JPH08159671A - Jig for baking electronic component - Google Patents

Jig for baking electronic component

Info

Publication number
JPH08159671A
JPH08159671A JP6330709A JP33070994A JPH08159671A JP H08159671 A JPH08159671 A JP H08159671A JP 6330709 A JP6330709 A JP 6330709A JP 33070994 A JP33070994 A JP 33070994A JP H08159671 A JPH08159671 A JP H08159671A
Authority
JP
Japan
Prior art keywords
sic
alumina
refractory
jig
firing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6330709A
Other languages
Japanese (ja)
Inventor
Taiji Okiyama
泰治 沖山
Masatoshi Osaki
正敏 大崎
Yutaka Okada
裕 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Toshiba Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Ceramics Co Ltd filed Critical Toshiba Ceramics Co Ltd
Priority to JP6330709A priority Critical patent/JPH08159671A/en
Publication of JPH08159671A publication Critical patent/JPH08159671A/en
Pending legal-status Critical Current

Links

Landscapes

  • Furnace Charging Or Discharging (AREA)

Abstract

PURPOSE: To provide a jig for baking which enables production of electronic components by automating the baking thereof industrially with an excellent yield. CONSTITUTION: A jig for baking electronic components which is formed of a refractory layer of an SiC material and a refractory layer of an alumina- mullite material surrounding the refractory layer of the SiC material and which is a vessel with an opening. It is preferable that the refractory of the SiC material contains 90-100wt.% SiC and that the refractory of the alumina-mullite material contains 75-100wt.% alumina and 0-25wt.% mullite.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は電子部品焼成用治具に関
し、詳しくは電子部品の焼成処理に使用され、耐久性に
優れ、且つ電子部品を汚染しない電子部品焼成用治具に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a jig for firing electronic parts, and more particularly to a jig for firing electronic parts which is used for firing treatment of electronic parts, has excellent durability and does not contaminate electronic parts.

【0002】[0002]

【従来の技術】セラミックスは、酸化物磁性体のフェラ
イト等を始めコンデンサー、圧電素子、水晶振動子、バ
リスター、炭素系抵抗器、磁気ヘッド、高周波フィルタ
ー、各種センサー等の電子部品用として広範囲に種々使
用されている。特に、近年のエレクトロニクスの急速な
発展に伴い、電子部品としての使用範囲及び態様が広が
り、円滑に、歩留りよく生産できる自動化が求められて
いる。セラミックスはよく知られているように、電子部
品用か否かに拘らず、その構成成分の原料粉末を成形し
た後、焼成工程での焼結が必須である。従来、工業的セ
ラミックスの焼成処理では、一般に、焼成用棚板あるい
は焼成用容器のいわゆるサヤを多段に積み重ねて、多数
の被焼成物を焼成炉内で同時に焼成する方法が採用され
ている。例えば、図4に耐火物から形成される棚板を多
段に用いた例の斜視説明図を示した。図4においては、
棚板20は支柱21に支持されて多段構造が形成されて
いる。また、容器状のサヤは、通常、上部開放の箱型で
あり、棚板と同様に耐火物から形成されて順次積載し、
最上部を蓋体等で密閉する構造となっている。
Ceramics are widely used for electronic parts such as oxide magnetic ferrites, capacitors, piezoelectric elements, crystal oscillators, varistors, carbon-based resistors, magnetic heads, high-frequency filters, and various sensors. Variously used. In particular, with the rapid development of electronics in recent years, the range and manner of use as electronic parts have expanded, and automation that enables smooth and high-yield production is demanded. As is well known, ceramics, regardless of whether they are for electronic parts or not, must be sintered in a firing step after forming raw material powders of the constituents. 2. Description of the Related Art Conventionally, in the firing treatment of industrial ceramics, generally, a method of stacking so-called sheaths of firing shelves or firing containers in multiple stages and firing a large number of objects to be fired simultaneously in a firing furnace has been adopted. For example, FIG. 4 shows a perspective explanatory view of an example in which shelf boards made of refractory are used in multiple stages. In FIG.
The shelf board 20 is supported by columns 21 to form a multi-stage structure. In addition, the container-shaped sheath is usually a box type with an open upper part, and is formed of a refractory material like the shelf board and sequentially loaded,
It has a structure in which the uppermost part is sealed with a lid or the like.

