JPH08157230A - Production of dispersion-shifted optical fiber preform - Google Patents

Production of dispersion-shifted optical fiber preform

Info

Publication number
JPH08157230A
JPH08157230A JP6299985A JP29998594A JPH08157230A JP H08157230 A JPH08157230 A JP H08157230A JP 6299985 A JP6299985 A JP 6299985A JP 29998594 A JP29998594 A JP 29998594A JP H08157230 A JPH08157230 A JP H08157230A
Authority
JP
Japan
Prior art keywords
soot
burner
refractive index
optical fiber
staircase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6299985A
Other languages
Japanese (ja)
Other versions
JP3137849B2 (en
Inventor
Manabu Kudo
学 工藤
Koichi Takahashi
浩一 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP06299985A priority Critical patent/JP3137849B2/en
Publication of JPH08157230A publication Critical patent/JPH08157230A/en
Application granted granted Critical
Publication of JP3137849B2 publication Critical patent/JP3137849B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/036Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
    • G02B6/03616Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference
    • G02B6/03622Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 2 layers only
    • G02B6/03633Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 2 layers only arranged - -
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01413Reactant delivery systems
    • C03B37/0142Reactant deposition burners
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/036Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
    • G02B6/03616Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference
    • G02B6/03638Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 3 layers only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/036Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
    • G02B6/03616Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference
    • G02B6/03688Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 5 or more layers
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • C03B2201/31Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with germanium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/50Multiple burner arrangements
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/70Control measures
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02214Optical fibres with cladding with or without a coating tailored to obtain the desired dispersion, e.g. dispersion shifted, dispersion flattened
    • G02B6/02219Characterised by the wavelength dispersion properties in the silica low loss window around 1550 nm, i.e. S, C, L and U bands from 1460-1675 nm
    • G02B6/02276Dispersion shifted fibres, i.e. zero dispersion at 1550 nm
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

PURPOSE: To obtain a preform with the refractive index distribution of a stepped core part flattened and without the soot being cracked by forming the soot for the stepped core part with use of plural burners and specifying the maximum surface temp. of the soot. CONSTITUTION: Gaseous H2 , gaseous O2 , glass raw gas and GeCl4 are supplied to a first burner 11, and a soot 21 for a high-refractive index center core part contg. GeO2 as a dopant to increase the refractive index is formed on a starting rod-shaped base material 12. A raw gas having a lower content of GeCl4 than that for the first burner 11 is then supplied to a second burner 13, a raw gas having a slightly lower content of GeCl4 than that for the second burner 13 is supplied to a third burner 14 to form a stepped core part consisting of the soots 22 and 23 having a lower refractive index than the soot 21 around the soot 21, and the maximum surface temp. of the soots 22 and 23 is controlled to 600-700 deg.C. A soot 24 for a clad part having a lower refractive index than for the stepped core part is formed around the stepped core part and then vitrified.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、長距離大容量光通信
に好適な1.55μm帯用分散シフト光ファイバ用の光
ファイバ母材を製造する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an optical fiber preform for a dispersion-shifted optical fiber for the 1.55 μm band, which is suitable for long-distance, large-capacity optical communication.

【0002】[0002]

【従来の技術】従来、この種の1.55μm帯用分散シ
フト光ファイバとしては、図7に示すような屈折率分布
を有するデュアルシェイプ構造のものが知られている。
このものは、中心部の高屈折率の中心コア1と、この中
心コア1の周囲に設けられ、中心コア1より低屈折率の
屈折率分布が階段状となった階段コア2と、この階段コ
ア2の周囲に設けられ、階段コア2よりも低屈折率のク
ラッド3とからなるものである。そして、中心コア1お
よび階段コア2はゲルマニア(GeO2)ドープ石英ガ
ラスからなり、クラッド3は石英ガラスからなり、中心
コア1の比屈折率差(Δ1)が0.75〜0.85%、
階段コア2の比屈折率差(Δ2)が0.10〜0.20
%となっており、階段コア2の半径(r2 )と中心コア
1の半径(r1 )との比(r2 /r1 )は2.5〜4と
なっている。
2. Description of the Related Art Conventionally, as a 1.55 μm band dispersion-shifted optical fiber of this type, a dual-shaped structure having a refractive index distribution as shown in FIG. 7 is known.
This is composed of a central core 1 having a high refractive index in the central portion, a staircase core 2 provided around the central core 1 and having a stepwise refractive index distribution having a lower refractive index than the central core 1, and the staircase. The clad 3 is provided around the core 2 and has a refractive index lower than that of the staircase core 2. The central core 1 and the staircase core 2 are made of germania (GeO 2 ) -doped quartz glass, the cladding 3 is made of quartz glass, and the relative refractive index difference (Δ1) of the central core 1 is 0.75 to 0.85%,
The relative refractive index difference (Δ2) of the staircase core 2 is 0.10 to 0.20.
% And which is in the ratio of the of the step core 2 radius (r 2) and of the central core 1 radius (r 1) (r 2 / r 1) has a 2.5 to 4.

