JPH0815405A - Aircraft-position evaluating system in landing guidance - Google Patents

Aircraft-position evaluating system in landing guidance

Info

Publication number
JPH0815405A
JPH0815405A JP16874494A JP16874494A JPH0815405A JP H0815405 A JPH0815405 A JP H0815405A JP 16874494 A JP16874494 A JP 16874494A JP 16874494 A JP16874494 A JP 16874494A JP H0815405 A JPH0815405 A JP H0815405A
Authority
JP
Japan
Prior art keywords
signal
aircraft
gps
pseudo
gps signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16874494A
Other languages
Japanese (ja)
Other versions
JP2848249B2 (en
Inventor
Toshiaki Ito
聡明 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP6168744A priority Critical patent/JP2848249B2/en
Publication of JPH0815405A publication Critical patent/JPH0815405A/en
Application granted granted Critical
Publication of JP2848249B2 publication Critical patent/JP2848249B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Position Fixing By Use Of Radio Waves (AREA)
  • Traffic Control Systems (AREA)

Abstract

PURPOSE:To provide an aircraft-position evaluating system in landing control which is not dependent on a GPS. CONSTITUTION:Three ground stations 2 to 4, which are arranged at the different positions around a runway, 1 and a geostationally satellite 5 are four signal sources when the three-dimensional position of an aircraft 7 is evaluated. The geostationally satellite transmits the pseudo-GPS signal under the control of a ground control facility 6. Three ground stations also transmits the pseudo-GPS signals. In the pseudo-GPS signal, the code, which is not used in the actual GPS signal, is used among the codes contained in the GPS. Each transmitting station transmits the mutually different pseudo-GPS signal in the time synchronized pattern with the GPS signal. The aircraft can receive both signals. A ground monitoring station 8 monitors the pseudo-GPS signals, stops the transmission when the signal deviated from the specified accuracy is detected and stops the use of the pseudo-GPS signal of the aircraft.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、着陸誘導における航空
機位置評定システムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an aircraft position locating system for landing guidance.

【0002】[0002]

【従来の技術】周知のように衛星を利用した全地球規模
の測位システム(Global PositioningSystem :GP
S)は、米軍の管理下にあるシステムであるが、GPS
として保有する符号のうちの幾つかが民間に開放されて
いることから、従来ではこのGPSを利用した着陸誘導
システムが種々提案されている(例えば、特開平2−6
0897号公報、特開平2−287900号公報等)。
As is well known, a global positioning system (GP) using satellites is known.
S) is a system under the control of the US military,
Since some of the codes held as are open to the private sector, various landing guidance systems using this GPS have been conventionally proposed (for example, Japanese Patent Laid-Open No. 2-6).
No. 0897, JP-A-2-287900, etc.).

【0003】この従来提案されている着陸誘導における
航空機位置評定システムは、端的に言えば、例えば図2
に示すように、GPSに属する複数のGPS衛星21か
らのGPS信号を受信するGPS受信機を航空機22に
搭載し、航空機22においてその受信したGPS信号か
ら自機の3次元位置を求め、それに基づき滑走路23に
進入するシステムである。
The aircraft position locating system for landing guidance that has been conventionally proposed is, for example, as shown in FIG.
As shown in, a GPS receiver that receives GPS signals from a plurality of GPS satellites 21 belonging to GPS is mounted on the aircraft 22, and the three-dimensional position of the aircraft is obtained from the received GPS signals in the aircraft 22, and based on that, It is a system that enters the runway 23.

【0004】[0004]

