JPH0816231B2 - Separation method of fats and oils and fatty acids - Google Patents

Separation method of fats and oils and fatty acids

Info

Publication number
JPH0816231B2
JPH0816231B2 JP60017930A JP1793085A JPH0816231B2 JP H0816231 B2 JPH0816231 B2 JP H0816231B2 JP 60017930 A JP60017930 A JP 60017930A JP 1793085 A JP1793085 A JP 1793085A JP H0816231 B2 JPH0816231 B2 JP H0816231B2
Authority
JP
Japan
Prior art keywords
fats
oils
fatty acids
acid
membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60017930A
Other languages
Japanese (ja)
Other versions
JPS61176698A (en
Inventor
貢 森下
雅信 谷垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP60017930A priority Critical patent/JPH0816231B2/en
Publication of JPS61176698A publication Critical patent/JPS61176698A/en
Publication of JPH0816231B2 publication Critical patent/JPH0816231B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/66Polymers having sulfur in the main chain, with or without nitrogen, oxygen or carbon only
    • B01D71/68Polysulfones; Polyethersulfones

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Fats And Perfumes (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、圧力を駆動力として半透膜にて溶質を選択
的に分離する膜分離方法を利用して、油脂と脂肪酸を分
離することのできる新規な分離法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention separates fats and oils from fatty acids by using a membrane separation method in which solutes are selectively separated by a semipermeable membrane using pressure as a driving force. The present invention relates to a new separation method.

〔従来の技術及び問題点〕[Conventional technology and problems]

従来、油脂中に含まれる脂肪酸の除去、或いは油脂の
加水分解反応より得られた脂肪酸から未反応の油脂の除
去などの油脂と脂肪酸の分離には、一般に減圧蒸着法が
採用されている。この減圧蒸留法は、その操作が一般に
180℃〜230℃の高温で行われているものであり、従つて
この高温状態において、蒸留中、脂肪酸の品質を損なう
という問題を有している。例えば蒸留中、共役不飽和結
合を有する脂肪酸は異性化、或いは環化を起こす。また
非共役の不飽和脂肪酸においても空気に触れたり、蒸留
温度が高すぎると重合及び酸無水物の生成を起こす。ま
た飽和脂肪酸においては、それ自体は高温により変化す
ることは少ないが、モノグリセリドやジグリセリドの不
鹸化物が多量に存在する脂肪酸の蒸留においては、その
不鹸化物と脂肪酸が再エステル化するという問題が生じ
る。このように減圧蒸留法においては、その操作が高温
であることにより、また液体と気体との間の相変化を伴
う分離方法であるため、上述のような脂肪酸の品質劣化
や再エステル化の問題がある。
Conventionally, a reduced pressure vapor deposition method is generally used for the separation of fats and oils such as removal of fatty acids contained in fats and oils, or removal of unreacted fats and oils from fatty acids obtained by hydrolysis reaction of fats and oils. The operation of this vacuum distillation method is generally
It is carried out at a high temperature of 180 ° C. to 230 ° C., and accordingly, there is a problem that the quality of fatty acid is impaired during distillation at this high temperature state. For example, during distillation, a fatty acid having a conjugated unsaturated bond undergoes isomerization or cyclization. Further, even non-conjugated unsaturated fatty acid may be exposed to air, or if the distillation temperature is too high, polymerization and acid anhydride formation may occur. In addition, saturated fatty acids do not change by themselves at high temperatures, but when distilling fatty acids containing a large amount of unsaponifiable monoglycerides and diglycerides, there is a problem that the unsaponifiable matter and the fatty acids are re-esterified. Occurs. As described above, in the vacuum distillation method, since the operation is a high temperature and a separation method involving a phase change between liquid and gas, there is a problem of deterioration of quality of fatty acid and re-esterification as described above. There is.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者らは、これらの問題点を有する従来の分離方
法に置換わる分離方法について鋭意検討した結果、油脂
と脂肪酸を簡便に、また脂肪酸の品質を損なわずに分離
できる工業的に有利な方法を発明した。
As a result of diligent studies on a separation method substituting for the conventional separation method having these problems, the present inventors have found that an industrially advantageous method capable of separating fats and oils from fatty acids simply and without impairing the quality of the fatty acids. Invented

