JPH08160240A - Silica-based optical parts and their production - Google Patents

Silica-based optical parts and their production

Info

Publication number
JPH08160240A
JPH08160240A JP6306055A JP30605594A JPH08160240A JP H08160240 A JPH08160240 A JP H08160240A JP 6306055 A JP6306055 A JP 6306055A JP 30605594 A JP30605594 A JP 30605594A JP H08160240 A JPH08160240 A JP H08160240A
Authority
JP
Japan
Prior art keywords
silica glass
silica
optical
layer
radiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6306055A
Other languages
Japanese (ja)
Other versions
JP3433540B2 (en
Inventor
Hiroyuki Nakaishi
博之 中石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP30605594A priority Critical patent/JP3433540B2/en
Publication of JPH08160240A publication Critical patent/JPH08160240A/en
Application granted granted Critical
Publication of JP3433540B2 publication Critical patent/JP3433540B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Optical Integrated Circuits (AREA)
  • Glass Melting And Manufacturing (AREA)

Abstract

PURPOSE: To make it possible to plot optical circuits with high accuracy by forming a silica glass layer on a silica glass surface for plotting having a specific loss to a specific radiation and irradiating the silica glass layer with the specific radiation from above the layer, thereby plotting the optical circuits. CONSTITUTION: These silica based optical parts are formed by forming the silica glass layer having a low defect concn. on the silica glass surface for plotting having the loss of at least 1dB/m with the radiation of a wavelength 165nm and irradiating the silica glass layer with the radiation of a wavelength <=330nm from above the layer, thereby plotting the optical circuits. The silica glass surface for plotting which is cut from a glass body of a preform and is subjected to polishing is irradiated with the light via the mask having transparent parts at the time of plotting the optical circuits in the silica glass. The preform 1 of the silica glass is produced by a sol-gel method, etc., and the production thereof is executed under conditions selected in such a manner that the SiSi defect concn. associated with the desired loss at 165nm of >=dB/m is generated. After the layer 1" of the low defect density is formed, the layer is irradiated with the light 4 from the mask.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は光通信用の機器等に用い
られるシリカガラスの導波路型光部品に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a silica glass waveguide type optical component used in optical communication equipment and the like.

【0002】[0002]

【従来の技術】光導波路の作成技術としては、従来、微
細加工技術を用いたもの(西原他共著)、イオンの拡散
を用いたもの(西原他共著)、及び、光照射による局所
的な屈折率変化を利用したもの(V.Mizrahi et.al.)が
あった。
2. Description of the Related Art Conventionally, as a technique for producing an optical waveguide, one using a fine processing technique (Nishihara et al.), One using ion diffusion (Nishihara et al.), And local refraction by light irradiation are used. There was one using the rate change (V.Mizrahi et.al.).

【0003】[0003]

【発明が解決しようとする課題】従来の光導波路作成技
術のうち、微細加工技術を用いたものは、高精度に屈折
率の制御された透明な多層薄膜の作成と、さらに高精度
の微細加工技術を必要としているため、工程数が多く、
そのため、製品の安定性も良くないという問題があっ
た。また、イオンの拡散を利用した方法は、溶液中から
固体内部への拡散現象を利用することから、プロセス速
度が非常に遅く、大量の工業生産には向かない。また、
光照射によって局所的に屈折率を変化させる方法は、高
圧の水素ガス中に長時間曝露し、水素ガスを拡散させる
必要があり、処理に、約20日間かかっている。従っ
て、光導波路作成上の課題としては、プロセスの工程を
いかに少なくするか及び、処理時間をいかに短縮するか
と云うことが課題であった。
Among the conventional optical waveguide fabrication techniques, one using a fine processing technique is to produce a transparent multilayer thin film whose refractive index is controlled with high precision, and to perform fine processing with higher precision. Since it requires technology, there are many processes,
Therefore, there is a problem that the stability of the product is not good. Further, the method utilizing the diffusion of ions utilizes the diffusion phenomenon from the solution to the inside of the solid, and therefore has a very slow process speed and is not suitable for mass production. Also,
The method of locally changing the refractive index by light irradiation requires exposure to high-pressure hydrogen gas for a long time to diffuse the hydrogen gas, and the treatment takes about 20 days. Therefore, as a problem in producing the optical waveguide, how to reduce the number of process steps and how to shorten the processing time have been problems.