【0003】このような分散シフト光ファイバを製造す
るには、中心コア1に対応する中心コア部、階段コア2
に対応する階段コア部、クラッド3に対応するクラッド
部を有し、同様の屈折率分布を持つ光ファイバ母材を製
造し、この光ファイバ母材を通常の溶融紡糸することで
行われる。
To manufacture such a dispersion-shifted optical fiber, a central core portion corresponding to the central core 1 and a step core 2 are formed.
The step is performed by manufacturing an optical fiber preform having the same refractive index distribution as that of the optical fiber preform having a staircase core part corresponding to the above and a clad part corresponding to the clad 3, and performing ordinary melt spinning of the optical fiber preform.

【0004】そして、この光ファイバ母材をVAD法に
よって製造するには、図8に示すように最下方に配置さ
れ、出発基材4に対して傾斜して配されたスート形成用
バーナ(以下、単にバーナと記す)Aで中心コア部とな
るスート5を出発基材4の先端に生成、堆積させながら
出発基材4の側方に配置されたバーナBで階段コア部と
なるスート6を生成、堆積させる。
In order to manufacture this optical fiber preform by the VAD method, a soot forming burner (hereinafter referred to as "soot forming burner") arranged at the lowermost position and inclined with respect to the starting base material 4 as shown in FIG. A soot 5 to be a central core portion is formed on the tip of the starting base material 4 by A, and a soot 6 to be a staircase core portion is formed by a burner B arranged on the side of the starting base material 4 while being deposited and deposited. Generate and deposit.

【0005】さらに、バーナBの上方に配置された2基
のバーナCおよびバーナDでクラッド部となるスート7
を生成堆積する。バーナAおよびバーナBには、ガラス
原料ガスのSiCl4 ,GeCl4 と燃料のH2 と酸化
剤のO2 がそれぞれ所定量供給され、バーナCおよびバ
ーナDには、それぞれSiCl4 ,H2 ,O2 が供給さ
れ、上述の屈折率分布が得られるようにされる。また、
このスートの形成時のスート表面の最高温度は、スート
の割れが生じにくい、700〜800℃の範囲に調節さ
れる。
Further, two burners C and D arranged above the burner B constitute a soot 7 which serves as a clad portion.
To deposit. Predetermined amounts of glass raw material gas SiCl 4 , GeCl 4 , fuel H 2 and oxidant O 2 are supplied to the burners A and B, respectively, and burner C and burner D are respectively supplied with SiCl 4 , H 2 , O 2 is supplied so that the above-mentioned refractive index profile is obtained. Also,
The maximum temperature of the soot surface at the time of forming the soot is adjusted to a range of 700 to 800 ° C. in which cracking of the soot hardly occurs.

【0006】かくしてスートプリフォームが得られたな
らば、常法にしたがって、これに脱水処理を施し、つい
で焼結して透明ガラス化して光ファイバ母材とする。
When the soot preform is obtained in this manner, it is dehydrated by a conventional method, and then sintered and vitrified into an optical fiber preform.

【0007】このような光ファイバ母材の製造にあって
は、その屈折率分布が複雑であり、かつ屈折率分布に制
約があるため、通常の1.3μm帯用シングルモード光
ファイバ用母材の製造に比べて製造歩留りが悪い欠点が
あった。すなわち、上述の屈折率分布の制約として階段
コア部となる部分が平坦でかつ水平であるか、あるいは
平坦でかつ外方に向かって屈折率が徐々に低下するよう
にせねばならないためである。
In the production of such an optical fiber preform, since the refractive index distribution is complicated and the refractive index distribution is restricted, the usual 1.3 μm band single mode optical fiber preform is used. The production yield was lower than that of the above-mentioned production. That is, as a constraint of the above-mentioned refractive index distribution, it is necessary to make the portion to be the staircase core part flat and horizontal, or to make it flat and the refractive index gradually decreases toward the outside.

【0008】また、従来の製法では、上述のようにバー
ナBを1本使用して階段コア部となるスートを合成して
いるため、階段コア部の半径(R2 )と中心コア部の外
径(R1 )との比(R2 /R1 )を3〜5と大きくした
場合には階段コア部の屈折率分布が平坦にならず、不整
となる欠点がある。また、製造時においてスートの割れ
が発生することもあった。
Further, in the conventional manufacturing method, as described above, one burner B is used to synthesize the soot which becomes the staircase core portion, so that the radius (R 2 ) of the staircase core portion and the outside of the central core portion are combined. When the ratio (R 2 / R 1 ) to the diameter (R 1 ) is increased to 3 to 5, the refractive index distribution in the staircase core portion is not flat and there is a defect that it becomes irregular. In addition, cracking of the soot may occur during manufacturing.