即ち、本発明は圧力を駆動力として半透膜にて溶質を
選択的に分離する膜分離法を利用して、油脂及び脂肪酸
と相溶性を持つ、炭化水素類とアルコール類の混合物、
アルコール類、あるいは有機酸類から選ばれる有機溶剤
と油脂及び脂肪酸との混合溶液を、NaCl除去率が10〜55
%であるポリスルホン膜を用いて膜分離することにより
油脂と脂肪酸とを分離することを特徴とする分離方法を
提供するものである。
That is, the present invention utilizes a membrane separation method that selectively separates solutes in a semipermeable membrane using pressure as a driving force, and is compatible with fats and oils and fatty acids, a mixture of hydrocarbons and alcohols,
Alcohol, or a mixed solution of an organic solvent selected from organic acids and fats and oils, fatty acids, NaCl removal rate 10 ~ 55
The present invention provides a separation method characterized in that fats and oils and fatty acids are separated by performing membrane separation using a polysulfone membrane having a content of 100%.

本発明は、圧力を駆動力として半透膜にて油脂と脂肪
酸を分離するものであり、分離に際して油脂及び脂肪酸
と相溶性を持つ、炭化水素類とアルコール類の混合物、
アルコール類、あるいは有機酸類から選ばれる有機溶剤
を溶媒として油脂と脂肪酸を分離するものである。本方
法では分離操作を減圧蒸留法とは異なり常温で行えるた
め、減圧蒸留法において見られる不飽和結合を有する脂
肪酸の異性化或いは、重合などの構造変化、また不鹸化
物の存在による不鹸化物と脂肪酸の再エステル化の問題
が生じ難い。また減圧蒸留法のように加熱の必要がなく
常温で分離操作が可能であるため、低エネルギーコスト
で分離できるなど工業的に有利な分離方法である。
The present invention is to separate fats and oils and fatty acids in a semipermeable membrane by using pressure as a driving force, which has compatibility with fats and oils and fatty acids upon separation, a mixture of hydrocarbons and alcohols,
The oil and fat are separated from the fatty acid using an organic solvent selected from alcohols and organic acids as a solvent. In this method, the separation operation can be carried out at room temperature unlike the vacuum distillation method. Therefore, isomerization of fatty acid having an unsaturated bond found in the vacuum distillation method, structural change such as polymerization, and unsaponifiable matter due to the presence of unsaponifiable matter And the problem of re-esterification of fatty acids is less likely to occur. Further, unlike the vacuum distillation method, since the separation operation can be carried out at room temperature without the need for heating, it is an industrially advantageous separation method such as separation at low energy cost.

本発明に使用する分離膜は、NaCl除去率が10〜55%の
ポリスルホン膜である。また膜の形態についても特に限
定するものではなく、平膜、中空糸膜、スパイラル状膜
等、どのような形態の膜も使用可能である。
The separation membrane used in the present invention is a polysulfone membrane having a NaCl removal rate of 10 to 55%. Also, the form of the membrane is not particularly limited, and any form of membrane such as a flat membrane, a hollow fiber membrane and a spiral membrane can be used.

本発明の方法で使用できる油脂としては、大豆油、パ
ーム油、パーム核油、やし油、オリーブ油、アマニ油、
ヒマシ油、綿実油、桐油、ナタネ油などの植物性油脂、
或いは牛脂、豚脂、羊脂、魚油などの動物性油脂等が挙
げられ、特に油脂の種類を限定するものではない。
Examples of fats and oils that can be used in the method of the present invention include soybean oil, palm oil, palm kernel oil, coconut oil, olive oil, linseed oil,
Vegetable oils such as castor oil, cottonseed oil, tung oil, rapeseed oil,
Alternatively, animal fats and oils such as beef tallow, lard, sheep fat, and fish oil are listed, and the kind of fats and oils is not particularly limited.