【0003】上記の棚板やサヤは、従来、アルミナ質ま
たは炭化珪素(SiC)質等の耐火物で形成するのが一
般的であった。アルミナ質耐火物は被焼成物との耐反応
性には優れているが高温強度が低く、高温焼成が要求さ
れる場合には、SiC質耐火物が用いられてる。しか
し、SiC質耐火物は、極めて高硬度であり加工性に乏
しく、長期使用する間に変形等が生じた場合に補正加工
が容易でない。また、フェライト等は珪素類(Si、S
iO2 )と反応のおそれもあり、被焼成物と直接接する
ことがないようにする必要がある。そのため、例えば、
特開平4−273989号公報では、SiC質耐火層の
両面をアルミナ質等の耐火物層で挟みサンドイッチ構造
の棚板が提案されている。この棚板は、SiCの耐ベン
ド性、耐スポーリング性等の特性と、被焼成物との耐反
応性に優れたアルミナ質の特性とを利用して、高い高温
強度を有し、表面接触による反応性をも防止すると共
に、製作加工で生じる反りも少なく、焼成時に生じた反
りの修正加工も容易とするものである。
Conventionally, the above-mentioned shelves and sheaths have generally been made of a refractory material such as alumina or silicon carbide (SiC). Alumina refractory has excellent resistance to reaction with the material to be fired, but has low strength at high temperature, and when high temperature firing is required, SiC refractory is used. However, SiC refractories have extremely high hardness and poor workability, and correction processing is not easy when deformation or the like occurs during long-term use. In addition, ferrites and the like are silicons (Si, S
It may react with iO 2 ) and should not come into direct contact with the material to be fired. So, for example,
Japanese Unexamined Patent Publication (Kokai) No. 4-273989 proposes a shelf board having a sandwich structure in which both sides of a SiC refractory layer are sandwiched by refractory layers such as alumina. This shelf board has high temperature strength and surface contact by utilizing the characteristics of SiC such as bend resistance and spalling resistance, and the characteristics of alumina having excellent resistance to reaction with the material to be fired. In addition to preventing the reactivity due to, the warpage generated in the manufacturing process is small, and the correction process of the warpage generated during firing is facilitated.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、特開平
4−273989号公報提案の棚板では、SiC質耐火
層の両面をアルミナ質等の耐火物層によりサンドイッチ
状に挟むだけの構造であり、側面部のSiC質耐火層は
焼成雰囲気に曝されることになり、SiC質耐火層が酸
化され、SiCの耐ベンド性、耐スポーリング性等のS
iC質耐火物特性が損なわれ、高温強度が低下して、棚
板に大きな反りが発生するおそれがある。また、SiC
質耐火層中のSi成分が飛散して、被焼成物と反応する
おそれもあり、電子部品では特に極力防止しなければな
らない被焼成物の汚染という問題が生じるおそれもあ
る。更に、上記の焼成用の棚板では支柱との組合せで配
置する必要があり工業的生産において、焼成工程の自動
化を図ろうとする場合、自動積載は困難である。発明者
らは、上記従来法によるセラミックスの焼成用具を、特
に電子部品用セラミックスの焼成に適用可能にし、且
つ、生産効率を高めるための自動化可能なものとすべく
鋭意検討した結果、本発明をなすに到った。即ち、上記
の焼成時の棚板方式とサヤ方式との比較において、サヤ
方式では自動積載が可能であり自動化が容易であるこ
と、また、電子部品の性能発揮に要する焼成雰囲気調整
の面からもサヤ方式の方が優れるものであることの知見
に基づき、焼成用治具としてサヤ方式の容器を採用する
と共に、自動化に対応して軽量化を図り、長期使用にお
ける変形が少なく、また、被焼成物である電子部品を劣
化させることがなく且つその性能をより高めることがで
きる電子部品焼成用治具を提供するものである。
However, the shelf board proposed in JP-A-4-273989 has a structure in which both sides of a SiC-based refractory layer are sandwiched between refractory layers such as alumina and the like. The SiC-based refractory layer is exposed to the firing atmosphere, the SiC-based refractory layer is oxidized, and the SiC bend resistance, spalling resistance, and other S
The iC refractory property may be impaired, the high temperature strength may be reduced, and a large warp may occur on the shelf board. In addition, SiC
The Si component in the high-quality refractory layer may scatter and react with the object to be fired, which may cause a problem of contamination of the object to be fired, which must be particularly prevented in electronic parts. Further, it is necessary to arrange the above-mentioned baking shelves in combination with columns, and in industrial production, when attempting to automate the baking process, automatic loading is difficult. The inventors of the present invention have diligently studied to make the ceramic firing tool according to the above-mentioned conventional method applicable to firing of ceramics for electronic parts, in particular, and to make it automatable in order to improve production efficiency. It came to eggplant. That is, in comparison with the shelf method and the sheath method at the time of firing, in the sheath method, automatic loading is possible and automation is easy, and in terms of firing atmosphere adjustment required for performance of electronic components. Based on the finding that the sheath method is superior, we adopted a sheath container as a jig for firing, reduced weight in response to automation, and reduced deformation during long-term use. An object is to provide a jig for firing an electronic component that does not deteriorate the electronic component that is the object and can further improve its performance.

【0005】[0005]

【課題を解決するための手段】本発明によれば、SiC
質耐火物層と、該SiC質耐火物層を包囲してなるアル
ミナ・ムライト質耐火物層とから形成される開口容器で
あることを特徴とする電子部品焼成用治具が提供され
る。上記本発明の電子部品焼成用治具において、アルミ
ナ・ムライト質耐火物層に包囲されるSiC質耐火物層
が、前記容器のほぼ全底面部に、または、全底面部から
周壁面部に連続して配置されることが好ましい。また、
前記容器底面部において、全厚さが15mm以下で、S
iC質耐火物層の厚さが2〜11mmであり、アルミナ
・ムライト質耐火物層の厚さが2〜5mmであることが
好ましい。また、本発明の電子部品焼成用治具を構成す
るSiC質耐火物がSiCを90〜100重量%含有し
てなり、またアルミナ・ムライト質耐火物がアルミナを
75〜100重量%及びシリカを0〜25重量%含有し
てなることが好ましい。
According to the present invention, SiC
A jig for firing electronic parts is provided which is an open container formed of a high-quality refractory layer and an alumina-mullite refractory layer surrounding the SiC-type refractory layer. In the electronic component firing jig of the present invention, the SiC refractory layer surrounded by the alumina-mullite refractory layer is continuously formed on substantially the entire bottom surface of the container or from the entire bottom surface to the peripheral wall surface portion. It is preferable to arrange them. Also,
At the bottom of the container, the total thickness is 15 mm or less, S
It is preferable that the thickness of the iC-based refractory layer is 2 to 11 mm and the thickness of the alumina-mullite refractory layer is 2 to 5 mm. Further, the SiC refractory constituting the jig for firing electronic parts of the present invention contains 90 to 100% by weight of SiC, and the alumina-mullite refractory contains 75 to 100% by weight of alumina and 0% by weight of silica. It is preferably contained in an amount of up to 25% by weight.