【0009】[0009]

【発明が解決しようとする課題】よって、この発明にお
ける課題は、上記比(R2 /R1 )を従前の2〜3の場
合は勿論のこと、3〜5程度にまで大きくした光ファイ
バ母材を製造する場合においても、階段コア部の屈折率
分布が平坦となり、かつスートの割れが生じないように
することである。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to increase the ratio (R 2 / R 1 ) to 3 to 5 as well as the case of the above-mentioned ratios (R 2 / R 1 ). Even in the case of manufacturing the material, the refractive index distribution of the staircase core portion should be flat and the soot should not be cracked.

【0010】[0010]

【課題を解決するための手段】かかる課題は、階段コア
部となるスートを複数本のバーナを用いて形成するとと
もにこのスートの表面の最高温度を600℃以上700
℃未満の範囲とすることで解決される。また、階段コア
部を形成する各バーナによるスートの厚みをいずれのバ
ーナについても50mm以下とすることが好ましい。
The object of the present invention is to form a soot, which becomes the staircase core, by using a plurality of burners, and to set the maximum temperature of the surface of the soot to 600 ° C. or more and 700 ° C. or more.
The problem can be solved by setting the temperature within the range of less than ° C. In addition, the thickness of the soot formed by the burners forming the staircase core portion is preferably 50 mm or less for all burners.

【0011】[0011]

【作用】スート表面の温度はゲルマニアのドープ量に大
きな影響を与えるため、スート表面における温度差が大
きくなるとゲルマニアのドープ量の変動が大きくなる。
スートの表面の最高温度を600℃以上700℃未満
と、通常のクラッドとなるスートの表面温度よりも約1
00℃低くするため、スート表面の温度のバラツキが小
さくなる。また、2本以上のバーナで階段コア部のスー
トを合成すると、1本当りのバーナで合成するスートの
厚さを薄くすることができ、それぞれのバーナで合成さ
れたスートの表面温度の差を小さくすることができる。
Since the temperature of the soot surface has a great influence on the doping amount of germania, the larger the temperature difference on the soot surface, the greater the variation of the doping amount of germania.
The maximum temperature of the soot surface is 600 ° C or more and less than 700 ° C, which is about 1 higher than the surface temperature of the soot that becomes the normal cladding.
Since the temperature is lowered by 00 ° C., the variation in the temperature of the soot surface becomes small. In addition, if the soot of the staircase core is synthesized with two or more burners, the thickness of the soot synthesized by each burner can be reduced, and the difference in the surface temperature of the soot synthesized by each burner can be reduced. Can be made smaller.

【0012】このため、比(R2 /R1 )を大きくして
も、スートの表面の温度のバラツキが小さくなるので、
ゲルマニアのドープ量の変動が微かとなって屈折率分布
が不整となることがない。
Therefore, even if the ratio (R 2 / R 1 ) is increased, the temperature variation on the surface of the soot is reduced,
The fluctuation of the doping amount of germania does not become so small that the refractive index distribution does not become irregular.

【0013】以下、この発明を詳しく説明する。この発
明の製法は、屈折率を高めるドーパントとしてゲルマニ
アを用い、VAD法によって光ファイバ母材を製造する
ものである。図1は、この発明の製法の一例を示すもの
で、図中符号11は、中心コア部となるスートを形成す
る第1バーナであり、この第1バーナ11は、出発棒状
基材12に対して傾斜して設けられている。第1バーナ
の上方には、階段コア部の内側部分となるスートを形成
する第2バーナ13が設けられ、この第2バーナ13の
上には階段コア部の外側部分となるスートを形成する第
3バーナ14が設けられている。
The present invention will be described in detail below. The manufacturing method of the present invention uses germania as a dopant for increasing the refractive index to manufacture an optical fiber preform by the VAD method. FIG. 1 shows an example of the manufacturing method of the present invention. In the figure, reference numeral 11 is a first burner that forms a soot that serves as a central core portion, and the first burner 11 is used for the starting rod-shaped base material 12. It is installed so as to be inclined. A second burner 13 is provided above the first burner to form a soot which will be an inner portion of the stair core portion, and a second soot which will be an outer portion of the stair core portion will be formed above the second burner 13. A three burner 14 is provided.

【0014】また、第3バーナ14の上方にはクラッド
部となるスートを合成する2本の第4バーナ15および
第5バーナ16がそれぞれ設けられている。第2バーナ
13ないし第5バーナ16は、いずれも出発棒状基材1
2の側方からほぼ水平に火炎が出発棒状基材12に当た
るように配されている。
Further, above the third burner 14, two fourth burners 15 and five burners 16 for synthesizing soot to be the cladding portion are provided, respectively. The second burner 13 to the fifth burner 16 are all starting rod-shaped base materials 1.
The flame is arranged so as to hit the starting rod-shaped substrate 12 substantially horizontally from the side of 2.

