JPH08162115A - Lithium secondary battery - Google Patents

Lithium secondary battery

Info

Publication number
JPH08162115A
JPH08162115A JP6329644A JP32964494A JPH08162115A JP H08162115 A JPH08162115 A JP H08162115A JP 6329644 A JP6329644 A JP 6329644A JP 32964494 A JP32964494 A JP 32964494A JP H08162115 A JPH08162115 A JP H08162115A
Authority
JP
Japan
Prior art keywords
manganese
lithium
positive electrode
active material
lithium secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6329644A
Other languages
Japanese (ja)
Inventor
Takaaki Iguchi
隆明 井口
Koji Kuwana
宏二 桑名
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KAAGEO P SHINGU RES LAB KK
KAAGEO P-SHINGU RES LAB KK
Original Assignee
KAAGEO P SHINGU RES LAB KK
KAAGEO P-SHINGU RES LAB KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KAAGEO P SHINGU RES LAB KK, KAAGEO P-SHINGU RES LAB KK filed Critical KAAGEO P SHINGU RES LAB KK
Priority to JP6329644A priority Critical patent/JPH08162115A/en
Publication of JPH08162115A publication Critical patent/JPH08162115A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE: To improve cycle characteristics without decrease in capacity with a very small amount of substitution by performing uniform substitution in a lithium secondary battery using a positive electrode active material where part of manganese in lithium manganese composite oxide is substituted with another element. CONSTITUTION: A positive electrode active material used for a lithium secondary battery positive electrode 1 is composed of lithium manganese composite oxide composed by using a manganese compound where part of manganese is preliminarily substituted with another element M as the raw material. M is one or two kind or more of elements selected from nonmetal elements and semi-metal elements of IIIB, IVB and VB group in the periodic table.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はリチウム二次電池に関す
るもので、さらに詳しくはその正極活物質に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lithium secondary battery, and more particularly to a positive electrode active material thereof.

【0002】[0002]

【従来の技術】従来、リチウム二次電池用の正極活物質
として高エネルギー密度化の観点から一般式LiAO2
で表わすことのできるリチウムコバルト酸化物やリチウ
ムニッケル酸化物などの層状化合物や、LiMn24
よびLiMnO2を含む一連のリチウムマンガン複合酸
化物が正極材料として使用されている。
2. Description of the Related Art Conventionally, a general formula LiAO 2 has been used as a positive electrode active material for a lithium secondary battery from the viewpoint of high energy density.
A layered compound such as lithium cobalt oxide or lithium nickel oxide that can be represented by the following, or a series of lithium manganese composite oxides containing LiMn 2 O 4 and LiMnO 2 is used as a positive electrode material.

【0003】前記正極活物質において、一連のリチウム
マンガン複合酸化物はサイクル経過による結晶構造破壊
が生じる、又は粒子の膨脹収縮による粒子破壊から電子
伝導を担う導電剤との接触が不十分となるなどの要因
で、サイクル経過に伴い容量が低下するなどの問題があ
った。
In the above-mentioned positive electrode active material, a series of lithium manganese composite oxides causes crystal structure destruction due to the progress of cycle, or particle destruction due to expansion and contraction of particles causes insufficient contact with a conductive agent that is responsible for electron conduction. Due to this, there was a problem that the capacity decreased with the passage of cycles.

【0004】これらの問題点に対する方策としてリチウ
ムマンガン複合酸化物中のマンガンの一部を他元素に置
換することにより、活物質自身の充放電に伴う結晶構造
歪みの低減および電子伝導性の向上をねらいとする試み
が盛んに行われており、実際に活物質自身の性能向上に
効果があることが知られている(特開平4−14195
4号公報)。
As a measure against these problems, by substituting a part of manganese in the lithium-manganese composite oxide with another element, it is possible to reduce the crystal structure strain due to charge and discharge of the active material itself and improve the electronic conductivity. A lot of attempts have been made aiming at it, and it is known that it is actually effective in improving the performance of the active material itself (Japanese Patent Laid-Open No. 14195/1992).
4 publication).

