JPH08159052A - Scroll compressor - Google Patents

Scroll compressor

Info

Publication number
JPH08159052A
JPH08159052A JP29674694A JP29674694A JPH08159052A JP H08159052 A JPH08159052 A JP H08159052A JP 29674694 A JP29674694 A JP 29674694A JP 29674694 A JP29674694 A JP 29674694A JP H08159052 A JPH08159052 A JP H08159052A
Authority
JP
Japan
Prior art keywords
coordinate axis
eccentric bush
eccentric
quadrant
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29674694A
Other languages
Japanese (ja)
Inventor
Sadao Kawahara
定夫 河原
Teruyuki Akazawa
輝行 赤澤
Kunio Iwanami
國雄 岩波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP29674694A priority Critical patent/JPH08159052A/en
Publication of JPH08159052A publication Critical patent/JPH08159052A/en
Pending legal-status Critical Current

Links

Landscapes

  • Rotary Pumps (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

PURPOSE: To provide a scroll compressor realizing the reduction of cost by simplifying the structure and improving the reliability. CONSTITUTION: A driving pin 15 pressed to be fixed in an eccentric hole 20 of an eccentric bush 19 rotatably supported in a boss 11 of a swirl scroll blade parat 7 through a revolving bearing 12 is rotatably fitted and connected to an eccentric driving hole 18 provided on the end surface of a main shaft 16 with eccentricity, and the eccentric bush 19 is adapted to swing on the driving pin 15 to vary the turning radius, whereby the positions of centers of the eccentric driving hole 18 and the eccentric hole 20 of the eccentric bush, that is, the position of the center of the driving pin 15 is limited within the second quadrant of a definition coordinate.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、空調機、冷凍機等に
使用されるスクロール圧縮機の駆動構造に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a drive structure for a scroll compressor used in air conditioners, refrigerators and the like.

【0002】[0002]

【従来の技術】最近の圧縮機は、小形軽量、高効率、低
騒音などの観点からスクロール圧縮機が主流になってき
ている。スクロール圧縮機は多くの特許や文献に開示さ
れ、その動作原理は良く知られている。
2. Description of the Related Art As a recent compressor, a scroll compressor has become mainstream from the viewpoints of small size, light weight, high efficiency, low noise and the like. Scroll compressors are disclosed in many patents and documents, and their operating principles are well known.

【0003】典型的なスクロール型圧縮機の構造の従来
例として、特公昭57−49721号のスクロール形流
体機械があり、渦巻羽根を径方向に追随接触をさせるリ
ンク結合の羽根径方向追随機構の技術が開示されてい
る。
As a conventional example of the structure of a typical scroll type compressor, there is a scroll type fluid machine of Japanese Examined Patent Publication No. 57-49721, which is a blade-radial follower mechanism of a link coupling for making a spiral vane follow and contact in the radial direction. The technology is disclosed.

【0004】また、特公昭58−19875号のスクロ
ール型圧縮機には、リンク結合の羽根径方向追随機構を
発展させた偏心ブッシュ機構の技術が開示されている。
In Japanese Patent Publication No. 58-19875, there is disclosed a technique of an eccentric bush mechanism, which is a development of a link-coupling blade radial direction tracking mechanism.

【0005】この偏心ブッシュ機構を用いた従来の圧縮
機の断面図を図7に示す。圧縮機ハウジング101の後
端部に固定鏡板103の上に固定渦巻羽根104を形成
した固定渦巻羽根部品102が固定され、複数個の圧縮
作業空間105を構成するように旋回鏡板107の上に
旋回渦巻羽根108が形成された旋回渦巻羽根部品10
6が噛み合わせられている。旋回鏡板107の旋回渦巻
羽根108とは反対側の背面上に円筒状のボス109が
形成され、その内部に旋回軸受110が配設されてい
る。偏心穴112を有する肉厚の厚い円板状あるいは短
軸状の偏心ブッシュ111が旋回渦巻羽根部品106の
ボス109内に旋回軸受110を介して回転可能に支持
されている。主軸114の端面から軸方向に偏心延出さ
れた駆動ピン115が偏心ブッシュ111の偏心穴11
2に回転可能に嵌合されて、旋回渦巻羽根部品106に
旋回運動が与えられる。一方、主軸114への回転力の
伝達は、軸封装置117を介して圧縮機ハウジング10
1外に突出した主軸114の端部に取り付けられた電磁
クラッチ118により外部駆動源(例えば自動車エンジ
ン、図示せず)の回転をベルト等の伝達手段(図示せ
ず)を介して行われる。
FIG. 7 shows a sectional view of a conventional compressor using this eccentric bush mechanism. At the rear end of the compressor housing 101, a fixed spiral vane component 102 having fixed spiral vanes 104 formed on a fixed mirror plate 103 is fixed, and swirled on a swivel mirror plate 107 so as to form a plurality of compression work spaces 105. Swirling spiral blade component 10 in which spiral blade 108 is formed
6 is engaged. A cylindrical boss 109 is formed on the rear surface of the swirl end plate 107 on the side opposite to the swirl vane 108, and a swirl bearing 110 is disposed inside the cylindrical boss 109. A thick disk-shaped or short-axis eccentric bush 111 having an eccentric hole 112 is rotatably supported in a boss 109 of a swirl spiral blade component 106 via a swirl bearing 110. The drive pin 115 axially and eccentrically extended from the end surface of the main shaft 114 is provided with the eccentric hole 11 of the eccentric bush 111.
2 is rotatably fitted to impart a swirling motion to the swirling spiral vane component 106. On the other hand, the torque is transmitted to the main shaft 114 via the shaft sealing device 117.
1. An electromagnetic clutch 118 attached to the end of the main shaft 114 protruding to the outside causes rotation of an external drive source (for example, an automobile engine, not shown) via a transmission means (not shown) such as a belt.

【0006】このような駆動機構の構成においては、主
軸114が回転すると流体圧縮ガス力などの作用力によ
り偏心ブッシュ111の中心は駆動ピン115の中心を
中心として円弧状にスイングする。これにより旋回渦巻
羽根108が固定渦巻羽根104に追随して接触し圧縮
作業空間105の径方向のシール性を良好にする。
In the structure of such a drive mechanism, when the main shaft 114 rotates, the center of the eccentric bush 111 swings in an arc around the center of the drive pin 115 due to the action force such as the fluid compression gas force. As a result, the swirling spiral blade 108 follows the fixed spiral blade 104 and comes into contact with the fixed spiral blade 104 to improve the radial sealing performance of the compression work space 105.

【0007】旋回鏡板107の上には高硬度の鋼製の旋
回側レース119と旋回側リテーナ120が配置され、
圧縮機ハウジング101の前部の内壁に設けた段部12
1の上に固定側レース122と固定側リテーナ123が
配置され、この両レースと両リテーナで多数個の鋼製の
ボール124を軸方向と旋回半径方向に挟持して旋回鏡
板107に掛かるスラスト力の支承と旋回渦巻羽根部品
106の自転を拘束している。
On the turning end plate 107, a turning side race 119 and a turning side retainer 120 made of high hardness steel are arranged.
Step 12 provided on the inner wall of the front part of the compressor housing 101
1, a fixed side race 122 and a fixed side retainer 123 are arranged, and a thrust force applied to the turning end plate 107 by sandwiching a large number of steel balls 124 in both the races and the retainers in the axial direction and the turning radial direction. And the rotation of the swirling spiral blade part 106 is restrained.

【0008】この従来圧縮機は駆動ピン115の位置が
限定されており、この位置に限定することにより、始動
時などの急激な加速度の増加変化が発生する場合には、
旋回部品の慣性力が作用して偏心ブッシュ111の中心
は両羽根の接触部が離れて圧縮作業空間105の圧力が
開放される方向にスイングする。その結果、始動時の異
常音や異常ショックの発生が防げるようになっている。
In this conventional compressor, the position of the drive pin 115 is limited. By limiting the position to this position, when a sudden increase in acceleration occurs at the time of starting,
Due to the inertial force of the swiveling component, the center of the eccentric bush 111 swings in a direction in which the contact portions of both blades are separated and the pressure in the compression work space 105 is released. As a result, it is possible to prevent the occurrence of abnormal noise and shock at the time of starting.