【0015】第1バーナ11には、燃料のH2 ガス、酸
化剤のO2 ガス、ガラス原料ガスのSiCl4 およびG
eCl4 が供給され屈折率の高い中心コア部となるスー
ト21が形成される。第2バーナ13および第3バーナ
14には、H2 ガス、O2 ガス、SiCl4およびGe
Cl4 が供給されるが、GeCl4 の添加比率は第1バ
ーナ11のそれに比べて小さくされる。また、第3バー
ナ14へのGeCl4 の添加比率は、第2バーナ13へ
の添加比率よりもやや少なめにされる。その理由は、こ
の比率が逆になると第2バーナ13で形成されるスート
22と第3バーナ14で形成されるスート23との境界
において屈折率の突出部が生じ、安定した屈折率分布が
得られないからである。そして、第2バーナ13により
屈折率が中心コア部となるスート21よりも低い階段コ
ア部の内側部分となるスート22が形成され、第3バー
ナ14により、階段コア部の外側部分となるスート23
が形成される。
In the first burner 11, H 2 gas as a fuel, O 2 gas as an oxidizer, SiCl 4 and G as a glass material gas are used.
eCl 4 is supplied to form the soot 21 which serves as the central core portion having a high refractive index. The second burner 13 and the third burner 14 have H 2 gas, O 2 gas, SiCl 4 and Ge.
Although Cl 4 is supplied, the addition ratio of GeCl 4 is made smaller than that of the first burner 11. Further, the addition ratio of GeCl 4 to the third burner 14 is made slightly lower than the addition ratio to the second burner 13. The reason is that if this ratio is reversed, a protrusion of the refractive index occurs at the boundary between the soot 22 formed by the second burner 13 and the soot 23 formed by the third burner 14, and a stable refractive index distribution is obtained. Because I can't. The second burner 13 forms a soot 22 which is an inner portion of the staircase core portion having a lower refractive index than the soot 21 which is the central core portion, and the third burner 14 forms a soot 23 which is an outer portion of the staircase core portion.
Is formed.

【0016】このように、第2、第3バーナ13,14
により、階段コア部となるスートが二分され、それぞれ
のバーナが階段コア部となるスートの約半分のスートを
堆積するようになる。また、この第2バーナ13および
第3バーナ14によって形成される各スート22,23
の表面の最高温度が600℃以上700℃未満、好まし
くは650℃以上700℃未満となるように制御され
る。この温度制御は、各バーナ13,14に供給される
燃料のH2 ガスの供給量を調整することにより容易に行
える。
In this way, the second and third burners 13, 14 are
As a result, the soot that forms the staircase core is divided into two parts, and each burner deposits about half the soot that forms the staircase core. In addition, the soot 22, 23 formed by the second burner 13 and the third burner 14
The maximum temperature of the surface is controlled to be 600 ° C or higher and lower than 700 ° C, preferably 650 ° C or higher and lower than 700 ° C. This temperature control can be easily performed by adjusting the supply amount of H 2 gas of the fuel supplied to each burner 13, 14.

【0017】第4バーナ15および第5バーナ16に
は、それぞれH2 ガス、O2 ガスおよびSiCl4 が供
給され、低屈折率のクラッド部となるスート24が形成
される。この際のスートの表面の最高温度は700〜8
00℃の範囲とされ、スートの割れが発生しない温度範
囲とされる。これらバーナ群によるスートプリフォーム
の合成が終了すれば、常法により脱水処理、透明ガラス
化を行い、目的とする光ファイバ母材が得られる。
H 2 gas, O 2 gas and SiCl 4 are supplied to the fourth burner 15 and the fifth burner 16, respectively, so that a soot 24 serving as a clad portion having a low refractive index is formed. The maximum temperature of the soot surface at this time is 700-8
The temperature range is set to 00 ° C., and the temperature range is set so as not to cause soot cracking. When the synthesis of the soot preform by these burner groups is completed, dehydration treatment and transparent vitrification are performed by a conventional method to obtain the intended optical fiber preform.

【0018】このような光ファイバ母材の製法によれ
ば、階段コア部となるスート22,23の表面最高温度
を600℃以上700℃未満と低くしているので、スー
ト表面の温度のバラツキが減少し、ゲルマニアドープ量
の変動が小さくなる。また、これらスート22,23を
第2バーナ13および第3バーナ14の2本のバーナで
合成しているので、生成されるスートの表面の温度のバ
ラツキが小さくなり、したがってドープされるゲルマニ
アの量の変動が微かなものとなり、階段コア部の屈折率
分布が平坦となる。かくして、上記比(R2 /R1 )を
3〜5と大きくし、製造許容範囲を拡げても、バーナ1
本当たりのスート形成部分は、さほど拡大しないため、
上記比(R2 /R1 )を大きくすることによるスートの
割れの発生を防止することができる。
According to such a manufacturing method of the optical fiber preform, the maximum surface temperature of the soots 22 and 23, which are the stair core portions, is as low as 600 ° C. or higher and less than 700 ° C., so that the temperature of the soot surface varies. And the fluctuation of the germania doping amount becomes small. In addition, since the soots 22 and 23 are synthesized by the two burners, the second burner 13 and the third burner 14, the temperature variation on the surface of the generated soot is small, and therefore the amount of germania to be doped is small. Fluctuation becomes small, and the refractive index distribution of the staircase core becomes flat. Thus, even if the above ratio (R 2 / R 1 ) is increased to 3 to 5 and the manufacturing allowable range is expanded, the burner 1
The soot forming part per book does not expand so much,
It is possible to prevent the cracking of the soot due to the increase of the ratio (R 2 / R 1 ).