【0006】[0006]

【作用】本発明の電子部品焼成用治具は、上記のように
構成され、SiC質耐火物層がアルミナ・ムライト質耐
火物により包囲されて形成されているため、SiC質耐
火物層が外気に曝されることがなく、SiC質耐火物層
の酸化を防止でき、長期間の高温焼成に使用してもSi
C質の耐ベンド性、耐スポーリング性等の特性を劣化さ
せることがない。また、容器表面外層が、アルミナ・ム
ライト質で形成されるため、耐反応性に優れ、且つ、ム
ライト質の機械的強度により包囲されたSiC質層と共
に、長期間の高温状態での使用においても変形が抑制さ
れ、被焼成電子部品の不良品発生を防止できる製品歩留
が向上する。更に、アルミナ・ムライト質耐火物層によ
りSiC質耐火物層が包囲されるためSi成分の飛散が
防止され、被焼成物が汚染されるおそれもない。更にま
た、本発明は、焼成用治具構造をサヤ構造で構成し、ま
た、容器底面部のSiC耐火物層及びアルミナ・ムライ
ト質耐火物層の各厚さを所定とすることにより重量が嵩
むこともなく軽量化され、自動積載化が可能であり自動
化が容易であり、また、耐ベンド性がよく製品歩留が向
上すると共に円滑に生産性及び作業性が向上する。ま
た、サヤの形状やガス抜き用切欠き部の大きさ等を選択
することにより、例えば、被焼成電子部品から発生する
ガス濃度を電子部品の特性を上げるように制御して焼成
雰囲気を調整可能であり、電子部品の特性を向上させる
ことができる。
The jig for firing electronic parts of the present invention is constructed as described above, and since the SiC refractory layer is surrounded by the alumina / mullite refractory, the SiC refractory layer is exposed to the outside air. It is possible to prevent the oxidation of the SiC refractory layer without being exposed to
It does not deteriorate the properties such as C-bend resistance and spalling resistance. In addition, since the outer surface layer of the container is formed of alumina / mullite, it has excellent reaction resistance and is used together with the SiC layer surrounded by the mechanical strength of mullite for long-term high temperature use. Deformation is suppressed, and the product yield that can prevent defective products of electronic parts to be fired is improved. Further, since the SiC-based refractory layer is surrounded by the alumina-mullite refractory layer, the scattering of the Si component is prevented, and there is no possibility that the object to be fired is contaminated. Furthermore, in the present invention, the firing jig structure has a sheath structure, and the weight is increased by setting the respective thicknesses of the SiC refractory layer and the alumina-mullite refractory layer on the bottom surface of the container. In addition, it is lighter in weight, can be automatically loaded, is easy to automate, has good bend resistance, improves product yield, and smoothly improves productivity and workability. Also, by selecting the shape of the sheath and the size of the notch for gas release, for example, the firing atmosphere can be adjusted by controlling the gas concentration generated from the electronic components to be fired so as to improve the characteristics of the electronic components. Therefore, the characteristics of the electronic component can be improved.

【0007】[0007]

【実施例】以下、本発明の電子部品焼成用治具の一実施
例について図面を参照しながら詳細に説明する。但し、
本発明は下記実施例により制限されるものでない。図1
は、本発明の一実施例の電子部品焼成用治具を示す断面
説明図である。図1において、本発明の電子部品焼成用
治具1は、外形で縦300mm、横300mm、高さ1
00mmで、上部開口のガス抜き部なしの直方体容器2
により構成される。容器底面部は、全体として15mm
以下の厚さとなるようにし、ほぼ全域大のSiC質耐火
物製の平板により構成されるSiC質耐火物底面部層X
と、それを包囲するアルミナ・ムライト質耐火物層Yに
より構成される表層部とにより形成されている。即ち、
底面部の中間内部にSiC質耐火物底面部層Xが配置さ
れている。底面部厚さが15mmを超えて厚くなると、
重量増加が著しく搬送等の作業性が低下し好ましくな
い。周側面部は底面部のSiC質耐火物底面部層X及び
アルミナ・ムライト質耐火物層Yが連続するように形成
される。周側面部の厚さは、上部に積載される複数の焼
成治具の容器の重量が支持できるように設計されればよ
く、特に制限されるものでない。通常、底面部と同様の
厚さに形成する。SiC質耐火物底面部層Xは、約2〜
11mmの厚さに形成することが好ましい。2mm未満
ではSiC質の耐ベンド性、耐スポーリング性等の特性
を生かされず、高温強度が低下して反りの発生を防止す
ることができないためである。SiC質耐火物層Xは、
成形工程によっては端部が約1mm程度に薄くなるが中
央部が上記2〜11mmにあれば耐ベンド性が低下する
ことはない。上記SiC質耐火物層Xを包囲するアルミ
ナ・ムライト質耐火物層Yは、底面部において底面部層
Xの上下の各厚さが約2〜5mmとなるようにすること
が好ましい。2mm未満の場合では、SiC質耐火物層
X中のSi成分がアルミナ・ムライト質耐火物層Yを透
過して、被焼成物と反応して被焼成物を汚染するため好
ましくない。一方、5mmを超える場合は、重量が増大
し作業性が劣る。また、相対的にSiC質耐火物層Xが
薄くなり耐ベンド性が低下するためである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a jig for firing electronic parts of the present invention will be described in detail below with reference to the drawings. However,
The present invention is not limited to the examples below. FIG.
FIG. 3 is a cross-sectional explanatory view showing a jig for firing an electronic component of an embodiment of the present invention. In FIG. 1, an electronic component firing jig 1 of the present invention has an outer shape of 300 mm in length, 300 mm in width, and 1 in height.
A rectangular parallelepiped container 2 with a diameter of 00 mm without a gas vent in the upper opening
It consists of. The bottom of the container is 15 mm as a whole
The bottom layer X of the SiC-based refractory material, which is formed of a flat plate made of the SiC-based refractory material having a large thickness over the entire area so as to have the following thickness.
And a surface layer portion surrounding the alumina-mullite refractory layer Y. That is,
A SiC-based refractory bottom surface layer X is arranged inside the middle of the bottom surface portion. If the bottom part thickness exceeds 15 mm,
It is not preferable because the weight is remarkably increased and the workability such as transportation is deteriorated. The peripheral side surface portion is formed so that the bottom surface layer X of SiC-based refractory material and the layer Y of alumina-mullite refractory material are continuous. The thickness of the peripheral side surface portion is not particularly limited as long as it is designed to support the weight of the containers of the plurality of firing jigs loaded on the upper portion. Usually, it is formed to have the same thickness as the bottom portion. The SiC-based refractory bottom surface layer X has a thickness of about 2 to
It is preferably formed to have a thickness of 11 mm. This is because if the thickness is less than 2 mm, the characteristics of SiC such as bend resistance and spalling resistance are not utilized, and the high temperature strength is lowered and the occurrence of warpage cannot be prevented. The SiC refractory layer X is
Depending on the molding process, the end portion is thinned to about 1 mm, but if the central portion is 2 to 11 mm, the bend resistance does not decrease. It is preferable that the alumina-mullite refractory layer Y surrounding the SiC refractory layer X has a bottom portion having a thickness of about 2 to 5 mm above and below the bottom portion layer X. When it is less than 2 mm, the Si component in the SiC refractory layer X penetrates the alumina-mullite refractory layer Y and reacts with the object to be fired to contaminate the object to be fired, which is not preferable. On the other hand, if it exceeds 5 mm, the weight increases and the workability deteriorates. In addition, the SiC-based refractory layer X is relatively thin and the bend resistance is lowered.