また本発明に使用できる脂肪酸としては上述の油脂の
加水分解により得られる全ての脂肪酸が使用可能であ
り、例えば酪酸、カプロン酸、カプリル酸、カプリン
酸、ウンデカン酸、ラウリン酸、ミリスチン酸、パルミ
チン酸、ステアリン酸、アラキン酸、ウンデシレン酸、
ミリストレイン酸、オレイン酸、エルカ酸、エライジン
酸、リノール酸、リノレン酸、アラキドン酸等が挙げら
れる。これらの脂肪酸は、油脂の高圧分解、中圧触媒分
解、Twitchell法分解、酵素分解等の加水分解法により
得られたものであり、その分解方法については特に限定
するものではない。本法は、相溶性有機溶剤を溶媒とし
て使用するため、常温で液体の液状油だけでなく、常温
で固体の固体脂にも適用できる。また脂肪酸において
は、本方法が常温下での分離法であるため、飽和脂肪
酸、不飽和脂肪酸の区別なく、その構造及び品質を損な
わずに分離することができる。
Further, as the fatty acid which can be used in the present invention, all fatty acids obtained by hydrolysis of the above-mentioned fats and oils can be used, and for example, butyric acid, caproic acid, caprylic acid, capric acid, undecanoic acid, lauric acid, myristic acid, palmitic acid. , Stearic acid, arachidic acid, undecylenic acid,
Examples thereof include myristoleic acid, oleic acid, erucic acid, elaidic acid, linoleic acid, linolenic acid and arachidonic acid. These fatty acids are obtained by a hydrolysis method such as high-pressure decomposition of fats and oils, medium-pressure catalytic decomposition, Twitchell method decomposition, enzymatic decomposition and the like, and the decomposition method is not particularly limited. Since this method uses a compatible organic solvent as a solvent, it can be applied not only to liquid oil that is liquid at room temperature but to solid fat that is solid at room temperature. With regard to fatty acids, since this method is a separation method at room temperature, it is possible to separate saturated fatty acids and unsaturated fatty acids without distinction and without impairing their structure and quality.

本発明に用いる有機溶剤は、油脂と脂肪酸に相溶性の
ものであり、常温で固体状である油脂或いは脂肪酸を溶
解し流動性をもたせる、或いは常温で液体状である油脂
或いは脂肪酸に対してもその流動性を向上させる効果が
ある。この流動性の向上により膜分離における透過液の
透過流速が増大する。本発明においては、炭化水素類と
アルコール類の混合物、アルコール類、あるいは有機酸
類から選ばれる有機溶剤を用いる。炭化水素類として
は、ヘキサン、n−ペンタン、イソペンタン、2−メチ
ルペンタン、n−ヘプタン、イソオクタン、シクロヘキ
サン、メチルシクロヘキサン等が、アルコール類として
は、メタノール、エタノール、n−プロパノール、イソ
プロパノール、n−ブタノール等が、有機酸類として
は、ギ酸、酢酸、プロピオン酸等が挙げられる。本方法
においては、この有機溶剤の種類によつて透過流速及
び、分離効率が異なつてくる。またその最適溶剤は、油
脂と脂肪酸の種類によつて異なる場合があり、それを考
慮して選択する必要がある。また膜の種類によつては耐
有機溶剤性が低いものがあり、膜が耐え得る有機溶剤を
用いる必要がある。さてこのような有機溶剤の添加量
は、油脂及び脂肪酸が液体状なのか固体状なのかによ
り、またその時の操作温度により異なるが、0.1から30
倍量が好ましい。更に好ましくは、0.5から5倍量がよ
い。またこのように溶媒として使用される有機溶剤は一
般に沸点が低いことから、減圧蒸留等により容易に回収
でき、従つて再使用が可能である。
The organic solvent used in the present invention is compatible with fats and oils and fatty acids, and dissolves fats and oils or fatty acids that are solid at room temperature to give fluidity, or to fats and oils and fatty acids that are liquid at room temperature. It has the effect of improving its fluidity. This improvement in fluidity increases the permeation flow rate of the permeate in the membrane separation. In the present invention, an organic solvent selected from a mixture of hydrocarbons and alcohols, alcohols, or organic acids is used. The hydrocarbons include hexane, n-pentane, isopentane, 2-methylpentane, n-heptane, isooctane, cyclohexane, methylcyclohexane, and the like, and the alcohols include methanol, ethanol, n-propanol, isopropanol, n-butanol. As the organic acids, formic acid, acetic acid, propionic acid and the like can be mentioned. In the present method, the permeation flow rate and the separation efficiency differ depending on the type of the organic solvent. The optimum solvent may differ depending on the types of fats and oils and fatty acids, and it is necessary to select it in consideration of it. Some types of film have low organic solvent resistance, and it is necessary to use an organic solvent that the film can withstand. The amount of such an organic solvent added varies depending on whether the fats and oils and fatty acids are liquid or solid, and the operating temperature at that time, but 0.1 to 30
Double dose is preferred. More preferably, the amount is 0.5 to 5 times. In addition, since the organic solvent used as a solvent generally has a low boiling point, it can be easily recovered by vacuum distillation or the like, and can be reused accordingly.