【0019】また、本発明にあっては、大型の光ファイ
バ母材を作製する場合等には、階段コア部となるスート
の量が多くなり、スート径が大きくなるが、この場合に
は、階段コア部となるスートを合成するバーナの本数を
3本以上とすることができる。なお、本発明にあって
は、階段コア部となるスートの表面最高温度を600℃
以上700℃未満と低く設定してもスートの割れは発生
せず、この理由はスートにゲルマニアがドープされてい
ることの影響によるものと考えられる。
Further, according to the present invention, when a large-sized optical fiber preform is produced, the amount of the soot that becomes the staircase core portion increases and the soot diameter increases, but in this case, The number of burners that combine the soot that forms the staircase core can be three or more. In the present invention, the maximum surface temperature of the soot that forms the staircase core is 600 ° C.
Soot cracking does not occur even if the temperature is set as low as less than 700 ° C., and it is considered that the reason is that the soot is doped with germania.

【0020】以下、具体例を示す。 (実施例1)図1に示すように5本のバーナを用いてス
ートを形成し、得られたスートを脱水処理したのち透明
ガラス化し、外径62mmの光ファイバ母材を得た。各
バーナへのSiCl4 ,GeCl4 の供給量および各バ
ーナで形成されるスートの厚み(mm)は以下の通りと
した。ただし、供給量の単位はSCCMである。 バーナ 形成スート部位 SiCl4 GeCl4 スート厚み 第1バーナ 中心コア部 70 8 10(半径) 第2バーナ 階段コア部 140 4.5 40 第3バーナ 階段コア部 175 4.5 40 第4バーナ クラッド部 700 0 30 第5バーナ クラッド部 850 0 30 また、階段コア部となるスートの表面最高温度は第2、
第3バーナへのH2 ガス供給量を調節して670〜68
0℃とした。得られた光ファイバ母材の屈折率分布は、
図2に示すように階段コア部において屈折率分布の不整
はほとんど認められなかった。また、比(R2 /R1
は約4.0であった。
Specific examples will be shown below. (Example 1) As shown in FIG. 1, five burners were used to form soot, and the obtained soot was dehydrated and then made into transparent glass to obtain an optical fiber preform with an outer diameter of 62 mm. The supply amounts of SiCl 4 and GeCl 4 to each burner and the thickness (mm) of the soot formed by each burner were as follows. However, the unit of the supply amount is SCCM. Burner formation soot site SiCl 4 GeCl 4 soot thickness 1st burner central core part 70 8 10 (radius) 2nd burner staircase core part 140 4.5 40 3rd burner staircase core part 175 4.5 40 4th burner clad part 700 0 30 5th burner clad part 850 0 30 Further, the maximum surface temperature of the soot which becomes the staircase core part is the second,
Adjust the H 2 gas supply to the third burner to 670-68
It was set to 0 ° C. The refractive index distribution of the obtained optical fiber preform is
As shown in FIG. 2, there was almost no irregularity in the refractive index distribution in the staircase core. In addition, the ratio (R 2 / R 1 )
Was about 4.0.

【0021】(実施例2)実施例1において、第2バー
ナおよび第3バーナで形成される階段コア部となるスー
トの表面最高温度を610〜620℃とした以外は同様
にして光ファイバを作成した。得られた光ファイバ母材
の屈折率分布は、図2に示した実施例1のものと同様で
あり、比(R2 /R1 )は約4.0であった。
(Example 2) An optical fiber was prepared in the same manner as in Example 1, except that the maximum surface temperature of the soot, which is the staircase core formed by the second burner and the third burner, was 610 to 620 ° C. did. The refractive index distribution of the obtained optical fiber preform was the same as that of Example 1 shown in FIG. 2, and the ratio (R 2 / R 1 ) was about 4.0.

【0022】(実施例3)実施例1において、第2バー
ナおよび第3バーナによって形成される各スートの厚み
をそれぞれ50mmとした以外は同様にして光ファイバ
を作成した。得られた光ファイバ母材の屈折率分布は、
図2に示した実施例1のものと同様であり、比(R2
1 )は約5.0であった。
Example 3 An optical fiber was prepared in the same manner as in Example 1 except that the thickness of each soot formed by the second burner and the third burner was 50 mm. The refractive index distribution of the obtained optical fiber preform is
Similar to that of Example 1 shown in FIG. 2, the ratio (R 2 /
R 1 ) was about 5.0.