【0009】また、偏心ブッシュ111は駆動ピン11
5の周りに回転可能であるので上記のような半径方向密
封効果を有するが、周囲の部品との干渉等の問題を解消
するために偏心ブッシュ111のスイングに伴う回転角
度範囲を制限する必要があり、偏心ブッシュ111の回
転角度範囲制限手段として、偏心ブッシュ111に規制
ピン113を延出させ、主軸114に設けた規制穴11
6に所定量の隙間で嵌入することにより構成している。
Further, the eccentric bush 111 is a drive pin 11.
Since it can rotate around 5, it has the above-mentioned radial sealing effect, but it is necessary to limit the rotation angle range associated with the swing of the eccentric bush 111 in order to solve problems such as interference with surrounding parts. As a means for limiting the rotation angle range of the eccentric bush 111, the eccentric bush 111 is extended with the restriction pin 113, and the restriction hole 11 is provided in the main shaft 114.
It is configured by fitting into 6 with a predetermined gap.

【0010】[0010]

【発明が解決しようとする課題】しかしながら、駆動ピ
ン115を一体成形で主軸114の端部から偏心延出さ
せるには、鍛造等の成形法が用いられるが、小形軽量構
成の中で、駆動ピン径を大きくとれないので、材料ロス
を極力抑えるニアネット形状を得るには、かなり困難な
ものとなる。さらに、駆動ピンの仕上げ加工も、主軸の
軸心に対して偏心させているので主軸と同時加工ができ
ず、加工行程が複雑になる。また、上記構成において
は、偏心ブッシュ111のスイング運動に伴い回転角度
範囲を制限する回転角度範囲制限手段を別構成で設ける
必要があるので製造面で不利となり、コスト高となる。
However, in order to eccentrically extend the drive pin 115 from the end portion of the main shaft 114 by integrally molding, a forming method such as forging is used. Since the diameter cannot be made large, it is quite difficult to obtain a near net shape that minimizes material loss. Furthermore, since the drive pin is also finished off-center with respect to the axis of the spindle, it cannot be machined simultaneously with the spindle, which complicates the machining process. Further, in the above-mentioned configuration, it is necessary to provide a rotation angle range limiting means for limiting the rotation angle range in accordance with the swing motion of the eccentric bush 111 in a separate configuration, which is disadvantageous in terms of manufacturing and high in cost.

【0011】本発明は、上記従来例の課題を解決するも
ので、構造を簡単にして低コストを実現するとともに、
信頼性も向上させたスクロール圧縮機の提供を目的とす
るものである。
The present invention solves the problems of the above-mentioned conventional example, and simplifies the structure to realize low cost, and
The object is to provide a scroll compressor having improved reliability.

【0012】[0012]

【課題を解決するための手段】上記課題を解決するため
に本発明の第1の技術的手段は、圧縮機ハウジング内
に、複数個の圧縮作業空間を成すように、固定鏡板の上
に固定渦巻羽根を延出させた固定渦巻羽根部品と、旋回
鏡板の上に旋回渦巻羽根を延出するとともに、この旋回
渦巻羽根の延出面の反対面にボスを形成した旋回渦巻羽
根部品を配設し、前記旋回渦巻羽根部品に旋回運動を与
える駆動機構を、前記旋回渦巻羽根部品のボス内部に設
けられる旋回軸受と、前記ボス内に前記旋回軸受を介し
て回転可能に支持され、偏心穴とこの穴面積より大なる
面積で主軸側に開口する筒状の凹部とを有する偏心ブッ
シュと、前記偏心ブッシュの主軸側となる端部に一体成
形された取付板に取り付けられる旋回部品の動的アンバ
ランスを軽減する旋回バランスウエイトと、前記偏心ブ
ッシュの偏心穴に圧入固定される駆動ピンと、内端部に
前記偏心ブッシュの凹部に小隙間ではめ合う円筒部を形
成し、前記圧縮機ハウジングに回転可能に支持される主
軸と、前記主軸の円筒部の端面に偏心させて設ける前記
駆動ピンを回転可能に嵌合接合する偏心駆動穴と、前記
旋回渦巻羽根部品の自転を拘束して旋回のみをさせる自
転拘束部品とで構成し、前記主軸の軸心と前記偏心ブッ
シュの中心を結ぶ線を第2の座標軸と定義し、この第2
の座標軸に直角で前記偏心ブッシュの中心を通る線を第
1の座標軸と定義し、前記第1の座標軸と前記第2の座
標軸の交点をそれぞれの座標軸の原点と定義し、前記第
2の座標軸を前記第1の座標軸に対して前記主軸の軸心
とは反対側を正、軸心側を負の領域とし、前記第1の座
標軸を前記第2の座標軸に対して前記主軸の回転方向の
順に、前記第2の座標軸の領域が負から正になる領域を
正の領域、反対側を負の領域とし、前記第1の座標軸が
正で第2の座標軸が正の象限を第1象限、前記第1の座
標軸が負で第2の座標軸が正の象限を第2象限、前記第
1の座標軸が負で第2の座標軸が負の象限を第3象限、
前記第1の座標軸が正で第2の座標軸が負の象限を第4
象限と定義し、前記偏心駆動穴と前記偏心ブッシュの偏
心穴の中心、すなわち、駆動ピン中心を前記第2象限内
に位置させたものである。
In order to solve the above-mentioned problems, the first technical means of the present invention is to fix a fixed end plate on a fixed end plate so as to form a plurality of compression working spaces in a compressor housing. Fixed swirl vane parts with swirl vanes extended, swirl swirl vane parts extended on the swirl end plate, and swirl swirl vane parts with a boss formed on the surface opposite to the extension surface of the swirl swirl vanes. A swivel bearing provided inside the boss of the swirl spiral vane component, a drive mechanism for imparting swirl motion to the swirl spiral vane component, and an eccentric hole rotatably supported in the boss via the swirl bearing. An eccentric bush having a cylindrical recess having an area larger than the hole area and opening to the spindle side, and a dynamic imbalance of a swivel component attached to a mounting plate integrally formed at an end of the eccentric bush on the spindle side. To reduce A balance weight, a drive pin that is press-fitted and fixed in an eccentric bushing eccentric bush, and a cylindrical portion that fits in a recess of the eccentric bushing with a small gap are formed at the inner end and are rotatably supported by the compressor housing. A main shaft, an eccentric drive hole for rotatably fittingly joining the drive pin provided eccentrically to the end face of the cylindrical portion of the main shaft, and a rotation restraining component for restraining only the rotation of the swirling spiral blade component to rotate. And a line connecting the axis of the main shaft and the center of the eccentric bush is defined as a second coordinate axis.
A line that is perpendicular to the coordinate axes of the eccentric bush and passes through the center of the eccentric bush is defined as a first coordinate axis, and an intersection of the first coordinate axis and the second coordinate axis is defined as an origin of each coordinate axis, and the second coordinate axis is defined. The positive axis on the side opposite to the axis of the main axis with respect to the first coordinate axis and the negative area on the side of the axis, and the first coordinate axis with respect to the rotation direction of the main axis with respect to the second coordinate axis. In order, a region in which the second coordinate axis region changes from negative to positive is defined as a positive region and the opposite side is defined as a negative region, and a quadrant in which the first coordinate axis is positive and the second coordinate axis is positive is a first quadrant, The second quadrant is a quadrant in which the first coordinate axis is negative and the second coordinate axis is positive, and the third quadrant is the quadrant in which the first coordinate axis is negative and the second coordinate axis is negative.
A quadrant in which the first coordinate axis is positive and the second coordinate axis is negative
It is defined as a quadrant, and the centers of the eccentric drive hole and the eccentric hole of the eccentric bush, that is, the center of the drive pin are located in the second quadrant.

【0013】また、本発明の第2の技術的手段は、旋回
バランスウエイトの主軸側となる外周端面部をL字状の
段付きに形成したものである。
A second technical means of the present invention is that the outer peripheral end surface portion of the turning balance weight on the main shaft side is formed into an L-shaped step.

【0014】また、本発明の第3の技術的手段は、偏心
ブッシュの主軸側となる端部に一体成形された旋回バラ
ンスウエイトの取付板に抜き穴を設けたものである。
The third technical means of the present invention is to provide a hole in the mounting plate of the turning balance weight integrally formed at the end of the eccentric bush on the main shaft side.