本方法における操作時の圧力については、使用する膜
の耐圧性によるが、透過流速及び油脂除去率の面から考
えて高圧の方が好ましく、その範囲としては1〜70Kg/c
m2が好ましく、更に好ましくは10〜40Kg/cm2がよい。ま
た操作温度についても膜の耐熱性によるが、温度が高い
ほど透過流速が向上する。その温度については油脂及び
脂肪酸の種類、及び溶媒の使用量によるが、エネルギー
コストについて考慮すると、5〜50℃が好ましい。しか
し低温では透過流速低下等の問題があるので最適な温度
条件をその場合場合について選定しなくてはならない。
Regarding the pressure during operation in this method, it depends on the pressure resistance of the membrane used, but in view of the permeation flow rate and the oil and fat removal rate, high pressure is preferable, and the range is 1 to 70 Kg / c.
m 2 is preferable, and more preferably 10-40 Kg / cm 2 . The operating temperature also depends on the heat resistance of the membrane, but the higher the temperature, the higher the permeation flow rate. The temperature depends on the types of fats and oils and fatty acids, and the amount of solvent used, but in consideration of energy cost, it is preferably 5 to 50 ° C. However, at a low temperature, there is a problem such as a decrease in permeation flow velocity, so an optimum temperature condition must be selected for that case.

本発明の方法によれば、従来の分離方法と比較して、
加熱に要する費用が小さく、また減圧蒸留法における液
体と気体のあいだの相変化を伴わず、また常温で油脂と
脂肪酸を分離できるため飽和脂肪酸のみならず、高度の
不飽和脂肪酸も構造の変化及び品質を損なわず分離でき
る。これより不飽和脂肪酸の工業的生産が可能であり、
また油脂と脂肪酸の分離においてその品質が損なわれな
いため高い分離効率が得られる一方、更に分離後の油脂
或いは脂肪酸をそのまま再度反応に供することができる
など工業的に大きなメリツトが得られる。
According to the method of the present invention, as compared with the conventional separation method,
The cost required for heating is low, there is no phase change between liquid and gas in the vacuum distillation method, and since fats and fatty acids can be separated at room temperature, not only saturated fatty acids but also highly unsaturated fatty acids have structural changes and It can be separated without degrading the quality. From this, industrial production of unsaturated fatty acids is possible,
Further, since the quality is not impaired in the separation of fats and oils and fatty acids, high separation efficiency can be obtained, and on the other hand, industrially large merits can be obtained in that the separated fats and oils or fatty acids can be directly subjected to the reaction again.