【発明が解決しようとする課題】ところで、着陸誘導に
おける航空機位置評定システムでは、航法システムの精
度が許容値を越える程に劣化した場合には航法システム
の利用者にその旨を直ちに通報する機能(この機能は
「インテグリティ」と称される)が必要で、この機能は
1秒以下であることが要求される。しかし、GPSは米
軍の管理下にあり、民間の利用者はその利用を黙認して
貰っている立場にあるので、米軍には精度劣化を民間の
利用者に通報する義務はない。従って、従来では、精度
劣化があった場合、民間利用者は米軍に問い合わせるこ
とになり、その結果、精度劣化から通報までの時間が1
0分程度〜数時間となり、インテグリティの不完全性が
問題となっている。
By the way, in the aircraft position evaluation system in the landing guidance, when the accuracy of the navigation system deteriorates to the extent of exceeding the allowable value, a function of immediately notifying the user of the navigation system ( This function is called "integrity") and this function is required to be less than 1 second. However, since the GPS is under the control of the US military and the private users are in a position of silently accepting its use, the US military has no obligation to notify the private users of the deterioration in accuracy. Therefore, in the past, if there was a deterioration in accuracy, civilian users would contact the US military, and as a result, the time from accuracy deterioration to notification would be 1
Since it takes about 0 minutes to several hours, incomplete integrity is a problem.

【0005】また、最近では、政治的理由から意図的な
精度劣化が行われるようになって来ており、問題となっ
ている。これは、SA(Selective Availability)と称
されるが、非友好国が軍事目的でGPS信号を利用する
ことを妨げるため、一般に開放している民間用符号の使
用者はGPS本来の精度から劣化した測位精度でしか使
用できないようにするもので、具体的には意図的にGP
S信号に誤差を加える操作をしているのである。
Further, recently, intentional deterioration of accuracy has come to be performed due to political reasons, which is a problem. This is called SA (Selective Availability), but it interferes with the use of GPS signals for military purposes by unfriendly countries, so the users of civil codes that are open to the public deteriorated from the original accuracy of GPS. It is intended to be used only with positioning accuracy. Specifically, GP
The operation to add an error to the S signal is performed.

【0006】更に、GPSを利用する場合には、電離層
や大気圏における電波伝搬遅延による精度劣化、GPS
衛星の軌道情報誤差による精度劣化があり、問題となっ
ている。
Further, when GPS is used, accuracy deterioration due to radio wave propagation delay in the ionosphere and the atmosphere, GPS
There is a problem that there is a deterioration in accuracy due to errors in the satellite orbit information.

【0007】本発明は、このような従来の問題に鑑みな
されたもので、その目的は、GPSを利用しないでも済
む、利用するとしても副次的利用とする着陸誘導におけ
る航空機位置評定システムを提供することにある。
The present invention has been made in view of the above conventional problems, and an object thereof is to provide an aircraft position locating system in landing guidance which does not require use of GPS or is a secondary use if used. To do.

【0008】[0008]

【課題を解決するための手段】前記目的を達成するた
め、本発明の着陸誘導における航空機位置評定システム
は次の如き構成を有する。即ち、第1発明の着陸誘導に
おける航空機位置評定システムは、滑走路周辺の互いに
異なる位置に配置され滑走路周辺の空間に測位信号を送
信する少なくとも3つの地上局と; 1つの静止衛星
と; この静止衛星から測位信号を送信させる運用地上
施設と; を備え、航空機は、前記少なくとも3つの地
上局と前記1つの静止衛星とが送信する互いに異なる測
位信号を受信して3次元位置を評定する; ことを特徴
とするものである。
In order to achieve the above object, the aircraft position evaluation system for landing guidance according to the present invention has the following configuration. That is, the aircraft position evaluation system for landing guidance according to the first aspect of the present invention includes at least three ground stations that are located at different positions around the runway and that transmit positioning signals to the space around the runway; one geostationary satellite; An operation ground facility for transmitting positioning signals from geostationary satellites; and the aircraft receives different positioning signals transmitted by the at least three ground stations and the one geostationary satellite to evaluate a three-dimensional position; It is characterized by that.

【0009】また、第2発明の着陸誘導における航空機
位置評定システムは、滑走路周辺の互いに異なる位置に
配置され滑走路周辺の空間に測位信号を送信する少なく
とも4つの地上局; を備え、航空機は、前記少なくと
も4つの地上局が送信する互いに異なる測位信号を受信
して3次元位置を評定する; ことを特徴とするもので
ある。
The aircraft position evaluation system for landing guidance according to the second aspect of the invention comprises at least four ground stations arranged at different positions around the runway and transmitting positioning signals to the space around the runway; , And receive different positioning signals transmitted by the at least four ground stations to evaluate the three-dimensional position.