【0008】図2は本発明の電子部品焼成用治具の他の
実施例の斜視説明図であり、図3は図2のA−A線にお
ける断面図である。図2及び図3において、電子部品焼
成用治具10は、各周側面部の上部を、長辺200m
m、短辺170mm、高さ20mmの台形状のガス抜き
部3及び4が切欠き形成され、且つ、表層部のアルミナ
・ムライト質耐火物層Yにより包囲されSiC質耐火物
層が底面部層Xから周側面部の内部に連続する側面層
X’とが連続してて形成されている以外は上記図1と同
様である。周側面部の内部に配置されるSiC質耐火物
側面層X’の厚さは、1mm以上であればよく底面部層
Xより薄層に形成することができる。耐ベンド性には直
接影響しないためである。通常、連続的に成形する場合
には底面部層Xと同様の厚さに形成する。なお、本発明
において、底面部層Xと側面層X’との連続は、厳密で
なく接近する程度でもよい。ガス抜き部13及び14
は、被焼成電子部品の構成成分等により焼成時に発生す
るガスと容器外部の雰囲気ガスとが混合され、容器12
内部においてその電子部品の特性を最大限に引き出せる
ようなガス雰囲気となるように、その大きさを適宜選択
調整することができる。例えば、脱バインダーの必要な
場合、各周側面で約10〜20mmの空隙を有するよう
にして、ガス雰囲気が容器内外で出入りできるようにす
る。また、焼成炉を損傷するような元素が添加されてい
る電子部品の場合は、ガス抜き部を設けることなく容器
内部を密閉に保持し、容器内外で雰囲気の交流がない状
態で焼成することが好ましい。
FIG. 2 is a perspective view showing another embodiment of the jig for firing electronic parts of the present invention, and FIG. 3 is a sectional view taken along the line AA of FIG. In FIG. 2 and FIG. 3, the electronic component firing jig 10 has a long side of 200 m at the top of each peripheral side surface.
m, a short side 170 mm, and a height 20 mm of trapezoidal gas vents 3 and 4 are cut out and surrounded by the alumina-mullite refractory layer Y of the surface layer, and the SiC refractory layer is a bottom layer. The same as FIG. 1 except that a side surface layer X ′ that is continuous from X to the inside of the peripheral side surface portion is formed continuously. The thickness of the SiC refractory side surface layer X ′ disposed inside the peripheral side surface portion may be 1 mm or more, and can be formed to be thinner than the bottom surface portion layer X. This is because the bend resistance is not directly affected. Usually, in the case of continuous molding, the thickness is the same as that of the bottom layer X. In the present invention, the continuity of the bottom surface layer X and the side surface layer X ′ is not critical and may be close to each other. Gas vents 13 and 14
Is mixed with the gas generated during firing and the atmospheric gas outside the vessel due to the constituent components of the electronic component to be fired, etc.
The size of the electronic component can be appropriately selected and adjusted so as to create a gas atmosphere in which the characteristics of the electronic component can be maximized. For example, when debinding is required, each side surface has a gap of about 10 to 20 mm so that a gas atmosphere can flow in and out of the container. In addition, in the case of an electronic component to which an element that damages the firing furnace is added, it is possible to keep the inside of the container airtight without providing a degassing part and fire it in a state where there is no alternating current inside and outside the container. preferable.