【0005】[0005]

【発明が解決しようとする課題】前記リチウムマンガン
複合酸化物中のマンガンの一部を他元素で置換した化合
物の合成方法としては、一般的にリチウム化合物、マン
ガン化合物および、所望の置換元素含有化合物の粉末混
合体を焼成することが行われている。
As a method for synthesizing a compound in which a part of manganese in the lithium-manganese composite oxide is substituted with another element, generally, a lithium compound, a manganese compound, and a desired substitution element-containing compound are used. Firing the powder mixture.

【0006】しかし、この方法によると原料粉末の混合
焼成であるために、マンガン原料中にリチウムと他元素
の固相反応が連続的にあるいは同時に起こらなければな
らない。したがって、反応が均一になりやすく、十分な
置換が得られない場合や、比較的低温で合成するLiM
nO2などは固相反応が十分進行しないなどの問題があ
った。
However, according to this method, since the raw material powders are mixed and fired, the solid phase reaction between lithium and other elements must occur continuously or simultaneously in the manganese raw material. Therefore, the reaction is likely to be uniform and sufficient substitution cannot be obtained, or LiM synthesized at a relatively low temperature is used.
The problem with nO 2 is that the solid phase reaction does not proceed sufficiently.

【0007】また、先にも述べた様にLiMn24はマ
ンガンを他元素で置換することによりサイクル特性が向
上するが、スピネル構造において4V付近の電位で充放
電に関与する価数変化を行う元素種がないため、その分
充放電反応に関与しないリチウムイオンが生じ、逆効果
として容量が低下するという問題がある。
Further, as described above, LiMn 2 O 4 has improved cycle characteristics by substituting manganese with another element, but in the spinel structure, changes in valence involved in charge and discharge occur at a potential near 4V. Since there is no elemental species to perform, lithium ions that do not participate in the charging / discharging reaction are generated correspondingly, and there is a problem that the capacity decreases as an adverse effect.

【0008】本発明は、上記問題点を解決すべくなされ
るものであって、その目的とするところはリチウムマン
ガン複合酸化物のマンガンの一部を他元素により置換し
た化合物を容易、且つ均一に合成することを目的とす
る。
The present invention has been made to solve the above problems, and an object thereof is to easily and uniformly prepare a compound in which a part of manganese of a lithium manganese composite oxide is replaced with another element. Intended for synthesis.

【0009】[0009]

【課題を解決するための手段】上記課題を解決するため
の本発明のリチウム二次電池は、正極活物質があらかじ
め他元素(周期律表IIIB,IVBおよびVB族の非金属
元素および半金属元素、アルカリ土類金属、Mn以外の
金属元素の中から選ばれた1種または2種以上の元素)
で置換されたマンガン化合物とリチウム化合物の焼成に
より得られたリチウムマンガン複合酸化物を使用したも
のであることを特徴とするものである。
In the lithium secondary battery of the present invention for solving the above problems, the positive electrode active material is previously composed of other elements (non-metallic elements and semi-metallic elements of Group IIIB, IVB and VB of the periodic table). , One or more elements selected from metal elements other than alkaline earth metals and Mn)
A lithium-manganese composite oxide obtained by firing a manganese compound substituted with and a lithium compound is used.

【0010】[0010]

【作用】本発明によるリチウムマンガン複合酸化物を使
用したリチウム二次電池は、正極活物質があらかじめマ
ンガンを他元素置換したマンガン化合物とリチウム原料
のみからなる反応により合成されているため、他元素置
換が均一に行われたものであり、他元素置換効果が十分
に発揮され、電池性能は向上する。
In the lithium secondary battery using the lithium manganese composite oxide according to the present invention, since the positive electrode active material is synthesized by a reaction consisting of only a manganese compound in which manganese is replaced with another element in advance and a lithium source, Is performed uniformly, the effect of substituting other elements is sufficiently exhibited, and the battery performance is improved.

【0011】また、既にマンガン化合物中へ他元素が置
換されているため、リチウムとの固相(拡散)反応がス
ムーズに行われることや、さらにマンガンイオンに比較
して大きなイオン半径を有する他元素の置換についても
容易となり、その結果焼成時間の短縮および焼成温度の
低下など合成方法の簡略化、およびLiMnO2の様に
低温で合成されるためマンガンを他元素で置換すること
が困難な場合についての合成も可能となる。
Further, since the other element is already substituted in the manganese compound, the solid-phase (diffusion) reaction with lithium is smoothly performed, and the other element having a larger ionic radius than the manganese ion is present. It becomes easier to replace, and as a result, the synthesizing method such as shortening the firing time and lowering the firing temperature is simplified, and it is difficult to substitute manganese with other elements because it is synthesized at a low temperature like LiMnO 2 . Can also be synthesized.

