the S content is 0.015% or less.

【0022】AlはNと結合してAlNを形成するが、
本発明においては後工程、即ち、脱炭焼鈍での一次再結
晶後に鋼板を窒化処理して(Al,Si)Nを形成せし
めることを必須としているため、Alが一定量必要であ
る。そのため、酸可溶Alとして0.010〜0.03
5%含有させる。この範囲より低すぎても高すぎても本
発明を満足することはできない。Nは0.012%超で
はブリスターと呼ぶ鋼板に膨れを生じやすくなる。一
方、少なすぎると脱炭焼鈍時の一次再結晶粒径の調整が
困難になり、その結果、優れた磁気特性が得られなくな
るため、下限は0.002%程度である。
Al combines with N to form AlN,
In the present invention, it is indispensable to nitride the steel sheet to form (Al, Si) N after the post-process, that is, after the primary recrystallization in the decarburization annealing, so a certain amount of Al is required. Therefore, 0.010 to 0.03 as acid-soluble Al
5% is included. If it is lower or higher than this range, the present invention cannot be satisfied. If N exceeds 0.012%, a steel plate called a blister tends to swell. On the other hand, if the amount is too small, it becomes difficult to adjust the primary recrystallized grain size during decarburization annealing, and as a result, excellent magnetic properties cannot be obtained, so the lower limit is about 0.002%.

【0023】Mnはその含有量が0.050%未満と少
なすぎても、又、0.45%と多すぎても本発明を満足
することはできない。好ましい範囲は0.070〜0.
25%である。本発明では、以上の元素の他、二次再結
晶粒の粒径制御や脱炭焼鈍の酸化量の制御等の目的でS
n,Sb,Cr等を添加して利用してもよい。
If the content of Mn is too small, less than 0.050%, or too much, 0.45%, the present invention cannot be satisfied. The preferred range is 0.070-0.
25%. In the present invention, in addition to the above elements, S is used for the purpose of controlling the grain size of secondary recrystallized grains and controlling the oxidation amount of decarburization annealing.
You may add and use n, Sb, Cr, etc.

【0024】次に、本発明のグラス被膜向上の第一の特
徴である焼鈍分離剤としては、MgO100重量部に対
し、ハロゲン元素化合物の1種又は2種以上をF,C
l,Br,Iに換算して0.015〜0.12重量部で
ある。これらのハロゲン化合物は後述の仕上げ焼鈍サイ
クルとマッチして、仕上げ焼鈍昇温時のグラス被膜形成
と二次再結晶に重要な役割を有する。ハロゲン化合物は
MgOとSiO2 の反応における融点をドラスティック
に低下させ、より低温での反応開始と進行速度を増大す
る。これらの添加されたハロゲン元素化合物は、スラリ
ー中ではほとんどの物質が容易に溶解分散できる。これ
らが、スラリー調整から塗布乾燥工程では、もとのハロ
ゲン化合物、他の添加剤との反応生成物、MgO表面の
水和層の置換物質等となってMgOや他の添加剤の表面
或いは鋼板酸化膜上を均一に覆い、被膜形成促進効果を
もたらす。
Next, as the annealing separating agent which is the first feature of the present invention for improving the glass coating, one or more halogen element compounds are added to F, C based on 100 parts by weight of MgO.
It is 0.015 to 0.12 parts by weight in terms of 1, Br, I. These halogen compounds have an important role in the glass film formation and the secondary recrystallization when the temperature of finish annealing is increased, matching with the finish annealing cycle described later. The halogen compound drastically lowers the melting point in the reaction between MgO and SiO 2 , and increases the reaction initiation and progress rate at lower temperatures. Most of these added halogen element compounds can be easily dissolved and dispersed in the slurry. From the slurry preparation to the coating and drying step, these become the original halogen compound, the reaction product with other additives, the substitution material for the hydrated layer on the surface of MgO, etc., and the surface of MgO or other additives or the steel sheet. It evenly covers the oxide film, and has the effect of promoting film formation.