【0009】本発明の電子部品焼成用治具は、上記のよ
うに表層部を耐反応性のアルミナ・ムライト質耐火物で
形成するため、被焼成物との反応性が防止され得られる
電子部品の不良率が著しく低下する。本発明において、
上記電子部品焼成用治具の容器の表層部を構成するアル
ミナ・ムライト質耐火物は、好ましくはアルミナ(Al
23 )を約75〜100重量%、より好ましくは90
〜100重量%含有し、シリカ(SiO2 )を約0〜2
5重量%、より好ましくは0〜10重量%含有する。ア
ルミナが75重量%未満では、アルミア質の特性である
耐反応性を生かすことができないためである。また、本
発明のSiC質は、SiC純度が90〜100重量%で
あるものを好適に用いることができる。また、本発明お
いて、特に、被焼成電子部品がフェライト等の著しい反
応性を有する場合は、焼成用治具の容器内底面部表面で
ある被焼成電子部品の載置面を、アルミナまたはジルコ
ニアで被覆し、更に耐反応性を高めて用いることができ
る。
In the electronic part firing jig of the present invention, since the surface layer portion is formed of the reaction-resistant alumina-mullite refractory as described above, the reactivity with the object to be fired can be prevented. The defective rate of is significantly reduced. In the present invention,
The alumina-mullite refractory that constitutes the surface layer of the container of the electronic component firing jig is preferably alumina (Al
2 O 3 ) about 75 to 100% by weight, more preferably 90%
˜100 wt%, silica (SiO 2 ) about 0-2
5% by weight, more preferably 0 to 10% by weight. This is because if the amount of alumina is less than 75% by weight, the reaction resistance, which is a characteristic of aluminum, cannot be utilized. Further, as the SiC material of the present invention, one having a SiC purity of 90 to 100% by weight can be preferably used. Further, in the present invention, particularly when the electronic component to be fired has remarkable reactivity such as ferrite, the mounting surface of the electronic component to be fired, which is the bottom surface of the container in the firing jig, is made of alumina or zirconia. It is possible to use by further coating with, and further improving the reaction resistance.

【0010】実施例1 図1に示したものと同様の態様で、周側面部及び底面部
の厚さをいずれも10mmとし、縦300mm、横30
0mm、高さ30mmの直方サヤ体として焼成用治具の
上部開口の直方体外形の容器2を製作した。底面部のS
iC質耐火物層Xとしては、厚さ2mm、290×29
0(mm)の平板を用い、その上下にアルミナ・ムライ
ト質耐火物Yがそれぞれ4mmの厚さとなるようにして
容器2を形成した。なお、底面部のSiC質耐火物層X
はSiC純度99.5重量%であり、周側面部及び底面
部表層部を形成するアルミナ・ムライト質耐火物YのA
23 とSiO2 の含有率はそれぞれ76重量%及び
24重量%であった。上記のようにして形成した容器2
内に、被焼成物のNi−Zn系フェライトを50個ずつ
載置した直方サヤ体を3個多段に積載して最上部の容器
には、アルミナ質耐火物製の蓋を載置し、大気雰囲気の
焼成炉内で1200℃で60分間の焼成処理を行った。
上記の焼成処理を、同一のサヤ体を用い同様に30回繰
り返した結果、サヤ体の底面部は変形することなく、ま
た、被焼成物は汚染されることなく、歩留は98%であ
った。
Example 1 In a manner similar to that shown in FIG. 1, each of the peripheral side surface portion and the bottom surface portion has a thickness of 10 mm, a length of 300 mm and a width of 30.
A container 2 having a rectangular parallelepiped outer shape with an opening of the firing jig was manufactured as a rectangular parallelepiped body having a height of 0 mm and a height of 30 mm. S on the bottom
The thickness of the iC refractory layer X is 2 mm, 290 × 29
A container 2 was formed by using a flat plate of 0 (mm) such that the alumina / mullite refractory material Y had a thickness of 4 mm above and below the flat plate. The SiC-based refractory layer X on the bottom surface
Is 99.5 wt% of SiC purity, and A of the alumina-mullite refractory Y forming the peripheral side surface portion and the bottom surface portion surface layer portion.
The contents of l 2 O 3 and SiO 2 were 76% by weight and 24% by weight, respectively. Container 2 formed as described above
Inside, a box made of alumina refractory was placed on the uppermost container, and three rectangular parallelepiped bodies on which 50 Ni-Zn-based ferrites to be fired were placed were stacked in a multi-tiered manner. A baking process was performed at 1200 ° C. for 60 minutes in a baking furnace in an atmosphere.
The above baking treatment was repeated 30 times using the same sheath body, and as a result, the bottom portion of the sheath body was not deformed, the material to be fired was not contaminated, and the yield was 98%. It was

【0011】比較例1 SiC耐火物底面部層Xの厚さを1mmとして、その上
下面にアルミナ・ムライト質耐火物Yをそれぞれ4.5
mmとなるようにした以外は、実施例1と同様にして直
方サヤ体を形成した。得られたサヤ体を、実施例1と同
様に3段に積載して、同様にフェライトを焼成処理し
た。その結果、焼成処理8回目で直方サヤ体の底面部が
凹状に変形し使用に適さなくなった。
Comparative Example 1 A SiC refractory bottom layer X has a thickness of 1 mm, and alumina and mullite refractory Y is 4.5 on each of the upper and lower surfaces thereof.
A rectangular sheath body was formed in the same manner as in Example 1 except that the thickness was set to mm. The obtained sheath body was loaded in three stages in the same manner as in Example 1, and ferrite was similarly fired. As a result, the bottom surface of the rectangular parallelepiped body was deformed into a concave shape after the 8th firing process, and was not suitable for use.