【0023】(従来例1)図8に示す従来製法の4本の
バーナを用いて、同様に径60mmの光ファイバ母材を
得た。各バーナへのSiCl4 ,GeCl4 の供給量お
よび各バーナで形成されるスートの厚み(mm)は以下
の通りである。 バーナ 形成スート部位 SiCl4 GeCl4 スート厚み バーナA 中心コア部 70 7 10(半径) バーナB 階段コア部 280 7 70 バーナC クラッド部 700 0 30 バーナD クラッド部 850 0 30 また、階段コア部となるスートの表面最高温度はバーナ
BへのH2 ガスの供給量を調整720〜730℃とし
た。得られた光ファイバ母材の屈折率分布は、図3に示
すように階段コア部において大きく変化して不整であっ
た。また、比(R2 /R1 )は約3.5であった。
(Conventional Example 1) An optical fiber preform having a diameter of 60 mm was similarly obtained by using four burners manufactured by the conventional method shown in FIG. The supply amounts of SiCl 4 and GeCl 4 to each burner and the thickness (mm) of the soot formed by each burner are as follows. Burner formation soot site SiCl 4 GeCl 4 soot thickness Burner A Central core part 70 7 10 (radius) Burner B Stair core part 280 770 Burner C Clad part 700 0 30 Burner D Clad part 850 0 30 Also becomes stair core part The maximum surface temperature of the soot was adjusted to 720 to 730 ° C. by adjusting the supply amount of H 2 gas to the burner B. As shown in FIG. 3, the refractive index distribution of the obtained optical fiber preform changed greatly in the staircase core portion and was irregular. The ratio (R 2 / R 1 ) was about 3.5.

【0024】(比較例1)図1に示すように5本のバー
ナを使用し、径62mmの光ファイバ母材を得た。各バ
ーナへのSiCl4 ,GeCl4 の供給量および各バー
ナで形成されるスートの厚み(mm)は以下の通りであ
る。 バーナ 形成スート部位 SiCl4 GeCl4 スート厚み 第1バーナ 中心コア部 70 8 10(半径) 第2バーナ 階段コア部 140 4.5 40 第3バーナ 階段コア部 175 4.5 40 第4バーナ クラッド部 700 0 30 第5バーナ クラッド部 850 0 30 第2、第3バーナによるスートの表面最高温度は720
〜730℃とした。得られた光ファイバ母材の屈折率分
布は、図4に示すように不整であり、比(R2 /R1
は約4.0であった。階段コア部となるスートを2本の
バーナで形成しても、そのスートの表面最高温度が70
0℃以上となると、温度のバラツキが大きくなり、ゲル
マニアのドープ量の変動が大きくなって屈折率分布が乱
れることになる。
Comparative Example 1 As shown in FIG. 1, five burners were used to obtain an optical fiber preform having a diameter of 62 mm. The supply amounts of SiCl 4 and GeCl 4 to each burner and the thickness (mm) of the soot formed by each burner are as follows. Burner formation soot site SiCl 4 GeCl 4 soot thickness 1st burner central core part 70 8 10 (radius) 2nd burner staircase core part 140 4.5 40 3rd burner staircase core part 175 4.5 40 4th burner clad part 700 0 30 5th burner clad part 850 0 30 Maximum surface temperature of soot by the 2nd and 3rd burners is 720
˜730 ° C. The refractive index distribution of the obtained optical fiber preform is irregular as shown in FIG. 4, and the ratio (R 2 / R 1 )
Was about 4.0. Even if the soot that forms the staircase core is formed with two burners, the maximum surface temperature of the soot is 70
If the temperature is higher than 0 ° C., the variation in temperature becomes large, the fluctuation of the doping amount of germania becomes large, and the refractive index distribution is disturbed.

【0025】(比較例2)比較例1と同様に5本のバー
ナを用いて、スートプリフォームを製造した。各バーナ
へのSiCl4 ,GeCl4 の供給量および各バーナで
形成されるスートの厚み(mm)は以下の通りとした。 バーナ 形成スート部位 SiCl4 GeCl4 スート厚み 第1バーナ 中心コア部 70 8 10(半径) 第2バーナ 階段コア部 140 4.5 40 第3バーナ 階段コア部 175 4.5 40 第4バーナ クラッド部 700 0 30 第5バーナ クラッド部 850 0 30 第2、第3バーナによるスートの表面最高温度は570
〜580℃に調整したところ、スートの堆積中にスート
プリフォームが割れてしまった。スートの表面温度が低
すぎて、第4バーナによるスートとのスートの嵩密度の
差が大きく変動して、割れが生じたものである。
(Comparative Example 2) A soot preform was produced in the same manner as in Comparative Example 1, using five burners. The supply amounts of SiCl 4 and GeCl 4 to each burner and the thickness (mm) of the soot formed by each burner were as follows. Burner formation soot site SiCl 4 GeCl 4 soot thickness 1st burner central core part 70 8 10 (radius) 2nd burner staircase core part 140 4.5 40 3rd burner staircase core part 175 4.5 40 4th burner clad part 700 0 30 5th burner clad part 850 0 30 Maximum surface temperature of soot by the 2nd and 3rd burners is 570
When the temperature was adjusted to ˜580 ° C., the soot preform cracked during the soot deposition. The surface temperature of the soot was too low, and the difference in bulk density between the soot and the soot caused by the fourth burner fluctuated significantly, causing cracking.

