JPH08153681A - Vacuum processing chamber pressure control method of semiconductor manufacture device and its device - Google Patents
Vacuum processing chamber pressure control method of semiconductor manufacture device and its deviceInfo
- Publication number
- JPH08153681A JPH08153681A JP31920494A JP31920494A JPH08153681A JP H08153681 A JPH08153681 A JP H08153681A JP 31920494 A JP31920494 A JP 31920494A JP 31920494 A JP31920494 A JP 31920494A JP H08153681 A JPH08153681 A JP H08153681A
- Authority
- JP
- Japan
- Prior art keywords
- flow rate
- gas
- processing chamber
- vacuum processing
- controller
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は半導体製造装置の真空処
理室内圧力制御方法及びその装置に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pressure control method and apparatus for a vacuum processing chamber of a semiconductor manufacturing apparatus.
【0002】[0002]
【従来の技術】図3に於いて半導体製造装置真空処理
室、及び従来の真空処理室内圧力制御方法について略述
する。2. Description of the Related Art A vacuum processing chamber of a semiconductor manufacturing apparatus and a conventional vacuum processing chamber pressure control method will be briefly described with reference to FIG.
【0003】真空処理室1には第1ガス供給ライン2、
第2ガス供給ライン3、第3ガス供給ライン4が連通
し、各ラインには第1流量調節器5、エアバルブ6、第
2流量調節器7、エアバルブ8、第3流量調節器9、エ
アバルブ10がそれぞれ設けられている。又前記真空処
理室1にはゲートバルブ11を介して排気ライン12が
連通され、該排気ライン12には真空処理室1側より可
変コンダクタンスバルブ13、真空ポンプ14が設けら
れている。The vacuum processing chamber 1 has a first gas supply line 2,
The second gas supply line 3 and the third gas supply line 4 communicate with each other, and each line has a first flow rate controller 5, an air valve 6, a second flow rate controller 7, an air valve 8, a third flow rate controller 9, and an air valve 10. Are provided respectively. An exhaust line 12 is connected to the vacuum processing chamber 1 via a gate valve 11, and a variable conductance valve 13 and a vacuum pump 14 are provided in the exhaust line 12 from the vacuum processing chamber 1 side.
【0004】前記真空処理室1内を反応ガスによりプロ
セス圧力とするには、先ず前記エアバルブ6、エアバル
ブ8、エアバルブ10を閉塞し、前記ゲートバルブ11
を開いて前記真空ポンプ14により真空排気する。前記
真空処理室1内が所定の真空度に達すると、前記エアバ
ルブ6、エアバルブ8、エアバルブ10を開き、前記真
空処理室1に前記第1ガス供給ライン2、第2ガス供給
ライン3、第3ガス供給ライン4より前記第1流量調節
器5、第2流量調節器7、第3流量調節器9を介してガ
スを供給する。前記第1流量調節器5、第2流量調節器
7、第3流量調節器9はプロセス時のガス流量、ガス混
合比となる様各ラインのガス流量を設定してある。In order to increase the process pressure in the vacuum processing chamber 1 by the reaction gas, first, the air valves 6, 8 and 10 are closed, and the gate valve 11 is closed.
Is opened and the vacuum pump 14 evacuates. When the inside of the vacuum processing chamber 1 reaches a predetermined degree of vacuum, the air valve 6, the air valve 8, and the air valve 10 are opened, and the first gas supply line 2, the second gas supply line 3, and the third gas supply line 3 are connected to the vacuum processing chamber 1. Gas is supplied from the gas supply line 4 through the first flow rate controller 5, the second flow rate controller 7, and the third flow rate controller 9. The first flow rate controller 5, the second flow rate controller 7, and the third flow rate controller 9 set the gas flow rate of each line so that the gas flow rate and the gas mixing ratio at the time of the process can be obtained.
【0005】プロセス圧力近く迄昇圧すると、ゲートバ
ルブ11を開き、圧力センサ18の検知圧力を監視しつ
つ前記可変コンダクタンスバルブ13の開度を制御して
排気速度を調節し、プロセス圧力に調圧する。When the pressure is increased to near the process pressure, the gate valve 11 is opened, the opening of the variable conductance valve 13 is controlled while the pressure detected by the pressure sensor 18 is monitored, and the exhaust speed is adjusted to adjust the process pressure.
【0006】[0006]
【発明が解決しようとする課題】通常の真空処理室プロ
セス条件でのガス供給流量は真空処理室の容積に比べて
少なく、真空処理室が真空状態からプロセス圧力に到達
するには多くの時間を要する。又、調圧時に過多なガス
流量を一時に供給すると真空処理室内のパーティクルを
巻上げ被処理物の汚染を誘発する。更に、ガスの混合比
を考慮しないでガス流量を増加させると、調圧後ガス混
合比を処理に必要な条件に合致させる迄に多くの時間を
要すると共に、ガス混合比の微妙な相違により被処理物
の品質が一定しないという問題がある。The gas supply flow rate under normal vacuum processing chamber process conditions is smaller than the volume of the vacuum processing chamber, and it takes a lot of time for the vacuum processing chamber to reach the process pressure from the vacuum state. It costs. Also, if an excessive gas flow rate is supplied at the time of pressure adjustment, particles in the vacuum processing chamber will be rolled up and contamination of the object to be processed will be induced. Furthermore, if the gas flow rate is increased without considering the gas mixture ratio, it will take a long time for the gas mixture ratio after pressure adjustment to meet the conditions required for processing, and there will be a slight difference in the gas mixture ratio. There is a problem that the quality of the processed material is not constant.
【0007】本発明は斯かる実情に鑑み、真空処理室内
を所要の圧力に短時間で調圧でき、又調圧後のガス混合
比がプロセス条件に対して変化することのない様にした
ものである。In view of the above situation, the present invention can adjust the pressure in the vacuum processing chamber to a required pressure in a short time, and the gas mixing ratio after the pressure adjustment does not change with the process conditions. Is.
【0008】[0008]
【課題を解決するための手段】本発明は、真空処理室に
連通された複数のガスラインを有する半導体製造装置に
於いて、前記ガスラインにそれぞれ流量調節器を設け、
該それぞれの流量調節器のプロセス条件設定流量に対す
るフルスケールの余裕度を求め、余裕度の1番小さいガ
スラインの余裕度を定数として各ガスラインに於けるプ
ロセス条件設定流量に乗じた流量を求め、この求められ
たガス流量を最大流量として真空処理室に供給して調圧
を行うことを特徴とするものである。SUMMARY OF THE INVENTION The present invention is a semiconductor manufacturing apparatus having a plurality of gas lines communicating with a vacuum processing chamber, wherein each of the gas lines is provided with a flow rate controller,
The full-scale margin with respect to the process condition set flow rate of each of the flow rate regulators is obtained, and the flow rate multiplied by the process condition set flow rate in each gas line is obtained with the margin of the gas line having the smallest margin as a constant. The gas flow rate thus obtained is supplied as a maximum flow rate to the vacuum processing chamber to adjust the pressure.
【0009】[0009]
【作用】使用する全てのガスラインの流量調節器の設定
流量に余裕度を掛けることで、それぞれの流量調節器の
フルスケールを越えない範囲で且ガス混合比を変えない
で流せる最大流量が求められ、この最大流量の範囲でプ
ロセス条件のガス混合比を保持して流量を増減する。[Operation] By multiplying the set flow rates of the flow rate regulators of all the gas lines to be used by the margin, the maximum flow rate that can flow without changing the gas mixing ratio within the full scale of each flow rate regulator is obtained. The flow rate is increased or decreased while maintaining the gas mixture ratio of the process condition within this maximum flow rate range.
【0010】[0010]
【実施例】以下、図面を参照しつつ本発明の一実施例を
説明する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings.
【0011】図1に於いて図3に示したものと同一のも
のには同符号を付してあり、又図中15は制御器、16
は該制御器15に接続された外部入力器、17は前記制
御器15に設けられ調圧制御プログラムが設定入力され
ている記憶器を示し、第1流量調節器5、第2流量調節
器7、第3流量調節器9は前記制御器15からの指令に
より流量設定がなされる様になっている。In FIG. 1, the same parts as those shown in FIG. 3 are designated by the same reference numerals, and 15 is a controller and 16
Is an external input device connected to the controller 15, and 17 is a storage device provided in the controller 15 to which a pressure control program is set and input. The first flow rate controller 5 and the second flow rate controller 7 are shown. The third flow rate controller 9 is designed to set the flow rate in response to a command from the controller 15.
【0012】外部入力器16よりプロセス条件に合致す
るガス混合比を設定する。一般に、流量調節器のフルス
ケールに対して実際の流量は充分小さい。従って、流量
調節器はプロセス条件でのガス流量より、より多くの流
量に対して制御能力を有している。このことから、調圧
作動を開始する準備として、プロセス条件の混合比を変
えることなくどこ迄流量を増大できるかを演算する。From the external input device 16, a gas mixing ratio that matches the process conditions is set. Generally, the actual flow rate is sufficiently small with respect to the full scale of the flow rate controller. Therefore, the flow regulator has the ability to control more flow than the gas flow at process conditions. From this, as a preparation for starting the pressure regulating operation, it is calculated how much the flow rate can be increased without changing the mixing ratio of the process conditions.
【0013】前記第1流量調節器5のフルスケールをF
1 、第2流量調節器7のフルスケールをF2 、第3流量
調節器9のフルスケールをF3 とし、第1流量調節器5
のプロセス設定流量をV1 、第2流量調節器7のプロセ
ス設定流量をV2 、第3流量調節器9のプロセス設定流
量をV3 とし、各流量調節器の設定流量に対する余裕状
態を演算する。The full scale of the first flow rate controller 5 is set to F
1 , the full scale of the second flow controller 7 is F 2 , the full scale of the third flow controller 9 is F 3, and the first flow controller 5 is
Let V 1 be the process set flow rate of the second flow controller, V 2 be the process set flow rate of the second flow rate controller 7, and V 3 be the process set flow rate of the third flow rate controller 9, and calculate the margin state for the set flow rate of each flow rate controller. .
【0014】即ち、各流量調節器に対してVn /Fn を
求め、更にVn /Fn の最大値Mを求める。Vn /Fn
の最大値Mを有する流量調節器が最もフルスケールに近
い流量を設定している流量調節器であり、プロセス設定
流量に対して1番余裕のないものである。次に該流量調
節器について余裕度Fn /Vn (1/M)=Cを求め
る。That is, V n / F n is calculated for each flow rate controller, and the maximum value M of V n / F n is further calculated. V n / F n
The flow rate controller having the maximum value M of is a flow rate controller that sets the flow rate that is closest to the full scale, and has the least margin with respect to the process set flow rate. Next, the margin F n / V n (1 / M) = C is obtained for the flow rate controller.
【0015】前記第1流量調節器5、第2流量調節器
7、第3流量調節器9の前記設定流量V1 、設定流量V
2 、設定流量V3 にそれぞれCを掛けて求められる流量
が、処理条件のガス混合比を変えないで各流量調節器の
フルスケールを越えない範囲でガス流量を増大できる最
大値である。The set flow rates V 1 and V of the first flow rate controller 5, the second flow rate controller 7, and the third flow rate controller 9 are set.
2. The flow rate obtained by multiplying the set flow rate V 3 by C is the maximum value at which the gas flow rate can be increased without exceeding the full scale of each flow rate controller without changing the gas mixture ratio of the processing conditions.
【0016】前記した様に、急激に大流量を真空処理室
1に供給すると真空処理室1内のパーティクルを巻上げ
被処理物の汚染を誘発する。従って、流入初期は徐々に
流量を増大させ、又流入終了期は徐々に流量を減少させ
る。流量減少、増大時に於いてもガスの混合比を一定に
することは勿論であり、各流量調節器の流量制御にはプ
ロセス条件の設定流量に対して同じ定数を乗じて得られ
る流量に基づく制御を行う。As described above, when a large flow rate is suddenly supplied to the vacuum processing chamber 1, the particles in the vacuum processing chamber 1 are rolled up to induce contamination of the object to be processed. Therefore, the flow rate is gradually increased at the beginning of inflow and gradually decreased at the end of inflow. It goes without saying that the gas mixing ratio is kept constant even when the flow rate is decreased or increased, and the flow rate control of each flow rate controller is based on the flow rate obtained by multiplying the set flow rate of the process condition by the same constant. I do.
【0017】而して、各ラインの流量が所定のランプU
P時間に設定流量となる様、各流量調節器のランプレー
トを計算し、ガス供給開始時には全ての流量制御器の設
定流量を0としておき、時間と共に流量制御器の設定流
量を増大させ、調圧終了前にガス流量をプロセス条件に
於ける設定流量に減少させる。Thus, the lamp U having a predetermined flow rate in each line
The ramp rate of each flow rate controller is calculated so that the flow rate will be the set flow rate in P hours, and the set flow rate of all flow rate controllers is set to 0 at the start of gas supply, and the set flow rate of the flow rate controllers is increased with time to adjust the flow rate. Before the pressure ends, the gas flow rate is reduced to the set flow rate in the process conditions.
【0018】前記調圧制御プログラムは、FS(Ful
l Scale)変換ルーチン、ガス流量計算ルーチ
ン、ガス流量制御ルーチンとで構成される。The pressure control program is FS (Ful
l Scale) conversion routine, gas flow rate calculation routine, and gas flow rate control routine.
【0019】先ず、FS変換ルーチンを説明する。First, the FS conversion routine will be described.
【0020】このルーチンは因数として、1つのガスの
流量制御器の設定流量と該流量制御器のフルスケール流
量を16ビットの2進数で与えられ、設定流量がフルス
ケール流量の何%に相当するかを演算し、該演算結果を
(今回は例として、)0000(Hex) 〜07FF(Hex)
迄の2進数に変換して出力する。In this routine, the set flow rate of one gas flow rate controller and the full-scale flow rate of the flow rate controller are given as a 16-bit binary number, and the set flow rate corresponds to what percentage of the full-scale flow rate. Is calculated, and the calculation result is (for example, this time) 0000 (Hex) to 07FF (Hex)
It is converted to binary number and output.
【0021】演算式を次に示す。但し割り算は倍長演算
で処理する。この方法で演算を行うと桁落ち・桁あふれ
が無く演算できる。 [演算結果](Hex) =([ガスの流量制御器設定流量]
(Hex) ×[07FF](Hex) )/[使用する流量制御器
のフルスケール流量](Hex)The calculation formula is shown below. However, division is processed by double-precision arithmetic. If this method is used for calculation, there will be no missing digits or overflow. [Calculation result] (Hex) = ([Flow rate controller set flow rate of gas]
(Hex) x [07FF] (Hex)) / [Full-scale flow rate of flow controller used] (Hex)
【0022】次に、ガス流量計算ルーチンを説明する。Next, the gas flow rate calculation routine will be described.
【0023】このルーチンは「FS変換ルーチン」で出
力された各ガスの変換後の値から、混合ガス流量の混合
比を変えずに流せる最大流量を各ガスについて求める。 使用するガスの中での、FS変換値の最大値を求め
る。 [07FF](Hex) /FS変換値の最大値=Cを求
める。 で求めた計数Cを設定流量に掛けて調圧時の設定
流量を求める。This routine obtains the maximum flow rate of each gas that can be flowed without changing the mixing ratio of the mixed gas flow rates from the converted values of each gas output in the "FS conversion routine". The maximum value of the FS conversion value in the gas used is determined. The maximum value of [07FF] (Hex) / FS conversion value = C is obtained. The set flow rate at the time of pressure regulation is obtained by multiplying the set flow rate by the count C obtained in.
【0024】前記FS変換値は流量制御器の設定流量が
該流量制御器のフルスケールの何%に当たるかを示して
いるので、使用するガスの中でのFS変換値の最大値を
求め、FS変換の最大値[07FF](Hex) との比率を
計算すると、最もフルスケールに近い流量を設定してい
る流量制御器(FS変換値が最大の流量制御器)の流量
をフルスケール流量にするには、現在の設定値を何倍に
すればよいか、余裕度の定数が求まる。Since the FS converted value indicates what percentage of the full scale of the flow controller the set flow rate of the flow controller corresponds to, the maximum value of the FS converted value in the gas used is calculated, When calculating the ratio with the maximum value of conversion [07FF] (Hex), the flow rate of the flow rate controller (flow rate controller with the maximum FS conversion value) that sets the flow rate closest to full scale is set to full scale flow rate. , A margin constant can be obtained by multiplying the current set value.
【0025】使用する全ガス種それぞれの流量制御器の
設定流量に前記定数を掛ければ、使用する全ガス種それ
ぞれの流量制御器のフルスケールを越えない範囲で且ガ
ス混合比を変えないで流せる最大流量が求まることにな
る。By multiplying the set flow rate of the flow rate controller for each of all the gas types used by the above constant, it is possible to flow without changing the gas mixing ratio within the range not exceeding the full scale of the flow rate controller of each of the all gas types used. Maximum flow rate will be obtained.
【0026】次にガス流量制御ルーチンを説明する。Next, the gas flow rate control routine will be described.
【0027】このルーチンは、「FS変換ルーチン」と
「ガス流量計算ルーチン」で求めたガス設定流量を基に
実際にガス流量を流量制御器に出力するルーチンであ
る。This routine is a routine for actually outputting the gas flow rate to the flow rate controller based on the gas set flow rate obtained by the "FS conversion routine" and the "gas flow rate calculation routine".
【0028】前述した様に、ガス供給開始時にガス流量
計算ルーチンで求めたガス流量を設定すると多量のガス
が一気に流れ、真空槽内のパーティクルの巻上げの原因
になる虞れがある為、所定のランプUP時間に設定流量
に達する様流量制御器設定ランプレートを計算し、ガス
供給開始時は全ガス設定流量は0sccmとしておき、時間
と共に流量制御器の設定流量を変化させる。又調圧終了
前にガス流量を通常のプロセスガス流量にダウンさせ
る。As described above, if the gas flow rate calculated by the gas flow rate calculation routine is set at the start of gas supply, a large amount of gas flows at once, which may cause particles to be wound up in the vacuum chamber. The ramp controller set ramp rate is calculated so as to reach the preset flow rate during the ramp-up time, the total gas preset flow rate is set to 0 sccm at the start of gas supply, and the preset flow rate of the flow controller is changed with time. Further, the gas flow rate is reduced to a normal process gas flow rate before the pressure adjustment is completed.
【0029】上記一連シーケンスでのガス設定流量変
化、処理室の圧力を図2に示す。FIG. 2 shows changes in the set gas flow rate and the pressure in the processing chamber in the above sequence.
【0030】尚、上記実施例では3のガスラインについ
て説明したが、2又は4以上のガスラインを有する場合
でも同様に実施できることは言う迄もない。In the above embodiment, 3 gas lines have been described, but it goes without saying that the same operation can be carried out even if there are 2 or 4 or more gas lines.
【0031】[0031]
【発明の効果】以上述べた如く本発明によれば、下記の
優れた効果を発揮する。As described above, according to the present invention, the following excellent effects are exhibited.
【0032】 調圧時に多量のプロセスガスを供給
し、高真空からプロセス圧力に到達する時間が短縮でき
る。It is possible to supply a large amount of process gas at the time of pressure regulation and shorten the time required to reach the process pressure from the high vacuum.
【0033】 調圧時も通常のプロセスガスと同じガ
ス混合比のガスを供給しているので、プロセス開始時に
ガス組成が違う為狙ったプロセス結果が得られないと言
うことはない。Since the gas having the same gas mixture ratio as the normal process gas is supplied during the pressure adjustment, it is possible to obtain the desired process result because the gas composition is different at the start of the process.
【0034】 ガス供給時にガス流量をランプUPし
ているので、パーティクルの巻上げを抑えることができ
る。Since the gas flow rate is ramped up when the gas is supplied, it is possible to suppress the particles from being wound up.
【図1】本発明を実施する装置の一例を示すブロック図
である。FIG. 1 is a block diagram showing an example of an apparatus for implementing the present invention.
【図2】(A)(B)(C)は各ラインのガスの流量制
御状態を示すグラフ、(D)は真空処理室の圧力状態を
示すグラフである。2A, 2B and 2C are graphs showing a gas flow rate control state of each line, and FIG. 2D is a graph showing a pressure state of a vacuum processing chamber.
【図3】半導体製造装置の概略を示す説明図である。FIG. 3 is an explanatory diagram showing an outline of a semiconductor manufacturing apparatus.
5 第1流量調節器 7 第2流量調節器 9 第3流量調節器 13 可変コンダクタンスバルブ 15 制御器 16 外部入力器 17 記憶器 18 圧力センサ 5 1st flow controller 7 2nd flow controller 9 3rd flow controller 13 Variable conductance valve 15 Controller 16 External input device 17 Memory device 18 Pressure sensor
Claims (3)
ンを有する半導体製造装置に於いて、前記ガスラインに
それぞれ流量調節器を設け、該それぞれの流量調節器の
プロセス条件設定流量に対するフルスケールの余裕度を
求め、余裕度の1番小さいガスラインの余裕度を定数と
して各ガスラインに於けるプロセス条件設定流量に乗じ
た流量を求め、この求められたガス流量を最大流量とし
て真空処理室に供給して調圧を行うことを特徴とする半
導体製造装置の真空処理室圧力制御方法。1. A semiconductor manufacturing apparatus having a plurality of gas lines communicating with a vacuum processing chamber, wherein each gas line is provided with a flow rate controller, and a full scale for a process condition set flow rate of each of the flow rate controllers. The margin is calculated, the margin of the gas line with the smallest margin is used as a constant, and the flow rate is multiplied by the process condition setting flow rate in each gas line. The obtained gas flow rate is used as the maximum flow rate in the vacuum processing chamber. A method for controlling a pressure in a vacuum processing chamber of a semiconductor manufacturing apparatus, comprising:
ス流量を増減させる請求項1の半導体製造装置の真空処
理室圧力制御方法。2. The method of controlling the pressure in a vacuum processing chamber of a semiconductor manufacturing apparatus according to claim 1, wherein the gas flow rate is increased or decreased while maintaining the gas mixture ratio of the process conditions.
ンと、該それぞれのガスラインに設けられた流量調節器
と、それぞれの流量調節器のフルスケールに対するプロ
セス条件設定流量の余裕度を求め、余裕度の1番小さい
ガスラインの余裕度を定数として各ガスラインに於ける
プロセス条件設定流量に乗じた流量を求め、この求めら
れたガス流量を最大流量として前記流量調節器を制御す
る制御器とを具備することを特徴とする半導体製造装置
の真空処理室圧力制御装置。3. A plurality of gas lines communicating with the vacuum processing chamber, flow rate controllers provided in the respective gas lines, and a margin of process condition setting flow rate with respect to full scale of each flow rate controller are obtained. , A control for controlling the flow rate regulator by using the margin of the gas line with the smallest margin as a constant to obtain a flow rate multiplied by the process condition setting flow rate in each gas line, and using the obtained gas flow rate as the maximum flow rate. And a vacuum processing chamber pressure control apparatus for a semiconductor manufacturing apparatus.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31920494A JPH08153681A (en) | 1994-11-29 | 1994-11-29 | Vacuum processing chamber pressure control method of semiconductor manufacture device and its device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31920494A JPH08153681A (en) | 1994-11-29 | 1994-11-29 | Vacuum processing chamber pressure control method of semiconductor manufacture device and its device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH08153681A true JPH08153681A (en) | 1996-06-11 |
Family
ID=18107578
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP31920494A Pending JPH08153681A (en) | 1994-11-29 | 1994-11-29 | Vacuum processing chamber pressure control method of semiconductor manufacture device and its device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH08153681A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100631919B1 (en) * | 2000-11-07 | 2006-10-04 | 삼성전자주식회사 | vacuum pressure system and using method there of |
-
1994
- 1994-11-29 JP JP31920494A patent/JPH08153681A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100631919B1 (en) * | 2000-11-07 | 2006-10-04 | 삼성전자주식회사 | vacuum pressure system and using method there of |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7253107B2 (en) | Pressure control system | |
JP3830670B2 (en) | Semiconductor manufacturing equipment | |
US3601588A (en) | Method and apparatus for adaptive control | |
TWI723170B (en) | Flow rate control device and storage medium on which is stored a program for a flow rate control device | |
JPS6330518B2 (en) | ||
US20040168719A1 (en) | System for dividing gas flow | |
JPS6318414A (en) | Apparatus and method for regulating and controlling pressureof vacuum chamber | |
JPH08153681A (en) | Vacuum processing chamber pressure control method of semiconductor manufacture device and its device | |
JPS6033530B2 (en) | Kneading control method of closed type kneader | |
JPH0413005B2 (en) | ||
JP2008248395A (en) | Plasma treating apparatus and pressure control method of plasma treating apparatus | |
SU1174909A1 (en) | Device for controlling two connected parameters | |
JPH02151027A (en) | Manufacture of semiconductor device | |
SU951246A1 (en) | Device for gas consumption regulator | |
SU787363A1 (en) | Method of automatic control of process of ammonia synthesis | |
JPH09251301A (en) | Pump controller | |
JPS61125488A (en) | Blower control device | |
JPH03129207A (en) | Air flow rate control device for boiler | |
JPS563885A (en) | Cooling-water flow rate controller of condenser | |
SU504010A1 (en) | A method for automatically maintaining pressure in an integrated output channel of a group of compressors | |
JPH0962368A (en) | Controlling method for process flow rate | |
JPH06236857A (en) | Pressure controlling method of semiconductor manufacturing apparatus | |
JP2002041106A (en) | Proportional integral control method for plant | |
JPS60175743A (en) | Control device for gas engine | |
JPH0338602B2 (en) |