【0012】比較例2 耐ベンド性を付与するため周側面部及び底面部の厚さを
20mmとし、底面部の上下各アルミナ・ムライト質耐
火物Yを9mmとした以外は、実施例1と同様にして直
方サヤ体を形成した。得られたサヤ体を用い、実施例1
と同様に3段に積載して、同様にフェライトを30回焼
成処理した。この結果、底面部の変形は生じなかった
が、得られたサヤ体は、5200gとなり、実施例1で
形成したサヤ体の3000gに比し約1.7倍の重量と
なり、自動積載装置を用いて積載するためには重量制限
上不適当であった。
Comparative Example 2 The same as Example 1 except that the peripheral side surface portion and the bottom surface portion had a thickness of 20 mm and the upper and lower alumina / mullite refractory materials Y at the bottom surface portion had a thickness of 9 mm in order to impart bend resistance. Then, a rectangular parallelepiped body was formed. Using the obtained sheath, Example 1
In the same manner as above, three layers were stacked and ferrite was similarly fired 30 times. As a result, the bottom surface portion was not deformed, but the obtained sheath body weighed 5200 g, which was about 1.7 times the weight of the sheath body formed in Example 1, and the automatic loading device was used. It was unsuitable due to the weight limit to load it.

【0013】比較例3 SiC耐火物底面部層Xの厚さを5mmとして、その上
下面にアルミナ・ムライト質耐火物Yをそれぞれ1mm
となるようにした以外は、実施例1と同様にして直方サ
ヤ体を形成した。得られたサヤ体を、実施例1と同様に
3段に積載して、同様にしてフェライトを5回焼成処理
した。その結果、焼成物がSiで汚染され、底面に異常
結晶状態が観察された不良品が50%であった。
Comparative Example 3 The bottom layer X of SiC refractory has a thickness of 5 mm, and alumina and mullite refractory Y has a thickness of 1 mm on each of the upper and lower surfaces thereof.
A rectangular sheath body was formed in the same manner as in Example 1 except that the above was adopted. The obtained sheath was loaded in three stages in the same manner as in Example 1, and ferrite was similarly fired 5 times. As a result, the fired product was contaminated with Si and an abnormal crystal state was observed on the bottom surface in 50% of defective products.

【0014】上記実施例及び比較例から、本発明の電子
部品用焼成治具は、SiC質がアルミナ・ムライト質耐
火物に包囲され被焼成物のSi成分汚染がなく耐反応性
がよく、且つ、耐ベンド性に優れることが分かる。ま
た、軽量化され、自動積載等の自動化も可能であること
が分かる。一方、SiC質耐火物層が2mm未満の1m
mでは、底面部の変形が生じることも明らかである。ま
た、アルミナ・ムライト質耐火物層が2mm未満の1m
mであると、被焼成物の底面と長期の使用において反応
するおそれがあることが分かる。
From the above-mentioned Examples and Comparative Examples, the firing jig for electronic parts of the present invention has a SiC material surrounded by an alumina-mullite refractory material, has no Si component contamination in the material to be fired, and has good reactivity resistance, and It turns out that it is excellent in bend resistance. Further, it can be seen that the weight is reduced and the automatic loading and the like can be automated. On the other hand, the SiC quality refractory layer is less than 2 mm 1 m
It is also apparent that the bottom surface portion is deformed at m. In addition, the alumina / mullite refractory layer is less than 2 mm, 1 m
It can be seen that when the value is m, it may react with the bottom surface of the object to be burned in long-term use.

【0015】実施例2〜5及び比較例3〜4 図2及び図3で示したものと同様の容器10を、ガス抜
き部13及び14をそれぞれ高さ20mm、長辺200
mm、短辺170mmの台形状に切欠き、SiC耐火物
層を周側面部まで連続的に形成し、SiC純度99.5
重量%のSiC耐火物底面部X層を3mm、X’層を1
mmとし表層部を形成するアルミナ・ムライト質耐火物
のAl23 とSiO2 の含有率を表1に示した以外
は、実施例1と同様にして形成した。得られたそれぞれ
の直方サヤ体の内底面部に、被焼成物としてフェライト
を載置して大気雰囲気の焼成炉内で、1200℃で1時
間焼成処理を行い、被焼成物のSi成分汚染(耐反応
性)をX線による鉱物同定で観測した。また、SiC質
耐火物底面部層Xと側面層X’とアルミナ・ムライト質
耐火物層Yとの熱膨張差による剥離性については、室温
と1400℃との間での加熱冷却を反復繰り返して観測
した。その結果を表1に示した。表中、耐反応性評価に
関し、◎は使用可能(好適)、○は使用できるものも有
り(適)、△は使用できるものはあまりない(不可)こ
とをそれぞれ表示する。また、剥離性評価に関し、◎は
剥離なし(好適)、○は剥離はなく面に亀裂が発生する
が使用は充分可能である(適)ことをそれぞれ表示す
る。
Examples 2-5 and Comparative Examples 3-4 A container 10 similar to that shown in FIGS. 2 and 3 is provided with gas vents 13 and 14 each having a height of 20 mm and a long side 200.
mm, short side 170 mm trapezoidal notch, SiC refractory layer is continuously formed up to the peripheral side surface, SiC purity 99.5
% Of SiC refractory bottom X layer is 3mm, X'layer is 1
It was formed in the same manner as in Example 1 except that the content ratio of Al 2 O 3 and SiO 2 of the alumina-mullite refractory which forms the surface layer portion in mm is shown in Table 1. Ferrite was placed as an object to be fired on the inner bottom surface of each of the rectangular parallelepiped bodies and fired at 1200 ° C. for 1 hour in a firing furnace in an air atmosphere to contaminate the Si component of the fired object ( Reaction resistance) was observed by mineral identification by X-ray. Regarding the peelability due to the difference in thermal expansion among the SiC refractory bottom layer X, the side layer X ′, and the alumina-mullite refractory layer Y, heating and cooling between room temperature and 1400 ° C. were repeated repeatedly. Observed. The results are shown in Table 1. In the table, regarding the reaction resistance evaluation, ⊚ indicates that it can be used (suitable), ○ indicates that some can be used (appropriate), and Δ indicates that few can be used (impossible). Regarding the evaluation of releasability, ⊚ indicates that there is no peeling (suitable), and ◯ indicates that there is no peeling and cracks occur on the surface, but it is sufficiently usable (suitable).