〔実施例〕〔Example〕

以下に本発明の実施例を記載するが、本発明はこれら
実施例に限定されるものではない。
Examples of the present invention will be described below, but the present invention is not limited to these examples.

実施例−1 用いた膜は、面積0.003m2を有する平膜であり、その
材質はポリスルホン(Desalination Systeme Inc.製)
でNaCl除去率は30%である。用いた試料は加水分解後の
大豆油100gであり、その組成は脂肪酸50%、モノグリセ
リド1%、ジグリセリド6%、トリグリセリド43%であ
る。また溶媒はヘキサン−エタノール1:1混合液であ
る。
Example-1 The membrane used was a flat membrane having an area of 0.003 m 2 , and its material was polysulfone (manufactured by Desalination Systeme Inc.).
The NaCl removal rate is 30%. The sample used was 100 g of soybean oil after hydrolysis, and its composition was 50% fatty acid, 1% monoglyceride, 6% diglyceride, and 43% triglyceride. The solvent is a hexane-ethanol 1: 1 mixture.

用いた分離装置は、内部にかくはん子を有する窒素加
圧式の逆浸透装置であり、この中に加水分解後の大豆油
(以下試料油脂と記す)と溶媒を混合し、全量として15
0g入れた。分離操作時における窒素加圧は、40Kg/cm2
温度は35℃である。また溶媒は実験開始後も逐次追加し
てゆき、全量としては試料油脂に対し1.8倍量使用し
た。
The separating device used was a nitrogen pressure type reverse osmosis device having a stirrer inside, and the soybean oil after hydrolysis (hereinafter referred to as sample fats and oils) and the solvent were mixed therein, and the total amount was 15
I put 0g. Nitrogen pressure at the time of separation operation is 40 Kg / cm 2 ,
The temperature is 35 ° C. In addition, the solvent was added successively after the start of the experiment, and the total amount was 1.8 times the amount of the sample fats and oils.

これより得られた透過液中の油脂組成は、脂肪酸91
%、モノグリセリド2%、ジグリセリド5%、トリグリ
セリド2%であつた。以上より脂肪酸とトリグリセリド
を分離することができた。またトリグリセリドは膜によ
り阻止されるが、モノグリセリド及びジグリセリドは透
過するという結果が得られ、これにより加水分解後の試
料油脂からトリグリセリドのみを分離精製することがで
きる。また本実施例における試料油脂の透過流速は、0.
4Kg/hr.m2であつた。
The fat composition in the permeate obtained from this is
%, Monoglyceride 2%, diglyceride 5%, triglyceride 2%. From the above, the fatty acid and the triglyceride could be separated. Also, the result is that triglyceride is blocked by the membrane, but monoglyceride and diglyceride are permeated, which makes it possible to separate and purify only the triglyceride from the sample fat after hydrolysis. Further, the permeation flow rate of the sample fats and oils in this example is 0.
It was 4 Kg / hr.m 2 .

実施例−2 用いた膜の面積及び材質については実施例−1と同様
であり、NaCl除去率については10%のものを用いた。試
料油脂は加水分解後の脱水ひまし油52.3gであり、その
うちの脂肪酸は69%である。用いた溶媒はヘキサン−エ
タノール混合液で装置については実施例−1と同様であ
り、また操作時における窒素加圧は、30Kg/cm2、温度は
35℃である。また用いた溶媒全量は試料油脂に対し2.3
倍量であつた。
Example-2 The area and material of the film used were the same as in Example-1 and the removal rate of NaCl was 10%. The sample fat is 52.3 g of dehydrated castor oil after hydrolysis, of which 69% is fatty acid. The solvent used was a hexane-ethanol mixed solution, and the apparatus was the same as in Example-1, and the nitrogen pressure during the operation was 30 Kg / cm 2 , and the temperature was
35 ° C. Also, the total amount of solvent used was 2.3 with respect to the sample fat.
It was twice as much.

このような条件下で操作した結果、得られた透過液中
の油脂組成は脂肪酸93%であつた。一方膜内残液中のト
リグリセリドは95%であつた。これより油脂の種類が大
豆油から脱水ひまし油と変わつても、本方法において油
脂と脂肪酸を有効に分離できることがわかる。また試料
油脂の透過流速は、2.0Kg/hr.m2であつた。
As a result of operating under such conditions, the composition of oil and fat in the obtained permeated liquid was 93% of fatty acid. On the other hand, triglyceride in the residual liquid in the membrane was 95%. From this, it can be seen that even if the type of fats and oils is changed from soybean oil to dehydrated castor oil, the fats and oils and fatty acids can be effectively separated by this method. The permeation flow rate of the sample fat was 2.0 Kg / hr.m 2 .

実施例−3 本実施例における膜及び装置については、実施例−2
と同様であり、また操作圧力、温度についても実施例−
2と同様な条件下で行つたが、本実施例においては溶媒
として酢酸を用いた。試料油脂は加水分解後の脱水ひま
し油であり、そのうちの脂肪酸は67.5%であつた。この
試料油脂に溶媒である酢酸を50%加えて分離操作を行つ
た。これより得られた透過液中の油脂組成は脂肪酸90%
であつた。またその時の試料油脂の透過流速は1.6Kg/h
r.m2であつた。
Example-3 For the membrane and device in this example, see Example-2.
The operating pressure and temperature are the same as those in Example-
The conditions were the same as in Example 2, but in this example, acetic acid was used as the solvent. The sample fat was dehydrated castor oil after hydrolysis, and the fatty acid content was 67.5%. 50% of acetic acid, which is a solvent, was added to the sample fats and oils for separation operation. The composition of oil and fat in the permeate obtained from this is 90% fatty acid.
It was. At that time, the permeation flow rate of the sample oil is 1.6 Kg / h.
It was rm 2 .

実施例−4 使用した膜及び装置については、実施例−1と同様で
ありまた操作圧力は30Kg/cm2、温度は30℃である。本実
施例においては溶媒としてエタノールを用いた。試料油
脂は加水分解後の大豆油であり、そのうちの脂肪酸は54
%である。この試料油脂に対してエタノールを50%加え
て分離操作を行つた。これより得られた透過液中の油脂
組成は脂肪酸91%であり、試料油脂の透過流速は0.4Kg/
hr.m2であつた。
Example-4 The membrane and apparatus used are the same as in Example-1, the operating pressure is 30 kg / cm 2 , and the temperature is 30 ° C. In this example, ethanol was used as the solvent. The sample fat is soybean oil after hydrolysis, of which 54% are fatty acids.
%. 50% of ethanol was added to the sample fats and oils for separation. The composition of oil and fat in the permeate obtained from this was 91% of fatty acid, and the permeation flow rate of the sample oil was 0.4 kg /
It was hr.m 2 .

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】圧力を駆動力として半透膜にて溶質を選択
的に分離する膜分離法を利用して、油脂及び脂肪酸と相
溶性を持つ、炭化水素類とアルコール類の混合物、アル
コール類、あるいは有機酸類から選ばれる有機溶剤と油
脂及び脂肪酸との混合溶液を、NaCl除去率が10〜55%で
あるポリスルホン膜を用いて膜分離することにより油脂
と脂肪酸とを分離することを特徴とする分離方法。
1. A mixture of hydrocarbons and alcohols and alcohols which are compatible with fats and oils and fatty acids by using a membrane separation method in which solutes are selectively separated by a semipermeable membrane using pressure as a driving force. , Or a mixed solution of an organic solvent selected from organic acids and fats and oils and fatty acids, characterized by separating oils and fats and fatty acids by membrane separation using a polysulfone membrane having a NaCl removal rate of 10 to 55%. Separation method.
JP60017930A 1985-02-01 1985-02-01 Separation method of fats and oils and fatty acids Expired - Lifetime JPH0816231B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60017930A JPH0816231B2 (en) 1985-02-01 1985-02-01 Separation method of fats and oils and fatty acids