【0026】(比較例3)実施例1において、第2バー
ナおよび第3バーナで形成されるスートの厚みをそれぞ
れ60mmとする以外は同様にして光ファイバ母材を作
成した。得られた光ファイバ母材の屈折率分布は、図4
に示した比較例1のものと同様の不整なものであった。
Comparative Example 3 An optical fiber preform was prepared in the same manner as in Example 1 except that the thickness of the soot formed by the second burner and the third burner was 60 mm. The refractive index distribution of the obtained optical fiber preform is shown in FIG.
It was the same irregularity as that of Comparative Example 1 shown in FIG.

【0027】[0027]

【発明の効果】以上説明したように、この発明の分散シ
フト光ファイバ用母材の製法によれば、階段コア部とな
るスートを2本以上のバーナによって形成するように
し、かつこのスートの表面最高温度を600℃以上70
0℃未満と低目にしているため、スートの温度のバラツ
キが小さくなり、ゲルマニアのドープ量が均一となり、
階段コア部の屈折率分布の不整が著しく小さなものとな
る。また、階段コア部となるスートを2本以上のバーナ
で形成するので、階段コア部の半径(R2 )と中心コア
部の半径(R1 )との比(R2 /R1 )を5程度にま
で、無理なく拡げることができ、製造許容範囲が広くな
り歩留りが向上する。
As described above, according to the method of manufacturing the preform for dispersion-shifted optical fiber of the present invention, the soot to be the staircase core is formed by two or more burners, and the surface of the soot is formed. Maximum temperature is over 600 ℃ 70
Since the temperature is lower than 0 ° C, the variation in the temperature of the soot becomes small, and the doping amount of germania becomes uniform,
The irregularity of the refractive index distribution in the staircase core is extremely small. Also, because it forms a soot comprising a step core portion with two or more burners, the ratio of the radius of the step core portion (R 2) and the central core of radius (R 1) (R 2 / R 1) 5 It can be reasonably expanded to a certain degree, the manufacturing allowable range is widened, and the yield is improved.

【0028】また、1本のバーナで大きなスートを堆積
させる必要がないので、スートの温度差、嵩密度差に起
因するスートの割れを防止できる。さらに、バーナに供
給するGeCl4 の供給比率をそれぞれ変化させること
ができるので、階段コア部の屈折率を外方に向けて徐々
に小さくなるように調節することもできる。
Further, since it is not necessary to deposit a large soot with one burner, it is possible to prevent the soot from cracking due to the temperature difference and the bulk density difference of the soot. Further, since the supply ratio of GeCl 4 supplied to the burner can be changed respectively, the refractive index of the staircase core part can be adjusted so as to gradually decrease toward the outside.

【図面の簡単な説明】[Brief description of drawings]

【図1】 この発明の製法の一例を示す構成図である。FIG. 1 is a configuration diagram showing an example of a manufacturing method of the present invention.

【図2】 実施例で得られた光ファイバ母材の屈折率分
布を示す図である。
FIG. 2 is a diagram showing a refractive index distribution of an optical fiber preform obtained in an example.

【図3】 従来例で得られた光ファイバ母材の屈折率分
布を示す図である。
FIG. 3 is a diagram showing a refractive index distribution of an optical fiber preform obtained in a conventional example.

【図4】 比較例で得られた光ファイバ母材の屈折率分
布を示す図である。
FIG. 4 is a diagram showing a refractive index distribution of an optical fiber preform obtained in a comparative example.

【図5】 1.55μm帯用分散シフト光ファイバの屈
折率分布を示す図である。
FIG. 5 is a diagram showing a refractive index distribution of a 1.55 μm band dispersion-shifted optical fiber.

【図6】 従来の1.55μm帯用分散シフト光ファイ
バ用母材の製法を示す構成図である。
FIG. 6 is a configuration diagram showing a conventional method for producing a preform for a dispersion-shifted optical fiber for the 1.55 μm band.