【0010】ここに、測位信号は、GPSが保有する符
号であってGPS衛星が実際に送信するGPS信号には
使用していない符号を用いた疑似GPS信号とすること
ができる。この場合には、送信局は、GPS信号に時刻
同期した形でまたは時刻同期させるデータを含めて疑似
GPS信号を送信するようにし、また航空機は、GPS
信号と疑似GPS信号との双方を受信できる受信機を備
えるようにする。そして、GPSを副次的に利用する場
合には、万一に備えて、疑似GPS信号を受信してその
信号内容をモニタし、規定精度を逸脱する疑似GPS信
号の受信を検出すると、全ての送信局に対し疑似GPS
信号の送信を停止させる信号を出力すると共に、航空機
に対し疑似GPS信号の使用を中止させる信号を出力す
る地上モニタ局を設置することができる。
Here, the positioning signal may be a pseudo GPS signal using a code held by the GPS and not used for the GPS signal actually transmitted by the GPS satellite. In this case, the transmitting station transmits the pseudo GPS signal in a time-synchronized manner with the GPS signal or including data to be time-synchronized, and the aircraft uses the GPS signal.
A receiver capable of receiving both the signal and the pseudo GPS signal should be provided. Then, in the case of using the GPS as a subsidiary, as a precaution, the pseudo GPS signal is received, the signal content is monitored, and if the reception of the pseudo GPS signal deviating from the specified accuracy is detected, all Pseudo GPS for transmitting station
A ground monitor station may be installed that outputs a signal to stop the transmission of signals and outputs a signal to the aircraft to stop using pseudo GPS signals.

【0011】[0011]

【作用】次に、前記の如く構成される本発明の着陸誘導
における航空機位置評定システムの作用を説明する。本
発明では、1つの静止衛星と少なくとも3つの地上局が
送信する測位信号により(第1発明)または少なくとも
4つの地上局が送信する測位信号により(第2発明)航
空機に自機の3次元位置の評定を行わせる。
Next, the operation of the aircraft position evaluation system in the landing guidance of the present invention constructed as described above will be explained. According to the present invention, the three-dimensional position of the own aircraft on the aircraft is determined by the positioning signals transmitted by one geostationary satellite and at least three ground stations (first invention) or by the positioning signals transmitted by at least four ground stations (second invention). Let's evaluate.

【0012】従って、GPSを利用せずに航空機の着陸
誘導が行えるので、GPSを利用する場合に比べてイン
テグリティが保証され、SAの影響を受けないで済む。
また地上局の送信信号によっては電離層や大気圏による
精度劣化、衛星の軌道情報誤差による精度劣化の問題は
生じないので、総じて精度が向上する。
Therefore, since the landing guidance of the aircraft can be performed without using GPS, the integrity is assured and the influence of SA can be avoided as compared with the case of using GPS.
In addition, the accuracy of the signal is improved as a whole because there is no problem of accuracy deterioration due to the ionosphere or the atmosphere, or accuracy deterioration due to satellite orbit information errors, depending on the ground station transmission signal.

【0013】なお、GPSを副次的に利用する場合に
は、航空機はGPSの併用により測定精度を更に高める
ことができ、またモニタ地上局の設置により万一に備え
ることができる。
When GPS is used as a subordinate, the measurement accuracy of the aircraft can be further improved by using GPS together, and a monitor ground station can be installed in case of emergency.

【0014】[0014]

【実施例】以下、本発明の実施例を図面を参照して説明
する。図1は、本発明の一実施例に係る着陸誘導におけ
る航空機位置評定システムを示す。本発明のシステム
は、滑走路1周辺の互いに異なる位置に配置され滑走路
周辺の空間に測位信号を送信する少なくとも3つの地上
局(2〜4)と、1つの静止衛星5と、この静止衛星か
ら測位信号を送信させる静止衛星運用地上施設6とを基
本的に備え、航空機7が少なくとも3つの地上局(2〜
4)と1つの静止衛星とが送信する互いに異なる測位信
号を受信して自機の3次元位置を評定し、滑走路1に進
入するシステムである。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows an aircraft position evaluation system for landing guidance according to an embodiment of the present invention. The system of the present invention comprises at least three ground stations (2-4) arranged at different positions around the runway 1 and transmitting positioning signals to the space around the runway, one geostationary satellite 5, and this geostationary satellite. Basically includes a geostationary satellite operation ground facility 6 for transmitting a positioning signal from the aircraft 7, and the aircraft 7 has at least three ground stations (2 to
This is a system that receives different positioning signals transmitted by 4) and one geostationary satellite, evaluates the three-dimensional position of the own aircraft, and enters the runway 1.