【0016】[0016]

【表1】 [Table 1]

【0017】上記実施例及び比較例より、アルミナ・ム
ライト質層のシリカ含有率が30重量%以上の場合はS
iC質との熱膨張差が小さく、剥離は殆ど発生しなかっ
たが、アルミナの含有率が低いためアルミナ質の特性で
ある耐反応性を生かすことができず、SiC質耐火物層
中のSi成分が表面に浸出して被焼成物が汚染されるこ
とが分かった。一方、アルミナ含有量が75重量%以上
のものは、多少の亀裂が表面に発生するものの焼成用治
具サヤ体の破壊までは至らず、また剥離もなく充分に使
用可能であり、フェライト焼成用に適し不良品を生産せ
ずに高歩留で被焼成品を得ることができることが明らか
である。従って、上記実施例に示したアルミナ・ムライ
ト質層のアルミナ含量が75〜90重量%、シリカ含有
量が25〜10重量%の焼成用治具は、所望される耐反
応性及び剥離性の両面での機能を充分保持して発揮する
ものであり、総合的に電子部品焼成用治具として好適で
あることが分かる。
From the above Examples and Comparative Examples, when the silica content of the alumina-mullite layer is 30% by weight or more, S
Although the difference in thermal expansion from the iC material was small and almost no exfoliation occurred, the alumina content was low, so the reaction resistance characteristic of the alumina material could not be utilized, and the Si in the SiC material refractory layer could not be utilized. It was found that the components were leached to the surface and the material to be fired was contaminated. On the other hand, when the alumina content is 75% by weight or more, although some cracks occur on the surface, it does not lead to the destruction of the firing jig sheath body, and it can be sufficiently used without peeling, and it can be used for ferrite firing. It is obvious that a product to be fired can be obtained with a high yield without producing a defective product suitable for. Therefore, the firing jig having the alumina-mullite layer having an alumina content of 75 to 90% by weight and a silica content of 25 to 10% by weight shown in the above-mentioned examples has both desired reaction resistance and peelability. It can be seen that it is fully suitable for use as a jig for firing electronic parts, as it fully retains the function described above.

【0018】[0018]

【発明の効果】本発明の電子部品焼成用治具は、容器状
のサヤ構造を採用すると共に、従来とは異なりSiC質
耐火物層をアルミナ・ムライト質耐火物により包囲して
なる構成であるため、SiC質耐火物層が外気に曝され
ることがなく酸化が防止され、SiCの耐ベンド性、耐
スポーリング性等の特性を劣化させることがない。従っ
て、高温強度に優れ、長期使用においても変形を生じ
ず、耐久性に優れる。また、アルミナ・ムライト層によ
り表層部が形成され、SiC質耐火物層を包囲するため
Si成分が飛散することもなく、被焼成物が汚染される
ことがなく、耐反応性に優れ、歩留りよく円滑に高品質
な電子部品を得ることができる。また、サヤ構造により
自動積載化が容易であり、更に、要すればガス抜き部を
形成してサヤの内部と外部の雰囲気を調節して電子部品
から発生するガス濃度を、電子部品の特性を上げるよう
に制御することができ、焼成処理される電子部品の品質
を向上させることもできる。
EFFECT OF THE INVENTION The jig for firing electronic parts of the present invention adopts a container-shaped sheath structure and is different from the conventional one in that the SiC refractory layer is surrounded by alumina / mullite refractory. Therefore, the SiC refractory layer is not exposed to the outside air, oxidation is prevented, and characteristics such as bend resistance and spalling resistance of SiC are not deteriorated. Therefore, it has excellent high-temperature strength, does not deform even after long-term use, and has excellent durability. Further, since the surface layer portion is formed by the alumina-mullite layer and surrounds the SiC refractory layer, the Si component does not scatter, the material to be fired is not contaminated, the reactivity is excellent, and the yield is high. It is possible to smoothly obtain high-quality electronic components. In addition, due to the sheath structure, automatic loading is easy, and if necessary, a gas vent is formed to adjust the atmosphere inside and outside the sheath to control the gas concentration generated from the electronic components and to determine the characteristics of the electronic components. It can be controlled so as to raise the temperature, and the quality of electronic components to be fired can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の電子部品焼成用治具の一実施例の断面
説明図である。
FIG. 1 is an explanatory cross-sectional view of an embodiment of a jig for firing an electronic component of the present invention.

【図2】本発明の電子部品焼成用治具の他の実施例の斜
視説明図である。
FIG. 2 is a perspective explanatory view of another embodiment of the jig for firing an electronic component of the present invention.

【図3】図2のA−A線における断面図である。3 is a cross-sectional view taken along the line AA of FIG.