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60017930A JPH0816231B2 (en) 1985-02-01 1985-02-01 Separation method of fats and oils and fatty acids

Publications (2)

Publication Number Publication Date
JPS61176698A JPS61176698A (en) 1986-08-08
JPH0816231B2 true JPH0816231B2 (en) 1996-02-21

Family

ID=11957482

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60017930A Expired - Lifetime JPH0816231B2 (en) 1985-02-01 1985-02-01 Separation method of fats and oils and fatty acids

Country Status (1)

Country Link
JP (1) JPH0816231B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0453786U (en) * 1990-09-12 1992-05-08
ES2102594T3 (en) * 1992-12-03 1997-08-01 Unilever Nv OLIVE OIL BLENDS.
JP5201858B2 (en) * 2007-03-26 2013-06-05 花王株式会社 Method for producing fats and oils with reduced free fatty acids

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1509543A (en) * 1974-05-16 1978-05-04 Unilever Ltd Purification process
JPS50150310A (en) * 1974-05-22 1975-12-02
GB1564402A (en) * 1975-11-13 1980-04-10 Unilever Ltd Purification process
JPS5790098A (en) * 1980-11-26 1982-06-04 Nitto Electric Ind Co Purification of crude glyceride oil composition
JPS5950277B2 (en) * 1980-12-30 1984-12-07 日東電工株式会社 Method for refining crude glyceride oil composition
JPS57149399A (en) * 1981-03-11 1982-09-14 Nitto Electric Ind Co Method of decoloring crude cottonseed oil

Also Published As

Publication number Publication date
JPS61176698A (en) 1986-08-08

Similar Documents

Publication Publication Date Title
JP5013879B2 (en) Organic acid recovery
CA2762062C (en) Process for extracting fatty acids from aqueous biomass in a membrane contactor module
AU2006274474B2 (en) Method for production of carboxylate alkyl esters
WO2008155506A1 (en) Method for the synthesis of diacids or diesters from natural fatty acids and/or esters
Villa et al. Chemo-enzymatic production of omega-3 monoacylglycerides using sponge-like ionic liquids and supercritical carbon dioxide
JPH0816231B2 (en) Separation method of fats and oils and fatty acids
JP5753963B1 (en) Process for producing composition containing lower alcohol fatty acid ester and composition containing lower alcohol fatty acid ester
JPWO2006016492A1 (en) Method for producing composition for biodiesel fuel and apparatus for producing biodiesel fuel
EP0905125A1 (en) Composition useful as emulsifying and dispersing surfactant and its preparation
JP2013524779A (en) Process for obtaining fatty acid alkyl esters from lipids in membrane contactors
CN1181205C (en) Process for preparing ethyl alpha-linolenate by integrated reaction and separation in supercritical phase
WO2016158605A1 (en) Method for manufacturing lower alcohol fatty acid esterification product-containing composition and lower alcohol fatty acid esterification product-containing composition
JPH1057086A (en) Production of highly concentrated docosahexaenoic acid monoglyceride
JPS62289204A (en) Separation of fat and oil from fatty acid
JPH04126798A (en) Method for separating free fatty acid from glyceride containing free fatty acid
Chen et al. Alcoholysis of olive oil for producing wax esters by intracellular lipase in immobilized fungus cells
JP2001252090A (en) Method for producing diglyceride
JPH06192683A (en) Separation of free fatty acid
JPS63295551A (en) Purification of carotene
JPH06248289A (en) Method for selectively separating and recovering highly unsaturated fatty acids
WO2020138282A1 (en) Eicosapentaenoic acid alkyl ester-containing composition and method for producing same
CN1366064A (en) Process for preparing alpha-linolenic acid by integrated supercritical reaction and separation
Matsuba et al. Membrane extraction for separation of long-chain unsaturated fatty acids
JPH09143488A (en) Purification of highly unsaturated fatty acid ester
JPH0433838B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term