【0012】またLiMn24はマンガンを他元素で置
換することによりサイクル特性が向上するが、スピネル
構造において4V付近の電位で充放電に関与する価数変
化を行う元素種がないため、その分充放電反応に関与し
ないリチウムイオンが生じ、逆効果として容量が低下す
る。しかし、本発明のリチウマンガン複合酸化物は他元
素が均一に置換されているため、微量の置換量でサイク
ル特性の向上が可能であり、他元素置換による容量低下
が小さくなるため、従来の合成方法で得られたものより
活物質性能は向上する。
Further, LiMn 2 O 4 has improved cycle characteristics by substituting manganese with another element, but in the spinel structure, there is no element species that changes the valence involved in charge and discharge at a potential near 4 V, and therefore, the Lithium ions that do not participate in the charge / discharge reaction are generated, and as a reverse effect, the capacity decreases. However, since the other element is uniformly substituted in the lithium manganese composite oxide of the present invention, it is possible to improve the cycle characteristics with a small amount of substitution, and the capacity decrease due to the substitution of other element is small, so that the conventional synthesis The active material performance is improved over that obtained by the method.

【0013】上記リチウムマンガン複合酸化物のうち、
特に好適なものの1つとしてはMnxCoyzで表せる
一連のマンガン酸化物を使用し合成したLiMn2-a
a4が挙げられる。
Of the above lithium manganese composite oxides,
One particularly preferred one is LiMn 2-a C synthesized using a series of manganese oxides represented by Mn x Co y O z.
o a O 4 .

【0014】このLiMn2-aCoa4複合体粉末は、
たとえば炭酸リチウムLi2Co3と、あらかじめMnO
2とCo(OH)2を混合し、所定の温度で加熱処理したM
xCoyzをLi/(Mn+Co)=1.0/2.0
のモル比となるように秤量、混合して空気中にて800
℃程度で加熱処理することにより得ることができる。
This LiMn 2-a Co a O 4 composite powder is
For example, lithium carbonate Li 2 Co 3 and MnO
2 and Co (OH) 2 were mixed and heat treated at a predetermined temperature.
n x Co y O z is Li / (Mn + Co) = 1.0 / 2.0
Weigh and mix to obtain a molar ratio of 800
It can be obtained by heat treatment at about ° C.

【0015】上記マンガン原料の好適なx,y,z値
は、それぞれ0.8≦x<1,0<y≦0.2,x+y
=1,1≦z<2.2である。x,y,z値が上記の範
囲以外では、他元素置換の効果が発揮されない、あるい
はエネルギー密度が低下するので好ましくない。
Suitable x, y and z values of the manganese raw material are 0.8 ≦ x <1, 0 <y ≦ 0.2 and x + y, respectively.
= 1,1 ≦ z <2.2. If the x, y, and z values are outside the above range, the effect of substitution of other elements will not be exhibited, or the energy density will be reduced, which is not preferable.

【0016】また、さらに好適なリチウムマンガン複合
酸化物としては、γ−Mn1-αCoαOOHで表せる一
連のマンガン酸化物を使用し合成されたLiMn1-α
α2が挙げられる。
As a more preferable lithium manganese composite oxide, LiMn 1-α C synthesized by using a series of manganese oxides represented by γ-Mn 1-α Co α OOH.
o α O 2 may be mentioned.

【0017】このLiMn1-αCoα2複合体粉末
は、たとえば水酸化リチウムLiOH・H2Oとあらか
じめγ−MnOOHの液相合成の段階で、共沈法により
合成複合化されたγ−Mn1-αCoαOOHをLi/M
n+Co=1.0/1.0のモル比となるように秤量、
混合して窒素気流中にて450℃程度で加熱処理するこ
とにより得ることができる。
This LiMn 1-α Co α O 2 composite powder is, for example, γ-composited and composited by a coprecipitation method at the stage of liquid phase synthesis of lithium hydroxide LiOH.H 2 O and γ-MnOOH. Mn 1-α Co α OOH to Li / M
Weigh so that the molar ratio of n + Co = 1.0 / 1.0,
It can be obtained by mixing and heat-treating at about 450 ° C. in a nitrogen stream.