【図4】従来の焼成用治具の棚板を多段に用いた例の斜
視説明図である。
FIG. 4 is a perspective explanatory view of an example in which shelf plates of a conventional firing jig are used in multiple stages.

【符号の説明】[Explanation of symbols]

X、X’ SiC質耐火物層 Y アルミナ・ムライト質耐火物層 1、10 電子部品焼成用治具 2、12 容器 13、14 ガス抜き部 20 耐火物棚板 21 支柱 X, X'SiC refractory layer Y Alumina-mullite refractory layer 1, 10 Electronic component firing jig 2, 12 Container 13, 14 Degassing part 20 Refractory shelf 21 Strut

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 SiC質耐火物層と、該SiC質耐火物
層を包囲してなるアルミナ・ムライト質耐火物層とから
形成される開口容器であることを特徴とする電子部品焼
成用治具。
1. A jig for firing electronic parts, comprising an open container formed of a SiC refractory layer and an alumina / mullite refractory layer surrounding the SiC refractory layer. .
【請求項2】 前記SiC質耐火物層が、前記容器底面
部に配置されている請求項1記載の電子部品焼成用治
具。
2. The jig for firing electronic components according to claim 1, wherein the SiC refractory layer is arranged on the bottom surface of the container.
【請求項3】 前記SiC質耐火物層が、前記容器底面
部から周側面部に連続して配置されている請求項1記載
の電子部品焼成用治具。
3. The jig for firing electronic components according to claim 1, wherein the SiC refractory layer is continuously arranged from the bottom surface portion of the container to the peripheral side surface portion.
【請求項4】 前記容器底面部において、厚さが15m
m以下で、前記SiC質耐火物層厚さが2〜11mmで
あり、前記アルミナ・ムライト質耐火物層厚さが2〜5
mmである請求項1〜3のいずれか記載の電子部品焼成
用治具。
4. The container bottom has a thickness of 15 m.
m or less, the thickness of the SiC refractory layer is 2 to 11 mm, and the thickness of the alumina-mullite refractory layer is 2 to 5
The jig for firing electronic components according to any one of claims 1 to 3, which has a size of mm.
【請求項5】 前記SiC質耐火物がSiCを90〜1
00重量%含有し、前記アルミナ・ムライト質耐火物が
アルミナを75〜100重量%及びシリカを0〜25重
量%含有する請求項1〜4いずれか記載の電子部品焼成
用治具。
5. The SiC refractory contains 90 to 1 SiC.
The jig for firing electronic parts according to any one of claims 1 to 4, wherein the jig contains 100 wt% of alumina, and the alumina-mullite refractory contains 75 to 100 wt% of alumina and 0 to 25 wt% of silica.
JP6330709A 1994-12-07 1994-12-07 Jig for baking electronic component Pending JPH08159671A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6330709A JPH08159671A (en) 1994-12-07 1994-12-07 Jig for baking electronic component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6330709A JPH08159671A (en) 1994-12-07 1994-12-07 Jig for baking electronic component

Publications (1)

Publication Number Publication Date
JPH08159671A true JPH08159671A (en) 1996-06-21

Family

ID=18235694

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6330709A Pending JPH08159671A (en) 1994-12-07 1994-12-07 Jig for baking electronic component

Country Status (1)

Country Link
JP (1) JPH08159671A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020166565A1 (en) * 2019-02-14 2021-03-11 日本碍子株式会社 Firing jig
WO2022176613A1 (en) * 2021-02-19 2022-08-25 東京窯業株式会社 Composition for heat treatment jig and method for manufacturing heat treatment jig

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020166565A1 (en) * 2019-02-14 2021-03-11 日本碍子株式会社 Firing jig
WO2022176613A1 (en) * 2021-02-19 2022-08-25 東京窯業株式会社 Composition for heat treatment jig and method for manufacturing heat treatment jig

Similar Documents

Publication Publication Date Title
KR100756619B1 (en) Aluminum nitride sintered body, semiconductor manufacturing member, and method of manufacturing aluminum nitride sintered body
JP5005100B1 (en) Heat treatment container for positive electrode active material for lithium ion battery and method for producing the same
JPH0585834A (en) Production of ceramic honeycomb structure
JPS63224937A (en) Double layer structure heat-resistant plate
KR20080037682A (en) Ceramic member, ceramic heater, substrate placing mechanism, substrate processing apparatus and method for manufacturing ceramic member
JPH08159671A (en) Jig for baking electronic component
EP1767885B1 (en) Kiln furniture for use in a non-oxidizing atmosphere
JP2007076935A (en) Tool for firing electronic component and its production method
JP4276558B2 (en) High melting point metal material provided with oxide film layer, manufacturing method thereof, and sintering plate using the same
JP2007112670A (en) Firing vessel
JP2004262712A (en) Burning tool
JP2003119083A (en) Heat resistant tool
JP2000344580A (en) Sagger for firing
JP2003306392A (en) Jig for heat-treating ceramic for electronic part and its manufacturing process
JPH10218672A (en) Baking for ceramic sheet
JP2002060287A (en) Firing vessel
JP2550848Y2 (en) Sagger for ceramic firing
JP3613373B2 (en) Mortar for baking
JP3611951B2 (en) Method for firing aluminum nitride
JP3044879B2 (en) Method for firing ceramic molded body
JP2002068848A (en) Sagger for firing of ceramic electronic part
JPH0397682A (en) Production of vessel having setter and method for calcining aluminum nitride substrate by using this vessel
JPH06321643A (en) Sintering method of ceramic product
JP2011202940A (en) Baking furnace for ceramic product and baking method using the same
JPH01203263A (en) Spalling resistant ceramics and tool material for calcining electronic parts