【0015】即ち、本発明では、4個以上のGPS衛星
からのGPS信号を受信して3次元の位置を求める場合
と等価なシステム構成とし、GPSを利用しないでも測
位ができるようにしたものである。図1では、3つの地
上局と1個の静止衛星からなる4つの信号源を示すが、
静止衛星に代えて地上局とすることもできる。
That is, the present invention has a system configuration equivalent to the case where GPS signals from four or more GPS satellites are received to obtain a three-dimensional position, and positioning can be performed without using GPS. is there. 1 shows four signal sources consisting of three ground stations and one geostationary satellite,
A ground station can be used instead of the geostationary satellite.

【0016】但し、3次元位置の測定精度は、4個の信
号源を頂点とする4面体の体積に対し逆相関があるの
で、4つとも地上局の場合は4面体の体積が小さくな
る。従って、精度は1個の静止衛星を含む場合よりも劣
るが、着陸誘導システムで要求される精度には各種レベ
ルがあるので、問題はないと言える。
However, the measurement accuracy of the three-dimensional position has an inverse correlation with the volume of the tetrahedron having four signal sources as vertices, and therefore the volume of the tetrahedron becomes small in the case of all four ground stations. Therefore, the accuracy is inferior to the case of including one geostationary satellite, but it can be said that there is no problem because the accuracy required for the landing guidance system has various levels.

【0017】静止衛星運用地上施設6を含む各送信局
は、送信する測位信号の周波数制御をし、自局の位置情
報(静止衛星では軌道情報)、送信時刻情報、クロック
ドリフトの補正情報等を含めて測位信号を送信するが、
図1において測位信号を疑似GPS信号としてあるよう
に、本実施例のシステムは、GPSを副次的に利用する
システムである。
Each transmitting station including the geostationary satellite operation ground facility 6 controls the frequency of the positioning signal to be transmitted, and obtains its own position information (orbit information for a geostationary satellite), transmission time information, clock drift correction information, and the like. Send the positioning signal including
As in the case where the positioning signal is a pseudo GPS signal in FIG. 1, the system of this embodiment is a system that secondarily uses GPS.

【0018】ここに、疑似GPS信号とは、GPSが保
有する符号であってGPS衛星が実際に送信するGPS
信号には使用していない符号を用いた信号である。そし
て、静止衛星運用地上施設6を含む各送信局は、GPS
信号に時刻同期した形で、またはGPS信号に時刻同期
させるデータを含めて疑似GPS信号を送信するように
してある。
Here, the pseudo GPS signal is a code held by the GPS and is the GPS actually transmitted by the GPS satellite.
The signal is a signal using a code that is not used. Then, each transmitting station including the geostationary satellite operation ground facility 6 has a GPS
The pseudo GPS signal is transmitted in a form that is time-synchronized with the signal or including data that is time-synchronized with the GPS signal.

【0019】このようにすれば、航空機7は、GPS信
号と疑似GPS信号との双方を受信できる受信機を搭載
するが、GPS受信機に少しの設計変更を加えるだけで
疑似GPS受信機を構成できる利点があり、またGPS
信号の併用により測位精度を向上させることができる。
In this way, the aircraft 7 is equipped with a receiver capable of receiving both GPS signals and pseudo GPS signals, but a pseudo GPS receiver is constructed by making a slight design change to the GPS receiver. There is an advantage that can also be GPS
The positioning accuracy can be improved by using the signals together.