【0015】また、本発明の第4の技術的手段は、駆動
ピンの内部に貫通穴を設けたものである。
A fourth technical means of the present invention is to provide a through hole inside the drive pin.

【0016】[0016]

【作用】本発明は第1の技術的手段によれば、流体圧縮
ガス力や遠心力の作用力により偏心ブッシュが、第2象
限内に位置させた駆動ピンの中心を回転中心としてスイ
ングし、旋回半径を可変にするので、旋回渦巻羽根が固
定渦巻羽根に追随接触し、従来の圧縮機と同様に、圧縮
作業空間で径方向の良好なシール性が得られる。また、
始動時など、加速度の急激に増加する時には、旋回部品
の慣性力が作用して偏心ブッシュを両羽根が離れる方向
にスイングさせ、圧縮作業空間の圧力を開放し、始動時
の異常音や異常ショック、液圧縮などを緩和する効果を
有する。
According to the first technical means of the present invention, the eccentric bush swings around the center of the drive pin located in the second quadrant as the center of rotation by the action of the fluid compression gas force and the centrifugal force. Since the swirling radius is made variable, the swirling spiral vanes follow the fixed swirl vanes following, and good radial sealing performance is obtained in the compression work space as in the conventional compressor. Also,
When the acceleration rapidly increases, such as at the time of starting, the inertial force of the swiveling parts acts to swing the eccentric bush in the direction in which both blades separate, releasing the pressure in the compression work space, and causing abnormal noise or shock at the time of starting. It also has the effect of alleviating liquid compression.

【0017】また、別体の駆動ピンを偏心ブッシュに圧
入固定する構成としたので、従来の圧縮機に比べ、加工
性が向上する。さらに、偏心ブッシュのスイングに伴う
回転規制は、偏心ブッシュの凹部と、この凹部に小隙間
ではめ合う主軸の円筒部との間で行われ、この間に設け
られる小隙間により回転角度範囲が決定される。このた
め、従来のような回転角度範囲制限手段を別構成で設け
る必要がなく、構造が簡単となり、製造コストが低減す
る効果を有する。
Further, since the separate drive pin is press-fitted and fixed to the eccentric bush, the workability is improved as compared with the conventional compressor. Further, the rotation restriction due to the swing of the eccentric bush is performed between the concave portion of the eccentric bush and the cylindrical portion of the main shaft fitted in the concave portion with a small gap, and the rotation angle range is determined by the small gap provided therebetween. It For this reason, there is no need to provide a rotation angle range limiting means in a separate configuration as in the prior art, and the structure is simplified and the manufacturing cost is reduced.

【0018】また、偏心ブッシュに、偏心穴の穴面積よ
り大なる面積で主軸側に開口する筒状の凹部を設けたの
で、偏心ブッシュの軸方向の重心が旋回鏡板に近づくこ
とになる。このため、主軸側の端面に旋回バランスウエ
イトが取り付けられた状態でも、軸方向の重心を旋回軸
受の支承面の中央部付近に位置させることが容易に実現
できる。これにより、旋回運動時の偏心ブッシュ系の傾
転を抑制し、旋回軸受の信頼性を高めることができる。
Further, since the eccentric bush is provided with the cylindrical concave portion which is open to the main shaft side in an area larger than the hole area of the eccentric hole, the center of gravity of the eccentric bush in the axial direction approaches the turning end plate. Therefore, even when the orbiting balance weight is attached to the end face on the main shaft side, it is possible to easily realize that the center of gravity in the axial direction is located near the center of the bearing surface of the orbiting bearing. As a result, tilting of the eccentric bush system during swivel motion can be suppressed, and the reliability of the swivel bearing can be improved.

【0019】本発明の第2の技術的手段によれば、第1
の技術的手段の作用に加え、旋回バランスウエイトの軸
方向の重心が旋回鏡板に近づくように、旋回バランスウ
エイトの主軸側となる外周端面部をL字状の段付きに形
成して、この旋回バランスウエイトを含む偏心ブッシュ
系の軸方向の重心を旋回軸受の支承面の中央部付近に位
置させることにより容易にしたので、さらに、旋回運転
時の偏心ブッシュ系の傾転を抑制し、旋回軸受の信頼性
をより高めることができる。
According to the second technical means of the present invention, the first
In addition to the effect of the technical means of 1., the outer peripheral end surface portion on the main shaft side of the turning balance weight is formed with an L-shaped step so that the center of gravity of the turning balance weight in the axial direction approaches the turning end plate. This is facilitated by locating the axial center of gravity of the eccentric bushing system including the balance weight near the center of the bearing surface of the slewing bearing. The reliability of can be improved.

【0020】本発明の第3の技術的手段によれば、第1
の技術的手段の作用に加え、偏心ブッシュの主軸側とな
る端部に一体成形された旋回バランスウエイトの取付板
に抜き穴を設けて、旋回軸受の支承面外に位置する取付
板を軽量化し、偏心ブッシュ系の軸方向の重心が、より
旋回軸受の支承面の中央部付近に位置し易くしたので、
さらに、旋回運動時の偏心ブッシュ系の傾転を抑制し、
旋回軸受の信頼性をより高めることができる。
According to the third technical means of the present invention, the first
In addition to the effect of the technical means described above, a hole is formed in the mounting plate of the swivel balance weight integrally formed at the end of the eccentric bush on the main shaft side to reduce the weight of the mounting plate located outside the bearing surface of the swivel bearing. Since the center of gravity of the eccentric bush system in the axial direction is more easily located near the center of the bearing surface of the slewing bearing,
Furthermore, it suppresses tilting of the eccentric bush system during turning motion,
The reliability of the slewing bearing can be further improved.

【0021】本発明の第4の技術的手段によれば、第1
の技術的手段の作用に加え、駆動ピンの内部に設けた貫
通穴により、旋回軸受への潤滑油が、旋回渦巻羽根部品
のボス内部に抑留されることなく、貫通穴から圧縮機ハ
ウジング内の空間に還流するようにしたので、旋回軸受
への潤滑油は十分確保され、旋回軸受の信頼性が高ま
る。
According to the fourth technical means of the present invention, the first
In addition to the function of the technical means of (1), the through hole provided inside the drive pin prevents the lubricating oil to the slewing bearing from being retained inside the boss of the swirl spiral vane component, and from the through hole to the inside of the compressor housing. Since the oil is returned to the space, sufficient lubricating oil is secured for the slewing bearing, and the reliability of the slewing bearing is enhanced.

【0022】[0022]

【実施例】本発明の第1の技術的手段を用いた一実施例
として、図1にスクロール圧縮機の断面図、図2に偏心
ブッシュを使用した駆動機構の分解斜視図を示す。
FIG. 1 is a sectional view of a scroll compressor and FIG. 2 is an exploded perspective view of a drive mechanism using an eccentric bush as an embodiment using the first technical means of the present invention.

【0023】低圧側圧力が作用するフロントケーシング
2と高圧側圧力の作用するリヤケーシング3からなる圧
縮機ハウジング1の内部に固定渦巻羽根部品4と複数個
の圧縮作業空間10を形成するように旋回渦巻羽根部品
7が相互に噛み合わされている。
A swirl is performed so as to form a fixed spiral vane component 4 and a plurality of compression working spaces 10 inside a compressor housing 1 consisting of a front casing 2 on which a low pressure is applied and a rear casing 3 on which a high pressure is applied. The spiral vane components 7 are intermeshed with each other.

【0024】固定渦巻羽根部品4は、固定鏡板5の一面
上に固定渦巻羽根6を延出し、この固定鏡板面でリヤケ
ーシング3に締結固定されている。旋回渦巻羽根部品7
は、旋回鏡板8の一面上に旋回渦巻羽根9を延出し、旋
回鏡板8の旋回渦巻羽根9の延出面とは反対側の旋回鏡
板背面の中央部に円筒状ボス11が突設されており、こ
のボス11の内部に旋回軸受12(ニードルベアリン
グ)を配設している。固定渦巻羽根6および旋回渦巻羽
根9の先端面には、それぞれチップシール13が嵌挿さ
れ、軸方向のシール性を確保している。
The fixed spiral blade component 4 has a fixed spiral blade 6 extending on one surface of the fixed mirror plate 5, and is fixedly fastened to the rear casing 3 by this fixed mirror plate surface. Swirling spiral blade parts 7
Has a swirl spiral blade 9 extending over one surface of the swirl mirror plate 8, and a cylindrical boss 11 is projectingly provided in the central portion of the rear surface of the swirl mirror plate 8 on the side opposite to the extending surface of the swirl spiral blade 9. A slewing bearing 12 (needle bearing) is arranged inside the boss 11. The tip seals 13 are fitted and inserted into the tip surfaces of the fixed spiral blade 6 and the swirl spiral blade 9, respectively, to secure the axial sealability.