【0004】[0004]

【課題を解決するための手段】本発明は、波長165n
mの輻射線について、少なくとも1dB/mの損失を有
する描画用シリカガラス面上に、欠陥濃度の低いシリカ
ガラス層を形成し、当該シリカガラス層の上から、波長
330nm以下の輻射線を前記描画用シリカガラスに照
射して描画されたシリカ系光部品であり、かつ、シリカ
ガラス中に光回路を描画する際に、母材のガラス体より
切断研磨した描画用シリカガラス面に透過部分を有する
マスクを介して光を照射することを特徴とするシリカ系
光部品の製造方法である。
SUMMARY OF THE INVENTION The present invention provides a wavelength of 165n.
For a radiation of m, a silica glass layer having a low defect concentration is formed on the surface of the writing silica glass having a loss of at least 1 dB / m, and the radiation having a wavelength of 330 nm or less is drawn on the silica glass layer. It is a silica-based optical component that is drawn by irradiating silica glass for use in drawing, and has a transparent portion on the drawing silica glass surface cut and polished from the glass body of the base material when drawing an optical circuit in the silica glass. A method for manufacturing a silica-based optical component, characterized by irradiating light through a mask.

【0005】光導波路作成において、その工程数を少な
くし、しかもプロセスに必要な時間を短縮させるための
具体的な方法を以下に示す。まず、光部品作製の手順を
図1に示す。図1中で、シリカガラスは、まず、母材1
として形成される。母材1は、内面堆積法または、外面
堆積法もしくは、ゾルゲル法によっても製造することが
できる。いずれの場合も、シリカガラスの製造は、少な
くとも1dB/m以上の165nmにおける所望の損失
に関連する比較的高いSiSi欠陥濃度を生じるように
選択された条件下で行われる処理工程を含む。
A specific method for reducing the number of steps in manufacturing an optical waveguide and shortening the time required for the process will be described below. First, FIG. 1 shows a procedure for manufacturing an optical component. In FIG. 1, the silica glass is the base material 1
Formed as. The base material 1 can also be manufactured by an inner surface deposition method, an outer surface deposition method, or a sol-gel method. In each case, the production of silica glass involves processing steps performed under conditions selected to produce a relatively high SiSi defect concentration associated with the desired loss at 165 nm of at least 1 dB / m or higher.

【0006】このようにして作製した描画用のシリカガ
ラスを、所望のサイズに切断研磨してガラス片1’を作
成し、そのうえに、欠陥濃度の低いシリカガラスの層
1”を形成した後、その上から更に、強度の高い330
nm以下の所定の波長の光4をマスク5を通して所定時
間照射する。ここで、マスク5は、光4を通過させる部
分と、光4を通過させない部分よりなっていると共に、
所定の光4を所定時間照射することにより、図2に示す
ように、シリカガラスへの描画される深さ云い返れば屈
折率変化を特定することが出来ることは云うまでもな
い。
The silica glass for drawing thus produced is cut and polished into a desired size to form a glass piece 1 ', and a silica glass layer 1 "having a low defect concentration is formed on the glass piece 1', and then the glass piece 1'is formed. Higher strength from the top 330
Light 4 having a predetermined wavelength of not more than nm is irradiated through the mask 5 for a predetermined time. Here, the mask 5 is composed of a portion that transmits the light 4 and a portion that does not transmit the light 4, and
It goes without saying that by irradiating with the predetermined light 4 for a predetermined period of time, as shown in FIG. 2, it is possible to specify the change in the refractive index, that is, the depth of drawing on the silica glass.

【0007】なお、描画された光回路中に、”格子”と
呼ばれる部分を有する場合は、いわゆるマスクを用いた
等倍露光法を用いれば良く、描画された光回路中におけ
る”格子”と呼ばれる部分の光導波部の屈折率は、n
max とn0 の間を、行路に沿った距離の関数として、繰
り返し変化し、nmax が最大有効屈折率、n0 が最小有
効屈折率であり、nmax とn0 とは、(nmax −n0
/n0 >10‐5で表される関係にあるシリカ系光部品
である。その他、描画する光回路中に”干渉計”や”増
幅部”と呼ばれる部分を設けるには、予めマスク上に光
の透過部分を設けておけば良い。光部品の主要部はこの
ようにして作製され、これを、匡体に組み込むことによ
って光部品が完成する。
If the drawn optical circuit has a portion called a "lattice", a so-called mask-based equal-magnification exposure method may be used, which is called a "lattice" in the drawn optical circuit. The refractive index of the optical waveguide part is n
Iteratively varies between max and n 0 as a function of distance along the path, n max is the maximum effective index, n 0 is the minimum effective index, and n max and n 0 are (n max -N 0 )
It is a silica-based optical component having a relationship represented by / n 0 > 10 −5 . In addition, in order to provide a portion called "interferometer" or "amplifier" in the optical circuit for drawing, a light transmitting portion may be provided on the mask in advance. The main part of the optical component is manufactured in this manner, and the optical component is completed by incorporating it into the casing.

【0008】[0008]

【作用】[Action]

1.マスクを通して光を照射するだけで光回路ができる
ので、処理時間を大幅に短くすることができる。 2.欠陥濃度を変化させることによって、光照射に対す
る感度を任意に変化させることができる。 3.珪素、酸素以外の元素を用いないので、ドーピング
元素の不均一が問題にならなくなる。
1. Since the optical circuit can be formed only by irradiating the light through the mask, the processing time can be significantly shortened. 2. By changing the defect concentration, the sensitivity to light irradiation can be changed arbitrarily. 3. Since elements other than silicon and oxygen are not used, the non-uniformity of doping elements does not matter.

【0009】[0009]

【実施例】シリカガラスの母材を図1(a)のように通
常のVAD法によって母材1を作製した。脱水工程で
は、165nmにおける損失を高くするため、He中に
塩素を50%混合した雰囲気で処理を行い、燒結の工程
においては、塩素を含まないHe中にて処理を行った。
作製したシリカガラスの母材1を、第1図(b)のよう
に切断加工及び表面研磨し、ガラス片1’を作成した。
さらに、そのうえに、第1図(c)のようにバ−ナ3を
介して165nmにおける欠陥濃度の低い損失の小さい
シリカガラスの層1”を火炎堆積法にて形成した。この
ようにして作製した二重構造のシリカガラス板6に、図
1(d)に示すように、マスク5を通して165nmの
真空紫外光4を3600秒間照射し、導波路型の光部品
とした。
Example As a base material of silica glass, a base material 1 was produced by a normal VAD method as shown in FIG. In the dehydration step, in order to increase the loss at 165 nm, the treatment was performed in an atmosphere in which 50% chlorine was mixed in He, and in the sintering step, the treatment was performed in He containing no chlorine.
The produced silica glass base material 1 was cut and surface-polished as shown in FIG. 1 (b) to prepare a glass piece 1 '.
Further, as shown in FIG. 1 (c), a silica glass layer 1 "having a low defect concentration at 165 nm and a small loss was formed by the flame deposition method through the burner 3. As shown in FIG. As shown in FIG. 1D, the silica glass plate 6 having a double structure was irradiated with vacuum ultraviolet light 4 of 165 nm for 3600 seconds through a mask 5 to obtain a waveguide type optical component.

【0010】[0010]

【発明の効果】以上説明したように、本発明によれば、
従来の導波路型光部品作製プロセスより、処理時間を大
幅に短縮することが可能となり、照射する光の波長も、
短波長のものが使用可能となるので、高精度で光回路を
描画することが可能となる。本発明のシリカガラスは、
165nmで、バックグラウンド以上の、損失を有す
る。すなわち、少なくとも1dB/mの損失を有する。
このことは、シリカガラス内に、高濃度のSiSi欠陥
が存在することを示している。高濃度のSiSi欠陥
は、いままでGeドープなしでは一般に達成不可能であ
ったΔn値(例えば488nmにおいて、Δn>10
‐4)を可能にし、光導波路作成プロセスに用いれば、
高精度の光導波路を短時間で作成することが可能にな
る。
As described above, according to the present invention,
Compared to the conventional waveguide-type optical component manufacturing process, the processing time can be significantly shortened, and the wavelength of the irradiation light is also
Since short wavelengths can be used, it is possible to draw an optical circuit with high accuracy. The silica glass of the present invention is
At 165 nm, it has a loss above background. That is, it has a loss of at least 1 dB / m.
This indicates that there is a high concentration of SiSi defects in the silica glass. High concentrations of SiSi defects have been generally unachievable without Ge doping until now (.DELTA.n> 10 at 488 nm, for example).
-4 ) is enabled and used in the optical waveguide creation process,
It becomes possible to create a highly accurate optical waveguide in a short time.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の光部品作製プロセスの構成を図式化し
たものである。
FIG. 1 is a schematic diagram of a configuration of an optical component manufacturing process of the present invention.

【図2】本実施例において、SiSi欠陥導入によって
屈折率変化Δn値が大きく変化する様子を示したもので
ある。
FIG. 2 shows how the refractive index change Δn value greatly changes due to the introduction of SiSi defects in this example.

【符号の説明】[Explanation of symbols]

1:シリカガラスの母材 2、3:バーナー 4:真空紫外光 5:マスク 6:シリカガラス 1: Base material of silica glass 2, 3: Burner 4: Vacuum ultraviolet light 5: Mask 6: Silica glass

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 波長165nmの輻射線について、少な
くとも1dB/mの損失を有する描画用シリカガラス面
上に、欠陥濃度の低いシリカガラス層を形成し、当該シ
リカガラス層の上から、波長330nm以下の輻射線を
前記描画用シリカガラスに照射して描画してなることを
特徴とするシリカ系光部品。
1. With respect to radiation having a wavelength of 165 nm, a silica glass layer having a low defect concentration is formed on a drawing silica glass surface having a loss of at least 1 dB / m, and a wavelength of 330 nm or less is formed on the silica glass layer. Irradiating the above-mentioned drawing silica glass with the above-mentioned radiation to perform drawing.
【請求項2】 描画用シリカガラスは、珪素、酸素以外
のGe等の元素を導入しない請求項1に記載のシリカ系
光部品。
2. The silica-based optical component according to claim 1, wherein the drawing silica glass does not incorporate elements such as Ge other than silicon and oxygen.
【請求項3】 描画された光回路中には、”格子”と呼
ばれる部分を有し、光導波部の屈折率は、nmax とn0
の間を、行路に沿った距離の関数として、繰り返し変化
し、nmax が最大有効屈折率、n0 が最小有効屈折率で
あり、nmaxとn0 とは、(nmax −n0 )/n0 >1
‐5で表される関係にある請求項1に記載のシリカ系
光部品。
3. A drawn optical circuit has a portion called a "lattice", and the refractive index of the optical waveguide portion is n max and n 0.
Between n max and n 0 is (n max −n 0 ), where n max is the maximum effective refractive index, n 0 is the minimum effective refractive index, and it varies repeatedly as a function of the distance along the path. / N 0 > 1
0 Silica-based optical component according to claim 1 having a relationship represented by -5.
【請求項4】 描画された光回路中には、”干渉計”と
呼ばれる部分を有し、光の行路を分岐する部分と、合流
する部分とが一体になった請求項1に記載のシリカ系光
部品。
4. The silica according to claim 1, wherein the drawn optical circuit has a portion called an “interferometer”, and the portion branching the optical path and the portion joining are integrated. Optical components.
【請求項5】 描画された光回路中には、少なくとも一
つの光の増幅部を有しており、増幅部には、珪素と酸素
以外の元素が導入されてある請求項1に記載のシリカ系
光部品。
5. The silica according to claim 1, wherein the drawn optical circuit has at least one light amplification section, and an element other than silicon and oxygen is introduced into the amplification section. Optical components.
【請求項6】 シリカガラス中に光回路を描画する際
に、母材のガラス体より切断研磨した描画用シリカガラ
ス面に透過部分を有するマスクを介して光を照射するこ
とを特徴とするシリカ系光部品の製造方法。
6. Silica characterized in that, when an optical circuit is drawn in silica glass, light is irradiated through a mask having a transparent portion on the surface of the drawing silica glass cut and polished from the glass body of the base material. Method for manufacturing optical components.
【請求項7】 シリカガラス中に光回路を描画する際、
165nmの輻射線に対して少なくとも1dB/mの損
失を有するシリカガラスよりなる光の吸収する層と、欠
陥濃度が低い光を吸収しない層の2層以上の構造である
請求項6記載のシリカ系光部品の製造方法。
7. When drawing an optical circuit in silica glass,
7. The silica-based structure according to claim 6, which has a structure of two or more layers of a light absorbing layer made of silica glass having a loss of at least 1 dB / m with respect to radiation of 165 nm and a layer having a low defect concentration and not absorbing light. Optical component manufacturing method.
JP30605594A 1994-12-09 1994-12-09 Silica-based optical component and method of manufacturing the same Expired - Fee Related JP3433540B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30605594A JP3433540B2 (en) 1994-12-09 1994-12-09 Silica-based optical component and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30605594A JP3433540B2 (en) 1994-12-09 1994-12-09 Silica-based optical component and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH08160240A true JPH08160240A (en) 1996-06-21
JP3433540B2 JP3433540B2 (en) 2003-08-04