【0025】ハロゲン元素化合物の添加量がMgO10
0重量部に対し、ハロゲン元素のトータル量で0.01
5%未満ではこの促進効果が見られず、被膜特性の向上
が得られない。一方、0.12重量部超では低融点化に
よる早期グラス被膜形成現象が見られるが過剰のF,C
l,Br,I等により、グラス被膜の厚みが不均一にな
ったり、極端な場合にはエッチング・分解反応が生じて
グラスレス化状態を呈する場合があるため制限される。
好ましい添加量の範囲は0.027〜0.050%で、
この範囲では他の条件の変動が生じても、極めて安定し
て良好なグラス被膜と磁気特性を得ることができる。
The amount of the halogen element compound added is MgO10.
The total amount of halogen elements is 0.01 with respect to 0 parts by weight.
If it is less than 5%, this accelerating effect is not seen and the improvement of the coating properties cannot be obtained. On the other hand, if it exceeds 0.12 parts by weight, an early glass film formation phenomenon due to the lowering of the melting point is observed, but excessive F, C
Due to l, Br, I, etc., the thickness of the glass coating becomes non-uniform, and in extreme cases, etching / decomposition reaction may occur and the glassless state may be exhibited.
The preferred range of addition is 0.027 to 0.050%,
Within this range, excellent glass coating and good magnetic properties can be obtained extremely stably even if other conditions change.

【0026】又、ハロゲン元素化合物共にアルカリ金属
或いはアルカリ土類金属元素化合物を添加する場合は、
その1種又は2種以上がMgO100重量部に対し、
0.01〜0.50重量部が好ましい。前記ハロゲン元
素化合物はスラリー調整−塗布・乾燥−仕上げ焼鈍の過
程でグラス被膜形成時期まで安定に保たなければならな
い。アルカリ金属やアルカリ土類元素化合物は、その溶
解度に応じて塗布・乾燥段階で選択的にハロゲン元素と
結合し、MgO粒子、他の添加剤粒子或いは鋼板酸化膜
の表面を均一に覆いグラス被膜形成時まで安定に保たれ
る。この結果、極めて効果的にハロゲン元素化合物によ
るグラス被膜形成反応の向上が得られる。
When an alkali metal or alkaline earth metal element compound is added together with the halogen element compound,
One or two or more of them are based on 100 parts by weight of MgO,
0.01 to 0.50 parts by weight is preferable. The halogen element compound must be kept stable until the time of forming the glass film during the process of slurry preparation-coating / drying-finish annealing. Alkali metal and alkaline earth element compounds selectively combine with halogen elements in the coating and drying stages according to their solubility, and evenly cover the surface of MgO particles, other additive particles or the steel sheet oxide film to form a glass film. Keeps stable until time. As a result, the glass film forming reaction by the halogen element compound can be improved very effectively.

【0027】アルカリ金属或いはアルカリ土類金属化合
物の添加量が0.01重量部未満では、十分なハロゲン
化合物の安定化が得られない。一方、0.50重量部超
では、余剰のアルカリ或いはアルカリ土類金属による高
温域のグラス被膜のエッチング作用が生じてグラス被膜
を劣化させる場合がある。
If the amount of the alkali metal or alkaline earth metal compound added is less than 0.01 part by weight, sufficient stabilization of the halogen compound cannot be obtained. On the other hand, if it exceeds 0.50 parts by weight, the glass coating film may deteriorate due to the etching action of the glass coating film in the high temperature region caused by the excess alkali or alkaline earth metal.

【0028】次に被膜形成過程での第2の重要な要素で
ある仕上げ焼鈍のヒートサイクルは昇温過程850〜1
100℃の平均加熱速度を12℃/Hr以下とすることで
ある。本発明の成分素材では二次再結晶温度が従来のイ
ンヒビターにMnSを使用する方向性電磁鋼板や、Al
NとMnSを使用する高磁束密度方向性電磁鋼板に比較
してかなり高く、他の工程条件にもよるが、おおよそ1
100℃以上の高温で生じる。このため、本発明の仕上
げ焼鈍の特徴は二次再結晶前の850〜1100℃の領
域でグラス被膜の形成を十分に発達させるところにあ
る。
Next, the heat cycle of finish annealing, which is the second important factor in the film forming process, is the heating process 850-1.
The average heating rate at 100 ° C. is 12 ° C./hr or less. In the component material of the present invention, the secondary recrystallization temperature is the conventional grain-oriented electrical steel sheet using MnS as the inhibitor, or the Al
It is considerably higher than the high magnetic flux density grain-oriented electrical steel sheet using N and MnS, and it is approximately 1 depending on other process conditions.
It occurs at high temperatures above 100 ° C. Therefore, the feature of the finish annealing of the present invention is that the glass film formation is sufficiently developed in the region of 850 to 1100 ° C. before the secondary recrystallization.

【0029】この場合の下限を850℃としたのは、8
50℃未満ではグラス被膜の形成が殆ど進行しないこと
と低温域を低速加熱し、長時間滞留させるとグラス被膜
の形成開始以前に表面の酸化膜の還元が進み、むしろグ
ラス被膜形成に悪影響をもたらすためである。850〜
1100℃における昇温の仕方としては、平均的に12
℃/Hr以下の徐加熱を行うか、ある一定温度で恒温保持
して行ってもよい。
The lower limit in this case is 850 ° C.
If the temperature is lower than 50 ° C, the formation of the glass film hardly progresses, and if the low temperature region is heated at a low speed and left to stay for a long time, the reduction of the oxide film on the surface progresses before the start of the glass film formation, which rather adversely affects the glass film formation. This is because. 850-
The average temperature of 1100 ° C is 12
The heating may be carried out at a temperature of ℃ / Hr or less, or may be carried out at a constant temperature.

【0030】平均加熱速度が12℃/Hr超ではグラス被
膜の成長のための時間が十分でないため、効果が安定し
て得られ難い。現場製造を考慮すると好ましい条件は8
50〜1100℃の領域で5〜20時間の恒温保持する
方法が大型コイルで均一なグラス被膜を持つ製品を得る
ために好ましい条件である。この場合、グラス被膜が均
一、緻密に形成され、その後にコイル板間から放出され
たり、雰囲気ガスの水分、酸素による追加酸化を極めて
効果的に抑制する。
If the average heating rate exceeds 12 ° C./Hr, it is difficult to obtain a stable effect because the time required for growing the glass film is insufficient. Considering on-site manufacturing, the preferable condition is 8
A method of maintaining a constant temperature in the range of 50 to 1100 ° C. for 5 to 20 hours is a preferable condition for obtaining a product with a large coil and a uniform glass film. In this case, the glass coating is formed uniformly and densely, and thereafter, the glass coating is released from between the coil plates, and the additional oxidation due to the moisture and oxygen of the atmospheric gas is extremely effectively suppressed.

【0031】又、このタイトな被膜層は高温域での雰囲
気ガスからの窒素の侵入や逆に脱インヒビターをも抑制
し、二次再結晶域までインヒビターを安定に保つ結果、
二次再結晶方位をも改善する効果が得られる。この昇温
過程の850℃未満と1100℃超における昇温速度は
特に限定するものではないが、15〜30℃/Hrのよう
な条件が生産性とコイルの均熱度を考慮した場合に好ま
しい。
Further, this tight coating layer also suppresses the invasion of nitrogen from the atmospheric gas in the high temperature region and, conversely, the deinhibitor, thereby keeping the inhibitor stable up to the secondary recrystallization region.
The effect of improving the secondary recrystallization orientation is also obtained. The temperature rising rate below 850 ° C. and above 1100 ° C. in this temperature rising process is not particularly limited, but conditions such as 15 to 30 ° C./Hr are preferable in view of productivity and soaking degree of the coil.

【0032】[0032]

【実施例】【Example】

〔実施例1〕重量%でC;0.055%、Si;3.3
0%、Mn;0.130%、Si;0.0080%、A
l;0.028%、N;0.072%、Sn;0.04
%の鋼塊を1150℃に加熱し、熱延し、2.3mmの熱
延板とした。この鋼板を1120℃で焼鈍し、酸洗、冷
延して最終板厚0.23mmとした。その後、連続焼鈍ラ
インでN2 25%+H2 75%、露点67℃のウェット
雰囲気中で840℃×110秒の脱炭焼鈍とN2 25%
+H2 75%+NH3 のドライ雰囲気中で750℃×3
0秒間の鋼中〔N〕量が200ppm になるように窒化処
理を行った。次いで、表1に示すように、MgO100
重量部とTiO2 5重量部に対し、ハロゲン元素の化合
物を添加した焼鈍分離剤スラリーを乾燥後の重量で6g
/m2 の割合で塗布し、乾燥し、コイルに巻取った。
[Example 1] C: 0.055% by weight%, Si: 3.3
0%, Mn; 0.130%, Si; 0.0080%, A
1; 0.028%, N; 0.072%, Sn; 0.04
% Of the steel ingot was heated to 1150 ° C. and hot rolled into a 2.3 mm hot rolled sheet. The steel sheet was annealed at 1120 ° C., pickled and cold rolled to a final sheet thickness of 0.23 mm. Then, N 2 25% + H 2 75% in a continuous annealing line, decarburization annealing of 840 ° C. × 110 seconds in a wet atmosphere having a dew point of 67 ° C. and N 2 25%
+ H 2 75% + NH 3 in a dry atmosphere at 750 ° C x 3
The nitriding treatment was performed so that the amount of [N] in the steel for 0 seconds was 200 ppm. Then, as shown in Table 1, MgO100
6 g by weight of an annealing separator slurry containing a compound of a halogen element added to 5 parts by weight of TiO 2 and 5 parts by weight of TiO 2.
The coating was applied at a rate of / m 2 , dried and wound on a coil.

【0033】次いで、1200℃×20Hrの最終仕上げ
焼鈍を行ったが、この際、図1に示すように、昇温時の
加熱速度を変更して焼鈍を行った。その後、絶縁被膜剤
として30%コロイダルシリカ70ml、50%りん酸ア
ルミニウム50mlからなるコーティング剤を乾燥、焼き
付け後の重量で5g/m2 になるように塗布し、連続炉
中で850℃×30秒間のヒートフラットニング処理を
行い最終製品とした。この試験におけるグラス被膜形成
状況、絶縁被膜特性、磁気特性の結果を表2に示す。
Then, final finishing annealing was carried out at 1200 ° C. × 20 hours, and at this time, as shown in FIG. 1, the annealing was performed by changing the heating rate at the time of heating. Then, a coating agent consisting of 70 ml of 30% colloidal silica and 50 ml of 50% aluminum phosphate was applied as an insulating film agent so that the weight after drying and baking would be 5 g / m 2, and it was applied in a continuous furnace at 850 ° C. for 30 seconds. Was subjected to heat flattening treatment to obtain the final product. Table 2 shows the results of the glass film formation conditions, insulating film properties, and magnetic properties in this test.

【0034】[0034]

【表1】 [Table 1]

【0035】[0035]

【表2】 [Table 2]

【0036】この試験の結果、本発明のように焼鈍分離
剤としてハロゲン元素化合物を添加し、仕上げ焼鈍とし
て図1(A),(B)による、850℃以上の徐加熱を
行った場合には、いずれも均一で光沢のある厚いグラス
被膜が均一に形成され、被膜張力、密着性等の優れたグ
ラス被膜が形成され、磁気特性も非常に良好な結果が得
られた。特に、図1(B)のサイクルによるものは良好
であった。一方、比較材の焼鈍分離剤にハロゲン化合物
を添加しない場合、特に図1(C)のサイクルによるも
のはグラス被膜、磁気特性共に本発明に比しかなり劣る
傾向が見られた。
As a result of this test, when a halogen element compound was added as an annealing separator as in the present invention and gradual heating at 850 ° C. or higher according to FIGS. 1A and 1B was performed as finish annealing, In each case, a uniform and glossy thick glass film was uniformly formed, a glass film excellent in film tension and adhesion was formed, and very good magnetic properties were obtained. Especially, the cycle of FIG. 1 (B) was good. On the other hand, when a halogen compound was not added to the annealing separator of the comparative material, the glass coating and the magnetic properties tended to be considerably inferior to those of the present invention, particularly in the cycle shown in FIG. 1 (C).

【0037】〔実施例2〕重量%でC;0.058%、
Si;3.25%、Mn;0.14%、Al;0.03
0%、S;0.0075%、N;0.0075%、S
n;0.05%からなる方向性電磁鋼板スラブを実施例
1と同様にして処理し、最終板厚0.23mmとした後、
脱炭焼鈍と窒化焼鈍を行い、鋼中〔N〕量を180ppm
として出発材とした。この鋼板に、焼鈍分離剤としてM
gO100重量部に対し、TiO2 5重量部とNa2
4 7 0.3重量部に対し、表3に示すようにハロゲン
元素化合物を添加したスラリーを塗布、乾燥し、コイル
に巻取った。
[Example 2] C by weight%; 0.058%,
Si; 3.25%, Mn; 0.14%, Al; 0.03
0%, S; 0.0075%, N; 0.0075%, S
n: 0.05% grain-oriented electrical steel sheet slab was treated in the same manner as in Example 1 to give a final sheet thickness of 0.23 mm,
Decarburization annealing and nitriding annealing are performed, and the amount of [N] in the steel is 180 ppm
As the starting material. To this steel sheet, M as an annealing separator
5 parts by weight of TiO 2 and Na 2 B based on 100 parts by weight of gO
As shown in Table 3, a slurry in which a halogen element compound was added to 0.3 parts by weight of 4 O 7 was applied, dried, and wound on a coil.