【0025】旋回渦巻羽根部品7の旋回運動は、主軸受
14aと副軸受14bにより圧縮機ハウジング1に回転
可能に支持された主軸16により、後述する偏心ブッシ
ュ19を用いた旋回半径可変駆動機構を介してなされ
る。一方、主軸16への回転力の伝達は、軸封装置30
を介して圧縮機ハウジング1外に突出した主軸16の端
部に取り付けられた電磁クラッチ31により外部駆動源
(図示せず)の回転をベルト等の伝達手段(図示せず)
を介して行われる。
The swirling motion of the swirling spiral vane component 7 is controlled by a main shaft 16 rotatably supported on the compressor housing 1 by a main bearing 14a and a sub bearing 14b by a swivel radius variable drive mechanism using an eccentric bush 19 described later. Done through. On the other hand, the torque is transmitted to the main shaft 16 by the shaft sealing device 30.
The rotation of the external drive source (not shown) is transmitted by means of an electromagnetic clutch 31 attached to the end of the main shaft 16 protruding outside the compressor housing 1 via a belt (not shown).
Done through.

【0026】旋回渦巻羽根部品7は、自転拘束部品23
によってその自転を阻止されながら旋回運動のみをす
る。自転拘束部品23には、その環状体の端面に互いに
平行な一対のキー23aが形成され、これとほぼ90゜
ずれた位置にある互いに平行な一対のキー23bが形成
されている。キー23aは、旋回渦巻羽根部品7の旋回
鏡板8の背面に形成された一対のキー溝8aに摺動自在
に嵌入され、もう一対のキー23bは、圧縮機ハウジン
グ1内部に嵌入固定され、このキー23bと対応して形
成された一対のキー溝(図示せず)が形成された回転拘
束部品24に摺動自在に嵌入されている。この回転拘束
部品24により自転拘束部品23は、主軸16の軸に直
角な一方向のみに運動が拘束されている。
The swirling spiral blade component 7 is a rotation restraint component 23.
It only makes a turning motion while its rotation is blocked by. The rotation restraint part 23 is formed with a pair of keys 23a parallel to each other on the end surface of its annular body, and a pair of keys 23b parallel to each other at a position shifted by approximately 90 °. The key 23a is slidably fitted into a pair of key grooves 8a formed on the back surface of the swirl end plate 8 of the swirl spiral blade component 7, and the other pair of keys 23b is fitted and fixed inside the compressor housing 1. A pair of key grooves (not shown) formed corresponding to the keys 23b are slidably fitted in the rotation restraint component 24. The rotation restraint component 24 restrains the movement of the rotation restraint component 23 only in one direction perpendicular to the axis of the main shaft 16.

【0027】旋回渦巻羽根部品7の旋回運動により圧縮
作業空間10はその容積を減じながら渦巻の中心方向へ
移動する。これに伴って、吸入口(図示せず)を通って
圧縮作業空間10に流入するガスは、圧縮され固定渦巻
羽根部品4に形成された吐出ポート25から吐出弁26
を押し開いて吐出キャビティー27へ吐出され、吐出口
(図示せず)を経て流出する。
The swirling motion of the swirling spiral vane component 7 causes the compression work space 10 to move toward the center of the spiral while reducing its volume. Along with this, the gas flowing into the compression work space 10 through the suction port (not shown) is compressed and discharged from the discharge port 25 formed in the fixed spiral vane component 4 to the discharge valve 26.
Is pushed open to be discharged to the discharge cavity 27, and flows out through a discharge port (not shown).

【0028】回転拘束部品24の端面上に平板状のスラ
スト軸受28を配設し、このスラスト軸受28を介し
て、圧縮作業空間10の圧縮気体の圧力によって発生す
るスラスト力を旋回渦巻羽根部品7の旋回鏡板8の背面
で支承させている。
A flat thrust bearing 28 is disposed on the end face of the rotation restraint component 24, and the thrust force generated by the pressure of the compressed gas in the compression working space 10 is applied to the swirl vane component 7 through the thrust bearing 28. It is supported on the back side of the swiveling end plate 8.

【0029】次に、旋回半径を可変とする駆動機構につ
いて説明する。図2の分解斜視図に示すように、旋回渦
巻羽根部品7のボス11の内部に、偏心穴20とこの穴
面積より大なる面積で主軸側に開口する筒状の凹部21
とを有する偏心ブッシュ19が、旋回軸受12を介して
回転可能に嵌合され、偏心ブッシュの偏心穴20には駆
動ピン15が圧入固定されている。この駆動ピン15
が、主軸16の内端部に形成された偏心ブッシュの凹部
21に小隙間ではめ合う円筒部17に、旋回半径だけ偏
心させて設けた偏心駆動穴18と回転可能に嵌入結合さ
れる。
Next, a drive mechanism that makes the turning radius variable will be described. As shown in the exploded perspective view of FIG. 2, an eccentric hole 20 and a cylindrical concave portion 21 that opens to the spindle side in an area larger than the hole area inside the boss 11 of the swirling spiral blade component 7.
An eccentric bush 19 having a rotator is fitted rotatably via a slewing bearing 12, and a drive pin 15 is press-fitted and fixed in an eccentric hole 20 of the eccentric bush. This drive pin 15
However, it is rotatably fitted in and coupled to an eccentric drive hole 18 which is eccentrically provided by a turning radius, in a cylindrical portion 17 which fits in a recess 21 of an eccentric bush formed in the inner end portion of the main shaft 16 with a small clearance.

【0030】偏心ブッシュ19の主軸側となる端部に一
体成形された取付板22に旋回部品の動的アンバランス
を軽減する方向に遠心力を発生させる旋回バランスウエ
イト29が取り付けられている。
A turning balance weight 29 for generating a centrifugal force in a direction to reduce the dynamic unbalance of the turning parts is attached to a mounting plate 22 integrally formed at the end of the eccentric bush 19 on the main shaft side.

【0031】図3に偏心ブッシュの動作説明図を示す
が、この図において、主軸16の軸心Os34と偏心ブ
ッシュ19の中心Oc35を結ぶ線を第2の座標軸37
と定義し、この第2の座標軸37に直角で軸心Oc35
を通る線を第1の座標軸36と定義し、第1の座標軸3
6と第2の座標軸37の交点をそれぞれの座標軸の原点
と定義し、第2の座標軸37を第1の座標軸36に対し
て主軸16の軸心Os34とは反対側を正、軸心Os側
を負の領域とし、第1の座標軸36を第2の座標軸37
に対して主軸16の回転方向の順に、第2の座標軸37
の領域が負から正になる領域を正の領域、反対側を負の
領域とし、第1の座標軸36が正で第2の座標軸37が
正の象限を第1象限38、第1の座標軸36が負で第2
座標軸37が正の象限を第2象限39、第1の座標軸3
6が負で第2の座標軸37が負の象限を第3象限40、
第1の座標軸36が正で第2の座標軸37が負の象限を
第4象限41と定義する。この状態ではOsとOc間距
離は前述した旋回半径となる。この座標系において、偏
心駆動穴18と、偏心ブッシュ19に形成される偏心穴
20の中心、すなわち、駆動ピン15の中心Od42を
第2象限内に位置させている。
FIG. 3 is a diagram for explaining the operation of the eccentric bush. In this figure, the line connecting the axis Os34 of the main shaft 16 and the center Oc35 of the eccentric bush 19 is the second coordinate axis 37.
And the axis Oc35 is perpendicular to the second coordinate axis 37.
The line passing through is defined as the first coordinate axis 36, and the first coordinate axis 3
The intersection of 6 and the second coordinate axis 37 is defined as the origin of each coordinate axis, the second coordinate axis 37 is positive on the side opposite to the axis Os34 of the main axis 16 with respect to the first coordinate axis 36, and on the axis Os side. Is the negative region, and the first coordinate axis 36 is the second coordinate axis 37.
With respect to the rotation direction of the main shaft 16, the second coordinate axis 37
The region in which the region from negative to positive is the positive region and the opposite side is the negative region, and the quadrant in which the first coordinate axis 36 is positive and the second coordinate axis 37 is positive is the first quadrant 38 and the first coordinate axis 36. Is negative and second
The quadrant where the coordinate axis 37 is positive is the second quadrant 39, the first coordinate axis 3
The quadrant in which 6 is negative and the second coordinate axis 37 is negative is in the third quadrant 40,
A quadrant in which the first coordinate axis 36 is positive and the second coordinate axis 37 is negative is defined as a fourth quadrant 41. In this state, the distance between Os and Oc becomes the turning radius described above. In this coordinate system, the centers of the eccentric drive hole 18 and the eccentric hole 20 formed in the eccentric bush 19, that is, the center Od42 of the drive pin 15 are located in the second quadrant.