【0018】上記マンガン原料の好適なα値は、0<α
≦0.3である。α値が上記の範囲以外では、他元素置
換の効果が発揮されない、あるいはエネルギー密度が低
下するので、好ましくない。
The preferable α value of the manganese raw material is 0 <α
≦ 0.3. If the α value is outside the above range, the effect of substituting other elements will not be exhibited, or the energy density will decrease, which is not preferable.

【0019】[0019]

【実施例】以下、本発明を置換元素としてコバルトを用
いた実施例に基づいて説明する。
EXAMPLES The present invention will be described below based on examples in which cobalt is used as a substitution element.

【0020】実施例1 Li2CO3とMn23を主原料として使用したLiMn
1.95Co0.054の合成において、あらかじめMn23
のマンガンをコバルトで置換したMn1.95Co0.053
とLi2CO3をLi:(Mn+Co)=1.0:2.0
のモル比となるよう各原料を秤量、混合し、大気中80
0℃で焼成することにより前記化合物を得た。
Example 1 LiMn using Li 2 CO 3 and Mn 2 O 3 as main raw materials
In the synthesis of 1.95 Co 0.05 O 4 , Mn 2 O 3 was previously prepared.
Mn 1.95 Co 0.05 O 3
And Li 2 CO 3 are Li: (Mn + Co) = 1.0: 2.0
The raw materials are weighed and mixed so that the molar ratio becomes 80
The compound was obtained by baking at 0 ° C.

【0021】上記の方法で得られた化合物を正極活物質
に使用し、図1の断面図で示すコイン型リチウム二次電
池を作製した。
The compound obtained by the above method was used as a positive electrode active material to prepare a coin-type lithium secondary battery shown in the sectional view of FIG.

【0022】まず、正極1は、上記正極活物質粉末を使
用し、これに導電剤としてアセチレンブラック、結着剤
としてポリテトラフルオロチレン粉末を重量比80:1
6:4の重量比で混練し、これをローラープレスにより
厚み0.5mmのシート状に成形した後、直径14mm
の円形に打ち抜いたものを正極集電体6を介して正極缶
4に圧着して用いた。
First, for the positive electrode 1, the above positive electrode active material powder is used, to which acetylene black as a conductive agent and polytetrafluoroethylene powder as a binder are mixed in a weight ratio of 80: 1.
After kneading at a weight ratio of 6: 4 and molding this into a sheet having a thickness of 0.5 mm by a roller press, the diameter is 14 mm.
The circular punched product was used by pressure bonding to the positive electrode can 4 via the positive electrode current collector 6.

【0023】負極2は、厚み0.3mmのリチウム箔を
直径16mmの円形に打ち抜き、負極集電体7を介して
負極缶に圧着して用いた。
As the negative electrode 2, a lithium foil having a thickness of 0.3 mm was punched into a circular shape having a diameter of 16 mm, and the negative electrode can was pressed through the negative electrode current collector 7 and used.

【0024】一方、セパレータ3にはポリプロピレン製
微多孔膜を用い、電解液はプロピレンカーボネートとジ
エチルカーボネートの混合溶媒(体積比1:1)にLi
ClO4を1mol/l溶解したものを使用した。
On the other hand, a polypropylene microporous film is used as the separator 3, and the electrolyte is Li in a mixed solvent of propylene carbonate and diethyl carbonate (volume ratio 1: 1).
The ClO 4 was used after dissolving 1mol / l.

【0025】上記正極1、負極2、セパレータ3、電解
液、および絶縁パッキング8を用いて直径20mm厚さ
1.6mmのコイン型リチウム電池を作製した。この電
池をA1とする。
A coin type lithium battery having a diameter of 20 mm and a thickness of 1.6 mm was produced using the positive electrode 1, the negative electrode 2, the separator 3, the electrolytic solution and the insulating packing 8. This battery is designated as A1.