【0038】次いで、図2(A),(B),(C),
(D)に示すように仕上げ焼鈍の昇温時の保持温度を変
更して焼鈍後、絶縁被膜処理とヒートフラットニング処
理を行って最終製品とした。この試験におけるグラス被
膜と磁気特性の結果を表4に示す。
Then, FIGS. 2A, 2B, 2C,
As shown in (D), the holding temperature at the time of raising the temperature of the finish annealing was changed, and after annealing, the insulating coating treatment and the heat flattening treatment were performed to obtain the final product. The results of the glass coating and magnetic properties in this test are shown in Table 4.

【0039】[0039]

【表3】 [Table 3]

【0040】[0040]

【表4】 [Table 4]

【0041】この試験の結果、本発明のように焼鈍分離
剤中にハロゲン元素化合物を添加し、仕上げ焼鈍のヒー
トサイクルが950〜1100℃で一定時間保持したサ
イクル(A),(B),(C)の場合にはいずれもグラ
ス被膜コイル全面に均一で、被膜張力と密着性が優れ、
磁気特性も良好であった。一方、焼鈍分離剤を同じ本発
明のものを用いても仕上げ焼鈍の均熱保持温度が低い比
較例の場合には、本発明に比較してグラス被膜の形成が
不十分で、被膜特性、磁気特性共に劣る結果となった。
又、仕上げ焼鈍の昇温条件が本発明のサイクルでも、添
加剤にハロゲン元素化合物を用いない場合にはいずれも
グラス被膜は厚み、均一度等において本発明より劣り、
磁気特性も不良であった。
As a result of this test, as in the present invention, a halogen element compound was added to the annealing separator, and the heat cycle of finish annealing was maintained at 950 to 1100 ° C. for a certain period of time (A), (B), ( In the case of C), both are uniform over the entire surface of the glass-coated coil and have excellent coating tension and adhesion,
The magnetic properties were also good. On the other hand, in the case of the comparative example in which the soaking holding temperature of finish annealing is low even when the same annealing separator is used in the present invention, the formation of the glass film is insufficient as compared with the present invention, and the film characteristics, magnetic properties Both the characteristics were inferior.
Further, even if the temperature rising condition of finish annealing is the cycle of the present invention, when the halogen element compound is not used as an additive, the glass coating is inferior to the present invention in thickness, uniformity and the like,
The magnetic properties were also poor.

【0042】〔実施例3〕実施例2と同一のスラブを同
様にして処理した窒化処理後の鋼板にMgO100重量
部とTiO2 5重量部、Na2 4 7 0.3重量部に
対し、表5に示すようなハロゲン化合物の種類を変えて
添加した焼鈍分離剤を塗布し、乾燥後、最終仕上げ焼鈍
として、図1(A)と図2(A)の昇温時のサイクルに
よって熱処理を行った。次いで、実施例1,2と同様に
絶縁被膜剤の処理とヒートフラットニングを行い最終製
品とした。この試験における被膜特性と磁気特性の結果
を表6に示す。
[Example 3] The same slab as in Example 2 was treated in the same manner, and 100% by weight of MgO, 5 parts by weight of TiO 2 and 0.3 part by weight of Na 2 B 4 O 7 were applied to the steel sheet after nitriding. As shown in Table 5, the annealing separating agent added by changing the kind of the halogen compound is applied, dried, and then subjected to the final finishing annealing, and heat treatment is performed by the temperature rising cycle of FIGS. 1 (A) and 2 (A). I went. Then, in the same manner as in Examples 1 and 2, treatment with an insulating coating agent and heat flattening were performed to obtain a final product. Table 6 shows the results of the coating properties and magnetic properties in this test.

【0043】[0043]

【表5】 [Table 5]

【0044】[0044]

【表6】 [Table 6]

【0045】この試験の結果、焼鈍分離剤にハロゲン元
素化合物を配合し、仕上げ焼鈍を図1(A)及び図2
(A)のサイクルを行った場合はいずれもグラス被膜の
均一性、張力、密着性が良好で、特に一定時間の保持を
行った図2(A)の場合には、極めて良好な結果が得ら
れた。一方、焼鈍分離剤にハロゲン元素化合物を配合し
ない比較例においては、いずれもエッジ部の被膜が不均
一で、部分的に地鉄が透けて見える部分があり、この場
合には、磁気特性も本発明に比してかなり劣る結果とな
った。
As a result of this test, a halogen element compound was added to the annealing separator and finish annealing was performed as shown in FIGS.
When the cycle of (A) was performed, the uniformity, tension, and adhesion of the glass coating were good, and in particular in the case of FIG. 2 (A) where the glass coating was held for a certain time, extremely good results were obtained. Was given. On the other hand, in the comparative example in which the halogen separating compound is not mixed with the annealing separator, the coating film at the edge part is not uniform and there is a part where the base iron can be seen through. The result is considerably inferior to the invention.

【0046】[0046]

【発明の効果】本発明では、AlN,(Al,Si)N
をインヒビターとして利用する低温スラブ加熱材のグラ
ス被膜形成処理において、焼鈍分離剤中へのハロゲン化
合物の添加と仕上げ焼鈍昇温過程850〜1100℃の
比較的高温域で徐加熱或いは恒温保持した後、昇熱し、
1200℃の純化焼鈍することにより、グラス被膜形成
反応と二次再結晶を分離して生ぜしめ、グラス被膜と磁
気特性の極めて優れた方向性電磁鋼板を得る。本発明で
は、前述のハロゲン元素化合物のグラス被膜形成の反応
融点低下及び促進効果と仕上げ焼鈍のヒートサイクルに
よる反応促進効果が極めて機能的にマッチして二次再結
晶前に均一、高張力の優れたグラス被膜の発達が行われ
る。
According to the present invention, AlN, (Al, Si) N
In the glass film forming treatment of the low temperature slab heating material utilizing as an inhibitor, after adding the halogen compound into the annealing separator and finish annealing temperature rising process 850 to 1100 ° C. Heat up,
By carrying out purification annealing at 1200 ° C., the glass film forming reaction and the secondary recrystallization are separated and produced, and a grain coating and a grain-oriented electrical steel sheet excellent in magnetic properties are obtained. In the present invention, the reaction melting point lowering and accelerating effect of the glass element formation of the above-mentioned halogen element compound and the reaction accelerating effect by the heat cycle of finish annealing are extremely functionally matched, uniform before secondary recrystallization, and excellent in high tension. The development of a glass coating takes place.

【図面の簡単な説明】[Brief description of drawings]

【図1】(A),(B),(C)は実施例1及び3にお
ける仕上げ焼鈍のヒートサイクルを示す図表である。
1 (A), (B) and (C) are charts showing heat cycles of finish annealing in Examples 1 and 3. FIG.

【図2】(A),(B),(C),(D)は実施例2に
おける仕上げ焼鈍のヒートサイクルを示す図表である。
2 (A), (B), (C) and (D) are charts showing heat cycles of finish annealing in Example 2. FIG.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C23C 22/00 A H01F 1/16 (72)発明者 八ケ代 健一 北九州市戸畑区飛幡町1番1号 新日本製 鐵株式会社八幡製鐵所内 (72)発明者 黒木 克郎 北九州市戸畑区大字中原46−59 日鐵プラ ント設計株式会社内 (72)発明者 田中 収 北九州市戸畑区大字中原46−59 日鐵プラ ント設計株式会社内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification number Reference number within the agency FI Technical indication location C23C 22/00 A H01F 1/16 (72) Inventor Kenichi Yatsushiro 1--1 Hibahata-cho, Tobata-ku, Kitakyushu No. Nippon Steel Yawata Works (72) Inventor Katsuro Kuroki 46-59 Nakahara, Tobata-ku, Kitakyushu City In-house Nippon Steel Plant Design Co., Ltd. (72) Osamu Tanaka 46- Nakahara, Tobata-ku, Kitakyushu City 59 Nittetsu Plant Design Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 重量%でC ;0.010〜0.075
%、 Si;2.0〜4.5%、 S ;0.015%以下、 酸可溶Al;0.010〜0.035%、 N ;0.012%以下、 Mn;0.05〜0.45%、 残部をFe及び不可避の不純物からなる電磁鋼スラブを
1280℃以下の低温でスラブ加熱を行った後、熱延
し、1回又は中間焼鈍を挟む2回以上の冷延により最終
板厚とし、脱炭焼鈍と窒素焼鈍をし、焼鈍分離剤を塗布
後、仕上げ焼鈍し、絶縁被膜処理することからなる方向
性電磁鋼板の製造方法において、焼鈍分離剤としてMg
O100重量部に対し、ハロゲン化合物の1種又は2種
以上をF,Cl,Br,Iとして0.015〜0.12
0重量部含む焼鈍分離剤を塗布し、最終仕上げ焼鈍の8
50〜1100℃の平均昇温率を12℃/Hr以下として
昇熱後、高温仕上げ焼鈍することを特徴とするグラス被
膜と磁気特性の極めて優れる方向性電磁鋼板の製造方
法。
1. C by weight%; 0.010 to 0.075
%, Si; 2.0 to 4.5%, S; 0.015% or less, acid-soluble Al; 0.010 to 0.035%, N; 0.012% or less, Mn; 0.05 to 0 .45%, the balance is Fe and the unavoidable impurities are electromagnetic steel slabs, which are slab-heated at a low temperature of 1280 ° C. or lower, and then hot-rolled, and cold-rolled once or twice with intermediate annealing interposed between them to obtain the final plate. In a method for producing a grain-oriented electrical steel sheet, which comprises thickening, decarburizing annealing and nitrogen annealing, applying an annealing separator, finishing annealing, and performing an insulating coating treatment, Mg as an annealing separator is used.
0.015 to 0.12, based on 100 parts by weight of O, one or more halogen compounds as F, Cl, Br, I
Apply 8 parts by weight of annealing separator,
A method for producing a glass coating and a grain-oriented electrical steel sheet having extremely excellent magnetic properties, which comprises heating at an average temperature rise rate of 50 to 1100 ° C. of 12 ° C./Hr or less and then performing high temperature finish annealing.
【請求項2】 焼鈍分離剤MgOに添加するハロゲン物
質がF,Cl,Br,Iとして0.015〜0.012
重量部に対し、アルカリ金属化合物及びアルカリ土類金
属化合物の1種又は2種以上を0.010〜0.50重
量部添加することを特徴とする請求項1記載のグラス被
膜と磁気特性の極めて優れる方向性電磁鋼板の製造方
法。
2. The halogen substance added to the annealing separator MgO is 0.015 to 0.012 as F, Cl, Br, I.
2. The glass film according to claim 1, which has an extremely high magnetic property, wherein one or more of an alkali metal compound and an alkaline earth metal compound are added in an amount of 0.010 to 0.50 parts by weight with respect to parts by weight. Excellent grain-oriented electrical steel sheet manufacturing method.
【請求項3】 仕上げ焼鈍の850〜1100℃におけ
る温度領域で5〜20Hrの範囲で一定温度に保持するこ
とを特徴とする請求項1又は2記載のグラス被膜と磁気
特性の極めて優れる方向性電磁鋼板の製造方法。
3. The glass coating according to claim 1 or 2, which is maintained at a constant temperature in the range of 5 to 20 Hr in the temperature range of 850 to 1100 ° C. of finish annealing, and the directional electromagnetic having extremely excellent magnetic properties. Steel plate manufacturing method.
JP6309162A 1994-11-16 1994-12-13 Method for manufacturing grain-oriented electrical steel sheet with extremely excellent glass coating and magnetic properties Expired - Lifetime JP2781524B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP6309162A JP2781524B2 (en) 1994-12-13 1994-12-13 Method for manufacturing grain-oriented electrical steel sheet with extremely excellent glass coating and magnetic properties
US08/836,593 US5840131A (en) 1994-11-16 1995-11-16 Process for producing grain-oriented electrical steel sheet having excellent glass film and magnetic properties
EP95938021A EP0789093B2 (en) 1994-11-16 1995-11-16 Process for producing directional electrical sheet excellent in glass coating and magnetic properties
DE69515892T DE69515892T3 (en) 1994-11-16 1995-11-16 METHOD FOR PRODUCING AN ELECTRIC DIRECTIVE PLATE WITH GOOD GLASS STABILITY AND EXCELLENT MAGNETIC PROPERTIES
CN951972014A CN1065004C (en) 1994-11-16 1995-11-16 Process for producing directional electrical sheet excellent in glass coating and magnetic properties
KR1019970703263A KR100245032B1 (en) 1994-11-16 1995-11-16 Process for producing directional sheet excellent in glass coating and magnetic properties
PCT/JP1995/002346 WO1996015291A1 (en) 1994-11-16 1995-11-16 Process for producing directional electrical sheet excellent in glass coating and magnetic properties

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6309162A JP2781524B2 (en) 1994-12-13 1994-12-13 Method for manufacturing grain-oriented electrical steel sheet with extremely excellent glass coating and magnetic properties

Publications (2)