【0032】このような構成により、偏心ブッシュ19
は、駆動ピン15の中心Od42を回転中心にスイング
が可能となり、偏心ブッシュ19の中心Oc35は駆動
ピン中心Od42を中心としてOdとOc間距離を半径
とする円弧上を動くことになる。また、この時の偏心ブ
ッシュ19のスイング運動に伴う回転規制は、偏心ブッ
シュの凹部21と、これに小隙間ではめ合う主軸16の
円筒部17との間で行え、この小隙間が、回転角度範囲
を決定する。運転中は、流体圧縮ガス力(接線方向ガス
力Ft、半径方向ガス力Fr)と旋回部品の遠心力(旋
回渦巻羽根部品7と偏心ブッシュ19の遠心力Fs、バ
ランスウエイト29の遠心力Fc)が、偏心ブッシュ中
心Oc35に図3に示す方向に作用するものと考えられ
る。
With such a configuration, the eccentric bush 19
Makes it possible to swing about the center Od42 of the drive pin 15 as a rotation center, and the center Oc35 of the eccentric bush 19 moves on an arc having the distance between Od and Oc as a radius with the drive pin center Od42 as the center. At this time, the rotation of the eccentric bush 19 due to the swing motion can be restricted between the concave portion 21 of the eccentric bush and the cylindrical portion 17 of the main shaft 16 which fits in this with a small gap. Determine the range. During operation, the fluid compression gas force (tangential gas force Ft, radial gas force Fr) and centrifugal force of the swirling component (centrifugal force Fs of swirling spiral vane component 7 and eccentric bush 19, centrifugal force Fc of balance weight 29). Is considered to act on the eccentric bush center Oc35 in the direction shown in FIG.

【0033】これらの作用力が駆動ピンの中心Od42
の周りに偏心ブッシュ19を回転させるモーメントに変
換されて、前述のように偏心ブッシュ19は、駆動ピン
の中心Od42を回転中心としてスイングし、主軸16
の軸心Os34から偏心ブッシュ中心Oc35までの距
離に変化を与える。これは、旋回半径が可変することを
意味し、図3より、運転中の回転モーメントは、偏心ブ
ッシュ19を旋回半径が大きくなる方向にスイングさせ
ることが理解できよう。このことによって、旋回渦巻羽
根9が固定渦巻羽根6の側壁に当接して圧縮作業空間1
0の径方向のシール性を良好にする。このときの羽根間
の接触荷重は、小さすぎると羽根間の接触が悪くなって
隙間ができ、ガス漏れの原因となる。逆に、大きすぎる
と摩耗の原因となる。第1の座標軸36とOcとOdを
結ぶ線とのなす角度を図3に示すようにαとしたとき、
接触荷重Fwは、前述のガス力(Ft,Fr)および遠
心力(Fc,Fs)との釣合から決定され、次式で与え
られる。
These acting forces act as the center Od42 of the drive pin.
Is converted into a moment that rotates the eccentric bush 19 around the eccentric bush 19, and the eccentric bush 19 swings around the center Od42 of the drive pin as the center of rotation as described above,
The distance from the axial center Os34 of the eccentric bushing to the eccentric bush center Oc35 is changed. This means that the turning radius is variable, and it can be understood from FIG. 3 that the rotational moment during operation causes the eccentric bush 19 to swing in the direction in which the turning radius increases. As a result, the swirling spiral blade 9 comes into contact with the side wall of the fixed spiral blade 6, and the compression work space 1
A good sealing property in the radial direction of 0 is obtained. If the contact load between the blades at this time is too small, the contact between the blades deteriorates and a gap is created, which causes gas leakage. On the contrary, if it is too large, it causes wear. When the angle formed by the first coordinate axis 36 and the line connecting Oc and Od is α as shown in FIG. 3,
The contact load Fw is determined from the balance between the gas force (Ft, Fr) and the centrifugal force (Fc, Fs) described above, and is given by the following equation.

【0034】 Fw=Ft×tanα+Ft−Fr−Fc・・・(1) そのため、角度αの選定と接触荷重が高速運転時に過大
とならないように旋回バランスウエイト29のウエイト
量を調整する。これにより、羽根間での摩耗を少なくし
ながら適当なシール力を得て、旋回渦巻羽根部品7の滑
らかな旋回運動を実現している。
Fw = Ft × tan α + Ft−Fr−Fc (1) Therefore, the weight amount of the turning balance weight 29 is adjusted so that the angle α is selected and the contact load does not become excessive during high speed operation. As a result, an appropriate sealing force is obtained while reducing the wear between the blades, and a smooth swirling motion of the swirling spiral blade component 7 is realized.

【0035】圧縮作業空間10からの圧縮気体の漏れ量
を支配する軸方向の隙間については、フロントケーシン
グ2とリヤケーシング3の間に挿入するシム(図示せ
ず)の厚さ調節により管理し、また固定渦巻羽根部品4
と旋回渦巻羽根部品7との相対角度の調整は、フロント
ケーシング2に設けられた孔(図示せず)から挿入する
角度合わせ棒(図示せず)により行う。
The axial gap that governs the amount of compressed gas leaking from the compression work space 10 is managed by adjusting the thickness of a shim (not shown) inserted between the front casing 2 and the rear casing 3, In addition, fixed spiral blade parts 4
The adjustment of the relative angle between the swirling spiral blade component 7 and the swirling spiral blade component 7 is performed by an angle adjusting rod (not shown) inserted from a hole (not shown) provided in the front casing 2.

【0036】また、圧縮機の動アンバランスによる振動
の抑制については、主軸16上に設けた、旋回バランス
ウエイト29と同じ向きに遠心力を発生するバランスウ
エイト32と、電磁クラッチ31に設けた反対向きに遠
心力を発生させるカウンターウエイト31とにより圧縮
機全体の発生モーメントを釣り合わせている。
Further, in order to suppress the vibration due to the dynamic unbalance of the compressor, a balance weight 32, which is provided on the main shaft 16 and generates a centrifugal force in the same direction as the turning balance weight 29, and an electromagnetic clutch 31, which are opposite to each other. The counter weights 31 that generate centrifugal force in the direction balance the generated moments of the compressor.

【0037】信頼性の面においては、ゴミかみ発生時に
は旋回半径が可変する機構を備えているため、旋回半径
を減少させながら旋回渦巻羽根9がゴミを乗り越え損傷
を回避する。また、駆動ピン中心Od42、すなわち、
偏心ブッシュ19のスイングの回転中心が第2象限39
内に選ばれるので、始動時など、加速度の急激に増加す
る時には、旋回部品の慣性力が作用して偏心ブッシュ1
9を両羽根が離れる方向にスイングさせ、圧縮作業空間
10の圧力を開放し、始動時の異常音や異常ショック、
液圧縮などを緩和する効果を有する。これは、本発明の
大きな特徴の一つであるが、前述のような始動時の信頼
性を考慮しなければ、駆動ピン中心Od42の位置を第
4象限41内に選んでも、運転中は、両渦巻羽根の線接
触部で接触荷重が自動的に得られることは、本発明から
も容易に推定できよう。
In terms of reliability, since the turning radius is variable when dust is generated, the swirling spiral blade 9 avoids damage by overcoming dust while reducing the turning radius. Further, the drive pin center Od42, that is,
The center of rotation of the swing of the eccentric bush 19 is the second quadrant 39.
The eccentric bush 1 is operated by the inertial force of the swiveling component when the acceleration is rapidly increased, such as at the time of starting.
Swing 9 away from each other to release the pressure in the compression work space 10 and cause abnormal noise or shock at the start.
It has the effect of alleviating liquid compression. This is one of the major features of the present invention, but if the reliability at the time of starting as described above is not taken into consideration, even if the position of the drive pin center Od42 is selected in the fourth quadrant 41, during operation, It can be easily estimated from the present invention that the contact load is automatically obtained at the line contact portions of both spiral blades.