【0026】実施例2 正極の合成においてMn1.90Co0.103を使用し、合
成し得られたLiMn1 .90Co0.104正極活物質を使
用した以外は、実施例1と全く同様にして本発明電池A
2を作製した。
[0026] Except for using Example 2 using Mn 1.90 Co 0.10 O 3 in the synthesis of the positive electrode, synthetic LiMn 1 .90 which obtained was then Co 0.10 O 4 positive electrode active material, in the same manner as in Example 1 Inventive Battery A
2 was produced.

【0027】実施例3 LiOH・H2Oとγ型酸化水酸化マンガン(γ−Mn
OOH)を主原料としたLiMn0.95Co0.052の合
成において、あらかじめγ型酸化水酸化マンガン中のマ
ンガンをコバルトで置換したγ−Mn0.95Co0.05OO
HとLiOH・H2OをLi:(Mn+Co)=1.
0:1.0のモル比となるよう各原料を秤量、混合し、
窒素雰囲気中450℃で焼成することにより前記化合物
を得た。
Example 3 LiOH.H 2 O and γ-type manganese oxide hydroxide (γ-Mn)
(OOH) as the main raw material in the synthesis of LiMn 0.95 Co 0.05 O 2 , γ-Mn 0.95 Co 0.05 OO in which manganese in γ-type oxidized manganese hydroxide was replaced with cobalt in advance.
H and LiOH.H 2 O are Li: (Mn + Co) = 1.
Weigh and mix the raw materials so that the molar ratio is 0: 1.0,
The compound was obtained by firing at 450 ° C. in a nitrogen atmosphere.

【0028】上記の方法で得られた正極活物質粉末を使
用した以外は、実施例1と全く同様にして本発明電池A
3を作製した。
The battery A of the present invention was manufactured in the same manner as in Example 1 except that the positive electrode active material powder obtained by the above method was used.
3 was produced.

【0029】実施例4 正極の合成においてγ−Mn0.90Co0.10OOHを使用
し、合成し得られたLiMn0.90Co0.102正極活物
質粉末を使用した以外は、実施例1と全く同様にして本
発明電池A4を作製した。
Example 4 In exactly the same manner as in Example 1 except that γ-Mn 0.90 Co 0.10 OOH was used in the synthesis of the positive electrode and the LiMn 0.90 Co 0.10 O 2 positive electrode active material powder obtained by the synthesis was used. The present invention battery A4 was produced.

【0030】比較例1 原料としてLi2Co3,Mn23を使用して合成された
LiMn24正極活物質を使用した以外は、実施例1と
全く同様にして電池B1を作製した。
Comparative Example 1 A battery B1 was prepared in the same manner as in Example 1 except that a LiMn 2 O 4 positive electrode active material synthesized by using Li 2 Co 3 and Mn 2 O 3 was used as a raw material. .

【0031】比較例2 原料としてLi2CO3,Mn23,Co(OH)2を使用
して合成されたLiMn1.95Co0.054正極活物質を
使用した以外は、実施例1と全く同様にして電池B2を
作製した。
Comparative Example 2 Except for using LiMn 1.95 Co 0.05 O 4 positive electrode active material synthesized by using Li 2 CO 3 , Mn 2 O 3 and Co (OH) 2 as a raw material, the same as Example 1. Battery B2 was prepared in the same manner.

【0032】比較例3 原料としてLi2CO3,Mn23,Co(OH)2を使用
して合成されたLiMn1.90Co0.104正極活物質を
使用した以外は、実施例1と全く同様にして電池B3を
作製した。
Comparative Example 3 Except for using LiMn 1.90 Co 0.10 O 4 positive electrode active material synthesized by using Li 2 CO 3 , Mn 2 O 3 and Co (OH) 2 as a raw material, the same as Example 1. Battery B3 was produced in the same manner.

【0033】比較例4 原料としてLiOH・H2O,γ−MnOOHを使用し
て合成されたLiMnO2正極活物質を使用した以外
は、実施例1と全く同様にして電池B4を作製した。
Comparative Example 4 A battery B4 was prepared in the same manner as in Example 1 except that a LiMnO 2 positive electrode active material synthesized by using LiOH.H 2 O and γ-MnOOH was used as a raw material.