Publication Number Publication Date
JPH08165521A true JPH08165521A (en) 1996-06-25
JP2781524B2 JP2781524B2 (en) 1998-07-30

Family

ID=17989679

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6309162A Expired - Lifetime JP2781524B2 (en) 1994-11-16 1994-12-13 Method for manufacturing grain-oriented electrical steel sheet with extremely excellent glass coating and magnetic properties

Country Status (1)

Country Link
JP (1) JP2781524B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11168376B2 (en) 2016-12-21 2021-11-09 Posco Annealing separator composition for oriented electrical steel sheet, oriented electrical steel sheet, and method for manufacturing oriented electrical steel sheet
US11174525B2 (en) 2016-12-21 2021-11-16 Posco Annealing separator composition for oriented electrical steel sheet, oriented electrical steel sheet, and method for manufacturing oriented electrical steel sheet

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11168376B2 (en) 2016-12-21 2021-11-09 Posco Annealing separator composition for oriented electrical steel sheet, oriented electrical steel sheet, and method for manufacturing oriented electrical steel sheet
US11174525B2 (en) 2016-12-21 2021-11-16 Posco Annealing separator composition for oriented electrical steel sheet, oriented electrical steel sheet, and method for manufacturing oriented electrical steel sheet

Also Published As

Publication number Publication date
JP2781524B2 (en) 1998-07-30

Similar Documents

Publication Publication Date Title
US5512110A (en) Process for production of grain oriented electrical steel sheet having excellent magnetic properties
JPH0774388B2 (en) Method for manufacturing unidirectional silicon steel sheet with high magnetic flux density
KR950005793B1 (en) Process for producing grain-oriented electrical steel strip having high magnetic flux density
JP3650525B2 (en) Annealing separator for grain-oriented electrical steel sheet and method for producing grain-oriented electrical steel sheet with excellent magnetic properties with glass coating
JPH10130727A (en) Production of low core loss mirror finished grain oriented silicon steel sheet high in magnetic flux density
JPH04173923A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property as well as in film characteristic
JP3091096B2 (en) Annealing separator and slurry for grain-oriented electrical steel sheet to obtain excellent glass coating and magnetic properties
JPH08165525A (en) Production of grain-oriented silicon steel sheet excellent in good glass coating and extremely good in magnetic characteristic
JP2690841B2 (en) Annealing Separator for grain oriented electrical steel sheet for obtaining uniform high-strength glass coating and excellent magnetic properties
JP2663229B2 (en) Method for producing grain-oriented electrical steel sheet having a uniform glass film and extremely excellent magnetic properties
JP2781524B2 (en) Method for manufacturing grain-oriented electrical steel sheet with extremely excellent glass coating and magnetic properties
JPH08225900A (en) Thick grain-oriented silicon steel plate excellent in insulating film characteristic and its production
JPH1136018A (en) Manufacture of grain oriented silicon steel sheet having extremely excellent glass film and magnetic property
JPH0762440A (en) Manufacture of grain-oriented silicon steel sheet with highly tensile and uniform glass coating film and excellent in magnetic property
JPH0949028A (en) Production of grain oriented silicon steel sheet excellent in surface characteristic and free from glass coating
JP3336547B2 (en) Method for manufacturing grain-oriented electrical steel sheet with extremely excellent glass coating and magnetic properties
JP3483457B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent glass coating and magnetic properties
JP3021241B2 (en) Method for producing grain-oriented electrical steel sheet with extremely excellent glass coating and magnetic properties
JPH02294428A (en) Production of grain-oriented silicon steel sheet having high magnetic flux density
JP2749783B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely excellent glass coating performance and magnetic properties
JPH05295447A (en) Annealing method for finishing grain oriented electrical steel sheet in short time
JPH0941153A (en) Separation agent at annealing, excellent in reactivity, and production of grain oriented silicon steel sheet using the same
JPH0730396B2 (en) Method for producing unidirectional electrical steel sheet with excellent magnetic and film properties
JP3707249B2 (en) Method for producing grain-oriented silicon steel sheet with excellent coating uniformity
JPH09256068A (en) Production of grain-oriented silicon steel sheet for obtaining excellent glass coating

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19980414

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080515

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090515

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100515

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100515

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110515

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120515

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130515

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130515

Year of fee payment: 15

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130515

Year of fee payment: 15

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130515

Year of fee payment: 15

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140515

Year of fee payment: 16

EXPY Cancellation because of completion of term