【0038】また、別体の駆動ピン15を偏心ブッシュ
19に圧入固定する構成としたので、従来の圧縮機に比
べ、加工性が向上するとともに、偏心ブッシュ19のス
イングに伴う回転規制が、偏心ブッシュの凹部21と、
この凹部21に小隙間ではめ合う主軸の円筒部17との
間で行われるので、従来のような回転角度範囲制限手段
を別構成で設ける必要がなく、構造が簡単となる。これ
らにより、製造コストが低減し、廉価なスクロール圧縮
機の提供が可能となる。
Further, since the separate drive pin 15 is press-fitted and fixed to the eccentric bush 19, the workability is improved as compared with the conventional compressor, and the rotation regulation due to the swing of the eccentric bush 19 is eccentric. The recess 21 of the bush,
Since this is performed between the concave portion 21 and the cylindrical portion 17 of the main shaft that fits in a small gap, it is not necessary to provide a rotation angle range limiting means in a separate configuration as in the conventional case, and the structure is simplified. As a result, the manufacturing cost is reduced, and it is possible to provide an inexpensive scroll compressor.

【0039】また、偏心ブッシュ19に、偏心穴20の
穴面積より大なる面積で主軸側に開口する筒状の凹部2
1を設けたので、偏心ブッシュ19の軸方向の重心が旋
回鏡板8に近づくことになる。このため、偏心ブッシュ
19の主軸側の端面に旋回バランスウエイト29が取り
付けられた状態でも、軸方向の重心を旋回軸受12の支
承面の中央部付近に位置させることが容易に実現でき
る。これにより、旋回運動時の偏心ブッシュ系の傾転を
抑制し、旋回軸受12の信頼性を高めることができる。
Further, in the eccentric bush 19, a cylindrical concave portion 2 having an area larger than the hole area of the eccentric hole 20 and opening on the spindle side.
Since No. 1 is provided, the center of gravity of the eccentric bush 19 in the axial direction approaches the turning end plate 8. Therefore, even when the orbiting balance weight 29 is attached to the end surface of the eccentric bush 19 on the main shaft side, the center of gravity in the axial direction can be easily located near the center of the bearing surface of the orbiting bearing 12. As a result, tilting of the eccentric bush system during swivel motion can be suppressed, and the reliability of the swivel bearing 12 can be improved.

【0040】次に、本発明の第2の技術的手段を用いた
一実施例を図4を参照しながら説明する。
Next, an embodiment using the second technical means of the present invention will be described with reference to FIG.

【0041】本発明は、前述の実施例と同様の偏心ブッ
シュを用いた旋回半径可変駆動機構に、旋回バランスウ
エイト29の主軸側となる外周端面部をL字状の段付き
43に形成して、旋回バランスウエイト29の軸方向の
重心が旋回鏡板8に近づくようにしている。これによ
り、旋回バランスウエイト29を含む偏心ブッシュ系の
軸方向の重心を旋回軸受12の支承面の中央部付近に位
置させることがより容易となり、さらに、旋回運転時の
偏心ブッシュ系の傾転を抑制し、旋回軸受12の信頼性
をより高めている。
According to the present invention, a turning radius variable drive mechanism using an eccentric bush similar to that of the above-mentioned embodiment is provided with an L-shaped step 43 on the outer peripheral end surface of the turning balance weight 29 on the main shaft side. The center of gravity of the turning balance weight 29 in the axial direction approaches the turning end plate 8. This makes it easier to position the axial center of gravity of the eccentric bush system including the swing balance weight 29 near the center of the bearing surface of the swivel bearing 12, and further to prevent the eccentric bush system from tilting during swiveling operation. It suppresses and further improves the reliability of the slewing bearing 12.

【0042】次に、本発明の第3の技術的手段を用いた
一実施例を図5を参照しながら説明する。
Next, an embodiment using the third technical means of the present invention will be described with reference to FIG.

【0043】本発明は、前述の実施例と同様の偏心ブッ
シュを用いた旋回半径可変駆動機構に、偏心ブッシュ1
9の主軸側となる端部に一体成形された旋回バランスウ
エイト29の取付板22に抜き穴44を設けて、旋回軸
受12の支承面外に位置する取付板22を軽量化してい
る。これにより、偏心ブッシュ系の軸方向の重心が、よ
り旋回軸受12の支承面の中央部付近に位置し易くなる
ので、さらに、旋回運動時の偏心ブッシュ系の傾転が抑
制され、旋回軸受12の信頼性がより高められる。
The present invention relates to a turning radius variable drive mechanism using an eccentric bush similar to that of the above-described embodiment, and includes an eccentric bush 1.
A hole 44 is provided in the mounting plate 22 of the orbiting balance weight 29 integrally formed at the end of the rotating shaft 9 on the main shaft side to reduce the weight of the mounting plate 22 located outside the bearing surface of the orbiting bearing 12. As a result, the center of gravity of the eccentric bush system in the axial direction is more likely to be located near the center of the bearing surface of the slewing bearing 12, so tilting of the eccentric bush system during swivel motion is further suppressed, and the slewing bearing 12 The reliability of is improved.

【0044】次に、本発明の第4の技術的手段を用いた
一実施例を、図6に示す圧縮機の断面図を参照しながら
説明する。
Next, an embodiment using the fourth technical means of the present invention will be described with reference to the sectional view of the compressor shown in FIG.

【0045】本発明は、前述の実施例と同様の偏心ブッ
シュを用いた旋回半径可変駆動機構に、駆動ピン15の
内部に貫通穴45を設け、旋回軸受12への潤滑油の還
流経路を構成している。これにより、旋回軸受12を潤
滑した後の油または油ミストが、旋回渦巻羽根部品7の
ボス11の内部に抑留されることなく、貫通穴45から
圧縮機ハウジング1の内空間に還流するので、旋回軸受
12への潤滑油は十分確保され、旋回軸受12の信頼性
が高まる。
According to the present invention, a through-hole 45 is provided inside the drive pin 15 in the swing radius variable drive mechanism using an eccentric bush similar to that of the above-mentioned embodiment, and a lubricating oil return path to the swing bearing 12 is constructed. are doing. As a result, oil or oil mist after lubricating the orbiting bearing 12 is returned to the internal space of the compressor housing 1 from the through hole 45 without being retained inside the boss 11 of the orbiting spiral blade component 7. Sufficient lubricating oil is secured to the slewing bearing 12, and the reliability of the slewing bearing 12 is enhanced.

【0046】以上、本発明を開放型で圧縮機ハウジング
内が低圧となる車両用のスクロール圧縮機の実施例につ
いて説明したが、本発明は、このような実施例に限定さ
れるものではなく、電動機を内蔵する密閉型圧縮機や圧
縮機ハウジング内が高圧となる高圧タイプの圧縮機な
ど、本発明の範囲内で種々の設計が可能であることは言
うまでもない。
Although the present invention has been described with reference to the embodiment of the scroll compressor for a vehicle in which the pressure is low inside the compressor housing, the present invention is not limited to such an embodiment. It goes without saying that various designs are possible within the scope of the present invention, such as a hermetic compressor having a built-in electric motor and a high-pressure type compressor in which the pressure inside the compressor housing is high.

【0047】[0047]

【発明の効果】以上の説明から明らかなように、本発明
は、流体圧縮ガス力や遠心力の作用力により偏心ブッシ
ュが、第2象限内に位置させた駆動ピンの中心を回転中
心としてスイングし、旋回半径を可変にするので、旋回
渦巻羽根が固定渦巻羽根に追随接触し、圧縮作業空間の
径方向のシール性を良好にする。また、始動時など、加
速度の急激に増加する時には、旋回部品の慣性力が作用
して偏心ブッシュを両羽根が離れる方向にスイングさ
せ、圧縮作業空間の圧力を開放し、始動時の異常音や異
常ショック、液圧縮などを緩和する効果を有する。
As is apparent from the above description, according to the present invention, the eccentric bushing swings around the center of the drive pin located in the second quadrant as the center of rotation by the action force of the fluid compression gas force and the centrifugal force. However, since the swirling radius is made variable, the swirling spiral blade comes into contact with the fixed spiral blade following to improve the radial sealing property of the compression work space. In addition, when the acceleration rapidly increases, such as at the time of starting, the inertial force of the swiveling component acts to swing the eccentric bush in the direction in which both blades separate, releasing the pressure in the compression work space, and causing abnormal noise at the time of starting. It has the effect of relieving abnormal shock and fluid compression.