【0034】比較例5 原料としてLiOH・H2O,γ−MnOOH,Co(O
H)2を使用して合成されたLiMn0.95Co0.052
極活物質を使用した以外は、実施例1と全く同様にして
電池B5を作製した。
Comparative Example 5 As raw materials, LiOH.H 2 O, γ-MnOOH, Co (O
A battery B5 was made in exactly the same manner as in Example 1 except that the LiMn 0.95 Co 0.05 O 2 positive electrode active material synthesized using H) 2 was used.

【0035】比較例6 原料としてLiOH・H2O,γ−MnOOH,Co(O
H)2を使用して合成されたLiMn0.90Co0.12正極
活物質を使用した以外は、実施例1と全く同様にして電
池B6を製作した。
Comparative Example 6 LiOH.H 2 O, γ-MnOOH, Co (O
A battery B6 was manufactured in exactly the same manner as in Example 1 except that the LiMn 0.90 Co 0.1 O 2 positive electrode active material synthesized using H) 2 was used.

【0036】この様にして製作した電池A1,A2,A
3,A4,B1,B2,B3,B4,B5,B6の初期
容量(mAh)と50および100サイクル後の容量
(mAh)を表1,2に示す。
Batteries A1, A2, A produced in this way
Tables 1 and 2 show the initial capacity (mAh) of 3, A4, B1, B2, B3, B4, B5 and B6 and the capacity (mAh) after 50 and 100 cycles.

【0037】[0037]

【表1】 [Table 1]

【0038】[0038]

【表2】 [Table 2]

【0039】表1から明らかなように本発明のリチウム
マンガン複合酸化物を使用した実施例A1,A2は比較
例B1,B2,B3に比較して、サイクル特性が良いこ
とが明らかである。また、実施例の電池においては比較
例の電池に比較してマンガンの他元素(コバルト)置換
量が少なくてもサイクル特性が良く、容量も大きい。
As is clear from Table 1, Examples A1 and A2 using the lithium manganese composite oxide of the present invention have better cycle characteristics than Comparative Examples B1, B2 and B3. Further, in the battery of the example, compared with the battery of the comparative example, the cycle characteristics are good and the capacity is large even if the substitution amount of other element (cobalt) other than manganese is small.

【0040】LiMn24はマンガンを他元素で置換す
ることによりサイクル特性が向上するが、スピネル構造
において4V付近の充放電に関与する価数変化を行う元
素種がないため、その分充放電反応に関与しないリチウ
ムイオンが生じ、逆効果として容量が低下する。しか
し、本実施例のリチウムマンガン複合酸化物はコバルト
が均一に置換されているため、微量の置換量でサイクル
特性の向上が可能であり、コバルト置換による容量低下
が小さくなるため、従来の合成方法で得られたものより
活物質性能は向上する。
LiMn 2 O 4 has improved cycle characteristics by substituting manganese with another element, but in the spinel structure, since there is no element species that changes the valence involved in charging / discharging in the vicinity of 4 V, charging / discharging correspondingly. Lithium ions that do not participate in the reaction are generated, and as a reverse effect, the capacity decreases. However, since the lithium-manganese composite oxide of this example is uniformly substituted with cobalt, it is possible to improve the cycle characteristics with a small amount of substitution, and the capacity reduction due to cobalt substitution is small, so the conventional synthesis method The performance of the active material is higher than that obtained in the above.

【0041】また、表2から明らかなように本発明のリ
チウムマンガン複合酸化物を使用した実施例A3,A4
は比較例B4,B5,B6に比較して、容量が大きくサ
イクル特性も良好であることが明らかである。
As is clear from Table 2, Examples A3 and A4 using the lithium manganese composite oxide of the present invention.
It is clear that, as compared with Comparative Examples B4, B5 and B6, the capacity is large and the cycle characteristics are good.

【0042】また、実施例電池はマンガンのコバルト置
換によりサイクル特性が向上しているが、比較例電池で
はマンガンのコバルトによる置換量に従い容量が低下
し、サイクル特性の向上も見られない。
Further, the cycle characteristics of the batteries of the Examples were improved by replacing the manganese with cobalt, but the capacity of the batteries of the Comparative Example decreased with the substitution of cobalt for the manganese, and no improvement in the cycle characteristics was observed.

【0043】これは、LiMnO2は低温で合成される
ため、リチウム原料、マンガン原料、コバルト原料の粉
末混合体の熱処理ではコバルトが十分にマンガン原料と
固相反応しないため、置換量により末反応物が残存し、
その分容量の低下を招くこととなるためである。
Since LiMnO 2 is synthesized at a low temperature, cobalt does not sufficiently undergo solid phase reaction with the manganese raw material in the heat treatment of the powder mixture of the lithium raw material, the manganese raw material, and the cobalt raw material. Remains,
This is because the capacity is reduced accordingly.

【0044】以上、本発明について正極活物質としてマ
ンガンの置換元素としてコバルトを例にしたリチウム二
次電池について説明したが、本発明における置換元素M
はコバルトに限定されるものではなく、周期律表III
B,IVBおよびVB族の非金属元素および半金属元素、
アルカリ土類金属、Mn以外の金属元素の中から選ばれ
た1種または2種以上の元素が対象となり、コバルトと
同様に有効である。
The lithium secondary battery in which cobalt is used as an example of the substitution element of manganese as the positive electrode active material in the present invention has been described above. The substitution element M in the present invention has been described above.
Is not limited to cobalt, but the periodic table III
Non-metal elements and metalloid elements of B, IVB and VB groups,
One or more elements selected from alkaline earth metals and metal elements other than Mn are targeted, and are effective as well as cobalt.

【0045】[0045]

【発明の効果】本発明の電池においては、正極活物質で
あるリチウムマンガン複合酸化物があらかじめ他元素で
マンガンが置換されたマンガン原料を使用して合成され
ていることから、均一な置換が行われており、微量の置
換量で、且つ容量を低下させることなくサイクル特性向
上に効果を示す。
EFFECTS OF THE INVENTION In the battery of the present invention, the lithium manganese composite oxide, which is the positive electrode active material, is synthesized using the manganese raw material in which manganese has been previously substituted with another element, so that uniform substitution is performed. Therefore, it is effective in improving cycle characteristics with a small amount of substitution and without reducing the capacity.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例電池に係るコイン型リチウム二
次電池の断面図である。
FIG. 1 is a cross-sectional view of a coin type lithium secondary battery according to an example battery of the present invention.

【符号の説明】[Explanation of symbols]

1 正極 2 負極 3 セパレータ 4 正極缶 5 負極缶 6 正極集電体 7 負極集電体 8 絶縁パッキング 1 Positive electrode 2 Negative electrode 3 Separator 4 Positive electrode can 5 Negative electrode can 6 Positive electrode current collector 7 Negative electrode current collector 8 Insulation packing

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成6年12月29日[Submission date] December 29, 1994

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0006[Correction target item name] 0006

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0006】しかし、この方法によると原料粉末の混合
焼成であるために、マンガン原料中にリチウムと多元素
の固相反応が連続的にあるいは同時に起こらなければな
らない。したがって、反応が均一になりやすく、充分
な置換が得られない場合や、比較的低温で合成するLi
MnO2などは固相反応が十分進行しないなどの問題が
あった。
However, according to this method, since the raw material powders are mixed and fired, the solid-state reaction between lithium and multi-elements must occur continuously or simultaneously in the manganese raw material. Therefore, the reaction tends to be non- uniform, and when sufficient substitution cannot be obtained, or when Li synthesized at a relatively low temperature is used.
MnO 2 and the like have a problem that the solid phase reaction does not proceed sufficiently.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 あらかじめマンガンの一部を他元素M
(ここで、Mは周期律表IIIB,IVB,およびVB族の
非金属元素および半金属元素、アルカリ土類金属、Mn
以外の金属元素の中から選ばれた1種または2種以上の
元素)で置換したマンガン化合物を原料として合成され
たリチウムマンガン複合酸化物を正極活物質として使用
することを特徴とするリチウム二次電池。
1. A part of manganese is used as another element M in advance.
(Where M is a non-metal element and a metalloid element of Group IIIB, IVB, and VB of the periodic table, an alkaline earth metal, Mn
Lithium secondary manganese oxide prepared by using as a raw material a manganese compound substituted with one or more elements selected from metal elements other than battery.
【請求項2】 前記マンガン化合物がMnxy
z(x,y,zはそれぞれ0.8≦x<1,0<y≦
0.2,x+y=1,1≦z<2.2である)であるこ
とを特徴とする請求項1記載のリチウム二次電池。
2. The manganese compound is Mn x M y O.
z (x, y, z are 0.8 ≦ x <1, 0 <y ≦
0.2, x + y = 1, 1 ≦ z <2.2)), The lithium secondary battery according to claim 1.
【請求項3】 前記マンガン化合物がγ型酸化水酸化マ
ンガンMn1-ααOOH(0<α≦0.3)であるこ
とを特徴とする請求項1記載のリチウム二次電池。
3. The lithium secondary battery according to claim 1, wherein the manganese compound is γ-type manganese oxide hydroxide Mn 1-α M α OOH (0 <α ≦ 0.3).
JP6329644A 1994-12-02 1994-12-02 Lithium secondary battery Pending JPH08162115A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6329644A JPH08162115A (en) 1994-12-02 1994-12-02 Lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6329644A JPH08162115A (en) 1994-12-02 1994-12-02 Lithium secondary battery

Publications (1)

Publication Number Publication Date
JPH08162115A true JPH08162115A (en) 1996-06-21

Family

ID=18223651

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6329644A Pending JPH08162115A (en) 1994-12-02 1994-12-02 Lithium secondary battery

Country Status (1)

Country Link
JP (1) JPH08162115A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997023918A1 (en) * 1995-12-26 1997-07-03 Kao Corporation Anode active material and nonaqueous secondary battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997023918A1 (en) * 1995-12-26 1997-07-03 Kao Corporation Anode active material and nonaqueous secondary battery
US6103422A (en) * 1995-12-26 2000-08-15 Kao Corporation Cathode active material and nonaqueous secondary battery containing the same

Similar Documents

Publication Publication Date Title
US11165062B2 (en) Positive electrode active material for nonaqueous electrolyte secondary batteries, method for producing same, and nonaqueous electrolyte secondary battery
JP3036694B2 (en) Method for producing Li composite oxide for Li-ion battery electrode material
JP7102973B2 (en) Positive electrode active material for lithium ion secondary battery and its manufacturing method, and thium ion secondary battery
JPH09320588A (en) Manufacture of lithium battery positive electrode active material, and lithium battery
JP2020198195A (en) Method for manufacturing positive electrode active material for lithium ion secondary battery
JP3274016B2 (en) Method for producing lithium cobaltate-based positive electrode active material for lithium secondary battery
JPH08162114A (en) Lithium secondary battery
WO2021006129A1 (en) Positive electrode active material for lithium ion secondary batteries, and lithium ion secondary battery
JP2021147314A (en) Transition metal composite hydroxide particle, manufacturing method of transition metal composite hydroxide particle, positive electrode active material for lithium ion secondary battery, and lithium ion secondary battery
JPH10162830A (en) Positive electrode active material for lithium secondary battery, and secondary battery using same
JPH07262995A (en) Cobalt acid lithium positive electrode active material for lithium secondary battery and manufacture thereof
JP3578503B2 (en) Positive active material for lithium secondary battery and secondary battery using the same
JP2005302601A (en) Negative electrode active material for battery, its manufacturing method, and nonaqueous electrolyte secondary battery
JP3429328B2 (en) Lithium secondary battery and method of manufacturing the same
JP7480527B2 (en) Positive electrode active material for lithium ion secondary battery, method for producing positive electrode active material for lithium ion secondary battery, lithium ion secondary battery
TWI822958B (en) Method for manufacturing positive electrode active material for lithium ion secondary batteries
JP7205198B2 (en) Method for producing positive electrode active material for lithium ion secondary battery
JPH08162115A (en) Lithium secondary battery
JP2001068113A (en) Positive electrode active material for lithium battery, its manufacturing method, and lithium battery
JPH0817471A (en) Non-aqueous electrolytic secondary battery
JP7031150B2 (en) A method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery, a method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery, and a non-aqueous electrolyte secondary battery using the positive electrode active material.
JP2020166931A (en) Positive electrode active material for lithium ion secondary battery and method of manufacturing the same
JP2000327340A (en) Lithium manganese compound oxide particulate composition and its production and utilization for lithium ion secondary battery
WO2024095977A1 (en) Positive electrode active material for lithium ion secondary batteries, and lithium ion secondary battery
WO2024095981A1 (en) Method for producing positive electrode active material for lithium ion secondary batteries