【0020】また、図1に示すように、地上モニタ局8
を設置してある。この地上モニタ局8は、各疑似GPS
信号を受信してその信号内容をモニタし、規定精度を逸
脱する疑似GPS信号の受信を検出すると、全ての送信
局に対し疑似GPS信号の送信を停止させる信号を出力
すると共に、航空機に対し疑似GPS信号の使用を中止
させる信号を出力する。送信時刻にずれが生じた場合、
送信停止等により信号強度に異常が生じた場合、等にお
いて速やかにGPS信号への切り替えを行い、本システ
ムの航法精度が常に着陸誘導システムとして利用できる
レベルにあることを保証するのである。
Further, as shown in FIG. 1, the ground monitor station 8
Is installed. This ground monitor station 8 is for each pseudo GPS
When a signal is received, the signal content is monitored, and when the reception of a pseudo GPS signal that deviates from the specified accuracy is detected, a signal for stopping the transmission of the pseudo GPS signal is output to all transmitting stations, and a pseudo signal is sent to the aircraft. It outputs a signal to stop using the GPS signal. If there is a difference in the transmission time,
When an abnormality occurs in the signal strength due to transmission stop or the like, the GPS signal is promptly switched to ensure that the navigation accuracy of this system is always at a level that can be used as a landing guidance system.

【0021】[0021]

【発明の効果】以上説明したように、本発明の着陸誘導
における航空機位置評定システムは、1つの静止衛星と
少なくとも3つの地上局が送信する測位信号により(第
1発明)または少なくとも4つの地上局が送信する測位
信号により(第2発明)航空機に自機の3次元位置の評
定を行わせるので、GPSを利用せずに航空機の着陸誘
導が行える。従って、本発明によれば、GPSを利用す
る場合に比べてインテグリティが保証され、SAの影響
を受けないで済む効果がある。また地上局の送信信号に
よっては電離層や大気圏による精度劣化、衛星の軌道情
報誤差による精度劣化の問題は生じないので、総じて精
度が向上する効果もある。GPSを副次的に利用する場
合には、航空機はGPSの併用により測定精度を更に高
めることができ、またモニタ地上局の設置により万一に
備えることができる効果もある。
As described above, the aircraft position locating system for landing guidance of the present invention uses the positioning signals transmitted by one geostationary satellite and at least three ground stations (first invention) or at least four ground stations. (2nd invention) The aircraft is made to evaluate the three-dimensional position of the aircraft by the positioning signal transmitted by the vehicle. Therefore, it is possible to guide the landing of the aircraft without using GPS. Therefore, according to the present invention, there is an effect that the integrity is assured and the influence of SA is not necessary as compared with the case of using GPS. In addition, there is no problem of accuracy deterioration due to the ionosphere or the atmosphere, or accuracy deterioration due to satellite orbit information errors, depending on the signal transmitted by the ground station, so there is also an effect of improving accuracy as a whole. When GPS is used as a subordinate, there is an effect that the measurement accuracy can be further improved by using the GPS together with the aircraft, and a monitor ground station can be installed in case of emergency.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例に係る着陸誘導における航空
機位置評定システムの全体構成図である。
FIG. 1 is an overall configuration diagram of an aircraft position evaluation system in landing guidance according to an embodiment of the present invention.

【図2】従来のGPSを利用した着陸誘導における航空
機位置評定システムの全体構成図である。
FIG. 2 is an overall configuration diagram of an aircraft position evaluation system in conventional landing guidance using GPS.

【符号の説明】[Explanation of symbols]

1 滑走路 2 地上局 3 地上局 4 地上局 5 静止衛星 6 静止衛星運用地上施設 7 航空機 8 地上モニタ局 1 Runway 2 Ground station 3 Ground station 4 Ground station 5 Geostationary satellite 6 Geostationary satellite operation ground facility 7 Aircraft 8 Ground monitor station

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 滑走路周辺の互いに異なる位置に配置さ
れ滑走路周辺の空間に測位信号を送信する少なくとも3
つの地上局と; 1つの静止衛星と; この静止衛星か
ら測位信号を送信させる運用地上施設と; を備え、航
空機は、前記少なくとも3つの地上局と前記1つの静止
衛星とが送信する互いに異なる測位信号を受信して3次
元位置を評定する; ことを特徴とする着陸誘導におけ
る航空機位置評定システム。
1. At least 3 which are arranged at different positions around the runway and which transmit a positioning signal to a space around the runway.
Two ground stations; one geostationary satellite; and an operational ground facility that transmits positioning signals from this geostationary satellite; and the aircraft has different positionings transmitted by the at least three ground stations and the one geostationary satellite. Receiving a signal to evaluate a three-dimensional position; an aircraft position evaluation system for landing guidance.
【請求項2】 滑走路周辺の互いに異なる位置に配置さ
れ滑走路周辺の空間に測位信号を送信する少なくとも4
つの地上局; を備え、航空機は、前記少なくとも4つ
の地上局が送信する互いに異なる測位信号を受信して3
次元位置を評定する; ことを特徴とする着陸誘導にお
ける航空機位置評定システム。
2. At least 4 which are arranged at different positions around the runway and which transmit positioning signals to the space around the runway.
Three ground stations; and the aircraft receives three different positioning signals transmitted by the at least four ground stations.
Assessing dimensional position; An aircraft position assessment system in landing guidance, characterized by:
【請求項3】 測位信号は、GPSが保有する符号であ
ってGPS衛星が実際に送信するGPS信号には使用し
ていない符号を用いた疑似GPS信号である; ことを
特徴とする請求項1または請求項2に記載の着陸誘導に
おける航空機位置評定システム。
3. The positioning signal is a pseudo GPS signal using a code held by GPS and not used for a GPS signal actually transmitted by a GPS satellite. Alternatively, the aircraft position evaluation system for landing guidance according to claim 2.
【請求項4】 送信局は、GPS信号に時刻同期した形
で疑似GPS信号を送信する; ことを特徴とする請求
項3に記載の着陸誘導における航空機位置評定システ
ム。
4. The aircraft position locating system for landing guidance according to claim 3, wherein the transmitting station transmits the pseudo GPS signal in a form time-synchronized with the GPS signal.
【請求項5】 送信局は、GPS信号に時刻同期させる
データを含めて疑似GPS信号を送信する; ことを特
徴とする請求項3に記載の着陸誘導における航空機位置
評定システム。
5. The aircraft position locating system for landing guidance according to claim 3, wherein the transmitting station transmits a pseudo GPS signal including data for time synchronization with the GPS signal.
【請求項6】 航空機は、GPS信号と疑似GPS信号
との双方を受信できる受信機; を備えることを特徴と
する請求項4または請求項5に記載の着陸誘導における
航空機位置評定システム。
6. The aircraft positioning system for landing guidance according to claim 4, wherein the aircraft comprises a receiver capable of receiving both GPS signals and pseudo GPS signals.
【請求項7】 疑似GPS信号を受信してその信号内容
をモニタし、規定精度を逸脱する疑似GPS信号の受信
を検出すると、全ての送信局に対し疑似GPS信号の送
信を停止させる信号を出力すると共に、航空機に対し疑
似GPS信号の使用を中止させる信号を出力する地上モ
ニタ局; を備えることを特徴とする請求項6に記載の
着陸誘導における航空機位置評定システム。
7. A pseudo GPS signal is received, the content of the signal is monitored, and when the reception of the pseudo GPS signal deviating from the specified accuracy is detected, a signal for stopping the transmission of the pseudo GPS signal is output to all transmitting stations. The aircraft position locating system for landing guidance according to claim 6, further comprising: a ground monitor station that outputs a signal to the aircraft to stop using the pseudo GPS signal.
JP6168744A 1994-06-28 1994-06-28 Aircraft position assessment system in landing guidance Expired - Lifetime JP2848249B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6168744A JP2848249B2 (en) 1994-06-28 1994-06-28 Aircraft position assessment system in landing guidance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6168744A JP2848249B2 (en) 1994-06-28 1994-06-28 Aircraft position assessment system in landing guidance

Publications (2)

Publication Number Publication Date
JPH0815405A true JPH0815405A (en) 1996-01-19
JP2848249B2 JP2848249B2 (en) 1999-01-20

Family

ID=15873616

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6168744A Expired - Lifetime JP2848249B2 (en) 1994-06-28 1994-06-28 Aircraft position assessment system in landing guidance

Country Status (1)

Country Link
JP (1) JP2848249B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6246363B1 (en) 1998-12-10 2001-06-12 Hughes Electronics Corporation Method and system for incorporating two-way ranging navigation as a calibration reference for GPS
US6313790B2 (en) 1998-10-16 2001-11-06 Hughes Electronics Corporation Method and system for determining a position of a transceiver in a communications network
US6340947B1 (en) 1997-02-21 2002-01-22 Hughes Electronics Corporation Method and system for determining a position of a transceiver unit utilizing two-way ranging in a polystatic satellite configuration including a ground radar
US6377208B2 (en) 1997-02-21 2002-04-23 Hughes Electronics Corporation Method and system for determining a position of a transceiver unit utilizing two-way ranging in a polystatic satellite configuration
US6529820B2 (en) * 2001-04-10 2003-03-04 Ion Tomescu System and method for determining the 3D position of aircraft, independently onboard and on the ground, for any operation within a “gate-to-gate” concept
US6559797B1 (en) 2001-02-05 2003-05-06 Hughes Electronics Corporation Overlapping subarray patch antenna system
US6909875B1 (en) 1999-03-18 2005-06-21 The Directv Group, Inc. Multi-platform wireless communication system for a variety of different user types
US6941107B2 (en) 2001-01-19 2005-09-06 The Directv Group, Inc. Stratospheric platform based surface vehicle tracking and mobile data network
US6990314B1 (en) 1999-03-18 2006-01-24 The Directv Group, Inc. Multi-node point-to-point satellite communication system employing multiple geo satellites
US7046718B1 (en) 2000-09-25 2006-05-16 The Directv Group, Inc. Coherent phase synchronous code division multiple access communications from multiple transponder platforms
US7068733B2 (en) 2001-02-05 2006-06-27 The Directv Group, Inc. Sampling technique for digital beam former
US7089000B1 (en) 1999-03-18 2006-08-08 The Directv Group, Inc. Multi-node wireless communication system with multiple transponding platforms
KR100819130B1 (en) * 2007-05-02 2008-04-03 한국전자통신연구원 Landing method
JP2011039062A (en) * 2009-08-17 2011-02-24 Korea Electronics Telecommun Pseudo satellite signal transmission device using single clock, and positioning system utilizing the device
JP2013506818A (en) * 2009-09-30 2013-02-28 アストリウム・リミテッド Positioning system
JP2014020814A (en) * 2012-07-13 2014-02-03 Lighthouse Technology & Consulting Co Ltd Satellite positioning system and positioning reinforcement signal generation method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4952994A (en) * 1972-06-27 1974-05-23
JPS54118790A (en) * 1978-03-08 1979-09-14 Fujitsu Ltd Mobile object measurement system
JPH05669A (en) * 1991-06-24 1993-01-08 Nippon Kouyu Kk Flange oil applying tool for rolling stock
JPH05297107A (en) * 1992-04-20 1993-11-12 Casio Comput Co Ltd Navigation system
EP0588598A1 (en) * 1992-09-15 1994-03-23 Navsys Corporation GPS precision approach and landing system for aircraft

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4952994A (en) * 1972-06-27 1974-05-23
JPS54118790A (en) * 1978-03-08 1979-09-14 Fujitsu Ltd Mobile object measurement system
JPH05669A (en) * 1991-06-24 1993-01-08 Nippon Kouyu Kk Flange oil applying tool for rolling stock
JPH05297107A (en) * 1992-04-20 1993-11-12 Casio Comput Co Ltd Navigation system
EP0588598A1 (en) * 1992-09-15 1994-03-23 Navsys Corporation GPS precision approach and landing system for aircraft

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6340947B1 (en) 1997-02-21 2002-01-22 Hughes Electronics Corporation Method and system for determining a position of a transceiver unit utilizing two-way ranging in a polystatic satellite configuration including a ground radar
US6377208B2 (en) 1997-02-21 2002-04-23 Hughes Electronics Corporation Method and system for determining a position of a transceiver unit utilizing two-way ranging in a polystatic satellite configuration
US6563457B2 (en) 1997-02-21 2003-05-13 Hughes Electronics Corporation Method and system for determining a position of an object using two-way ranging in a polystatic satellite configuration
US6313790B2 (en) 1998-10-16 2001-11-06 Hughes Electronics Corporation Method and system for determining a position of a transceiver in a communications network
US6246363B1 (en) 1998-12-10 2001-06-12 Hughes Electronics Corporation Method and system for incorporating two-way ranging navigation as a calibration reference for GPS
US8223733B2 (en) 1999-03-18 2012-07-17 The Directv Group, Inc. Multi-platform wireless communication system for a variety of different user types
US7089000B1 (en) 1999-03-18 2006-08-08 The Directv Group, Inc. Multi-node wireless communication system with multiple transponding platforms
US6909875B1 (en) 1999-03-18 2005-06-21 The Directv Group, Inc. Multi-platform wireless communication system for a variety of different user types
US6990314B1 (en) 1999-03-18 2006-01-24 The Directv Group, Inc. Multi-node point-to-point satellite communication system employing multiple geo satellites
US7046718B1 (en) 2000-09-25 2006-05-16 The Directv Group, Inc. Coherent phase synchronous code division multiple access communications from multiple transponder platforms
US6941107B2 (en) 2001-01-19 2005-09-06 The Directv Group, Inc. Stratospheric platform based surface vehicle tracking and mobile data network
US7068733B2 (en) 2001-02-05 2006-06-27 The Directv Group, Inc. Sampling technique for digital beam former
US6559797B1 (en) 2001-02-05 2003-05-06 Hughes Electronics Corporation Overlapping subarray patch antenna system
US6529820B2 (en) * 2001-04-10 2003-03-04 Ion Tomescu System and method for determining the 3D position of aircraft, independently onboard and on the ground, for any operation within a “gate-to-gate” concept
KR100819130B1 (en) * 2007-05-02 2008-04-03 한국전자통신연구원 Landing method
JP2011039062A (en) * 2009-08-17 2011-02-24 Korea Electronics Telecommun Pseudo satellite signal transmission device using single clock, and positioning system utilizing the device
JP2013506818A (en) * 2009-09-30 2013-02-28 アストリウム・リミテッド Positioning system
JP2014020814A (en) * 2012-07-13 2014-02-03 Lighthouse Technology & Consulting Co Ltd Satellite positioning system and positioning reinforcement signal generation method

Also Published As

Publication number Publication date
JP2848249B2 (en) 1999-01-20

Similar Documents

Publication Publication Date Title
US6674398B2 (en) Method and apparatus for providing an integrated communications, navigation and surveillance satellite system
US7375683B2 (en) Use of geo-stationary satellites to augment wide— area multilateration synchronization
US6011510A (en) GPS based search and rescue transceiver
US20210311161A1 (en) Trilateration-based satellite location accuracy for improved satellite-based geolocation
US7548196B2 (en) Navigation system using external monitoring
US5913170A (en) Locating system and method using a mobile communications network
US5847679A (en) GPS based search and rescue system
US5099245A (en) Vehicle location system accuracy enhancement for airborne vehicles
US7164383B2 (en) Navigation system using locally augmented GPS
US6603426B1 (en) Satellite integrity monitor and alert
US7400292B2 (en) GPS Navigation system with integrity and reliability monitoring channels
RU2590903C2 (en) Method and system for radio beacon geolocalisation in alarm and rescue system
US6667713B2 (en) Self-monitoring satellite system
JPH0815405A (en) Aircraft-position evaluating system in landing guidance
US5563611A (en) Method of and apparatus for integration of Loran-C and satellite navigation system (SNS) technologies for improved system accuracy, availability and integrity
Offermans et al. eLoran initial operational capability in the United Kingdom–first results
US10302770B1 (en) Systems and methods for absolute position navigation using pseudolites
US7596465B2 (en) System and method for built-in testing of a GPS receiver
US6782330B1 (en) Satellite signal waveform monitor
US6462707B1 (en) Satellite position monitor
US6606560B1 (en) Beacon for satellite registration
EP0810449A1 (en) Navigation system
Crosby et al. A ground-based regional augmentation system (gras)-the australian proposal
Kugler Integration of GPS and Loran-C/Chayka: A European Perspective
Kuegler Integration of GPS and Loran‐C/Chayka: A European Perspective