【0048】また、別体の駆動ピンを偏心ブッシュに圧
入固定する構成としているので、従来の圧縮機に比べ、
加工性が向上するとともに、偏心ブッシュのスイングに
伴う回転規制を、偏心ブッシュの凹部と、この凹部に小
隙間ではめ合う主軸の円筒部との間で行う簡易構造とし
ているので、製造コストを低減する効果を有する。
Further, since the separate drive pin is press-fitted and fixed to the eccentric bush, compared with the conventional compressor,
The workability is improved, and the rotation cost due to the swing of the eccentric bush is controlled between the concave part of the eccentric bush and the cylindrical part of the main shaft that fits in this concave part with a small gap, so the manufacturing cost is reduced. Have the effect of

【0049】さらに、偏心ブッシュに、偏心穴の穴面積
より大なる面積で主軸側に開口する筒状の凹部を設けた
ので、偏心ブッシュの軸方向の重心が旋回鏡板に近づ
き、端面に旋回バランスウエイトが取り付けられた状態
でも、軸方向の重心を旋回軸受の支承面の中央部付近に
位置させることが容易となり、旋回運動時の偏心ブッシ
ュ系の傾転が抑制され、旋回軸受の信頼性が高められ
る。
Further, since the eccentric bush is provided with a cylindrical recess having an area larger than the hole area of the eccentric hole and opening on the spindle side, the center of gravity of the eccentric bush in the axial direction approaches the swivel end plate, and the swivel balance is provided on the end face. Even with the weight attached, it is easy to position the center of gravity in the axial direction near the center of the bearing surface of the slewing bearing, and the tilting of the eccentric bush system during swivel movement is suppressed, and the reliability of the slewing bearing is improved. To be enhanced.

【0050】また、本発明は、旋回バランスウエイトの
軸方向の重心が旋回鏡板に近づくように、旋回バランス
ウエイトの主軸側となる外周端面部をL字状の段付きに
形成して、この旋回バランスウエイトを含む偏心ブッシ
ュ系の軸方向の重心を旋回軸受の支承面の中央部付近に
位置させることをより容易にしているので、さらに、旋
回運転時の偏心ブッシュ系の傾転を抑制し、旋回軸受の
信頼性をより高めることができる。
Further, according to the present invention, the outer peripheral end surface on the main shaft side of the turning balance weight is formed in an L-shaped step so that the center of gravity of the turning balance weight in the axial direction approaches the turning end plate, and this turning is performed. Since it is easier to position the center of gravity of the eccentric bush system including the balance weight in the vicinity of the center of the bearing surface of the slewing bearing, it is possible to further suppress the tilting of the eccentric bush system during the swivel operation, The reliability of the slewing bearing can be further improved.

【0051】また、本発明は、偏心ブッシュの主軸側と
なる端部に一体成形された旋回バランスウエイトの取付
板に抜き穴を設けて、旋回軸受の支承面外に位置する取
付板を軽量化し、偏心ブッシュ系の軸方向の重心が、よ
り旋回軸受の支承面の中央部付近に位置し易くしたの
で、さらに、旋回運動時の偏心ブッシュ系の傾転を抑制
し、旋回軸受の信頼性をより高めることができる。
Further, according to the present invention, the mounting plate of the orbiting balance weight integrally formed at the end of the eccentric bush on the main shaft side is provided with a through hole to reduce the weight of the mounting plate located outside the bearing surface of the orbiting bearing. Since the center of gravity of the eccentric bush system in the axial direction is located more easily near the center of the bearing surface of the slewing bearing, tilting of the eccentric bush system during swivel movement is further suppressed, and the reliability of the slewing bearing is improved. It can be increased.

【0052】また、本発明は、駆動ピンの内部に設けた
貫通穴により、旋回軸受への潤滑油が、旋回渦巻羽根部
品のボス内部に抑留されることなく、貫通穴から圧縮機
ハウジング内の空間に還流するようにしたので、旋回軸
受への潤滑油は十分確保され、旋回軸受の信頼性が高め
られる。
Further, according to the present invention, the through hole provided inside the drive pin prevents the lubricating oil for the slewing bearing from being retained inside the boss of the swirl spiral vane component and through the through hole inside the compressor housing. Since the oil is returned to the space, sufficient lubricating oil is secured for the slewing bearing, and the reliability of the slewing bearing is enhanced.

【図面の簡単な説明】[Brief description of drawings]

【図1】第1の手段を用いた本発明の一実施例を示すス
クロール圧縮機の断面図
FIG. 1 is a sectional view of a scroll compressor showing an embodiment of the present invention using the first means.

【図2】偏心ブッシュを使用した駆動機構の分解斜視図FIG. 2 is an exploded perspective view of a drive mechanism using an eccentric bush.

【図3】偏心ブッシュの動作説明図FIG. 3 is an operation explanatory diagram of the eccentric bush.

【図4】(a)第2の手段を用いた本発明の一実施例の
旋回バランスウエイトを偏心ブッシュに取り付けた状態
を示す平面図 (b)同断面図
FIG. 4 (a) is a plan view showing a state in which the turning balance weight according to the embodiment of the present invention using the second means is attached to an eccentric bush.

【図5】第3の手段を用いた本発明の一実施例の偏心ブ
ッシュの取付板に旋回バランスウエイトを取り付けた状
態を示す平面図 (b)同断面図
FIG. 5 is a plan view showing a state in which a turning balance weight is attached to the attachment plate of the eccentric bush of the embodiment of the present invention using the third means (b) The same sectional view

【図6】第4の手段を用いた本発明の一実施例を示すス
クロール圧縮機の断面図
FIG. 6 is a sectional view of a scroll compressor showing an embodiment of the present invention using a fourth means.

【図7】従来例を示すスクロール圧縮機の断面図FIG. 7 is a sectional view of a scroll compressor showing a conventional example.

【符号の説明】[Explanation of symbols]

1 圧縮機ハウジング 4 固定渦巻羽根部品 5 固定鏡板 6 固定渦巻羽根 7 旋回渦巻羽根部品 8 旋回鏡板 9 旋回渦巻羽根 10 圧縮作業空間 11 ボス 12 旋回軸受 15 駆動ピン 16 主軸 17 主軸の円筒部 18 偏心駆動穴 19 偏心ブッシュ 22 平板 23 自転拘束部品 29 旋回バランスウエイト 34 主軸の軸心Os 35 偏心ブッシュの中心Oc 36 第1の座標軸 37 第2の座標軸 38 第1象限 39 第2象限 40 第3象限 41 第4象限 42 駆動ピン中心Od 43 旋回バランスウエイトのL字形状段付き 44 抜き穴 45 貫通穴 DESCRIPTION OF SYMBOLS 1 Compressor housing 4 Fixed swirl vane component 5 Fixed end plate 6 Fixed swirl vane 7 Swirling swirl vane component 8 Swirling end plate 9 Swirling swirl vane 10 Compression working space 11 Boss 12 Slewing bearing 15 Drive pin 16 Main shaft 17 Cylindrical part of main shaft 18 Eccentric drive Hole 19 Eccentric bush 22 Flat plate 23 Rotation restraint part 29 Revolving balance weight 34 Main shaft axis Os 35 Center of eccentric bush Oc 36 First coordinate axis 37 Second coordinate axis 38 First quadrant 39 Second quadrant 40 Third quadrant 41 First 4 quadrants 42 Drive pin center Od 43 L-shaped step of turning balance weight 44 Drill hole 45 Through hole

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】圧縮機ハウジング内に、複数個の圧縮作業
空間を成すように、固定鏡板の上に固定渦巻羽根を延出
させた固定渦巻羽根部品と、旋回鏡板の上に旋回渦巻羽
根を延出するとともに、この旋回渦巻羽根の延出面の反
対面にボスを形成した旋回渦巻羽根部品を配設し、前記
旋回渦巻羽根部品に旋回運動を与える駆動機構を、前記
旋回渦巻羽根部品のボス内部に設けられる旋回軸受と、
前記ボス内に前記旋回軸受を介して回転可能に支持さ
れ、偏心穴とこの穴面積より大なる面積で主軸側に開口
する筒状の凹部とを有する偏心ブッシュと、前記偏心ブ
ッシュの主軸側となる端部に一体成形された取付板に取
り付けられる旋回部品の動的アンバランスを軽減する旋
回バランスウエイトと、前記偏心ブッシュの偏心穴に圧
入固定される駆動ピンと、内端部に前記偏心ブッシュの
凹部に小隙間ではめ合う円筒部を形成し、前記圧縮機ハ
ウジングに回転可能に支持される主軸と、前記主軸の円
筒部の端面に偏心させて設ける前記駆動ピンを回転可能
に嵌合接合する偏心駆動穴と、前記旋回渦巻羽根部品の
自転を拘束して旋回のみをさせる自転拘束部品とで構成
し、前記主軸の軸心と前記偏心ブッシュの中心を結ぶ線
を第2の座標軸と定義し、この第2の座標軸に直角で前
記偏心ブッシュの中心を通る線を第1の座標軸と定義
し、前記第1の座標軸と前記第2の座標軸の交点をそれ
ぞれの座標軸の原点と定義し、前記第2の座標軸を前記
第1の座標軸に対して前記主軸の軸心とは反対側を正、
軸心側を負の領域とし、前記第1の座標軸を前記第2の
座標軸に対して前記主軸の回転方向の順に、前記第2の
座標軸の領域が負から正になる領域を正の領域、反対側
を負の領域とし、前記第1の座標軸が正で第2の座標軸
が正の象限を第1象限、前記第1の座標軸が負で第2の
座標軸が正の象限を第2象限、前記第1の座標軸が負で
第2の座標軸が負の象限を第3象限、前記第1の座標軸
が正で第2の座標軸が負の象限を第4象限と定義し、前
記偏心駆動穴と前記偏心ブッシュの偏心穴の中心、すな
わち、駆動ピン中心を前記第2象限内に位置させてなる
スクロール圧縮機。
1. A fixed spiral vane component in which a fixed spiral vane is extended on a fixed mirror plate so as to form a plurality of compression working spaces in a compressor housing, and a swirl spiral vane is mounted on the swirl mirror plate. A swirling spiral blade part having a boss formed on the surface opposite to the extending surface of the swirling spiral blade is provided, and a drive mechanism for imparting a swirling motion to the swirling spiral blade part is provided with a boss of the swirling spiral blade part. A slewing bearing provided inside,
An eccentric bush that is rotatably supported in the boss through the swivel bearing, and has an eccentric hole and a cylindrical recess that opens toward the spindle with an area larger than the hole area; and a spindle side of the eccentric bush. The turning balance weight that reduces the dynamic unbalance of the turning parts attached to the mounting plate integrally formed at the end, the drive pin that is press-fitted and fixed in the eccentric hole of the eccentric bush, and the inner end of the eccentric bush. A cylindrical portion that fits in a small gap is formed in the concave portion, and a main shaft rotatably supported by the compressor housing and the drive pin eccentrically provided on the end surface of the cylindrical portion of the main shaft are rotatably fitted and joined. An eccentric drive hole and a rotation restraint component that restrains rotation of the swirling spiral blade component to rotate only, and a line connecting the axis of the main shaft and the center of the eccentric bush is defined as a second coordinate axis. Then, a line that passes through the center of the eccentric bush at a right angle to the second coordinate axis is defined as a first coordinate axis, and an intersection of the first coordinate axis and the second coordinate axis is defined as an origin of each coordinate axis, The second coordinate axis is positive with respect to the first coordinate axis on the side opposite to the axis of the main axis,
A region on the axial center side is a negative region, the first coordinate axis is a positive region in which the region of the second coordinate axis changes from negative to positive, in the order of the rotation direction of the main axis with respect to the second coordinate axis. The opposite side is a negative region, the first quadrant is a quadrant in which the first coordinate axis is positive and the second coordinate axis is positive, and the second quadrant is a quadrant in which the first coordinate axis is negative and the second coordinate axis is positive. The quadrant in which the first coordinate axis is negative and the second coordinate axis is negative is defined as a third quadrant, and the quadrant in which the first coordinate axis is positive and the second coordinate axis is negative is defined as a fourth quadrant. A scroll compressor in which the center of the eccentric hole of the eccentric bush, that is, the center of the drive pin is located in the second quadrant.
【請求項2】旋回バランスウエイトの主軸側となる外周
端面部をL字状の段付きに形成した請求項1記載のスク
ロール圧縮機。
2. The scroll compressor according to claim 1, wherein an outer peripheral end surface portion of the orbiting balance weight on the main shaft side is formed with an L-shaped step.
【請求項3】偏心ブッシュの主軸側となる端部に一体成
形された旋回バランスウエイトの取付板に抜き穴を設け
てなる請求項1記載のスクロール圧縮機。
3. The scroll compressor according to claim 1, wherein a hole is provided in a mounting plate of an orbiting balance weight integrally formed at an end of the eccentric bush on the main shaft side.
【請求項4】駆動ピンの内部に貫通穴を設けてなる請求
項1記載のスクロール圧縮機。
4. The scroll compressor according to claim 1, wherein a through hole is provided inside the drive pin.
JP29674694A 1994-11-30 1994-11-30 Scroll compressor Pending JPH08159052A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29674694A JPH08159052A (en) 1994-11-30 1994-11-30 Scroll compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29674694A JPH08159052A (en) 1994-11-30 1994-11-30 Scroll compressor

Publications (1)

Publication Number Publication Date
JPH08159052A true JPH08159052A (en) 1996-06-18

Family

ID=17837581

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29674694A Pending JPH08159052A (en) 1994-11-30 1994-11-30 Scroll compressor

Country Status (1)

Country Link
JP (1) JPH08159052A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002221167A (en) * 2001-01-22 2002-08-09 Tokico Ltd Scroll type fluid machine
CN104033384A (en) * 2013-03-06 2014-09-10 株式会社丰田自动织机 Scroll compressor
CN110860600A (en) * 2019-11-28 2020-03-06 武汉科普易能科技有限公司 Eccentric balance mechanism

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002221167A (en) * 2001-01-22 2002-08-09 Tokico Ltd Scroll type fluid machine
JP4643028B2 (en) * 2001-01-22 2011-03-02 株式会社日立製作所 Scroll type fluid machine
CN104033384A (en) * 2013-03-06 2014-09-10 株式会社丰田自动织机 Scroll compressor
US9670927B2 (en) 2013-03-06 2017-06-06 Kabushiki Kaisha Toyota Jidoshokki Scroll compressor with a balancer and elastic member
CN110860600A (en) * 2019-11-28 2020-03-06 武汉科普易能科技有限公司 Eccentric balance mechanism

Similar Documents

Publication Publication Date Title
JP3781460B2 (en) Scroll compressor
JP3165153B2 (en) Scroll compressor drive with brake
JP3314562B2 (en) Scroll compressor
JPS62186084A (en) Scroll compressor
JPH0893665A (en) Scroll compressor
KR100329667B1 (en) Scroll Compressor
JP3314561B2 (en) Scroll compressor
JPH05256319A (en) Radial bearing
US5427510A (en) Scroll type compressor having eccentric inclined driving means
JP2002115673A (en) Variable displacement pump
CA2227682C (en) Scroll hydraulic machine
US5797735A (en) Fluid machine having balance correction
JPH08159052A (en) Scroll compressor
JP3262919B2 (en) Scroll compressor
JP3592810B2 (en) Scroll type fluid machine
JPS58106190A (en) Scroll type compressor
JP2972464B2 (en) Scroll type fluid machine
JP3248939B2 (en) Scroll compressor
JP2020112142A (en) Scroll type fluid machine
JP2001003883A (en) Scroll type fluid machine
JPH09158865A (en) Scroll compressor
JPS5896193A (en) Scroll type compressor
JPH07253089A (en) Scroll type compressor
JP3212399B2 (en) Scroll compressor
JPH07167068A (en) Scroll type compressor