【符号の説明】[Explanation of symbols]

13…第2バーナ、14…第3バーナ、22…階段コア
部となるスートの内側部分、23…階段コア部となるス
ートの外側部分
13 ... 2nd burner, 14 ... 3rd burner, 22 ... Inner part of soot which becomes a staircase core part, 23 ... Outer part of soot which becomes a staircase core part

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 中心に位置する高屈折率の中心コア部
と、この中心コア部の周囲に位置し、中心コア部よりも
低屈折率の階段コア部と、この階段コア部の周囲に位置
し、階段コア部よりも低屈折率のクラッド部を有する分
散シフト光ファイバ用母材を、屈折率を高めるドーパン
トとしてゲルマニア(GeO2 )を用いてVAD法によ
り製造する際に、 上記階段コア部となるスートを複数本のスート形成用バ
ーナを用いて形成するとともに、このスートの表面最高
温度を600℃以上700℃未満にすることを特徴とす
る分散シフト光ファイバ用母材の製法。
1. A central core portion having a high refractive index located at the center, a staircase core portion having a refractive index lower than that of the central core portion, and a staircase core portion having a refractive index lower than that of the central core portion. However, when a dispersion-shifted optical fiber preform having a clad portion having a refractive index lower than that of the staircase core portion is manufactured by the VAD method using germania (GeO 2 ) as a dopant for increasing the refractive index, A soot to be formed is formed by using a plurality of soot forming burners, and the maximum surface temperature of the soot is set to 600 ° C. or higher and lower than 700 ° C., a process for producing a base material for a dispersion shift optical fiber.
【請求項2】 階段コア部を形成する各スート形成用バ
ーナによるスートの厚みがいずれも50mm以下である
ことを特徴とする請求項1記載の分散シフト光ファイバ
用母材の製法。
2. The method for producing a preform for a dispersion-shifted optical fiber according to claim 1, wherein each of the soot-forming burners forming the staircase core has a soot thickness of 50 mm or less.
JP06299985A 1994-12-02 1994-12-02 Manufacturing method of preform for dispersion shifted optical fiber Expired - Fee Related JP3137849B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06299985A JP3137849B2 (en) 1994-12-02 1994-12-02 Manufacturing method of preform for dispersion shifted optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06299985A JP3137849B2 (en) 1994-12-02 1994-12-02 Manufacturing method of preform for dispersion shifted optical fiber

Publications (2)

Publication Number Publication Date
JPH08157230A true JPH08157230A (en) 1996-06-18
JP3137849B2 JP3137849B2 (en) 2001-02-26

Family

ID=17879361

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06299985A Expired - Fee Related JP3137849B2 (en) 1994-12-02 1994-12-02 Manufacturing method of preform for dispersion shifted optical fiber

Country Status (1)

Country Link
JP (1) JP3137849B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008222451A (en) * 2007-03-08 2008-09-25 Fujikura Ltd Manufacturing method of quartz glass porous body for optical fiber
WO2021189862A1 (en) * 2020-03-27 2021-09-30 通鼎互联信息股份有限公司 Vad blowtorch cleaning apparatus and cleaning method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008222451A (en) * 2007-03-08 2008-09-25 Fujikura Ltd Manufacturing method of quartz glass porous body for optical fiber
WO2021189862A1 (en) * 2020-03-27 2021-09-30 通鼎互联信息股份有限公司 Vad blowtorch cleaning apparatus and cleaning method thereof

Also Published As

Publication number Publication date
JP3137849B2 (en) 2001-02-26

Similar Documents

Publication Publication Date Title
US4627867A (en) Method for producing highly pure glass preform for optical fiber
WO2019142878A1 (en) Method for manufacturing optical fiber preform, optical fiber preform, method for manufacturing optical fiber, and optical fiber
US4765815A (en) Method for producing glass preform for optical fiber
JP4540923B2 (en) Optical fiber manufacturing method and optical fiber preform manufacturing method
JP4455740B2 (en) Method for manufacturing preform for optical fiber
JP3137849B2 (en) Manufacturing method of preform for dispersion shifted optical fiber
JPH07230015A (en) Dispersion shift type single-mode optical fiber, and preform for the same and its manufacture
JPH1053429A (en) Base material for optical fiber and its production
JP2996111B2 (en) Optical fiber preform manufacturing method
JP3343079B2 (en) Optical fiber core member, optical fiber preform, and method of manufacturing the same
JP3798190B2 (en) Method for manufacturing glass preform for dual-core dispersion-shifted optical fiber
JPH0331657B2 (en)
JPS5820744A (en) Preparation of parent material for optical fiber
JPH0986948A (en) Production of porous glass base material for optical fiber
JPH07106924B2 (en) Manufacturing method of base material for single mode and optical fiber
US4804393A (en) Methods for producing optical fiber preform and optical fiber
JP3100291B2 (en) Dispersion shifted optical fiber and method of manufacturing the same
JP2770103B2 (en) Manufacturing method of optical fiber preform
JP2659066B2 (en) Manufacturing method of preform for single mode optical fiber
JP3174682B2 (en) Method for producing glass preform for optical fiber
JPH01160839A (en) Production of preform for optical fiber
JP2000143275A (en) Production of glass preform for optical fiber
JP2583217B2 (en) Method for producing porous base material for optical fiber
JPH027888B2 (en)
JPH0454625B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees