JPH08159719A - Height measuring method and device - Google Patents

Height measuring method and device

Info

Publication number
JPH08159719A
JPH08159719A JP29770394A JP29770394A JPH08159719A JP H08159719 A JPH08159719 A JP H08159719A JP 29770394 A JP29770394 A JP 29770394A JP 29770394 A JP29770394 A JP 29770394A JP H08159719 A JPH08159719 A JP H08159719A
Authority
JP
Japan
Prior art keywords
light
measurement
reflected
scanning
predetermined
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29770394A
Other languages
Japanese (ja)
Other versions
JP3481704B2 (en
Inventor
Fumiyuki Takahashi
文之 高橋
Hiroyuki Tsukahara
博之 塚原
Yoji Nishiyama
陽二 西山
Takashi Fuse
貴史 布施
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP29770394A priority Critical patent/JP3481704B2/en
Publication of JPH08159719A publication Critical patent/JPH08159719A/en
Application granted granted Critical
Publication of JP3481704B2 publication Critical patent/JP3481704B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE: To provide a device and method for measuring height capable of changing the quantity of light of measurement light only when the measurement light is applied to a bump. CONSTITUTION: Before applying main measurement light 9b for measuring the height of a bump 2, reference measurement light 9a is applied to the bump 2 and the intensity of the main measurement light 9b is changed only when the main measurement light 9b is applied to the bump 2 based on the light intensity of a reflection reference measurement light 10a from the bump 2. Also, reference measurement light 9a corresponding to a plurality of scans is applied and the light intensity of the main measurement light 9b is changed based on the reflection light. Since the intensity of reflection main measurement light 10b from the bump 2 can be strengthened, the difference between the quantity of reflection light from the bump 2 and the quantity of light of the reflection light from an IC chip 1 can be reduced and at the same time, excess of the difference of the quantity of reflection light over the dynamic range of an image pick-up device can be prevented, thus accurately measuring height.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は高さ測定方法及び装置に
関し、より詳細には、ICチップ上に複数形成されたバ
ンプの高さを測定する高さ測定装置及び測定方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a height measuring method and apparatus, and more particularly to a height measuring apparatus and method for measuring the height of a plurality of bumps formed on an IC chip.

【0002】近年、LSIチップの入出力ピンを最も高
密度で実装する方式として、フリップチップボンディン
グ方式(Flip-chip Bonding Method)が注目されてい
る。フリプチップボンディング方式は、ICチップの電
極毎にはんだバンプを形成し、その後再加熱することに
よりはんだバンプを溶融させ、一括してICチップを回
路基板に接続する方法である。
In recent years, a flip-chip bonding method has attracted attention as a method for mounting the input / output pins of an LSI chip at the highest density. The flip chip bonding method is a method in which a solder bump is formed for each electrode of an IC chip, and then the solder bump is melted by reheating, and the IC chips are collectively connected to a circuit board.

【0003】このようなフリップチップボンディング方
式で用いられるICチップにおいて、バンプの形成状態
にばらつき等がある場合には、導通不良を起こしたり、
基板との接続状態が不安定になる。
In the IC chip used in such a flip chip bonding method, if there are variations in the bump formation state, a conduction failure may occur,
The connection with the board becomes unstable.

【0004】一方、一のLSIチップには、通常バンプ
が数千個も形成される場合があり、目視による上述の不
良バンプの検査は事実上不可能であった。そこで、この
ようなバンプの欠陥を自動的に発見することのできる自
動検査装置が望まれている。
On the other hand, several thousands of bumps are usually formed on one LSI chip, and it is virtually impossible to visually inspect the above-mentioned defective bumps. Therefore, there is a demand for an automatic inspection device that can automatically detect such bump defects.

【0005】[0005]

【従来の技術】図8にバンプを形成したICチップの電
極側の外観斜視図を示す。ICチップ51の電極側に
は、多数のバンプ52が形成されており、その形状はほ
ぼ球形となっている。
2. Description of the Related Art FIG. 8 shows an external perspective view of an electrode side of an IC chip having bumps. A large number of bumps 52 are formed on the electrode side of the IC chip 51, and the shape thereof is substantially spherical.

【0006】図9に示すように、このICチップ51を
フェイスダウンして基板53に複数実装したものは、M
CM(Multi Chip Module )と呼ばれ、計算機等に用い
られている。
As shown in FIG. 9, a plurality of IC chips 51 mounted face down on a substrate 53 are M
It is called CM (Multi Chip Module) and is used in computers and the like.

【0007】このMCMを構成する際に、バンプ52に
上記の形成状態のばらつき等があると、基板53と各I
Cチップ51との間で導通不良を起こしたり、接続状態
が不安定になったりするのである。
When forming the MCM, if the bumps 52 have variations in the above-mentioned formation state, the substrate 53 and the respective I
A conduction failure may occur with the C chip 51 or the connection state may become unstable.

【0008】バンプ52の形成状態のばらつきとして
は、より具体的には、図10に示すように、 1) バンプ52a(図10(a)参照)のように、正
常なバンプ52に比較して非常に大きい場合。
More specifically, as shown in FIG. 10, variations in the formation state of the bumps 52 are as follows: 1) Compared to the normal bumps 52 as shown in the bumps 52a (see FIG. 10A). If very large.

【0009】2) バンプ52b(図10(a)参照)
のように、正常なバンプ52に比較して非常に小さい場
合。 3) バンプ52c(図10(b)参照)のように、隣
接する2個のバンプが結合している場合。
2) Bump 52b (see FIG. 10 (a))
If it is very small compared to a normal bump 52, like. 3) In the case where two adjacent bumps are bonded as in the bump 52c (see FIG. 10B).

【0010】4) バンプ52d(図10(c)参照)
のように、バンプの表面が酸化して表面の抵抗が高くな
るとともに、表面における光の反射率が低下している場
合。 等がある。
4) Bump 52d (see FIG. 10 (c))
As in the case where the bump surface is oxidized to increase the surface resistance and the light reflectance on the surface is reduced. Etc.

【0011】これらのバンプ52の形成状態のばらつき
を検査して、不良品の検出及びリジェクト等を行うため
に、従来では、バンプ52のICチップ51の基板面か
らの高さを検出してバンプ52の形成状態の検査を行っ
ていた。
In order to detect variations in the formation state of these bumps 52 and detect defectives and rejects, conventionally, the height of the bumps 52 from the substrate surface of the IC chip 51 is detected and the bumps are detected. The formation state of 52 was inspected.

【0012】図11にバンプの高さを検査する従来の高
さ検査装置の概要構成ブロック図を示す。高さ検査装置
70は、バンプ52が形成されたICチップ51を載置
する検査用ステージ54と、検査用ステージ54上に載
置されたICチップ51に測定光58を照射する照射装
置55と、バンプ52及びICチップ51の基板面から
の反射光59及び59’を集光し、結像する結像レンズ
56と、結像レンズ56により結像された画像を撮像
し、撮像信号SV として出力する撮像装置57と、撮像
信号SV に基づいて、ICチップ51からの反射光の光
点位置及びバンプ53からの反射光の光点位置を検出
し、各バンプ52の高さを測定する信号処理装置60に
より構成されている。
FIG. 11 shows a schematic block diagram of a conventional height inspection apparatus for inspecting the height of bumps. The height inspection device 70 includes an inspection stage 54 on which the IC chip 51 having the bumps 52 formed thereon is mounted, and an irradiation device 55 which irradiates the IC chip 51 mounted on the inspection stage 54 with measurement light 58. , The bump 52 and the reflected light 59 and 59 ′ from the substrate surface of the IC chip 51, and an image forming lens 56 that forms an image and an image formed by the image forming lens 56 is picked up, and an image pickup signal S V an imaging device 57 and outputs it as, based on the imaging signal S V, and detects the light spot position of the reflected light from the light spot position and the bumps 53 of the reflected light from the IC chip 51, measure the height of each bump 52 The signal processing device 60 is configured to operate.

【0013】次に動作を説明する。照射装置55が、検
査用ステージ54上に載置されたICチップ51上に測
定光58を照射すると、結像レンズ56は、バンプ52
及びICチップ51の基板面からの反射光59及び5
9’を集光し、撮像装置57の撮像面に結像する。
Next, the operation will be described. When the irradiation device 55 irradiates the IC chip 51 mounted on the inspection stage 54 with the measurement light 58, the imaging lens 56 causes the bump 52 to move.
And reflected lights 59 and 5 from the substrate surface of the IC chip 51
9'is condensed and imaged on the imaging surface of the imaging device 57.

【0014】これにより、撮像装置57は、結像された
画像を撮像し、撮像信号SV として信号処理装置60に
出力する。この結果、信号処理装置60は、撮像信号S
V に基づいて、ICチップ51からの反射光59’の光
点位置及びバンプ52からの反射光59’の光点位置を
検出し、各バンプ52の高さを測定することとなり、こ
の測定結果により容易に不良品の検出及びリジェクト等
が行える。
As a result, the image pickup device 57 picks up the formed image and outputs it to the signal processing device 60 as an image pickup signal S V. As a result, the signal processing device 60 causes the imaging signal S
Based on V , the light spot position of the reflected light 59 'from the IC chip 51 and the light spot position of the reflected light 59' from the bump 52 are detected, and the height of each bump 52 is measured. Therefore, defective products can be easily detected and rejected.

【0015】なお、実際の高さ測定においては、バンプ
52が複数個存在するため測定光58を所定方向に走査
し、一の走査毎に検査用ステージ54を走査方向と垂直
な方向にステップ的に移動させることにより、全てのバ
ンプ52の高さを連続的に測定する。
In the actual height measurement, since there are a plurality of bumps 52, the measuring light 58 is scanned in a predetermined direction, and the inspection stage 54 is stepwise in a direction perpendicular to the scanning direction for each scanning. The heights of all the bumps 52 are continuously measured by moving the bumps 52 to.

【0016】[0016]

【発明が解決しようとする課題】しかしながら、上記従
来の高さ検査装置70においては、バンプ52からの反
射光59の光量と、ICチップ51の基板面からの反射
光59’の光量は通常異なるが、この光量の差が撮像装
置57のダイナミックレンジを超えた場合には、正確な
光点位置の検出ができなくなるという問題点があった。
However, in the above-described conventional height inspection device 70, the light amount of the reflected light 59 from the bump 52 and the light amount of the reflected light 59 'from the substrate surface of the IC chip 51 are usually different from each other. However, if the difference in the amount of light exceeds the dynamic range of the image pickup device 57, there is a problem that it is not possible to accurately detect the position of the light spot.

【0017】すなわち、図12に示すように、バンプ5
2とICチップ51では、通常、その表面状態(凹凸状
態、反射率等)が異なることが多い。すなわち、一般的
には、バンプ52の表面は凹凸が激しく反射率が低い
が、ICチップ51の基板面はアルミ配線等のために平
滑で、かつ、反射率が高くなる。このため、バンプ52
とICチップ51の基板面に測定光58が照射された場
合に、バンプ52からの反射光59とICチップ51の
基板面からの反射光59’ではその光量に差が生じるの
である。すなわち、バンプ52からの反射光59よりも
ICチップ51の基板面からの反射光59’の方が光量
が大きくなる。そして、通常は、撮像装置57の感度を
光量の少ない方の反射光59を検出できるように調整す
るが、このとき、反射光59の光量と反射光59’の光
量の差が撮像装置57のダイナミックレンジを超えてい
ると、光量の大きい反射光59’に対しては撮像装置5
7が飽和してしまうこととなる。すると、この飽和の影
響を受けて反射光59に基づく撮像信号SV も正確性を
欠くこととなり、結果的に正確なバンプ52の高さ測定
ができないのである。
That is, as shown in FIG.
2 and the IC chip 51 usually have different surface states (unevenness, reflectance, etc.). That is, in general, the surface of the bump 52 is highly uneven and has a low reflectance, but the substrate surface of the IC chip 51 is smooth due to aluminum wiring or the like, and the reflectance is high. Therefore, the bump 52
When the substrate surface of the IC chip 51 is irradiated with the measurement light 58, the reflected light 59 from the bump 52 and the reflected light 59 ′ from the substrate surface of the IC chip 51 have a difference in light amount. That is, the reflected light 59 ′ from the substrate surface of the IC chip 51 has a larger light quantity than the reflected light 59 from the bumps 52. Then, normally, the sensitivity of the image pickup device 57 is adjusted so that the reflected light 59 having a smaller light amount can be detected. When the dynamic range is exceeded, the image pickup device 5 receives the reflected light 59 ′ having a large light amount.
7 will be saturated. Then, due to the influence of the saturation, the image pickup signal S V based on the reflected light 59 also lacks accuracy, and as a result, the height of the bump 52 cannot be accurately measured.

【0018】この問題点を解決するために、バンプ52
に測定光58を照射する時にのみ測定光の光量を上げる
ことが考えられるが、そのためには数千個あるバンプの
正確な位置を把握する必要がある。このために、ICチ
ップ51の設計データを使用する場合でも、バンプ52
の位置に設計データとの誤差があると正確な位置検出は
不可能である。
In order to solve this problem, the bump 52
It is conceivable to increase the light amount of the measurement light only when the measurement light 58 is radiated to, but for that purpose, it is necessary to grasp the accurate positions of the thousands of bumps. Therefore, even when the design data of the IC chip 51 is used, the bump 52
Accurate position detection is not possible if there is an error between the position and the design data.

【0019】そこで、本発明は、上記の問題点に鑑みて
成されたもので、その目的は、設計データ等を予め用い
ることなく、測定光58がバンプ52に照射されるとき
のみ測定光58の光量を上げるように制御することが可
能な高さ測定装置及び方法を提供することにある。
Therefore, the present invention has been made in view of the above problems, and an object thereof is to use the measurement light 58 only when the bump 52 is irradiated with the measurement light 58 without using design data or the like in advance. An object of the present invention is to provide a height measuring device and method that can be controlled so as to increase the amount of light.

【0020】[0020]

【課題を解決するための手段】上記の問題点を解決する
ために、請求項1に記載の発明は、ICチップの基板面
等の測定基準面上に複数配置されたバンプ等の測定対象
物に対してレーザ光等の測定光を所定方向に走査しつつ
照射し、一回の走査毎に走査位置を前記所定方向とは直
交する方向にステップ的に移動し、順次走査を行って、
前記測定対象物上の測定点から前記測定基準面上の基準
点までの高さを測定する高さ測定装置であって、理想的
な前記測定点である理想測定点上を通過する理想走査位
置を仮定した場合に、前記理想走査位置に至る前に走査
すべき走査位置のうちの一の走査位置である予め設定し
た所定の参照走査位置における前記測定対象物からの前
記測定光の反射光を受光し、当該反射光に対応する反射
光信号を出力する反射光検出手段と、前記反射光信号に
基づいて、前記理想測定点を含む前記測定対象物上の所
定の領域からの前記測定光の反射光の光量と前記測定基
準面からの前記測定光の反射光の光量との差が所定範囲
内となるとともに、前記所定の領域からの前記測定光の
反射光の光量及び前記測定基準面からの前記測定光の反
射光の光量が測定可能光量となるように前記所定の領域
内における前記測定光の光強度及び前記所定の領域以外
の領域における前記測定光の光強度を制御する光強度制
御手段と、を備えて構成される。
In order to solve the above problems, the invention according to claim 1 provides a plurality of measurement objects such as bumps arranged on a measurement reference surface such as a substrate surface of an IC chip. Irradiate while measuring light such as a laser beam is scanned in a predetermined direction, the scanning position is moved stepwise in a direction orthogonal to the predetermined direction for each scanning, and scanning is performed sequentially.
A height measuring device that measures a height from a measurement point on the measurement object to a reference point on the measurement reference surface, and an ideal scanning position that passes over an ideal measurement point that is the ideal measurement point. Assuming that, the reflected light of the measurement light from the measurement object at a predetermined reference scanning position which is one of the scanning positions to be scanned before reaching the ideal scanning position is set. Received light, reflected light detection means for outputting a reflected light signal corresponding to the reflected light, based on the reflected light signal, of the measurement light from a predetermined region on the measurement object including the ideal measurement point The difference between the amount of reflected light and the amount of reflected light of the measuring light from the measurement reference surface is within a predetermined range, and the amount of reflected light of the measuring light from the predetermined area and the measurement reference surface. The amount of reflected light of the measurement light is measured Constructed and a light intensity control means for controlling the light intensity of the measurement light in the light intensity and the region other than the predetermined region of the measurement light in the predetermined area such that the ability amount.

【0021】請求項2に記載の発明は、ICチップの基
板面等の測定基準面上に複数配置されたバンプ等の測定
対象物に対してレーザ光等の測定光を所定方向に走査し
つつ照射し、一回の走査毎に走査位置を前記所定方向と
は直交する方向にステップ的に移動し、順次走査を行っ
て、前記測定対象物上の測定点から前記測定基準面上の
基準点までの高さを測定する高さ測定装置であって、理
想的な前記測定点である理想測定点上を通過する理想走
査位置を仮定した場合に、前記理想走査位置に至る前に
走査すべき走査位置のうちの複数の走査位置である予め
設定した所定の複数の参照走査位置における前記測定対
象物からの前記測定光の反射光を順次受光し、それぞれ
の前記反射光に対応する複数の反射光信号を出力する反
射光検出手段と、複数の前記反射光信号に基づいて、前
記理想測定点を含む前記測定対象物上の所定の領域から
の前記測定光の反射光の光量と前記測定基準面からの前
記測定光の反射光の光量との差が所定範囲内となるとと
もに、前記所定の領域からの前記測定光の反射光の光量
及び前記測定基準面からの前記測定光の反射光の光量が
測定可能光量となるように前記所定の領域内における前
記測定光の光強度及び前記所定の領域以外の領域におけ
る前記測定光の光強度を制御する光強度制御手段と、を
備えて構成される。
According to a second aspect of the present invention, while measuring light such as laser light is scanned in a predetermined direction with respect to a measuring object such as a plurality of bumps arranged on a measuring reference surface such as a substrate surface of an IC chip. Irradiate, move the scanning position stepwise in a direction orthogonal to the predetermined direction for each scanning, perform sequential scanning, from the measurement point on the measurement object to the reference point on the measurement reference surface A height measuring device for measuring the height up to, when assuming an ideal scanning position passing over the ideal measuring point that is the ideal measuring point, it should be scanned before reaching the ideal scanning position. The reflected light of the measurement light from the measurement object at a plurality of predetermined predetermined reference scanning positions, which are a plurality of scanning positions among the scanning positions, is sequentially received, and a plurality of reflections corresponding to the respective reflected lights are received. A reflected light detecting means for outputting an optical signal, Based on a number of the reflected light signal, the amount of reflected light of the measuring light from a predetermined region on the measurement object including the ideal measurement point and the amount of reflected light of the measuring light from the measurement reference surface. With the difference between and within a predetermined range, the light amount of the reflected light of the measurement light from the predetermined region and the light amount of the reflected light of the measurement light from the measurement reference surface becomes the measurable light amount. Light intensity control means for controlling the light intensity of the measurement light in the region and the light intensity of the measurement light in the region other than the predetermined region.

【0022】請求項4に記載の発明は、ICチップの基
板面等の測定基準面上に複数配置されたバンプ等の測定
対象物に対してレーザ光等の測定光を所定方向に走査し
つつ照射し、一回の走査毎に走査位置を前記所定方向と
は直交する方向にステップ的に移動し、順次走査を行っ
て、前記測定対象物上の測定点から前記測定基準面上の
基準点までの高さを測定する高さ測定方法であって、理
想的な前記測定点である理想測定点上を通過する理想走
査位置を仮定した場合に、前記理想走査位置に至る前に
走査すべき走査位置のうちの一の走査位置である予め設
定した所定の参照走査位置における前記測定対象物から
の前記測定光の反射光を受光する反射光検出工程と、前
記受光した反射光に基づいて、前記理想測定点を含む前
記測定対象物上の所定の領域からの前記測定光の反射光
の光量と前記測定基準面からの前記測定光の反射光の光
量との差が所定範囲内となるとともに、前記所定の領域
からの前記測定光の反射光の光量及び前記測定基準面か
らの前記測定光の反射光の光量が測定可能光量となるよ
うに前記所定の領域内における前記測定光の光強度及び
前記所定の領域以外の領域における前記測定光の光強度
を制御する光強度制御工程と、を備えて構成される。
According to a fourth aspect of the present invention, while measuring light such as laser light is scanned in a predetermined direction on a measuring object such as a plurality of bumps arranged on a measuring reference surface such as a substrate surface of an IC chip. Irradiate, move the scanning position stepwise in a direction orthogonal to the predetermined direction for each scanning, perform sequential scanning, from the measurement point on the measurement object to the reference point on the measurement reference surface A height measuring method for measuring heights up to, when assuming an ideal scanning position passing over the ideal measuring point that is the ideal measuring point, scan should be performed before reaching the ideal scanning position. Based on the reflected light detection step of receiving the reflected light of the measurement light from the measurement object in a predetermined predetermined reference scanning position which is one of the scanning positions, based on the received reflected light, On the measurement object including the ideal measurement point The difference between the light amount of the reflected light of the measurement light from a constant region and the light amount of the reflected light of the measurement light from the measurement reference surface is within a predetermined range, and the reflection of the measurement light from the predetermined region The light intensity of the measurement light in the predetermined area and the measurement light in an area other than the predetermined area so that the light quantity of the light and the reflected light quantity of the measurement light from the measurement reference surface become a measurable light quantity. And a light intensity control step of controlling the light intensity of.

【0023】請求項5に記載の発明は、ICチップの基
板面等の測定基準面上に複数配置されたバンプ等の測定
対象物に対してレーザ光等の測定光を所定方向に走査し
つつ照射し、一回の走査毎に走査位置を前記所定方向と
は直交する方向にステップ的に移動し、順次走査を行っ
て、前記測定対象物上の測定点から前記測定基準面上の
基準点までの高さを測定する高さ測定方法であって、理
想的な前記測定点である理想測定点上を通過する理想走
査位置を仮定した場合に、前記理想走査位置に至る前に
走査すべき走査位置のうちの複数の走査位置である予め
設定した所定の複数の参照走査位置における前記測定対
象物からの前記測定光の複数の反射光を順次受光する反
射光検出工程と、受光したそれぞれの前記反射光に基づ
いて、前記理想測定点を含む前記測定対象物上の所定の
領域からの前記測定光の反射光の光量と前記測定基準面
からの前記測定光の反射光の光量との差が所定範囲内と
なるとともに、前記所定の領域からの前記測定光の反射
光の光量及び前記測定基準面からの前記測定光の反射光
の光量が測定可能光量となるように前記所定の領域内に
おける前記測定光の光強度及び前記所定の領域以外の領
域における前記測定光の光強度を制御する光強度制御工
程と、を備えて構成される。
According to a fifth aspect of the present invention, while measuring light such as laser light is scanned in a predetermined direction on a measuring object such as bumps arranged on a measurement reference surface such as a substrate surface of an IC chip. Irradiate, move the scanning position stepwise in a direction orthogonal to the predetermined direction for each scanning, perform sequential scanning, from the measurement point on the measurement object to the reference point on the measurement reference surface A height measuring method for measuring heights up to, when assuming an ideal scanning position passing over the ideal measuring point that is the ideal measuring point, scan should be performed before reaching the ideal scanning position. A reflected light detection step of sequentially receiving a plurality of reflected lights of the measurement light from the measurement object at a plurality of predetermined predetermined reference scan positions that are a plurality of scan positions among the scan positions, and each of the received light Based on the reflected light, the ideal measurement The difference between the light quantity of the reflected light of the measurement light from the predetermined area on the measurement target including the point and the light quantity of the reflected light of the measurement light from the measurement reference surface is within a predetermined range, and the predetermined Light intensity of the measurement light in the predetermined region and the predetermined amount so that the light amount of the reflection light of the measurement light from the region and the light amount of the reflection light of the measurement light from the measurement reference surface become the measurable light amount. A light intensity control step of controlling the light intensity of the measurement light in a region other than the region.

【0024】[0024]

【作用】請求項1に記載の発明によれば、反射光検出手
段は、理想測定点上を通過する理想走査位置を仮定した
場合に、予め設定した所定の一の参照走査位置における
測定対象物からの測定光の反射光を受光し、当該反射光
に対応する反射光信号を出力する。
According to the first aspect of the present invention, the reflected light detecting means assumes that the ideal scanning position passing over the ideal measurement point is assumed, and the object to be measured at one predetermined reference scanning position set in advance. The reflected light of the measurement light from is received, and the reflected light signal corresponding to the reflected light is output.

【0025】これにより、光強度制御手段は、反射光信
号に基づいて、所定の領域からの測定光の反射光の光量
と測定基準面からの測定光の反射光の光量との差が所定
範囲内となるとともに、所定の領域からの測定光の反射
光の光量及び測定基準面からの測定光の反射光の光量が
測定可能光量となるように所定の領域内における測定光
の光強度及び所定の領域以外の領域における測定光の光
強度を制御する。
Accordingly, the light intensity control means determines, based on the reflected light signal, that the difference between the quantity of the reflected light of the measuring light from the predetermined area and the quantity of the reflected light of the measuring light from the measurement reference surface is within the predetermined range. In addition, the light intensity of the measurement light in the predetermined region and the predetermined amount so that the light amount of the reflected light of the measurement light from the predetermined region and the light amount of the reflected light of the measurement light from the measurement reference surface become the measurable light amount. The light intensity of the measurement light in the area other than the area is controlled.

【0026】よって、所定の領域からの測定光の反射光
の光量と測定基準面からの測定光の反射光の光量との差
が所定範囲内となるとともに、所定の領域からの測定光
の反射光の光量及び測定基準面からの測定光の反射光の
光量が測定可能光量となるので、測定点から基準点まで
の高さを正確に測定できる。
Therefore, the difference between the quantity of the reflected light of the measurement light from the predetermined area and the quantity of the reflected light of the measurement light from the measurement reference surface is within a predetermined range, and the reflection of the measurement light from the predetermined area is performed. Since the light amount of the light and the light amount of the reflected light of the measurement light from the measurement reference surface are the measurable light amounts, the height from the measurement point to the reference point can be accurately measured.

【0027】請求項2に記載の発明によれば、反射光検
出手段は、理想測定点上を通過する理想走査位置を仮定
した場合に、予め設定した所定の複数の参照走査位置に
おける測定対象物からの測定光の複数の反射光を順次受
光し、それぞれの反射光に対応する複数の反射光信号を
出力する。
According to the second aspect of the present invention, the reflected light detecting means assumes the ideal scanning position passing over the ideal measurement point, and the measurement object at a predetermined plurality of reference scanning positions set in advance. A plurality of reflected lights of the measurement light from are sequentially received, and a plurality of reflected light signals corresponding to the respective reflected lights are output.

【0028】これにより、光強度制御手段は、それぞれ
の反射光信号に基づいて、所定の領域からの測定光の反
射光の光量と測定基準面からの測定光の反射光の光量と
の差が所定範囲内となるとともに、所定の領域からの測
定光の反射光の光量及び測定基準面からの測定光の反射
光の光量が測定可能光量となるように所定の領域内にお
ける測定光の光強度及び所定の領域以外の領域における
測定光の光強度を制御する。
As a result, the light intensity control means determines the difference between the quantity of reflected light of the measuring light from the predetermined area and the quantity of the reflected light of the measuring light from the measurement reference surface based on the respective reflected light signals. Light intensity of the measurement light in the predetermined area so that the light quantity of the reflected light of the measurement light from the predetermined area and the light quantity of the reflected light of the measurement light from the measurement reference surface become the measurable light quantity within the predetermined range. And controlling the light intensity of the measurement light in a region other than the predetermined region.

【0029】よって、所定の領域からの測定光の反射光
の光量と測定基準面からの測定光の反射光の光量との差
が所定範囲内となるとともに、所定の領域からの測定光
の反射光の光量及び測定基準面からの測定光の反射光の
光量が測定可能光量となるので、測定点から基準点まで
の高さを正確に測定できる。
Therefore, the difference between the quantity of the reflected light of the measurement light from the predetermined area and the quantity of the reflected light of the measurement light from the measurement reference surface is within a predetermined range, and the reflection of the measurement light from the predetermined area is performed. Since the light amount of the light and the light amount of the reflected light of the measurement light from the measurement reference surface are the measurable light amounts, the height from the measurement point to the reference point can be accurately measured.

【0030】さらに、複数の参照走査位置からの反射光
に基づいて複数の反射光信号が出力されるので、不規則
に配置された測定対象物であっても、それぞれの測定点
から基準点までの高さを正確に測定できる。
Furthermore, since a plurality of reflected light signals are output based on the reflected light from a plurality of reference scanning positions, even if the objects to be measured are arranged irregularly, from each measurement point to the reference point. The height of can be measured accurately.

【0031】請求項4に記載の発明によれば、反射光検
出工程において、理想測定点上を通過する理想走査位置
を仮定した場合に、予め設定した所定の一の参照走査位
置における測定対象物からの測定光の反射光が受光され
る。
According to the fourth aspect of the present invention, in the reflected light detecting step, when the ideal scanning position passing over the ideal measurement point is assumed, the measurement target object at one preset reference scanning position set in advance. The reflected light of the measurement light from is received.

【0032】これにより、光強度制御工程において、受
光した反射光に基づいて、所定の領域からの測定光の反
射光の光量と測定基準面からの測定光の反射光の光量と
の差が所定範囲内となるとともに、所定の領域からの測
定光の反射光の光量及び測定基準面からの測定光の反射
光の光量が測定可能光量となるように所定の領域内にお
ける測定光の光強度及び所定の領域以外の領域における
測定光の光強度が制御される。
Thus, in the light intensity control step, the difference between the quantity of reflected light of the measuring light from the predetermined area and the quantity of reflected light of the measuring light from the measurement reference surface is predetermined based on the received reflected light. Within the range, the light intensity of the measurement light in the predetermined region so that the light amount of the reflected light of the measurement light from the predetermined region and the light amount of the reflected light of the measurement light from the measurement reference surface become the measurable light amount, and The light intensity of the measurement light in the area other than the predetermined area is controlled.

【0033】よって、所定の領域からの測定光の反射光
の光量と測定基準面からの測定光の反射光の光量との差
が所定範囲内となるとともに、所定の領域からの測定光
の反射光の光量及び測定基準面からの測定光の反射光の
光量が測定可能光量となるので、測定点から基準点まで
の高さを正確に測定できる。
Therefore, the difference between the quantity of the reflected light of the measuring light from the predetermined area and the quantity of the reflected light of the measuring light from the measurement reference surface is within a predetermined range, and the reflection of the measuring light from the predetermined area is made. Since the light amount of the light and the light amount of the reflected light of the measurement light from the measurement reference surface are the measurable light amounts, the height from the measurement point to the reference point can be accurately measured.

【0034】請求項5に記載の発明によれば、反射光検
出工程において、理想測定点上を通過する理想走査位置
を仮定した場合に、予め設定した所定の複数の参照走査
位置における測定対象物からの測定光の複数の反射光が
順次受光される。
According to the fifth aspect of the present invention, in the reflected light detecting step, when the ideal scanning position passing over the ideal measurement point is assumed, the measurement object at a predetermined plurality of reference scanning positions set in advance. A plurality of reflected lights of the measurement light from are sequentially received.

【0035】これにより、光強度制御工程において、受
光した複数の反射光に基づいて、所定の領域からの測定
光の反射光の光量と測定基準面からの測定光の反射光の
光量との差が所定範囲内となるとともに、所定の領域か
らの測定光の反射光の光量及び測定基準面からの測定光
の反射光の光量が測定可能光量となるように所定の領域
内における測定光の光強度及び所定の領域以外の領域に
おける測定光の光強度が制御される。
Thus, in the light intensity control step, the difference between the quantity of reflected light of the measuring light from a predetermined area and the quantity of reflected light of the measuring light from the measurement reference surface is calculated based on the plurality of received reflected light. Is within the predetermined range, and the light amount of the reflected light of the measurement light from the predetermined region and the light amount of the reflected light of the measurement light from the measurement reference surface become the measurable light amount, the light of the measurement light in the predetermined region The intensity and the light intensity of the measurement light in a region other than the predetermined region are controlled.

【0036】よって、所定の領域からの測定光の反射光
の光量と測定基準面からの測定光の反射光の光量との差
が所定範囲内となるとともに、所定の領域からの測定光
の反射光の光量及び測定基準面からの測定光の反射光の
光量が測定可能光量となるので、測定点から基準点まで
の高さを正確に測定できる。
Therefore, the difference between the quantity of the reflected light of the measurement light from the predetermined area and the quantity of the reflected light of the measurement light from the measurement reference surface is within a predetermined range, and the reflection of the measurement light from the predetermined area is performed. Since the light amount of the light and the light amount of the reflected light of the measurement light from the measurement reference surface are the measurable light amounts, the height from the measurement point to the reference point can be accurately measured.

【0037】さらに、複数の参照走査位置からの反射光
に基づいて複数の反射光信号が出力されるので、不規則
に配置された測定対象物であっても、それぞれの測定点
から基準点までの高さを正確に測定できる。
Furthermore, since a plurality of reflected light signals are output based on the reflected light from a plurality of reference scanning positions, even if the objects to be measured are arranged irregularly, from each measurement point to the reference point. The height of can be measured accurately.

【0038】[0038]

【実施例】次に本発明に好適な実施例を図面に基づいて
説明する。 (I)第1実施例 はじめに、請求項1、3、4及び6に記載の発明に対応
する第1の実施例について図1乃至図5を用いて説明す
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, preferred embodiments of the present invention will be described with reference to the drawings. (I) First Embodiment First, a first embodiment corresponding to the inventions described in claims 1, 3, 4 and 6 will be described with reference to FIGS. 1 to 5.

【0039】まず、第1実施例に係わる高さ検査装置の
構成について、図1を用いて説明する。図1に示すよう
に、第1実施例の高さ検査装置100は、大別して、高
さ検査部100Aと、反射光検出手段及び光強度制御手
段としての主測定光強度制御部100Bにより構成され
ている。
First, the structure of the height inspection apparatus according to the first embodiment will be described with reference to FIG. As shown in FIG. 1, the height inspection apparatus 100 of the first embodiment is roughly divided into a height inspection section 100A and a main measurement light intensity control section 100B as a reflected light detection means and a light intensity control means. ing.

【0040】ここで、主測定光とは、測定対象物として
のバンプ2の高さを測定する測定光をいう。高さ検査部
100Aは、主測定光強度制御部100Bの制御のも
と、ビーム状の主測定光9b及び参照測定光9aを出射
する測定光照射装置4と、出射された主測定光9b及び
参照測定光9aを紙面垂直方向に走査させるためのポリ
ゴンミラー5a及びスキャンレンズ5bからなる測定光
走査部5と、バンプ2が形成されたICチップ1が載置
され、測定光の一走査毎にステップ的に紙面左右方向に
ICチップ1を移動するためのステージ3と、バンプ2
からの反射主測定光10bを集光して結像する結像レン
ズ6と、結像レンズ6により結像された像を撮像して撮
像信号SV を出力する撮像装置7と、撮像信号SV に基
づいてバンプ2の高さを測定する信号処理装置8を備え
て構成されている。
Here, the main measuring light means the measuring light for measuring the height of the bump 2 as the measuring object. Under the control of the main measurement light intensity control unit 100B, the height inspection unit 100A emits the beam-shaped main measurement light 9b and the reference measurement light 9a, the measurement light irradiation device 4, and the emitted main measurement light 9b. The measurement light scanning unit 5 including the polygon mirror 5a and the scan lens 5b for scanning the reference measurement light 9a in the direction perpendicular to the paper surface, and the IC chip 1 on which the bumps 2 are formed are mounted, and each time the measurement light is scanned. The stage 3 for moving the IC chip 1 stepwise in the left-right direction on the paper and the bumps 2
An imaging lens 6 that collects and forms an image of the reflected main measurement light 10b from the imaging device 7, an imaging device 7 that captures the image formed by the imaging lens 6 and outputs an imaging signal S V , and an imaging signal S A signal processing device 8 for measuring the height of the bump 2 based on V is provided.

【0041】ここで、ステージ3は、参照測定光9aが
バンプ2に照射される時には、図1における3aの位置
にあり、主測定光9bがバンプ2に照射され高さが測定
される時には、図1における3bの位置に移動する。
Here, the stage 3 is located at the position 3a in FIG. 1 when the reference measurement light 9a is applied to the bump 2, and when the main measurement light 9b is applied to the bump 2 and the height is measured, It moves to the position of 3b in FIG.

【0042】また、参照測定光9aとは、主測定光9b
に対応する走査から予め設定された走査数だけ前に高さ
を測定すべきバンプ2(主測定光9bが照射されるバン
プ)に照射される測定光である。本発明においては、参
照測定光9aの反射光である反射参照測定光10aに基
づいて、バンプ2の高さを測定する測定点(理想測定
点)を含むバンプ2上の所定の領域内を走査する測定光
の光強度が、主測定光強度制御部100Bにより制御さ
れる。
The reference measuring light 9a is the main measuring light 9b.
The measurement light is applied to the bump 2 (the bump to which the main measurement light 9b is applied) whose height is to be measured a predetermined number of times before the scan corresponding to the. In the present invention, based on the reflected reference measurement light 10a, which is the reflected light of the reference measurement light 9a, the predetermined area on the bump 2 including the measurement point (ideal measurement point) for measuring the height of the bump 2 is scanned. The light intensity of the measuring light to be controlled is controlled by the main measuring light intensity controller 100B.

【0043】主測定光強度制御部100Bは、バンプ2
からの反射参照測定光10aを受光して反射光信号Sa
を出力する反射光検出手段としてのディテクタ11と、
反射光信号Sa に基づいて、反射参照測定光10aの光
強度を算出し、光強度信号S b を出力する光強度算出手
段としての光強度算出装置12と、光強度信号Sb に基
づいて、高さを測定すべきバンプ2の位置を算出し、位
置信号Sc を出力する位置算出手段としてのバンプ位置
算出装置13と、位置信号Sc 及び光強度信号Sb に基
づいて、主測定光の光強度及び当該光強度を変化させる
位置を算出して制御信号Sd を出力する測定光強度算出
手段としての主測定光強度算出装置14と、制御信号S
d に基づいて、主測定光の光強度及び当該光強度を変化
させる位置を実際に制御する制御手段としての主測定光
強度制御装置15と、主測定光強度制御装置15の制御
のもと、測定光照射装置4を駆動する駆動装置16と、
を備えて構成されている。
The main measurement light intensity controller 100B is provided with the bump 2
The reflected reference measurement light 10a from thea
A detector 11 as reflected light detecting means for outputting
Reflected light signal SaOf the reflected reference measurement light 10a based on
The intensity is calculated and the light intensity signal S bOutput light intensity calculator
Light intensity calculation device 12 as a step, and light intensity signal SbBased on
Then, calculate the position of the bump 2 whose height should be measured, and
Position signal ScBump position as position calculation means for outputting
Calculation device 13 and position signal ScAnd the light intensity signal SbBased on
Then, change the light intensity of the main measurement light and the light intensity.
Calculate the position and control signal SdCalculation of measured light intensity
A main measurement light intensity calculation device 14 as means, and a control signal S
dThe light intensity of the main measurement light and the light intensity are changed based on
Main measurement light as a control means for actually controlling the position to be made
Control of intensity control device 15 and main measurement light intensity control device 15
A drive device 16 for driving the measurement light irradiation device 4,
It is configured with.

【0044】次に、参照測定光9aとして一の走査に対
応する測定光を用いる場合の結合レンズ6及びバンプ2
に対するディテクタ11の配置位置の関係について、図
2を用いて説明する。この場合において、バンプ2の形
状は球であるものと仮定する。
Next, when the measurement light corresponding to one scan is used as the reference measurement light 9a, the coupling lens 6 and the bump 2 are used.
The relationship of the arrangement position of the detector 11 with respect to will be described with reference to FIG. In this case, it is assumed that the bump 2 has a spherical shape.

【0045】図2(a)は、主測定光9b、参照測定光
9a、反射主測定光10b及び反射参照測定光10aの
それぞれの光路並びにこれらとディテクタ11及び結合
レンズ6との位置関係を示している。主測定光9bから
予め設定された走査数だけ前にバンプ2に照射される参
照測定光9aは、バンプ2の高さを測定すべき測定点
(理想測定点)Pと異なる入射点P’で反射し、反射参
照測定光10aとなってディテクタ11に入射する。そ
の後、反射参照測定光10aの光強度に基づいてその光
強度が制御された主測定光9bが測定点Pに照射され、
反射主測定光10bが結合レンズ6に入射する。
FIG. 2A shows the respective optical paths of the main measuring light 9b, the reference measuring light 9a, the reflected main measuring light 10b and the reflected reference measuring light 10a, and the positional relationship between these and the detector 11 and the coupling lens 6. ing. The reference measurement light 9a irradiated on the bump 2 a predetermined number of times before the main measurement light 9b is incident at a point P ′ different from the measurement point (ideal measurement point) P at which the height of the bump 2 should be measured. The reflected reference measurement light 10 a is incident on the detector 11. After that, the main measurement light 9b whose light intensity is controlled based on the light intensity of the reflected reference measurement light 10a is applied to the measurement point P,
The reflected main measurement light 10b enters the coupling lens 6.

【0046】図2(b)は、ディテクタ11の位置を決
定する方法について示している。すなわち、参照測定光
9aが水平面に対して角度αをもって入射点P’に入射
する場合には、バンプ2の中心から見た入射点P’と測
定点Pの成す角度をθとすると、水平面から θ’=α+2θ で示される角度θ’の位置になるようにディテクタ11
が配置されるのである。
FIG. 2B shows a method of determining the position of the detector 11. That is, when the reference measurement light 9a is incident on the incident point P ′ at an angle α with respect to the horizontal plane, if the angle between the incident point P ′ viewed from the center of the bump 2 and the measurement point P is θ, The detector 11 is adjusted so that the angle θ ′ is represented by θ ′ = α + 2θ.
Are arranged.

【0047】ここで、角度θは、図2に示すように、バ
ンプ2の中心Oと測定点Pを結ぶ線分OPと入射点P’
との距離をxとし、バンプ2の半径をRとすると、 θ=sin -1(x/R) の関係にある。ここで、xは、参照測定光9aが照射さ
れてから主測定光9bが照射されるまでにバンプ2が移
動する距離(ステージ3の移動距離(図1符号3a及び
3b参照))に相当しており、この距離は、参照測定光
9aと主測定光9bとの間の測定光の走査数に基づき予
め設定される。
Here, the angle θ is, as shown in FIG. 2, a line segment OP connecting the center O of the bump 2 and the measurement point P and an incident point P '.
Let x be the distance from and the radius of the bump 2 be R, then there is a relationship of θ = sin −1 (x / R). Here, x corresponds to the distance that the bump 2 moves from the irradiation of the reference measurement light 9a to the irradiation of the main measurement light 9b (movement distance of the stage 3 (see reference numerals 3a and 3b in FIG. 1)). This distance is preset based on the number of scans of the measurement light between the reference measurement light 9a and the main measurement light 9b.

【0048】上述の位置にディテクタ11を配置するこ
とにより、参照測定光9aの入射点P’からの反射参照
測定光10aのみをディテクタ11に入射させることが
でき、参照測定光9aのICチップ1からの反射光がデ
ィテクタ11に入射することによりディテクタ11が出
力する反射光信号Sa に誤差が生じるのを防止すること
ができる。
By disposing the detector 11 at the above-mentioned position, only the reflected reference measurement light 10a from the incident point P'of the reference measurement light 9a can be made incident on the detector 11, and the IC chip 1 of the reference measurement light 9a can be made incident. It is possible to prevent an error from occurring in the reflected light signal S a output by the detector 11 due to the reflected light from the incident on the detector 11.

【0049】次に、図3を用いて、反射参照測定光10
aの反射位置とディテクタ11の受光部の大きさとの関
係について説明する。今、一の走査(走査1)に対応す
る参照測定光9aの入射点をP’とし、次の走査(走査
2)に対応する参照測定光9a’の入射点をP”とし、
バンプ2の中心から見た入射点P’と入射点P”との成
す角度をθ”とし、バンプ2の表面上の入射点P’と入
射点をP”の中点からディテクタ11までの距離をLと
すると、ディテクタ11の受光部の幅dを、 d=2L*tan θ” とすることにより、参照測定光9aと参照測定光9a’
との幅(走査1と走査2の幅)S(θ”に対応してい
る)から受光部の幅dの下限値を決定する。
Next, referring to FIG. 3, the reflected reference measuring light 10
The relationship between the reflection position of a and the size of the light receiving portion of the detector 11 will be described. Now, the incident point of the reference measurement light 9a corresponding to one scan (scan 1) is P ′, the incident point of the reference measurement light 9a ′ corresponding to the next scan (scan 2) is P ″,
The angle between the incident point P ′ and the incident point P ″ viewed from the center of the bump 2 is θ ″, and the distance from the midpoint of the incident point P ′ and the incident point P ″ on the surface of the bump 2 to the detector 11 Is set to L, the width d of the light receiving portion of the detector 11 is set to d = 2L * tan θ ″, whereby the reference measurement light 9a and the reference measurement light 9a ′ are obtained.
The lower limit value of the width d of the light receiving portion is determined from the width S (corresponding to the width between the scan 1 and the scan 2) S (θ ″).

【0050】上述のようにディテクタ11の下限値を決
定することにより、参照測定光9aの反射光10a又は
参照測定光9a’の反射光10a’の光量の少なくとも
1/2をディテクタ11で受光することができる。
By determining the lower limit value of the detector 11 as described above, the detector 11 receives at least 1/2 of the light amount of the reflected light 10a of the reference measurement light 9a or the reflected light 10a 'of the reference measurement light 9a'. be able to.

【0051】換言すれば、ディテクタ11により参照測
定光の光量の1/2以上を受光したか否かを判別するこ
とにより、参照測定光の走査範囲を把握することができ
る。また、上述のように、走査の幅Sに基づいて、ディ
テクタ11の受光部の大きさ(幅)dを決定するのでは
なく、予め設定されたディテクタ11の受光部の大きさ
(幅)dに基づいて走査の幅S(換言すれば、走査間
隔)を決定することもできる。
In other words, the scanning range of the reference measurement light can be grasped by determining whether or not the detector 11 has received more than 1/2 of the light amount of the reference measurement light. Further, as described above, the size (width) d of the light receiving portion of the detector 11 is not determined based on the scanning width S, but the size (width) d of the light receiving portion of the detector 11 set in advance is set. The scanning width S (in other words, the scanning interval) can also be determined based on

【0052】次に、主測定光強度制御部100Bの動作
について、図4及び図5を用いて説明する。はじめに、
高さを測定すべきバンプ2の位置の検出について図4を
用いて説明する。
Next, the operation of the main measurement light intensity controller 100B will be described with reference to FIGS. First,
The detection of the position of the bump 2 whose height is to be measured will be described with reference to FIG.

【0053】図4(a)に示すように、バンプ2の中心
からxの距離のバンプ2上を通過する一の走査に対応す
る参照測定光9aからの反射参照測定光10aがディテ
クタ11に入射して、ディテクタ11により反射光信号
a に変換され、この反射光信号Sa に基づいて光強度
算出装置12によって、反射参照測定光10aの光強度
が算出され、光強度信号Sb として出力される。
As shown in FIG. 4A, the reflected reference measurement light 10a from the reference measurement light 9a corresponding to one scan passing on the bump 2 at a distance x from the center of the bump 2 is incident on the detector 11. Then, the detector 11 converts the reflected light signal S a into a reflected light signal S a , and the light intensity calculation device 12 calculates the light intensity of the reflected reference measurement light 10 a based on the reflected light signal S a and outputs it as a light intensity signal S b. To be done.

【0054】なお、図4(a)における斜線で示される
領域は、光強度信号Sb 及び後述の位置信号SC に基づ
いて測定光(主測定光9bを含む)の光強度を変化させ
る所定の領域を示しており、当該所定の領域には測定点
(理想測定点)Pが含まれている。また、上記の領域に
至る以前の走査位置であって、バンプ2上を通過する走
査のうち、一の走査に対応する測定光が参照測定光9a
とされる。
The shaded area in FIG. 4A is a predetermined area where the light intensity of the measuring light (including the main measuring light 9b) is changed based on the light intensity signal S b and the position signal S C described later. The measurement area (ideal measurement point) P is included in the predetermined area. In addition, the measurement light corresponding to one of the scans that pass through the bump 2 at the scan position before reaching the above area is the reference measurement light 9a.
It is said.

【0055】ここで、光強度信号Sb の波形を図4
(b)に示す。図4(b)に示すように、光強度信号S
b は、バンプ2からの反射光を受光している場合にのみ
山形の波形となる。
Here, the waveform of the light intensity signal S b is shown in FIG.
It shows in (b). As shown in FIG. 4B, the light intensity signal S
b has a mountain-shaped waveform only when the reflected light from the bump 2 is received.

【0056】この光強度信号Sb がバンプ位置算出装置
13に入力され、所定のしきい値T 1 と比較され、反射
参照測定光10aの強度がしきい値T1 以上になる時刻
1及びt2 (図4(b)参照)が求められる。そし
て、この時刻t1 及びt2 の間に測定光が走査する部分
がバンプ2の位置、すなわち、測定光の光強度を変化さ
せるべき所定の領域とされ、位置信号SC として主測定
光強度算出装置14に出力される。そして、主測定光強
度算出装置14においては、位置信号SC に基づいて時
刻t1 及びt2 を主測定光9bの強度を変化させるタイ
ミング、すなわち、変化させる位置であるとして、制御
信号Sd を生成する。
This light intensity signal SbIs a bump position calculator
13 is input to a predetermined threshold value T 1Compared with the reflection
The intensity of the reference measuring light 10a is the threshold value T1Time to be over
t1And t2(See FIG. 4B) is required. Soshi
At this time t1And t2The part that the measurement light scans between
Changes the position of the bump 2, that is, the light intensity of the measuring light.
The position signal SCAs the main measurement
It is output to the light intensity calculation device 14. And the main measurement light intensity
In the degree calculation device 14, the position signal SCBased on
Tick t1And t2Is a tie for changing the intensity of the main measuring light 9b.
Ming, that is, control as the position to be changed
Signal SdTo generate.

【0057】より具体的には、図4(a)に示すよう
に、参照測定光9aに対応する走査の次の走査から6走
査に相当する測定光の強度を増加させることと予め設定
した場合には、光強度を増強させるそれぞれの走査にお
ける時刻t1 から時刻t2 までの間の測定光の光強度が
増強される(図4(d)参照)。すなわち、この6走査
のうち、位置信号SC により決定される範囲(時刻t1
から時刻t2 までの範囲)がバンプ2上の所定の領域と
される。
More specifically, as shown in FIG. 4A, when it is preset to increase the intensity of the measurement light corresponding to 6 scans from the scan next to the scan corresponding to the reference measurement light 9a , The light intensity of the measurement light is increased from time t 1 to time t 2 in each scan for increasing the light intensity (see FIG. 4D). That is, of these 6 scans, the range determined by the position signal S C (time t 1
To a time t 2 ) is a predetermined area on the bump 2.

【0058】そして、この6走査に対応する測定光のう
ち、高さを測定すべき測定点P上を通過する走査に対応
する測定光若しくはPに最も近い位置を通過する走査に
対応する測定光が主測定光9bとされる。そして、上記
の6走査における所定の領域以外の領域を通過する走査
に対応する測定光については、当該測定光のICチップ
1の基板面からの反射光が撮像装置7を飽和させること
がないような一定の光強度とされる(図4(c)及び
(e)参照)。
Then, of the measurement lights corresponding to the six scans, the measurement light corresponding to the scan passing over the measurement point P whose height is to be measured, or the measurement light corresponding to the scan passing through the position closest to P. Is the main measurement light 9b. Then, regarding the measurement light corresponding to the scan that passes through the regions other than the predetermined region in the above-described 6 scans, the reflected light from the substrate surface of the IC chip 1 of the measurement light does not saturate the imaging device 7. The light intensity is kept constant (see FIGS. 4 (c) and 4 (e)).

【0059】次に、測定光の強度をどの程度増強する
か、すなわち、図4(d)における増強度Vの設定につ
いて、図5を用いて説明する。図5においては、中心が
一直線上に並んだバンプ2、2’上を、それぞれの中心
が通る直線と平行に走査する場合の一の走査に対応する
測定光を参照測定光9aとしている。
Next, how to enhance the intensity of the measurement light, that is, the setting of the enhancement V in FIG. 4D will be described with reference to FIG. In FIG. 5, the reference measurement light 9a is the measurement light corresponding to one scan when the bumps 2 and 2 ′ whose centers are arranged in a straight line are scanned parallel to the straight line through which the respective centers pass.

【0060】測定光の光強度の増強度Vは、光強度信号
b 及び位置信号Sc を用いて主測定光強度算出装置1
4において求められる。すなわち、図5に示すように、
参照測定光9aの反射参照測定光10aに基づく光強度
信号Sb に基づき求められた時刻t1 、t2 、t3 及び
4 (図5(b)参照)を含む位置信号SC 及び光強度
信号Sb (図5(b)に示す波形をもつものとする。)
が主測定光強度算出装置14に入力されると、複数のバ
ンプ2、2’に対応する光強度信号Sb のピーク値(図
5(b)符号P2 、P2 ’参照)が検出される。そし
て、ピーク値が高い場合(図5(b)符号P2 ’参
照)、すなわち、バンプ2’の反射率が高い場合には、
制御信号Sd における時刻t3 から時刻t4 までに対応
する測定光(バンプ2上の所定の領域(図4(a)参
照)に照射される測定光であり、主測定光を含む)の光
強度は低く設定される(図5(c)参照)。これとは逆
に、光強度信号Sb のピークの値が低い場合(図5
(b)符号P2 参照)、すなわち、バンプ2の反射率が
高い場合には、制御信号S d における時刻t1 から時刻
2 までに対応する測定光(バンプ2上の所定の領域
(図4(a)参照)に照射される測定光であり、主測定
光を含む)の光強度は高く設定される(図5(c)参
照)。
The increase V of the light intensity of the measuring light is the light intensity signal
SbAnd position signal ScMain measurement light intensity calculation device 1 using
Required in 4. That is, as shown in FIG.
Reflection of reference measurement light 9a Light intensity based on reference measurement light 10a
Signal SbTime t calculated based on1, T2, T3as well as
tFourPosition signal S including (see FIG. 5B)CAnd light intensity
Signal Sb(It is assumed that it has the waveform shown in FIG. 5B.)
Is input to the main measurement light intensity calculation device 14, a plurality of
Light intensity signal S corresponding to the pump 2, 2 'bPeak value of (Figure
5 (b) Code P2, P2'See) is detected. Soshi
And the peak value is high (P in FIG. 5B)2'three
), That is, when the reflectance of the bump 2'is high,
Control signal SdAt time t3From time tFourUp to
Measurement light (predetermined area on the bump 2 (see FIG. 4 (a)
Light), which includes the main measurement light).
The strength is set low (see FIG. 5 (c)). The opposite
The light intensity signal SbWhen the peak value is low (Fig. 5
(B) Code P2Reference), that is, the reflectance of the bump 2 is
If high, control signal S dAt time t1From time
t2Up to the measuring light (predetermined area on the bump 2
(See FIG. 4 (a)) This is the measurement light that is emitted, and the main measurement
The light intensity of light (including light) is set high (see Fig. 5 (c)).
See).

【0061】このとき、時刻t1 から時刻t2 まで測定
光の光強度及び時刻t3 から時刻t 4 まで測定光の光強
度は、バンプ2、2’からの反射主測定光10bの強度
が撮像装置7の撮像可能光強度範囲の超えないように設
定される。
At this time, time t1From time t2Measure up to
Light intensity and time t3From time t FourLight intensity of measuring light up to
The degree is the intensity of the main measurement light 10b reflected from the bumps 2 and 2 '.
Is set so that the light intensity range of the image pickup device 7 does not exceed
Is determined.

【0062】さらに、時刻t1 から時刻t2 まで及び時
刻t3 から時刻t4 までの測定光の光強度と、それ以外
の時刻の測定光の光強度は、時刻t1 から時刻t2 まで
及び時刻t3 から時刻t4 まで測定光のバンプ2からの
反射光の光量と、それ以外の時刻の測定光のICチップ
1の基板面からの反射光の光量の差が、所定の範囲とし
ての撮像装置7のダイナミックレンジを超えないよう設
定される。
Further, the light intensities of the measurement light from time t 1 to time t 2 and from time t 3 to time t 4 and the light intensity of the measurement light at other times are from time t 1 to time t 2. And the difference between the light amount of the reflected light from the bump 2 of the measurement light from the time t 3 to the time t 4 and the light amount of the reflected light from the substrate surface of the IC chip 1 at the other time is within a predetermined range. It is set so as not to exceed the dynamic range of the image pickup device 7.

【0063】以上説明したように、位置信号Sc 及び光
強度信号Sb に基づいて、測定点Pを含む所定の領域
(図4(a)参照)に照射される測定光の光強度情報及
びその変化位置情報を含む制御信号Sd (図4(d)又
は図5(c)参照)が主測定光強度算出装置14より出
力される。そして、主測定光強度制御装置15は、この
制御信号Sd に基づいて光強度を増強すべき範囲(図4
(a)斜線部参照)を通過する走査に対応するタイミン
グで測定光の光量を増強するように駆動装置16を制御
し、この制御に基づき駆動装置16が測定光照射装置4
を駆動する。
As described above, based on the position signal S c and the light intensity signal S b , the light intensity information of the measurement light applied to a predetermined area including the measurement point P (see FIG. 4A) and A control signal S d (see FIG. 4D or FIG. 5C) including the change position information is output from the main measurement light intensity calculation device 14. The main measurement light intensity control device 15 then increases the light intensity based on the control signal S d (see FIG. 4).
(A) The drive device 16 is controlled so as to increase the light amount of the measurement light at a timing corresponding to the scanning passing through the shaded portion (a), and the drive device 16 controls the drive device 16 based on this control.
Drive.

【0064】ここで、参照測定光9aと主測定光9bと
の間の走査数については、参照測定光9aと主測定光9
bが同一の高さを測定すべきバンプ2に照射され、か
つ、反射参照測定光10aがディテクタ11に入射する
ことが可能な走査数の範囲であれば任意に設定すること
ができる。
Here, regarding the number of scans between the reference measuring light 9a and the main measuring light 9b, the reference measuring light 9a and the main measuring light 9
It can be arbitrarily set as long as b is irradiated on the bump 2 to be measured at the same height and the number of scans is such that the reflected reference measurement light 10a can be incident on the detector 11.

【0065】上述した主測定光強度制御部100Bの動
作により、バンプ2の測定点Pを含む所定の範囲(図4
(a)参照)の測定光の光強度が増強され、当該測定光
のうち、測定点P上を通過する走査に対応する測定光若
しくは測定点Pに最も近い位置を通過する走査に対応す
る測定光が主測定光9bとなり、その反射主測定光10
bに基づき、バンプ2の高さが測定される。
By the operation of the main measurement light intensity controller 100B described above, a predetermined range including the measurement point P of the bump 2 (see FIG. 4).
The light intensity of the measurement light (see (a)) is enhanced, and the measurement light corresponding to the scan passing through the measurement point P or the measurement corresponding to the scan passing through the position closest to the measurement point P in the measurement light. The light becomes the main measurement light 9b, and the reflected main measurement light 10
Based on b, the height of the bump 2 is measured.

【0066】本第1実施例によれば、反射率の低いバン
プ上からの反射主測定光10bが増強されるので、IC
チップ1の基板面からの主測定光9bの反射光の光量と
反射主測定光10bの光量との差を所定範囲内とするこ
とができ、ICチップ1の基板面からの主測定光9bの
反射光の光量と反射主測定光10bの光量との差が撮像
装置7のダイナミックレンジを超えることを防ぐことが
できる。 (II)第2実施例 次に、請求項2、3、5及び6に記載の発明に対応する
第2の実施例について、図6を用いて説明する。
According to the first embodiment, since the reflected main measurement light 10b from the bump having the low reflectance is enhanced, the IC
The difference between the amount of reflected light of the main measurement light 9b from the substrate surface of the chip 1 and the amount of reflected main measurement light 10b can be within a predetermined range, and the main measurement light 9b from the substrate surface of the IC chip 1 It is possible to prevent the difference between the amount of reflected light and the amount of reflected main measurement light 10b from exceeding the dynamic range of the image pickup device 7. (II) Second Embodiment Next, a second embodiment corresponding to the inventions described in claims 2, 3, 5 and 6 will be described with reference to FIG.

【0067】上述の第1実施例は、各バンプ2の中心位
置が測定光の走査方向に平行な一直線上に形成されてい
るバンプを対象として、一の走査に対応する測定光を参
照測定光9aとし、その反射参照測定光10aに基づき
主測定光9bの光強度を変化させるものであった。これ
に対して、本実施例は、各バンプ2の中心位置が一直線
上にない、すなわち、配置位置にばらつきのある複数の
バンプを対象として、複数の走査に対応する測定光を参
照測定光とし、それぞれの参照測定光の反射参照測定光
に基づいて主測定光の光強度を変化させるものである。
In the above-described first embodiment, the measurement light corresponding to one scanning is used as the reference measurement light for the bumps in which the center position of each bump 2 is formed on a straight line parallel to the scanning direction of the measurement light. 9a, and the light intensity of the main measurement light 9b is changed based on the reflected reference measurement light 10a. On the other hand, in the present embodiment, the center position of each bump 2 is not on a straight line, that is, the plurality of bumps having different arrangement positions are targeted, and the measurement light corresponding to the plurality of scans is used as the reference measurement light. The light intensity of the main measurement light is changed based on the reflection reference measurement light of each reference measurement light.

【0068】第2実施例における高さ検査装置の装置構
成は、第1実施例(図1参照)と同様であるので細部の
説明は省略する。第2実施例における高さ検査装置の動
作について、図6を用いて説明する。
The height inspection apparatus according to the second embodiment has the same device construction as that of the first embodiment (see FIG. 1), and therefore detailed description thereof will be omitted. The operation of the height inspection device in the second embodiment will be described with reference to FIG.

【0069】図6においては、各バンプの中心位置がz
だけずれた二つのバンプ20、20’に対して複数の走
査a乃至eに対応する測定光が参照測定光9aとされて
いる。走査a乃至eの通過位置とバンプ20、20’の
関係は図6(a)に示すように、走査a乃至eが全てバ
ンプ20及び20’上を通過するように、予め設定した
ずれzの最大許容量に基づいて設定される。そして、そ
れぞれの走査に対応する反射参照測定光10aに基づ
き、図6(b)乃至図6(f)に示す波形の光強度信号
b が、走査a乃至eに対応して求められる。
In FIG. 6, the center position of each bump is z.
The measurement light corresponding to the plurality of scans a to e with respect to the two bumps 20 and 20 ′ which are deviated from each other is the reference measurement light 9a. As shown in FIG. 6A, the relationship between the passing positions of the scans a to e and the bumps 20 and 20 'is such that a predetermined displacement z is set so that the scans a to e all pass over the bumps 20 and 20'. It is set based on the maximum allowable amount. Then, based on the reflected reference measurement light 10a corresponding to each scan, the light intensity signal S b having the waveform shown in FIGS. 6B to 6F is obtained corresponding to the scans a to e.

【0070】この場合に、走査a乃至eは、図3に示す
範囲S内にあるので、その全ての反射光がディテクタ1
1により受光される。第2実施例における主測定光強度
算出装置14の算出においては、複数の走査に対応する
反射参照測定光10aに基づく複数の光強度信号Sb
うち、それぞれのバンプについて最も高い光強度を有す
る光強度信号Sb に基づいて、それぞれのバンプ毎に個
別に主測定光の光強度及びその変化のタイミング(変化
位置)が算出される。
In this case, since the scans a to e are within the range S shown in FIG. 3, all the reflected light is detected by the detector 1.
It is received by 1. In the calculation of the primary measurement light intensity calculation device 14 in the second embodiment, among the plurality of light intensity signal S b based on the reflected reference measurement light 10a corresponding to the plurality of scanning, with the highest intensity for each of the bumps Based on the light intensity signal S b , the light intensity of the main measurement light and the timing (change position) of its change are calculated individually for each bump.

【0071】より具体的には、例えば、図6(a)に示
すバンプ20については、最大の光強度を有する光強度
信号Sb は、走査dに対応する反射参照測定光10aに
基づくものであるので(図6(e)参照)、バンプ20
に照射される主測定光9bについては、光強度を増強す
るタイミングは時刻td1から時刻td2までの間とされ、
その間の光強度がピークPd1に基づいて設定される。
More specifically, for example, for the bump 20 shown in FIG. 6A, the light intensity signal S b having the maximum light intensity is based on the reflected reference measurement light 10 a corresponding to the scan d. Since there is (see FIG. 6E), the bump 20
For the main measurement light 9b radiated to, the timing of increasing the light intensity is from time t d1 to time t d2 ,
The light intensity during that time is set based on the peak P d1 .

【0072】また、図6(a)に示すバンプ20’につ
いては、最大の光強度を有する光強度信号Sb は、走査
cに対応する反射参照測定光10aに基づくものである
ので(図6(d)参照)、バンプ20’に照射される主
測定光9bについては、光強度を増強するタイミングは
時刻tc11 から時刻tc12 までの間とされ、その間の光
強度がピークPc11 に基づいて設定される。
[0072] Further, the bump 20 'is shown in FIG. 6 (a), the maximum is the light intensity signal S b with a light intensity is based on reflected reference measurement light 10a corresponding to the scanning c (FIG. 6 (D)), with respect to the main measurement light 9b with which the bump 20 ′ is irradiated, the timing of increasing the light intensity is from time t c11 to time t c12 , and the light intensity during that time is based on the peak P c11 . Is set.

【0073】第2実施例のその他の動作については、第
1実施例と同様であるので、細部の説明は省略する。以
上の第2実施例によれば、第1実施例の効果に加えて、
中心位置が一直線上にない(例えば、ジグザグ上に形成
された)複数のバンプであっても、バンプからの反射主
測定光10aの光量を撮像装置7のダイナミックレンジ
に対して適切な値とすることができる。 (III )変形例 次に、上述の第1及び第2実施例に対する変形例につい
て、図7を用いて説明する。
The other operations of the second embodiment are the same as those of the first embodiment, so the detailed description will be omitted. According to the second embodiment described above, in addition to the effects of the first embodiment,
Even for a plurality of bumps whose center positions are not on a straight line (for example, formed on a zigzag), the light amount of the reflected main measurement light 10a from the bumps is set to an appropriate value for the dynamic range of the image pickup device 7. be able to. (III) Modified Example Next, a modified example of the first and second embodiments described above will be described with reference to FIG.

【0074】本変形例は、第1及び第2実施例における
高さ検査装置について、反射参照測定光10aの光路
が、測定光の光路と同じになるように変更したものであ
る。変形例の高さ測定装置101においては、図7に示
すように、第1及び第2実施例における高さ検査装置1
00の構成に加えて、測定光と同じ光路上を進行してく
る反射参照測定光10aの光路を変更するためのハーフ
ミラー18を備えて入る。
In this modification, the height inspection apparatus in the first and second embodiments is modified so that the optical path of the reflected reference measuring light 10a is the same as the optical path of the measuring light. In the height measuring device 101 of the modified example, as shown in FIG. 7, the height inspection device 1 in the first and second embodiments.
In addition to the configuration of 00, a half mirror 18 for changing the optical path of the reflected reference measurement light 10a traveling on the same optical path as the measurement light is provided.

【0075】また、変形例における参照測定光9aは、
反射参照測定光10aが参照測定光9aと同じ光路上を
進行するように、参照測定光9aの光路のバンプ側の延
長上にバンプ2aの中心を含むように照射される。
Further, the reference measurement light 9a in the modification is
The reflected reference measurement light 10a is irradiated so as to travel on the same optical path as the reference measurement light 9a so as to include the center of the bump 2a on the bump side extension of the optical path of the reference measurement light 9a.

【0076】変形例においては、参照測定光9aと同じ
光路上を進行してきた反射参照測定光10aは、ハーフ
ミラー18によりその光路が変更され、ディテクタ11
に入射される。その後、上述の第1又は第2実施例と同
様の動作が行われ、主測定光9bの光強度が制御され
る。
In the modification, the reflected reference measurement light 10a traveling on the same optical path as the reference measurement light 9a has its optical path changed by the half mirror 18, and the detector 11
Is incident on. After that, the same operation as in the above-described first or second embodiment is performed, and the light intensity of the main measurement light 9b is controlled.

【0077】上記の変形例によれば、ICチップ1に対
して主測定光強度制御部100Bを測定光照射装置4等
と同じ側に配置できるので、装置全体として小型化が図
れる。
According to the above modification, the main measurement light intensity control unit 100B can be arranged on the same side of the IC chip 1 as the measurement light irradiation device 4 and the like, so that the size of the entire device can be reduced.

【0078】[0078]

【発明の効果】以上説明したように、請求項1又は4に
記載の発明によれば、所定の領域からの測定光の反射光
の光量と測定基準面からの測定光の反射光の光量との差
が所定範囲内となるとともに、所定の領域からの測定光
の反射光の光量及び測定基準面からの測定光の反射光の
光量が測定可能光量となるので、測定点から基準点まで
の高さを正確に測定できる。
As described above, according to the invention described in claim 1 or 4, the amount of reflected light of the measuring light from a predetermined region and the amount of reflected light of the measuring light from the measurement reference surface are The difference between is within a predetermined range, and the amount of the reflected light of the measuring light from the predetermined region and the amount of the reflected light of the measuring light from the measurement reference surface become the measurable light amount, so from the measurement point to the reference point. The height can be measured accurately.

【0079】従って、多数の測定対象物に対する高さ測
定を、より正確に行うことができる。請求項2又は5に
記載の発明によれば、請求項1又は4に記載の発明の効
果に加えて、複数の参照走査位置からの反射光に基づい
て反射光信号が出力されるので、不規則に配置された測
定対象物であっても、それぞれの測定点から基準点まで
の高さを正確に測定できる。
Therefore, height measurement for a large number of measurement objects can be performed more accurately. According to the invention described in claim 2 or 5, in addition to the effect of the invention described in claim 1 or 4, since the reflected light signal is output based on the reflected light from a plurality of reference scanning positions, Even for the measurement objects arranged in a rule, the height from each measurement point to the reference point can be accurately measured.

【0080】さらに、複数の参照走査位置からの反射光
に基づいて反射光信号が出力されるので、不規則に配置
された測定対象物であっても、それぞれの測定点から基
準点までの高さを正確に測定できる。
Further, since the reflected light signal is output based on the reflected light from a plurality of reference scanning positions, the height from each measurement point to the reference point is increased even if the measurement object is irregularly arranged. Can be accurately measured.

【0081】従って、多数の測定対象物に対する高さ測
定を、より正確に行うことができる。
Therefore, height measurement for a large number of measurement objects can be performed more accurately.

【図面の簡単な説明】[Brief description of drawings]

【図1】第1実施例の高さ測定装置の概要構成ブロック
図である。
FIG. 1 is a schematic block diagram of a height measuring device according to a first embodiment.

【図2】ディテクタの配置位置を説明する図である。FIG. 2 is a diagram illustrating the arrangement position of detectors.

【図3】ディテクタの受光範囲と、ディテクタに入射す
る反射光の関係を示す図である。
FIG. 3 is a diagram showing a relationship between a light receiving range of a detector and reflected light incident on the detector.

【図4】バンプ位置の検出と、主測定光の強度変化を説
明する図である。
FIG. 4 is a diagram for explaining detection of bump positions and changes in intensity of main measurement light.

【図5】主測定光の光強度の算出を説明する図である。FIG. 5 is a diagram illustrating calculation of light intensity of main measurement light.

【図6】第2実施例における主測定光強度の算出を説明
する図である。
FIG. 6 is a diagram for explaining calculation of main measurement light intensity in the second embodiment.

【図7】変形例の高さ測定装置の概要構成ブロック図で
ある。
FIG. 7 is a schematic configuration block diagram of a height measuring device of a modified example.

【図8】ICチップの電極側の外観斜視図である。FIG. 8 is an external perspective view of the electrode side of the IC chip.

【図9】ICチップの実装状態の説明図である。FIG. 9 is an explanatory diagram of a mounted state of an IC chip.

【図10】バンプの形成状態の具体例の説明図である。FIG. 10 is an explanatory diagram of a specific example of a bump formation state.

【図11】従来の高さ測定装置の概要構成ブロック図で
ある。
FIG. 11 is a schematic block diagram of a conventional height measuring device.

【図12】従来技術の問題点を説明する図である。FIG. 12 is a diagram illustrating a problem of the conventional technique.

【符号の説明】[Explanation of symbols]

1、1a、1b…ICチップ 2、2’、2a、2b、20、20’、52…バンプ 3a、3b…ステージ 4…測定光照射装置 5…測定光走査部 5a…ポリゴンミラー 5b…スキャンレンズ 6…結合レンズ 7…撮像装置 8…信号処理装置 9a、9a’…参照測定光 9b…主測定光 10a、10a’…反射参照測定光 10b…反射主測定光 11…ディテクタ 12…光強度算出装置 13…バンプ位置算出装置 14…主測定光強度算出装置 15…主測定光強度制御装置 16…駆動装置 18…ハーフミラー 51…ICチップ 53…基板 54…検査用ステージ 55…照射装置 56…結合レンズ 57…撮像装置 58…検査用光 59、59’…反射光 60…信号処理装置 100…高さ検査装置 100A…高さ検査部 100B…主測定光強度制御部 a、b、c、d、e…走査線 P…測定点(理想測定点) P’、P”…入射点 Sa …反射光信号 Sb …光強度信号 Sc …位置信号 Sd …制御信号 SV …撮像信号1, 1a, 1b ... IC chips 2, 2 ', 2a, 2b, 20, 20', 52 ... Bumps 3a, 3b ... Stage 4 ... Measuring light irradiation device 5 ... Measuring light scanning unit 5a ... Polygon mirror 5b ... Scan lens 6 ... Coupling lens 7 ... Imaging device 8 ... Signal processing device 9a, 9a '... Reference measurement light 9b ... Main measurement light 10a, 10a' ... Reflection reference measurement light 10b ... Reflection main measurement light 11 ... Detector 12 ... Light intensity calculation device 13 ... Bump position calculation device 14 ... Main measurement light intensity calculation device 15 ... Main measurement light intensity control device 16 ... Driving device 18 ... Half mirror 51 ... IC chip 53 ... Substrate 54 ... Inspection stage 55 ... Irradiation device 56 ... Coupling lens 57 ... Imaging device 58 ... Inspection light 59, 59 '... Reflected light 60 ... Signal processing device 100 ... Height inspection device 100A ... Height inspection unit 100B ... Main measurement light intensity control Parts a, b, c, d, e ... scan line P ... measurement point (ideal measurement point) P ', P "... incident point S a ... reflected optical signal S b ... light intensity signal S c ... position signal S d ... Control signal S V ... Imaging signal

───────────────────────────────────────────────────── フロントページの続き (72)発明者 西山 陽二 神奈川県川崎市中原区上小田中1015番地 富士通株式会社内 (72)発明者 布施 貴史 神奈川県川崎市中原区上小田中1015番地 富士通株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yoji Nishiyama 1015 Kamiodanaka, Nakahara-ku, Kawasaki City, Kanagawa Prefecture, Fujitsu Limited (72) Inventor Takashi Fuse, 1015, Kamedotachu, Nakahara-ku, Kawasaki City, Kanagawa Prefecture, Fujitsu Limited

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 測定基準面上に複数配置された測定対象
物に対して測定光を所定方向に走査しつつ照射し、一回
の走査毎に走査位置を前記所定方向とは直交する方向に
ステップ的に移動し、順次走査を行って、前記測定対象
物上の測定点から前記測定基準面上の基準点までの高さ
を測定する高さ測定装置であって、 理想的な前記測定点である理想測定点上を通過する理想
走査位置を仮定した場合に、前記理想走査位置に至る前
に走査すべき走査位置のうちの一の走査位置である予め
設定した所定の参照走査位置における前記測定対象物か
らの前記測定光の反射光を受光し、当該反射光に対応す
る反射光信号を出力する反射光検出手段と、 前記反射光信号に基づいて、前記理想測定点を含む前記
測定対象物上の所定の領域からの前記測定光の反射光の
光量と前記測定基準面からの前記測定光の反射光の光量
との差が所定範囲内となるとともに、前記所定の領域か
らの前記測定光の反射光の光量及び前記測定基準面から
の前記測定光の反射光の光量が測定可能光量となるよう
に前記所定の領域内における前記測定光の光強度及び前
記所定の領域以外の領域における前記測定光の光強度を
制御する光強度制御手段と、 を備えることを特徴とする高さ測定装置。
1. A plurality of measurement objects arranged on a measurement reference surface are irradiated with measurement light while scanning in a predetermined direction, and a scanning position is set in a direction orthogonal to the predetermined direction for each scanning. A height measuring device that moves in steps and sequentially scans to measure the height from a measurement point on the measurement object to a reference point on the measurement reference plane, wherein the ideal measurement point In the case of assuming an ideal scanning position that passes over the ideal measurement point, the above-mentioned predetermined reference scanning position which is one of the scanning positions to be scanned before reaching the ideal scanning position Reflected light detection means for receiving the reflected light of the measurement light from the measurement object and outputting a reflected light signal corresponding to the reflected light, and the measurement object including the ideal measurement point based on the reflected light signal. Reflection of the measuring light from a predetermined area on the object The difference between the light quantity of light and the light quantity of the reflected light of the measurement light from the measurement reference surface is within a predetermined range, and the light quantity of the reflected light of the measurement light from the predetermined area and the measurement reference surface. Light intensity control means for controlling the light intensity of the measurement light in the predetermined region and the light intensity of the measurement light in a region other than the predetermined region so that the light amount of the reflected light of the measurement light becomes a measurable light amount. A height measuring device comprising:
【請求項2】 測定基準面上に複数配置された測定対象
物に対して測定光を所定方向に走査しつつ照射し、一回
の走査毎に走査位置を前記所定方向とは直交する方向に
ステップ的に移動し、順次走査を行って、前記測定対象
物上の測定点から前記測定基準面上の基準点までの高さ
を測定する高さ測定装置であって、 理想的な前記測定点である理想測定点上を通過する理想
走査位置を仮定した場合に、前記理想走査位置に至る前
に走査すべき走査位置のうちの複数の走査位置である予
め設定した所定の複数の参照走査位置における前記測定
対象物からの前記測定光の反射光を順次受光し、それぞ
れの前記反射光に対応する複数の反射光信号を出力する
反射光検出手段と、 複数の前記反射光信号に基づいて、前記理想測定点を含
む前記測定対象物上の所定の領域からの前記測定光の反
射光の光量と前記測定基準面からの前記測定光の反射光
の光量との差が所定範囲内となるとともに、前記所定の
領域からの前記測定光の反射光の光量及び前記測定基準
面からの前記測定光の反射光の光量が測定可能光量とな
るように前記所定の領域内における前記測定光の光強度
及び前記所定の領域以外の領域における前記測定光の光
強度を制御する光強度制御手段と、 を備えることを特徴とする高さ測定装置。
2. A plurality of measurement objects arranged on a measurement reference plane are irradiated with measurement light while scanning in a predetermined direction, and a scanning position is set to a direction orthogonal to the predetermined direction for each scanning. A height measuring device that moves in steps and sequentially scans to measure the height from a measurement point on the measurement object to a reference point on the measurement reference plane, wherein the ideal measurement point When assuming an ideal scanning position that passes over an ideal measurement point that is, a plurality of predetermined reference scanning positions that are a plurality of scanning positions among the scanning positions that should be scanned before reaching the ideal scanning position. Reflected light of the measurement light from the measurement object in sequentially received, reflected light detection means for outputting a plurality of reflected light signals corresponding to each of the reflected light, based on the plurality of reflected light signals, The measurement object including the ideal measurement point The difference between the light amount of the reflected light of the measurement light from the predetermined region and the light amount of the reflected light of the measurement light from the measurement reference surface is within a predetermined range, of the measurement light from the predetermined region. The light intensity of the measurement light in the predetermined area and the measurement in an area other than the predetermined area so that the light quantity of the reflected light and the light quantity of the reflected light of the measurement light from the measurement reference surface become a measurable light quantity. A height measuring device comprising: a light intensity control means for controlling a light intensity of light.
【請求項3】 請求項1又は2に記載の高さ測定装置に
おいて、 前記光強度制御手段は、前記反射光信号に基づいて、前
記参照走査位置における前記測定対象物からの前記測定
光の反射光の光強度を算出して光強度信号を出力する光
強度算出手段と、 前記光強度信号に基づいて、前記測定対象物の位置を算
出して位置信号を出力する位置算出手段と、 前記位置信号及び前記光強度信号に基づいて、前記所定
の領域内における前記測定光の光強度並びに前記所定の
領域の開始位置及び終了位置を算出して制御信号を出力
する測定光強度算出手段と、 前記制御信号に基づいて、前記所定の領域内における前
記測定光の強度及び前記所定の領域以外の領域における
前記測定光の光強度を制御する制御手段と、 を備えることを特徴とする高さ測定装置。
3. The height measuring device according to claim 1, wherein the light intensity control unit reflects the measurement light from the measurement object at the reference scanning position based on the reflected light signal. A light intensity calculating means for calculating a light intensity of light and outputting a light intensity signal; a position calculating means for calculating a position of the measuring object based on the light intensity signal and outputting a position signal; Based on the signal and the light intensity signal, the light intensity of the measurement light in the predetermined region and the measurement light intensity calculation means for calculating the start position and the end position of the predetermined region to output a control signal, A height measuring device comprising: a control unit that controls the intensity of the measurement light in the predetermined region and the intensity of the measurement light in a region other than the predetermined region based on a control signal. .
【請求項4】 測定基準面上に複数配置された測定対象
物に対して測定光を所定方向に走査しつつ照射し、一回
の走査毎に走査位置を前記所定方向とは直交する方向に
ステップ的に移動し、順次走査を行って、前記測定対象
物上の測定点から前記測定基準面上の基準点までの高さ
を測定する高さ測定方法であって、 理想的な前記測定点である理想測定点上を通過する理想
走査位置を仮定した場合に、前記理想走査位置に至る前
に走査すべき走査位置のうちの一の走査位置である予め
設定した所定の参照走査位置における前記測定対象物か
らの前記測定光の反射光を受光する反射光検出工程と、 前記受光した反射光に基づいて、前記理想測定点を含む
前記測定対象物上の所定の領域からの前記測定光の反射
光の光量と前記測定基準面からの前記測定光の反射光の
光量との差が所定範囲内となるとともに、前記所定の領
域からの前記測定光の反射光の光量及び前記測定基準面
からの前記測定光の反射光の光量が測定可能光量となる
ように前記所定の領域内における前記測定光の光強度及
び前記所定の領域以外の領域における前記測定光の光強
度を制御する光強度制御工程と、 を備えることを特徴とする高さ測定方法。
4. A plurality of measurement objects arranged on a measurement reference plane are irradiated with measurement light while scanning in a predetermined direction, and a scanning position is set to a direction orthogonal to the predetermined direction for each scanning. A height measuring method for measuring a height from a measurement point on the measurement object to a reference point on the measurement reference surface by moving stepwise and performing sequential scanning, wherein the ideal measurement point In the case of assuming an ideal scanning position that passes over the ideal measurement point, the above-mentioned predetermined reference scanning position which is one of the scanning positions to be scanned before reaching the ideal scanning position A reflected light detection step of receiving reflected light of the measurement light from the measurement object, based on the received reflected light, of the measurement light from a predetermined region on the measurement object including the ideal measurement point The amount of reflected light and the measurement from the measurement reference surface The difference between the light quantity of the reflected light of the constant light is within a predetermined range, and the light quantity of the reflected light of the measurement light from the predetermined area and the light quantity of the reflected light of the measurement light from the measurement reference surface are measurable light quantities. And a light intensity control step of controlling the light intensity of the measurement light in the predetermined region and the light intensity of the measurement light in a region other than the predetermined region so that the height measurement is performed. Method.
【請求項5】 測定基準面上に複数配置された測定対象
物に対して測定光を所定方向に走査しつつ照射し、一回
の走査毎に走査位置を前記所定方向とは直交する方向に
ステップ的に移動し、順次走査を行って、前記測定対象
物上の測定点から前記測定基準面上の基準点までの高さ
を測定する高さ測定方法であって、 理想的な前記測定点である理想測定点上を通過する理想
走査位置を仮定した場合に、前記理想走査位置に至る前
に走査すべき走査位置のうちの複数の走査位置である予
め設定した所定の複数の参照走査位置における前記測定
対象物からの前記測定光の複数の反射光を順次受光する
反射光検出工程と、 受光したそれぞれの前記反射光に基づいて、前記理想測
定点を含む前記測定対象物上の所定の領域からの前記測
定光の反射光の光量と前記測定基準面からの前記測定光
の反射光の光量との差が所定範囲内となるとともに、前
記所定の領域からの前記測定光の反射光の光量及び前記
測定基準面からの前記測定光の反射光の光量が測定可能
光量となるように前記所定の領域内における前記測定光
の光強度及び前記所定の領域以外の領域における前記測
定光の光強度を制御する光強度制御工程と、 を備えることを特徴とする高さ測定方法。
5. A plurality of measurement objects arranged on a measurement reference plane are irradiated with measurement light while scanning in a predetermined direction, and a scanning position is set in a direction orthogonal to the predetermined direction for each scanning. A height measuring method for measuring a height from a measurement point on the measurement object to a reference point on the measurement reference surface by moving stepwise and performing sequential scanning, wherein the ideal measurement point When assuming an ideal scanning position that passes over an ideal measurement point that is, a plurality of predetermined reference scanning positions that are a plurality of scanning positions among the scanning positions that should be scanned before reaching the ideal scanning position. A reflected light detection step of sequentially receiving a plurality of reflected lights of the measurement light from the measurement target in, and a predetermined on the measurement target including the ideal measurement point based on each of the received reflected lights Light of the reflected light of the measuring light from the area And the difference between the light amount of the reflected light of the measurement light from the measurement reference surface is within a predetermined range, the light amount of the reflected light of the measurement light from the predetermined region and the measurement light from the measurement reference surface A light intensity control step of controlling the light intensity of the measurement light in the predetermined region and the light intensity of the measurement light in a region other than the predetermined region so that the light amount of the reflected light becomes a measurable light amount, A method for measuring height, comprising:
【請求項6】 請求項4又は5に記載の高さ測定方法に
おいて、 前記光強度制御工程は、前記反射光に基づいて、前記参
照走査位置における前記測定対象物からの前記測定光の
反射光の光強度を算出する光強度算出工程と、 算出した前記光強度に基づいて、前記測定対象物の位置
を算出する位置算出工程と、 算出した前記測定対象物の位置及び前記参照走査位置に
おける前記測定対象物からの前記測定光の反射光の光強
度に基づいて、前記所定の領域内における前記測定光の
光強度並びに前記所定の領域の開始位置及び終了位置を
算出する測定光強度算出工程と、 算出した前記所定の領域内における前記測定光の光強度
並びに前記所定の領域の開始位置及び終了位置に基づい
て、前記所定の領域内における前記測定光の強度及び前
記所定の領域以外の領域における前記測定光の光強度を
制御する制御工程と、 を備えることを特徴とする高さ測定方法。
6. The height measuring method according to claim 4, wherein in the light intensity control step, reflected light of the measuring light from the measuring object at the reference scanning position is based on the reflected light. A light intensity calculation step of calculating the light intensity of, a position calculation step of calculating the position of the measurement object based on the calculated light intensity, and the calculated position of the measurement object and the reference scanning position Based on the light intensity of the reflected light of the measurement light from the measurement object, the light intensity of the measurement light in the predetermined region and the measurement light intensity calculation step of calculating the start position and the end position of the predetermined region, Based on the calculated light intensity of the measurement light in the predetermined region and the start position and end position of the predetermined region, the intensity of the measurement light in the predetermined region and the predetermined Height measuring method characterized by comprising: a control step of controlling the light intensity of the measurement light in the region other than the range, the.
JP29770394A 1994-11-30 1994-11-30 Height measuring method and device Expired - Lifetime JP3481704B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29770394A JP3481704B2 (en) 1994-11-30 1994-11-30 Height measuring method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29770394A JP3481704B2 (en) 1994-11-30 1994-11-30 Height measuring method and device

Publications (2)

Publication Number Publication Date
JPH08159719A true JPH08159719A (en) 1996-06-21
JP3481704B2 JP3481704B2 (en) 2003-12-22

Family

ID=17850073

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29770394A Expired - Lifetime JP3481704B2 (en) 1994-11-30 1994-11-30 Height measuring method and device

Country Status (1)

Country Link
JP (1) JP3481704B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6608921B1 (en) 1998-08-21 2003-08-19 Nec Electronics Corporation Inspection of solder bump lighted with rays of light intersecting at predetermined angle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6608921B1 (en) 1998-08-21 2003-08-19 Nec Electronics Corporation Inspection of solder bump lighted with rays of light intersecting at predetermined angle

Also Published As

Publication number Publication date
JP3481704B2 (en) 2003-12-22

Similar Documents

Publication Publication Date Title
US5105149A (en) Apparatus for inspecting electronic devices mounted on a circuit board
JP5421763B2 (en) Inspection apparatus and inspection method
US5812268A (en) Grid array inspection system and method
JP3189500B2 (en) Apparatus and method for inspecting appearance of electronic components
US7641099B2 (en) Solder joint determination method, solder inspection method, and solder inspection device
US6052189A (en) Height measurement device and height measurement method
US7145162B2 (en) Wire loop height measurement apparatus and method
JP6684992B2 (en) Projection inspection device and bump inspection device
JP3481704B2 (en) Height measuring method and device
JP2000074845A (en) Bump inspection method and bump inspection device
JP2877061B2 (en) Coplanarity inspection equipment
US20040263862A1 (en) Detecting peripheral points of reflected radiation beam spots for topographically mapping a surface
JP3107070B2 (en) Inspection device and inspection method
JP3168100B2 (en) Bump inspection equipment
JPH06242016A (en) Visual inspection system for bump
JPH0666401B2 (en) Inspection method for lead frame
JPH07111329B2 (en) Soldering inspection method for inspected printed circuit board
JPH07260430A (en) Method and apparatus for measuring length
JPH05152401A (en) Inspection apparatus of bump shape
JPH0688709A (en) Bump-electrode inspecting apparatus
JPH06331328A (en) Height measuring device and method
JPH08159721A (en) Method and device for measuring height of protruding part
JPH04291110A (en) Light splitting type height measuring instrument
JPH05135157A (en) Outward appearance inspection device for mounted substrate
JPH06201332A (en) Inspection device for appearance of bump

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030930

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071010

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081010

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081010

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091010

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091010

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101010

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101010

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121010

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121010

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131010

Year of fee payment: 10

EXPY Cancellation because of completion of term