Family

ID=17952510

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30605594A Expired - Fee Related JP3433540B2 (en) 1994-12-09 1994-12-09 Silica-based optical component and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3433540B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04131806A (en) * 1990-09-25 1992-05-06 Nippon Telegr & Teleph Corp <Ntt> Optical directional coupler
JPH04298702A (en) * 1991-02-07 1992-10-22 Nippon Telegr & Teleph Corp <Ntt> Optical circuit and its characteristic adjusting method
JPH04322205A (en) * 1991-01-18 1992-11-12 American Teleph & Telegr Co <Att> Apparatus comprising silica-based optical fiber and manufacture of silica-based optical fiber
JPH0529686A (en) * 1991-07-19 1993-02-05 Hitachi Ltd Optical amplifier
JPH06118257A (en) * 1992-05-05 1994-04-28 American Teleph & Telegr Co <Att> Article containing optical element and manufacture thereof
JPH06258674A (en) * 1993-03-08 1994-09-16 Agency Of Ind Science & Technol Method for changing refractive index by light induction
JPH07191210A (en) * 1993-12-27 1995-07-28 Sumitomo Electric Ind Ltd Production of optical waveguide type diffraction grating
JPH08507156A (en) * 1993-01-29 1996-07-30 ブリテイッシュ・テレコミュニケーションズ・パブリック・リミテッド・カンパニー Optical device package

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04131806A (en) * 1990-09-25 1992-05-06 Nippon Telegr & Teleph Corp <Ntt> Optical directional coupler
JPH04322205A (en) * 1991-01-18 1992-11-12 American Teleph & Telegr Co <Att> Apparatus comprising silica-based optical fiber and manufacture of silica-based optical fiber
JPH04298702A (en) * 1991-02-07 1992-10-22 Nippon Telegr & Teleph Corp <Ntt> Optical circuit and its characteristic adjusting method
JPH0529686A (en) * 1991-07-19 1993-02-05 Hitachi Ltd Optical amplifier
JPH06118257A (en) * 1992-05-05 1994-04-28 American Teleph & Telegr Co <Att> Article containing optical element and manufacture thereof
JPH08507156A (en) * 1993-01-29 1996-07-30 ブリテイッシュ・テレコミュニケーションズ・パブリック・リミテッド・カンパニー Optical device package
JPH06258674A (en) * 1993-03-08 1994-09-16 Agency Of Ind Science & Technol Method for changing refractive index by light induction
JPH07191210A (en) * 1993-12-27 1995-07-28 Sumitomo Electric Ind Ltd Production of optical waveguide type diffraction grating

Also Published As

Publication number Publication date
JP3433540B2 (en) 2003-08-04

Similar Documents

Publication Publication Date Title
JP2859095B2 (en) Synthetic quartz mask substrate for excimer laser lithography
US5841928A (en) Planar waveguides made by use of photosensitive changes to the refractive index of a deposited layer
US6192712B1 (en) Optical waveguide fabrication method
KR100815975B1 (en) Method for a lithography using a photo mask which utilizes a glass optical member
US6807823B2 (en) Fluorine-containing glass
JP2002060227A (en) Method for manufacturing synthetic quartz glass, synthetic quartz glass and synthetic quartz glass substrate
JP2001199735A (en) Quartz glass body for optical part and method for producing the same
JP2971686B2 (en) Manufacturing method of optical member for UV resistant laser
JP3433540B2 (en) Silica-based optical component and method of manufacturing the same
KR100445046B1 (en) Core glass for a preform for an optical fiber, preform made from the core glass, and method for making the core glass and an optical fiber
JPH0854528A (en) Production of optical waveguide
JPH06166528A (en) Production of ultraviolet-laser resistant optical member
JP4191935B2 (en) Method for producing synthetic quartz glass member for excimer laser
JPH0248433A (en) Production of integrated waveguide made of fluoride glass
JPH0651145A (en) Optical circuit and its production
JPH0912323A (en) Quartz glass member suppressed from becoming dense due to irradiation of uv ray
JP2005195754A (en) Method of manufacturing optical waveguide, and the optical waveguide
JPH0886929A (en) Optical waveguide and its production
JP3787850B2 (en) Silica glass and method for producing the same
JP2005035815A (en) Method for manufacturing quartz glass preform, and quartz glass preform
JPS61158303A (en) Formation of quartz optical waveguide
DE10054270A1 (en) Production of photomask substrates, used for semiconductor lithography, comprises plasma-promoted deposition of quartz glass from reaction gases, doping quartz glass with hydrogen, and processing into photomask substrate plates
JP2003075669A (en) Method for manufacturing optical waveguide
JPH11202139A (en) Optical fiber for grating, optical fiber preform for grating, and manufacture of same optical fiber preform
JPS6259536A (en) Production of quartz glass and apparatus therefor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090530

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees