JPH08152225A - Absorption water cooling-heating machine - Google Patents

Absorption water cooling-heating machine

Info

Publication number
JPH08152225A
JPH08152225A JP6295330A JP29533094A JPH08152225A JP H08152225 A JPH08152225 A JP H08152225A JP 6295330 A JP6295330 A JP 6295330A JP 29533094 A JP29533094 A JP 29533094A JP H08152225 A JPH08152225 A JP H08152225A
Authority
JP
Japan
Prior art keywords
cooling water
temperature
cooling
condenser
supply operation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6295330A
Other languages
Japanese (ja)
Other versions
JP3075944B2 (en
Inventor
Shuji Ishizaki
修司 石崎
Masayuki Daino
正之 大能
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP06295330A priority Critical patent/JP3075944B2/en
Publication of JPH08152225A publication Critical patent/JPH08152225A/en
Application granted granted Critical
Publication of JP3075944B2 publication Critical patent/JP3075944B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

PURPOSE: To prevent breakdown of a member such as a heat exchanger constituting a cooling tower. CONSTITUTION: A bypass pipe 30 bypassing an absorber 5 and a condenser 2 of an absorption water cooling-heating machine is connected between the downstream side of a cooling water pump 27 and a cooling water circulation piping 24 stretching from the condenser 2 to a cooling tower 6, through the intermediary of a three-way valve 31. A temperature detector 33 detecting the temperature of cooling water flowing into the cooling tower 6 is provided and the opening of the three-way valve 31 is controlled by a control device 32 so that the flow rate of the cooling water flowing to the bypass pipe 30 be increased as the temperature detected by the temperature detector 33 becomes high, after switchover from a hot water supply operation to a cold water supply operation. Thereby it is avoided that cooling water of a high temperature flows to the cooling tower 6.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は吸収冷温水機に関し、特
に、吸収器、凝縮器及び冷却塔を配管接続して冷却水循
環路を形成した吸収冷温水機に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an absorption chiller-heater, and more particularly to an absorption chiller-heater in which an absorber, a condenser and a cooling tower are connected by piping to form a cooling water circulation passage.

【0002】[0002]

【従来の技術】例えば特開平5−248723号公報に
は、冷却水循環ポンプの下流側と凝縮器からクーリング
タワーへの連絡管路との間を補助管にて連結し、この補
助管に開閉制御手段を設け、暖房運転モードから冷房運
転モードへの切替時に一時的に開閉制御手段を開き、冷
却塔からの低温の冷却水を補助管を介して連結管路へ流
し、凝縮器からの高温の冷却水に混合させて温度を低下
させる。そして、一定時間後、冷却水の高温状態が解消
された後、開閉制御手段を閉じて正常な冷房運転に移る
ようにした吸収式冷温水ユニットが開示されている。こ
のため、暖房運転モードから冷房運転モードへの切替時
に高温の冷却水が直接冷却ユニットへ流れることがな
く、冷却ユニットの破損を回避することができる。
2. Description of the Related Art For example, in Japanese Unexamined Patent Publication No. 5-248723, an auxiliary pipe connects a downstream side of a cooling water circulation pump and a communication pipe line from a condenser to a cooling tower, and an opening / closing control means is connected to the auxiliary pipe. The opening / closing control means is temporarily opened at the time of switching from the heating operation mode to the cooling operation mode, and the low-temperature cooling water from the cooling tower is caused to flow to the connecting pipeline via the auxiliary pipe, and the high-temperature cooling from the condenser is performed. Mix with water to reduce temperature. Then, after a certain period of time, after the high temperature state of the cooling water is eliminated, the absorption type cold / hot water unit is disclosed in which the opening / closing control means is closed to shift to normal cooling operation. Therefore, when the heating operation mode is switched to the cooling operation mode, high-temperature cooling water does not flow directly to the cooling unit, and damage to the cooling unit can be avoided.

【0003】[0003]

【発明が解決しようとする課題】上記従来の技術では、
暖房運転モードから冷房運転モードへの切替時に凝縮器
から流出した冷却水の温度に関係なく、開閉制御手段が
開かれ、冷却ユニットから流出した冷却水のうち一定量
が一定時間補助管を流れ、このため、例えば暖房運転モ
ードの時間が短く吸収器及び凝縮器の冷却水の温度が高
温になっていないときにも、一定時間吸収器及び凝縮器
へ流れる冷却水の量が減少し、吸収器の冷媒吸収能力及
び凝縮器の冷媒蒸気の凝縮能力が上昇せず、この結果、
冷房運転モードへの切り替わりが遅れるという問題が発
生する。
SUMMARY OF THE INVENTION In the above conventional technique,
Regardless of the temperature of the cooling water flowing out of the condenser when switching from the heating operation mode to the cooling operation mode, the opening / closing control means is opened, and a certain amount of the cooling water flowing out of the cooling unit flows through the auxiliary pipe for a certain time. Therefore, for example, even when the heating operation mode time is short and the cooling water temperature of the absorber and the condenser is not high, the amount of cooling water flowing to the absorber and the condenser decreases for a certain period of time, The refrigerant absorption capacity of the condenser and the condensation capacity of the refrigerant vapor of the condenser do not increase, and as a result,
There is a problem that the switching to the cooling operation mode is delayed.

【0004】また、上記の一定時間が経過して開閉制御
手段が閉じたときには、冷却水循環ポンプから吐出した
低温の冷却水が急激に吸収器及び凝縮器へ流れ、吸収器
及び凝縮器の能力が急激に回復して冷凍能力も急激に増
加する。このため、蒸発器から流出する冷水の温度も急
激に低下して冷水出口温度が設定温度以下に下がった
り、冷水出口温度にハンチングが発生するなどの問題が
起きる。
Further, when the opening / closing control means is closed after the lapse of the above-mentioned certain time, the low-temperature cooling water discharged from the cooling water circulation pump rapidly flows to the absorber and the condenser, and the capacity of the absorber and the condenser is reduced. It recovers rapidly and the refrigerating capacity also increases rapidly. For this reason, the temperature of the cold water flowing out from the evaporator also sharply decreases, and the cold water outlet temperature falls below a set temperature, and problems such as hunting occurring at the cold water outlet temperature occur.

【0005】本発明は、暖房運転モード(温水供給運
転)から冷房運転モード(冷水供給運転)への切り替わ
りを、冷却塔の破損を回避しつつスムーズに短時間で行
うことを目的とする。
An object of the present invention is to smoothly switch the heating operation mode (hot water supply operation) to the cooling operation mode (cool water supply operation) while avoiding damage to the cooling tower.

【0006】[0006]

【課題を解決するための手段】本発明は上記課題を解決
するために、請求項1の発明は、再生器、凝縮器、蒸発
器及び吸収器などを配管接続して冷媒及び吸収液の循環
路を形成し、吸収器、凝縮器、冷却塔及び冷却水ポンプ
を順次配管接続して冷却水循環路を形成し、蒸発器から
冷水を供給する冷水供給運転と、再生器から蒸発器へ冷
媒蒸気を送り蒸発器から温水を供給する温水供給運転と
を切換えて行う吸収冷温水機において、冷却水ポンプの
下流側と凝縮器から冷却塔へ至る冷却水循環路との間に
制御弁を介して接続され、吸収器及び凝縮器を側路する
バイパス管と、冷却塔へ流入する冷却水の温度を検出す
る温度検出器と、温水供給運転から冷水供給運転への切
換え後この温度検出器の検出温度が高くなるのに伴いバ
イパス管に流れる冷却水の流量が増大するように制御弁
の開度を制御する制御装置とを備えた吸収冷温水機を提
供するものである。
In order to solve the above-mentioned problems, the present invention according to claim 1 circulates a refrigerant and an absorbing liquid by connecting a regenerator, a condenser, an evaporator, an absorber and the like by piping. A cooling water supply operation that supplies cold water from the evaporator and a refrigerant vapor from the regenerator to the evaporator by forming a channel, connecting the absorber, condenser, cooling tower and cooling water pump in sequence to form a cooling water circulation channel. In an absorption chiller-hot water machine that switches between hot water supply operation to supply hot water from the evaporator and a hot water supply operation, it is connected via a control valve between the cooling water pump downstream side and the cooling water circulation path from the condenser to the cooling tower. The bypass pipe that bypasses the absorber and condenser, the temperature detector that detects the temperature of the cooling water flowing into the cooling tower, and the temperature detected by this temperature detector after switching from the hot water supply operation to the cold water supply operation Flows into the bypass pipe as the Flow rate of 却水 is intended to provide an absorbent chiller that includes a control device for controlling the opening of the control valve so as to increase.

【0007】また、請求項2の発明は、再生器、凝縮
器、蒸発器及び吸収器などを配管接続して冷媒及び吸収
液の循環路を形成し、吸収器、凝縮器、冷却塔及び冷却
水ポンプを順次配管接続して冷却水循環路を形成し、蒸
発器から冷水を供給する冷水供給運転と、再生器から蒸
発器へ冷媒蒸気を送り蒸発器から温水を供給する温水供
給運転とを切換えて行う吸収冷温水機において、冷却水
ポンプの下流側と凝縮器から冷却塔へ至る冷却水循環路
との間に制御弁を介して接続され、吸収器及び凝縮器を
側路するバイパス管と、冷却塔へ流入する冷却水の温度
を検出する温度検出器と、温水供給運転から冷水供給運
転への切換え後、温度検出器の検出温度が設定温度まで
下がるまで、下式 m×Cp×T3=m1×Cp×T1+(m−m1)×C
p×T2 にm=1、T1=冷却水の吸収器流入側温度の上限値、
T2=凝縮器の流出側温度の上限値、T3=冷却水の冷
却塔入口側温度の上限値及びCp=冷却水の比熱を入力
して得られたバイパス管へ流す冷却水の割合m1に制御
弁のバイパス管側の開度を制御する制御装置とを備えた
吸収冷温水機を提供するものである。
Further, in the invention of claim 2, a regenerator, a condenser, an evaporator, an absorber and the like are connected by piping to form a circulation path for the refrigerant and the absorbing liquid, and the absorber, the condenser, the cooling tower and the cooling are provided. Switching between a cold water supply operation that supplies cold water from the evaporator and a hot water supply operation that supplies refrigerant vapor from the regenerator to the evaporator to supply hot water from the evaporator by forming a cooling water circulation path by sequentially connecting water pumps In the absorption chiller-heater to be performed by, a bypass pipe connected via a control valve between the downstream side of the cooling water pump and the cooling water circulation path from the condenser to the cooling tower, and bypassing the absorber and the condenser. After the temperature detector that detects the temperature of the cooling water that flows into the cooling tower and after switching from the hot water supply operation to the cold water supply operation, the following formula m × Cp × T3 = m1 x Cp x T1 + (m-m1) x C
m = 1 in p × T2, T1 = upper limit value of the cooling water absorber inflow side temperature,
T2 = the upper limit value of the outlet side temperature of the condenser, T3 = the upper limit value of the cooling tower inlet side temperature of the cooling water, and Cp = the cooling water flow rate to the bypass pipe obtained by inputting the specific heat of the cooling water. The present invention provides an absorption chiller-heater equipped with a control device that controls the opening of the valve on the bypass pipe side.

【0008】さらに、請求項3の発明は、再生器、凝縮
器、蒸発器及び吸収器などを配管接続して冷媒及び吸収
液の循環路を形成し、吸収器、凝縮器、冷却塔及び冷却
水ポンプを順次配管接続して冷却水循環路を形成し、蒸
発器から冷水を供給する冷水供給運転と、再生器から蒸
発器へ冷媒蒸気を送り蒸発器から温水を供給する温水供
給運転とを切換えて行う吸収冷温水機において、冷却水
ポンプの下流側と凝縮器から冷却塔へ至る冷却水循環路
との間に制御弁を介して接続され、吸収器及び凝縮器を
側路するバイパス管と、吸収器の流入側の冷却水温度を
検出する冷却水入口温度検出器と、凝縮器の出口側の冷
却水温度を検出する冷却水出口温度検出器と、冷却水出
口温度検出器及び冷却水入口温度検出器から温度信号を
入力して温水供給運転から冷水供給運転への切換え後、
下式 m×Cp×T3=m1×Cp×T1+(m−m1)×C
p×T2 にm=1、T1=冷却水入口温度検出器の検出温度、T
2=冷却水出口温度検出器の検出温度、T3=冷却水の
冷却塔入口側の温度の上限値及びCp=冷却水の比熱を
入力して得られたバイパス管へ流す冷却水の割合m1に
制御弁のバイパス管側の開度を制御する制御装置とを備
えた吸収冷温水機を提供するものである。
Further, in the invention of claim 3, a regenerator, a condenser, an evaporator, an absorber and the like are connected by piping to form a circulation path for the refrigerant and the absorbing liquid, and the absorber, the condenser, the cooling tower and the cooling are provided. Switching between a cold water supply operation that supplies cold water from the evaporator and a hot water supply operation that supplies refrigerant vapor from the regenerator to the evaporator to supply hot water from the evaporator by forming a cooling water circulation path by sequentially connecting water pumps In the absorption chiller-heater to be performed by, a bypass pipe connected via a control valve between the downstream side of the cooling water pump and the cooling water circulation path from the condenser to the cooling tower, and bypassing the absorber and the condenser. Cooling water inlet temperature detector that detects the cooling water temperature on the inlet side of the absorber, cooling water outlet temperature detector that detects the cooling water temperature on the outlet side of the condenser, cooling water outlet temperature detector and cooling water inlet Supply hot water by inputting temperature signal from temperature detector After switching to the cold water supply operation from a converter,
The following formula m × Cp × T3 = m1 × Cp × T1 + (m−m1) × C
In p × T2, m = 1, T1 = cooling water inlet temperature detector detection temperature, T
2 = the temperature detected by the cooling water outlet temperature detector, T3 = the upper limit of the temperature of the cooling water at the inlet side of the cooling tower, and Cp = the ratio m1 of the cooling water flowing to the bypass pipe obtained by inputting the specific heat of the cooling water. The present invention provides an absorption chiller-heater equipped with a control device that controls the opening of the control valve on the bypass pipe side.

【0009】また、請求項4の発明は、再生器、凝縮
器、蒸発器及び吸収器などを配管接続して冷媒及び吸収
液の循環路を形成し、吸収器、凝縮器、冷却塔及び冷却
水ポンプを順次配管接続して冷却水循環路を形成し、蒸
発器から冷水を供給する冷水供給運転と、再生器から蒸
発器へ冷媒蒸気を送り蒸発器から温水を供給する温水供
給運転とを切換えて行う吸収冷温水機において、冷却水
ポンプの下流側と凝縮器から冷却塔へ至る冷却水循環路
との間に制御弁を介して接続され、吸収器及び凝縮器を
側路するバイパス管と、冷却塔へ流入する冷却水の温度
を検出する温度検出器と、温水供給運転から冷水供給運
転への切換え後この温度検出器の検出温度が高くなるの
に伴いバイパス管に流れる冷却水の流量が増大するよう
に制御弁の開度を制御すると共に冷却塔へ運転信号を連
続して出力する制御装置とを備えた吸収冷温水機を提供
するものである。
Further, according to the invention of claim 4, a regenerator, a condenser, an evaporator, an absorber and the like are connected by piping to form a circulation path for the refrigerant and the absorbing liquid, and the absorber, the condenser, the cooling tower and the cooling are provided. Switching between a cold water supply operation that supplies cold water from the evaporator and a hot water supply operation that supplies refrigerant vapor from the regenerator to the evaporator to supply hot water from the evaporator by forming a cooling water circulation path by sequentially connecting water pumps In the absorption chiller-heater to be performed by, a bypass pipe connected via a control valve between the downstream side of the cooling water pump and the cooling water circulation path from the condenser to the cooling tower, and bypassing the absorber and the condenser. The temperature detector that detects the temperature of the cooling water flowing into the cooling tower, and the flow rate of the cooling water flowing through the bypass pipe as the temperature detected by this temperature detector increases after switching from the hot water supply operation to the cold water supply operation. Control valve opening to increase It is to provide an absorbent chiller having a control device for continuously outputting driving signals to the cooling tower as well as.

【0010】[0010]

【作用】請求項1の発明によれば、温水供給運転から冷
水供給運転に切換わったとき、制御装置は温度検出器が
検出した冷却水出口温度に基づいて弁の開度を制御し、
冷却塔へは吸収冷温水機からの高温の冷却水とバイパス
管からの冷温の冷却水とが適度に混ざって温度が低下し
て戻り、冷却塔を構成する熱交換器等の部材が破損する
ことを回避でき、冷却塔の故障、冷却能力の低下等を防
止し、冷却水循環回路の安全性を向上することが可能に
なる。
According to the invention of claim 1, when the hot water supply operation is switched to the cold water supply operation, the control device controls the opening degree of the valve based on the cooling water outlet temperature detected by the temperature detector,
To the cooling tower, the high-temperature cooling water from the absorption chiller-heater and the cooling-temperature cooling water from the bypass pipe are mixed appropriately and the temperature is lowered and returned, and the members such as the heat exchanger that compose the cooling tower are damaged. This makes it possible to prevent the failure of the cooling tower, the deterioration of the cooling capacity, etc., and improve the safety of the cooling water circulation circuit.

【0011】また、請求項2の発明によれば、温水供給
運転から冷水供給運転への切換時の弁のバイパス管側の
開度は、予め、冷却水の吸収器流入側温度の上限値T
1、凝縮器の流出側温度の上限値T2、冷却水の冷却塔
入口側の上限値即ち冷却水出口温度の上限値T3、冷却
水の比熱Cp及び全体の冷却水流量m=1に基づいて算
出され、実際の吸収冷温水機の運転時、温水供給運転か
ら冷水供給運転への切換時、弁のバイパス管側の開度が
予め算出された上記開度に制御され、この結果、冷却水
の吸収器流入側の温度が上限値T1近くまで上昇してい
るとき、凝縮器の流出側の冷却水温度が上限値T2近く
まで上昇しているとき、あるいは冷却水の吸収器流入側
の温度及び凝縮器の流出側の冷却水温度が上限値T1、
T2近くまで上昇しているときにも、冷却水出口温度は
上限値T3より確実に低く抑えられ、冷却塔が高温の冷
却水によって破損することを容易に回避することが可能
になる。
Further, according to the second aspect of the present invention, the opening degree of the valve on the bypass pipe side at the time of switching from the hot water supply operation to the cold water supply operation is preset to the upper limit value T of the cooling water absorber inflow side temperature.
1. Based on the upper limit value T2 of the outlet side temperature of the condenser, the upper limit value of the cooling water inlet side of the cooling tower, that is, the upper limit value T3 of the cooling water outlet temperature, the specific heat Cp of the cooling water, and the total cooling water flow rate m = 1. When the actual absorption chiller-heater is operated, when the hot water supply operation is switched to the cold water supply operation, the opening of the valve on the bypass pipe side is controlled to the previously calculated opening. When the temperature on the inlet side of the absorber of the cooling water has risen to near the upper limit value T1, the temperature of the cooling water on the outlet side of the condenser rises to near the upper limit value T2, or the temperature of the cooling water on the inlet side of the absorber And the cooling water temperature on the outflow side of the condenser is the upper limit value T1,
Even when the temperature rises to near T2, the cooling water outlet temperature can be reliably suppressed to be lower than the upper limit value T3, and it becomes possible to easily prevent the cooling tower from being damaged by the high temperature cooling water.

【0012】また、請求項3の発明によれば、温水供給
運転から冷水供給運転への切換時の弁のバイパス管側の
開度は、冷却水の吸収器流入側温度t1、凝縮器の流出
側温度t2、冷却水の冷却塔入口側の上限値即ち冷却水
出口温度の上限値T3、冷却水の比熱Cp及び全体の冷
却水流量m=1に基づいて算出される。そして、実際の
吸収冷温水機の運転時での温水供給運転から冷水供給運
転への切換時、弁のバイパス管側の開度が算出された上
記開度に制御される。このため、冷却水の吸収器流入側
の温度が高いほど、あるいは、凝縮器の流出側の冷却水
温度が高いほど制御装置による弁のバイパス管側の開度
は大きくなり、それぞれの温度に応じて弁の開度を制御
でき、冷却水出口温度は上限値T3より確実に低く抑え
られ、冷却塔が高温の冷却水によって破損することを容
易に回避することが可能になる。
Further, according to the third aspect of the invention, the opening degree of the valve on the bypass pipe side at the time of switching from the hot water supply operation to the cold water supply operation is such that the cooling water absorber inlet temperature t1 and the condenser outflow. It is calculated based on the side temperature t2, the upper limit value of the cooling water on the inlet side of the cooling tower, that is, the upper limit value T3 of the cooling water outlet temperature, the specific heat Cp of the cooling water, and the total cooling water flow rate m = 1. Then, when the hot water supply operation is switched to the cold water supply operation during the actual operation of the absorption chiller-heater, the opening degree of the valve on the bypass pipe side is controlled to the calculated opening degree. Therefore, the higher the temperature of the cooling water on the inlet side of the absorber or the higher the temperature of the cooling water on the outlet side of the condenser, the greater the degree of opening of the valve on the bypass pipe side by the control device. The opening degree of the valve can be controlled, the cooling water outlet temperature can be reliably suppressed to be lower than the upper limit value T3, and the cooling tower can be easily prevented from being damaged by the high temperature cooling water.

【0013】さらに、請求項4の発明によれば、温水供
給運転から冷水供給運転に切換わったとき、制御装置は
温度検出器が検出した冷却水出口温度に基づいて弁の開
度を制御し、冷却塔に高温の冷却水が戻ってくることを
回避でき、冷却塔を構成する熱交換器等の部材が破損す
ることを防止することが可能になる。また、温水供給運
転から冷水供給運転への切換わり直後から冷却塔は運転
を開始するので、冷却塔に戻った冷却水は切換わり直後
から放熱し冷却され、吸収器及び凝縮器へ流れ、それぞ
れの温度低下を促進することが可能になる。
Further, according to the invention of claim 4, when the hot water supply operation is switched to the cold water supply operation, the control device controls the opening degree of the valve based on the cooling water outlet temperature detected by the temperature detector. Therefore, it is possible to prevent the high-temperature cooling water from returning to the cooling tower, and it is possible to prevent the members such as the heat exchanger that constitute the cooling tower from being damaged. Further, since the cooling tower starts operation immediately after switching from the hot water supply operation to the cold water supply operation, the cooling water returned to the cooling tower radiates heat immediately after switching and is cooled and flows to the absorber and the condenser, respectively. It is possible to accelerate the temperature decrease of

【0014】[0014]

【実施例】以下、本発明の一実施例を図面に基づいて詳
細に説明する。図に示したAは吸収式冷温水機であり、
冷媒に例えば水(H2 O)、吸収液(溶液)に臭化リチ
ウム(LiBr)溶液を使用したものである。図におい
て、1はガスバーナ1Bを備えた再生器、2は凝縮器、
3は蒸発器4及び吸収器5を収納した下胴、6は冷却
塔、7は熱交換器、8乃至11は吸収液配管、12は吸
収液ポンプ、13は再生器1と熱交換器7との間の吸収
液配管10の途中から分岐して下胴3の吸収器5に至る
吸収液配管、14は吸収液配管13の途中に設けられた
第1の開閉弁、15及び16は冷媒配管、17は冷媒循
環管、18は冷媒ポンプ、20は冷媒配管15の途中か
ら分岐して下胴3の吸収器5の気相部に至る冷媒蒸気配
管、21は冷媒蒸気配管20の途中に設けられた第2の
開閉弁である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below in detail with reference to the drawings. A shown in the figure is an absorption chiller-heater,
For example, water (H2 O) is used as the refrigerant, and lithium bromide (LiBr) solution is used as the absorbing liquid (solution). In the figure, 1 is a regenerator equipped with a gas burner 1B, 2 is a condenser,
Reference numeral 3 is a lower body accommodating the evaporator 4 and absorber 5, 6 is a cooling tower, 7 is a heat exchanger, 8 to 11 are absorption liquid pipes, 12 is an absorption liquid pump, 13 is a regenerator 1 and a heat exchanger 7. Between the absorption liquid pipe 10 and the absorbent liquid pipe branching to the absorber 5 of the lower body 3, 14 is a first on-off valve provided in the absorption liquid pipe 13, and 15 and 16 are refrigerants. Piping, 17 is a refrigerant circulation pipe, 18 is a refrigerant pump, 20 is a refrigerant vapor pipe branching from the middle of the refrigerant pipe 15 to the gas phase portion of the absorber 5 of the lower body 3, 21 is an intermediate part of the refrigerant vapor pipe 20. It is a second on-off valve provided.

【0015】22乃至24は途中に吸収器熱交換器25
及び凝縮器熱交換器26が接続された冷却水配管であ
り、これらの冷却水配管22、23及び24は冷却水が
冷却塔6から吸収器熱交換器25及び凝縮器熱交換器2
6を順次流れて冷却塔6に戻るように接続されている。
そして、冷却水配管22の途中には冷却水ポンプ27及
び第3の開閉弁28が設けられている。また、冷却水配
管24の途中には第4の開閉弁29が設けられている。
30は冷却水配管22の冷媒ポンプ27下流側から分岐
して第4の開閉弁29の下流側に三方弁31を介して接
続されたバイパス管であり、吸収器熱交換器25及び凝
縮器熱交換器26を側路して接続されている。
22 to 24 are absorber heat exchangers 25 on the way
And cooling water pipes to which the condenser heat exchanger 26 is connected. These cooling water pipes 22, 23 and 24 are cooling water from the cooling tower 6 to the absorber heat exchanger 25 and the condenser heat exchanger 2
It is connected so as to sequentially flow through 6 and return to the cooling tower 6.
A cooling water pump 27 and a third opening / closing valve 28 are provided in the cooling water pipe 22. A fourth opening / closing valve 29 is provided in the middle of the cooling water pipe 24.
Reference numeral 30 denotes a bypass pipe branched from the downstream side of the refrigerant pump 27 of the cooling water pipe 22 and connected to the downstream side of the fourth on-off valve 29 via a three-way valve 31, and the absorber heat exchanger 25 and the condenser heat It is connected by way of the exchanger 26.

【0016】32は吸収式冷温水機の制御装置、33は
冷却水配管24の三方弁31の冷却塔6側に設けられた
第1の温度検出器である。制御装置32は例えばマイコ
ンによって構成され、記憶装置34には、冷却水の冷却
塔6の流入温度すなわち第1の温度検出器33の検出温
度と三方弁31のバイパス管側開度及び冷却水出口側開
度(冷却水配管側開度)との図2に示したような関係が
予め記憶されている。そして、制御装置32は温水供給
運転から冷水供給運転への切替時図2の関係に基づいて
三方弁31へ開度信号を出力する。また、制御装置32
は第1、第2の開閉弁14、21へ冷水供給運転時に閉
信号を出力し、温水供給運転時に開信号を出力する。さ
らに、制御装置32は、第3、第4の開閉弁28、29
へ冷水供給運転時に開信号を出力し、温水供給運転時に
閉信号出力する。また、制御装置32は冷却水ポンプ2
7の運転時、冷却塔6の送風ファン6Fを駆動するファ
ンモータ6Mへ運転信号を出力する。
Reference numeral 32 is an absorption chiller-heater controller, and 33 is a first temperature detector provided on the cooling tower 6 side of the three-way valve 31 of the cooling water pipe 24. The control device 32 is composed of, for example, a microcomputer, and the storage device 34 stores in the cooling water the inflow temperature of the cooling tower 6, that is, the detection temperature of the first temperature detector 33, the bypass pipe side opening degree of the three-way valve 31, and the cooling water outlet. The relationship with the side opening (opening on the cooling water pipe side) as shown in FIG. 2 is stored in advance. Then, the control device 32 outputs an opening signal to the three-way valve 31 based on the relationship of FIG. 2 when switching from the hot water supply operation to the cold water supply operation. In addition, the control device 32
Outputs a close signal to the first and second on-off valves 14 and 21 during the cold water supply operation, and outputs an open signal during the hot water supply operation. Further, the control device 32 controls the third and fourth on-off valves 28, 29.
Outputs an open signal during cold water supply operation and outputs a closed signal during hot water supply operation. Further, the control device 32 is the cooling water pump 2
During the operation of 7, the operation signal is output to the fan motor 6M that drives the blower fan 6F of the cooling tower 6.

【0017】35は蒸発器3に接続された冷温水配管で
あり、36は蒸発器熱交換器、37は冷温水ポンプであ
る。そして、38は冷温水配管35の蒸発器3流出側に
設けられて冷温水の出口温度を検出する冷温水温度検出
器であり、制御装置32の記憶装置34には、冷水供給
運転及び温水供給運転に基づく第1、第2、第3、第4
開閉弁の開閉制御のプログラム、冷温水出口温度に基づ
くバーナ1Bの加熱量制御のプログラムなどが予め記憶
されている。
Reference numeral 35 is a cold / hot water pipe connected to the evaporator 3, 36 is an evaporator heat exchanger, and 37 is a cold / hot water pump. A cold / hot water temperature detector 38 is provided on the evaporator 3 outflow side of the cold / hot water pipe 35 to detect the outlet temperature of the cold / hot water. 1st, 2nd, 3rd, 4th based on driving
A program for controlling the opening / closing of the on-off valve, a program for controlling the heating amount of the burner 1B based on the hot / cold water outlet temperature, and the like are stored in advance.

【0018】以下、上記のように構成された吸収冷温水
機の運転時の動作について説明する。冷水供給運転時、
制御装置32は第1、第2開閉弁14、21に閉信号を
出力し、第3、第4開閉弁28、29に閉信号を出力す
る。また、制御装置32はバーナ1Bへ燃焼信号を出力
し、バーナ1Bは燃焼する。そして、再生器1において
濃度が薄い吸収液(以下稀吸収液という。)が加熱さ
れ、稀吸収液から冷媒が分離して蒸発する。蒸発した冷
媒は凝縮器2へ流れる。再生器1から凝縮器3へ流れた
冷媒蒸気は、凝縮器熱交換器26を流れる冷却水と熱交
換して凝縮液化し、冷媒配管16を経て蒸発器3へ流れ
る。そして、冷媒液が蒸発器熱交換器35内の冷水と熱
交換して蒸発し、気化熱によって冷水が冷却されて負荷
へ供給される。また、蒸発器3で蒸発した冷媒は吸収器
5へ流れ、散布された濃い吸収液(以下濃液という。)
に吸収される。
The operation of the absorption chiller-heater constructed as above will be described below. During cold water supply operation,
The controller 32 outputs a closing signal to the first and second opening / closing valves 14 and 21, and outputs a closing signal to the third and fourth opening / closing valves 28 and 29. Further, the control device 32 outputs a combustion signal to the burner 1B, and the burner 1B burns. Then, in the regenerator 1, the absorbent having a low concentration (hereinafter referred to as the rare absorbent) is heated, and the refrigerant is separated from the rare absorbent and evaporated. The evaporated refrigerant flows to the condenser 2. The refrigerant vapor flowing from the regenerator 1 to the condenser 3 exchanges heat with the cooling water flowing through the condenser heat exchanger 26 to be condensed and liquefied, and then flows to the evaporator 3 via the refrigerant pipe 16. Then, the refrigerant liquid exchanges heat with the cold water in the evaporator heat exchanger 35 to evaporate, and the cold water is cooled by the heat of vaporization and supplied to the load. In addition, the refrigerant evaporated in the evaporator 3 flows to the absorber 5 and is dispersed as a thick absorption liquid (hereinafter referred to as a concentrated liquid).
Is absorbed by

【0019】吸収器5にて冷媒を吸収して濃度が薄くな
った稀吸収液は、吸収液ポンプ12の運転によって熱交
換器7を経て温度上昇して再生器1へ送られる。再生器
1に流入した稀吸収液はバーナ1Bによって加熱され、
冷媒が分離して蒸発し、濃度が高くなった濃液が熱交換
器7を経て温度低下して温度低下して吸収器5へ流れ、
散布される。
The rare absorbent which has become thin in concentration by absorbing the refrigerant in the absorber 5 is sent to the regenerator 1 through the heat exchanger 7 as the temperature thereof rises by the operation of the absorber pump 12. The rare absorbent flowing into the regenerator 1 is heated by the burner 1B,
The concentrated liquid, which has a high concentration, is separated from the refrigerant and evaporated, and the concentrated liquid is lowered in temperature through the heat exchanger 7 and is cooled to flow into the absorber 5,
It is scattered.

【0020】上記のように吸収冷温水機が運転されてい
るとき、制御装置32は冷温水温度検出器38から冷水
出口温度の信号を入力し、この信号に基づいてバーナ1
Bへの燃料供給量が調節され、バーナ1Bの加熱量が制
御される。また、制御装置32は第1の温度検出器33
から温度信号を入力し、記憶装置34に記憶された図2
の関係に基づいた開度信号を三方弁31へ出力する。そ
して、第1の温度検出器33の検出温度が例えば40℃
以下である場合には、三方弁31のバイパス管30側の
開度は0%、冷却水配管24側の開度は100%に制御
される。
When the absorption chiller-heater is operated as described above, the controller 32 inputs a signal of the chilled water outlet temperature from the chilled-hot water temperature detector 38, and based on this signal, the burner 1
The fuel supply amount to B is adjusted, and the heating amount of the burner 1B is controlled. Further, the control device 32 uses the first temperature detector 33.
The temperature signal is input from the storage device 34 and stored in the storage device 34 shown in FIG.
The opening degree signal based on the relationship is output to the three-way valve 31. Then, the temperature detected by the first temperature detector 33 is, for example, 40 ° C.
In the following cases, the opening degree of the three-way valve 31 on the bypass pipe 30 side is controlled to 0% and the opening degree of the cooling water pipe 24 side is controlled to 100%.

【0021】上記のように冷水供給運転が行われ、冷房
運転が行われる夏季から季節が移り、例えば秋季あるい
は冬季になり温水供給運転による暖房運転が必要になっ
たときには、管理者が制御装置32の切換スイッチ32
Sを操作する。切換スイッチ32Sの操作によって制御
装置32が動作し、第1、第2開閉弁14、21へ開信
号を出力し、第3、第4開閉弁28、29に閉信号を出
力し、冷却塔6に運転停止信号を出力する。
When the cold water supply operation is performed as described above and the season is changed from the summer when the cooling operation is performed, for example, when it becomes autumn or winter and the heating operation by the hot water supply operation is required, the administrator controls the controller 32. Changeover switch 32
Operate S. The control device 32 operates by operating the changeover switch 32S, outputs an open signal to the first and second on-off valves 14 and 21, and outputs a close signal to the third and fourth on-off valves 28 and 29, and the cooling tower 6 The operation stop signal is output to.

【0022】上記信号の出力によって、第1、第2開閉
弁14、21が開き、再生器1で発生した冷媒蒸気は冷
媒配管15及び冷媒蒸気配管20を経て下胴3の吸収器
側へ流れ、さらに蒸発器4へ流れ、再生器1で冷媒が分
離して濃度が高くなった濃液が再生器1から吸収液配管
10、13を介して吸収器5へ流れる。また、第3、第
4開閉弁28、29が閉じ、冷却塔6が運転を停止し、
冷却水の吸収器熱交換器25及び凝縮器熱交換器26へ
の循環は停止する。
By the output of the above signal, the first and second on-off valves 14 and 21 are opened, and the refrigerant vapor generated in the regenerator 1 flows through the refrigerant pipe 15 and the refrigerant vapor pipe 20 to the absorber side of the lower body 3. Further, the concentrated liquid having a higher concentration due to the refrigerant separated in the regenerator 1 flows to the evaporator 4 and flows from the regenerator 1 to the absorber 5 via the absorption liquid pipes 10 and 13. In addition, the third and fourth on-off valves 28 and 29 are closed, the cooling tower 6 stops operating,
The circulation of the cooling water to the absorber heat exchanger 25 and the condenser heat exchanger 26 is stopped.

【0023】上記のように蒸発器4へ冷媒蒸気が流入す
ると、蒸発器熱交換器36を流れている冷水が加熱さ
れ、温度上昇して温水になり負荷に供給されて温水供給
運転に切換わり、暖房運転が行われる。そして、制御装
置32は冷温水温度検出器38から温水出口温度の信号
を入力し、この信号に基づいてバーナ1Bへの燃料供給
量が調節され、バーナ1Bの加熱量が制御される。
When the refrigerant vapor flows into the evaporator 4 as described above, the cold water flowing through the evaporator heat exchanger 36 is heated and the temperature rises to become hot water which is supplied to the load and switched to the hot water supply operation. , Heating operation is performed. Then, the control device 32 inputs a signal of the hot water outlet temperature from the cold / hot water temperature detector 38, the fuel supply amount to the burner 1B is adjusted based on this signal, and the heating amount of the burner 1B is controlled.

【0024】上記のように温水供給運転が行われ、例え
ば温水を供給して事務所あるいは店舗等の暖房運転を行
ってるとき、事務所の室内温度があるいは店舗の室内温
度が上昇して暖房運転から冷房運転に切換えるとき、あ
るいは季節が移り春季あるいは夏季になり、暖房運転か
ら冷房運転に切換えるときには、すなわち、冷水供給運
転に切換えるときには制御装置32が動作して、第1、
第2開閉弁14、21に閉信号を出力し、第3、第4開
閉弁28、29に開信号を出力し、冷却塔6のファンモ
ータ6M及び冷却水ポンプ27に運転信号を出力する。
When the hot water supply operation is performed as described above and, for example, hot water is supplied to perform the heating operation of the office or the store, the room temperature of the office or the room temperature of the store rises and the heating operation is performed. When switching from the heating operation to the cooling operation, that is, when switching from the heating operation to the cooling operation, that is, when switching from the heating operation to the cooling water supply operation, the control device 32 operates, and
A closing signal is output to the second opening / closing valves 14 and 21, an opening signal is output to the third and fourth opening / closing valves 28 and 29, and an operation signal is output to the fan motor 6M of the cooling tower 6 and the cooling water pump 27.

【0025】上記閉信号によって第1、第2開閉弁1
4、21は閉じ、第3、第4開閉弁28、29は開き、
また、冷却塔6及び冷却水ポンプ27は運転を開始し、
上記のような冷水供給運転が始まる。また、制御装置3
2は第1の温度検出器33から温度信号を入力し、記憶
装置34に記憶された図2の関係に基づいた開度信号を
三方弁31へ出力する。そして、温水供給運転から冷水
供給運転に切換わると、制御装置32は三方弁31のバ
イパス管側及び冷却水配管24側の双方に開信号を出力
する。このため、吸収器熱交換器25及び凝縮器熱交換
器26に残っており、温水供給運転中に温度が上昇して
高くなっていた冷却水が冷却水ポンプ27から吐出され
た冷却水によって押し出される。また、冷却塔6に溜ま
っていた低温の冷却水の一部がバイパス管30を流れ
る。そして、吸収器熱交換器25及び凝縮器熱交換器2
6、即ち、吸収冷温水機本体から流れてきた高温の冷却
水とバイパス管30を流れてきた低温の冷却水とが三方
弁31で合流し混ざり冷却塔6へ流れる。冷却塔6では
流入した冷却水が冷却され温度低下して流出し、冷却ポ
ンプ27から吐出される。
The first and second on-off valves 1 are operated by the closing signal.
4, 21 are closed, the third and fourth on-off valves 28, 29 are opened,
In addition, the cooling tower 6 and the cooling water pump 27 start operation,
The cold water supply operation as described above starts. In addition, the control device 3
2 receives a temperature signal from the first temperature detector 33 and outputs an opening signal based on the relationship of FIG. 2 stored in the storage device 34 to the three-way valve 31. When the hot water supply operation is switched to the cold water supply operation, the control device 32 outputs an open signal to both the bypass pipe side of the three-way valve 31 and the cooling water pipe 24 side. For this reason, the cooling water remaining in the absorber heat exchanger 25 and the condenser heat exchanger 26, the temperature of which has risen and increased during the hot water supply operation, is pushed out by the cooling water discharged from the cooling water pump 27. Be done. Further, a part of the low temperature cooling water accumulated in the cooling tower 6 flows through the bypass pipe 30. Then, the absorber heat exchanger 25 and the condenser heat exchanger 2
6, that is, the high temperature cooling water flowing from the main body of the absorption chiller-heater and the low temperature cooling water flowing through the bypass pipe 30 are combined by the three-way valve 31 and mixed and flow into the cooling tower 6. In the cooling tower 6, the inflowing cooling water is cooled, its temperature is lowered, and it flows out, and is discharged from the cooling pump 27.

【0026】第1の温度検出器33は冷却塔6へ流れる
冷却水の温度を検出し、制御装置32は上記のように検
出温度に基づいて三方弁31の開度を制御する。そし
て、温水供給運転から冷水供給運転に切換わった後であ
り、吸収冷温水機本体から流れた冷却水の温度が高く冷
却塔6に流れる冷却水の温度が高いときには、図2の関
係に基づいて制御装置32は三方弁31のバイパス管3
0側の開度を大きく、冷却水配管24側の開度が小さく
なるように制御する。例えば、第1の温度検出器33の
検出温度、即ち、冷却塔6へ流れる冷却水の温度(以
後、冷却水出口温度という。)が50℃以上のときに
は、制御装置32は三方弁31のバイパス管30側の開
度が例えば100%、冷却水配管24側の開度が0%に
制御する。このため、冷却水ポンプ27から吐出した冷
却水の総てがバイパス管30へ流れる。ここで、冷却水
出口温度が50℃以上のとき、例えば三方弁31のバイ
パス管30側の開度を95%、冷却水配管24側の開度
を55%に制御し、冷却水を僅かづつ吸収器熱交換器2
5及び凝縮器熱交換器26側に流した場合には、僅かづ
つ冷却水出口温度が低下し、冷水出口温度の急激な変化
を防止でき、三方弁31のそれぞれの側の開度の急激な
変動を回避することができる。
The first temperature detector 33 detects the temperature of the cooling water flowing to the cooling tower 6, and the controller 32 controls the opening degree of the three-way valve 31 based on the detected temperature as described above. After the switching from the hot water supply operation to the cold water supply operation, when the temperature of the cooling water flowing from the main body of the absorption chiller / hot water machine is high and the temperature of the cooling water flowing to the cooling tower 6 is high, based on the relationship of FIG. The control device 32 is the bypass pipe 3 of the three-way valve 31.
The opening degree on the 0 side is controlled to be large and the opening degree on the cooling water pipe 24 side is controlled to be small. For example, when the temperature detected by the first temperature detector 33, that is, the temperature of the cooling water flowing to the cooling tower 6 (hereinafter referred to as the cooling water outlet temperature) is 50 ° C. or higher, the control device 32 bypasses the three-way valve 31. The opening degree on the pipe 30 side is controlled to 100%, and the opening degree on the cooling water pipe 24 side is controlled to 0%. Therefore, all the cooling water discharged from the cooling water pump 27 flows to the bypass pipe 30. Here, when the cooling water outlet temperature is 50 ° C. or higher, for example, the opening of the three-way valve 31 on the bypass pipe 30 side is controlled to 95% and the opening of the cooling water pipe 24 side is controlled to 55% to gradually cool the cooling water. Absorber heat exchanger 2
5 and the condenser heat exchanger 26 side, the cooling water outlet temperature is gradually decreased, abrupt change of the cooling water outlet temperature can be prevented, and the opening degree of each side of the three-way valve 31 is rapidly changed. Fluctuations can be avoided.

【0027】切換わった直後から時間が経過して自然放
熱等によって吸収器熱交換器25及び凝縮器熱交換器2
6の冷却水温度が次第に低下して冷却水出口温度が次第
に低下すると、制御装置32は図2に示したように三方
弁31のバイパス管側の開度を減らし、冷却水配管側の
開度を増やすように三方弁31の開度を制御する。この
結果、冷却水ポンプ27から吐出した冷却水の内吸収器
熱交換器25及び凝縮器熱交換器26に流れる冷却水の
量が増加し、この増加に反比例してバイパス管30に流
れる冷却水の量が減少する。そして、冷却水出口温度が
例えば40℃以下になったときには、制御装置32は三
方弁31の冷却水配管4側の開度を100%に、バイパ
ス管30側の開度を0%に制御し、冷却水ポンプ27か
ら吐出した冷却水の全量が吸収器熱交換器25及び凝縮
器熱交換器26に流れ、上記冷水供給運転時のように冷
水が供給される。
Immediately after the switching, time elapses and natural heat radiation or the like causes the absorber heat exchanger 25 and the condenser heat exchanger 2 to pass through.
When the cooling water temperature of 6 gradually decreases and the cooling water outlet temperature gradually decreases, the control device 32 reduces the opening degree of the three-way valve 31 on the bypass pipe side as shown in FIG. The opening degree of the three-way valve 31 is controlled so as to increase. As a result, the amount of the cooling water discharged from the cooling water pump 27 to the inner heat exchanger 25 and the condenser heat exchanger 26 of the cooling water increases, and the cooling water flowing to the bypass pipe 30 is inversely proportional to this increase. The amount of is reduced. Then, when the cooling water outlet temperature becomes, for example, 40 ° C. or lower, the control device 32 controls the opening degree of the three-way valve 31 on the cooling water pipe 4 side to 100% and the opening degree of the bypass pipe 30 side to 0%. The entire amount of cooling water discharged from the cooling water pump 27 flows to the absorber heat exchanger 25 and the condenser heat exchanger 26, and cold water is supplied as in the cold water supply operation.

【0028】上記本発明の第1の実施例によれば、温水
供給運転から冷水供給運転に切換わったとき、制御装置
32は第1の温度検出器33が検出した冷却水出口温度
に基づいて三方弁31の開度を制御し、冷却塔6に高温
の冷却水が戻ってくることを回避でき、冷却塔6を構成
する熱交換器等の部材を破損することを回避でき、冷却
塔6の故障、冷却能力の低下等を防止し、冷却水循環回
路の安全性を向上することができる。
According to the first embodiment of the present invention described above, when the hot water supply operation is switched to the cold water supply operation, the control device 32 is based on the cooling water outlet temperature detected by the first temperature detector 33. By controlling the opening degree of the three-way valve 31, it is possible to prevent high-temperature cooling water from returning to the cooling tower 6, and it is possible to avoid damaging members such as the heat exchanger that compose the cooling tower 6. It is possible to prevent the failure, the deterioration of the cooling capacity, etc., and improve the safety of the cooling water circulation circuit.

【0029】また、制御装置32は第1の温度検出器3
3が検出した冷却水出口温度に基づいて三方弁31の開
度を制御するので、運転切換わり直後の吸収器熱交換器
25及び凝縮器熱交換器26の冷却水温度に基づいて制
御装置32による三方弁31の開度制御が変化し、吸収
器熱交換器25及び凝縮器熱交換器26あるいは冷却塔
6からの冷却水の温度が比較的低いときには、短時間で
冷却水の全量が吸収器熱交換器25及び凝縮器熱交換器
26に流れるようになり、温水供給運転から冷水供給運
転への切換わり短時間で行うことができる。また、温水
供給運転から冷水供給運転への切換わり直後から冷却塔
6は運転を開始するので、冷却塔6に戻った冷却水は切
換わり直後から放熱し冷却され、吸収器熱交換器25及
び凝縮器熱交換器26へ流れ、各熱交換器の温度低下を
促進することができる。
Further, the control device 32 uses the first temperature detector 3
Since the opening degree of the three-way valve 31 is controlled based on the cooling water outlet temperature detected by No. 3, the control device 32 is based on the cooling water temperatures of the absorber heat exchanger 25 and the condenser heat exchanger 26 immediately after the operation switching. When the opening control of the three-way valve 31 due to changes in the temperature of the cooling water from the absorber heat exchanger 25 and the condenser heat exchanger 26 or the cooling tower 6, the total amount of cooling water is absorbed in a short time. The heat flows into the heat exchanger 25 and the heat exchanger 26 of the condenser, and it is possible to switch from the hot water supply operation to the cold water supply operation in a short time. Further, since the cooling tower 6 starts operating immediately after the switching from the hot water supply operation to the cold water supply operation, the cooling water returning to the cooling tower 6 is radiated and cooled immediately after the switching, and the absorber heat exchanger 25 and It can flow to the condenser heat exchanger 26 to promote the temperature reduction of each heat exchanger.

【0030】さらに、温水供給運転から冷水供給運転に
切換わった直後から制御装置32は第1の温度検出器3
3が検出した冷却水出口温度に基づいて三方弁31の開
度を制御するので、運転の切換わり後に温度低下した冷
却水が全量吸収器熱交換器25及び凝縮器熱交換器26
に急激に流れることを防止できる。この結果、吸収器5
の吸収能力及び凝縮器2の凝縮能力の急激な変化を回避
でき、運転切換わり後の冷水出口温度のハンチングを防
止して運転を安定することができる。
Immediately after switching from the hot water supply operation to the cold water supply operation, the control device 32 causes the first temperature detector 3 to operate.
Since the opening degree of the three-way valve 31 is controlled based on the cooling water outlet temperature detected by No. 3, all the cooling water whose temperature has dropped after the switching of the operation is absorbed in the absorber heat exchanger 25 and the condenser heat exchanger 26.
It is possible to prevent sudden flow. As a result, the absorber 5
It is possible to avoid a sudden change in the absorption capacity of the condenser and the condensation capacity of the condenser 2 and prevent hunting of the cold water outlet temperature after the operation switching to stabilize the operation.

【0031】また、温水供給運転から冷水供給運転に切
換わったとき冷却水出口温度が高いときにも冷却水ポン
プ27から吐出した冷却水の全量をバイパス管30に流
すのではなく、冷却水を僅かずつ吸収器熱交換器25及
び凝縮器熱交換器26に流したときには、冷却水出口温
度が高いときに冷却水の全量をバイパス管30に流した
ときに発生する三方弁33の開閉のハンチング、すなわ
ち、三方弁31のバイパス管30側の開度を100%と
し冷却水配管24側を0%にして冷却水の全量をバイパ
ス管30に流すときと、三方弁31のバイパス管30側
の開度を100%より小さくし、冷却水配管24側をそ
の分開き冷却水の一部を吸収冷温水機本体側に流すとき
との短時間での繰り返しを回避でき、この結果、三方弁
31の故障を防止して、保守管理作業の簡略化を図るこ
とができる。
Further, even when the hot water supply operation is switched to the cold water supply operation and the cooling water outlet temperature is high, the entire quantity of the cooling water discharged from the cooling water pump 27 is not passed through the bypass pipe 30, but the cooling water is supplied. Hunting of opening and closing of the three-way valve 33 that occurs when the entire amount of cooling water is caused to flow to the bypass pipe 30 when the cooling water outlet temperature is high when flowing little by little to the absorber heat exchanger 25 and the condenser heat exchanger 26. That is, when the opening degree of the three-way valve 31 on the bypass pipe 30 side is set to 100% and the cooling water pipe 24 side is set to 0% to flow the entire amount of cooling water to the bypass pipe 30, and on the bypass pipe 30 side of the three-way valve 31. The opening degree can be made smaller than 100%, and it is possible to avoid repetition in a short time when the cooling water pipe 24 side is opened by that amount and a part of the cooling water is allowed to flow to the main body of the absorption chiller-heater, and as a result, the three-way valve 31 Prevents breakdown Te, it is possible to simplify the maintenance work.

【0032】以下、本発明の第2の実施例を図3に基づ
いて説明する。尚、図3において、図1と同符号のもの
は同様のものであり、その詳細な説明は省略する。制御
装置32の記憶装置34には、上記実施例で説明した図
2の冷却水出口温度と三方弁31のバイパス管側の開度
と冷却水配管側の開度との関係の代わりに、三方弁31
のバイパス管30側の開度を、下記式1に基づいて算出
したバイパス管30側の冷却水流量の全冷却水流量に対
する比m1に制御し、かつ三方弁31の冷却水配管24
側の開度を1からバイパス管30側の開度を引いた開度
に制御するプログラムが記憶されている。
The second embodiment of the present invention will be described below with reference to FIG. 3 that are the same as those in FIG. 1 are the same as those in FIG. 1, and a detailed description thereof will be omitted. Instead of the relationship between the cooling water outlet temperature of FIG. 2 and the opening degree of the bypass pipe side and the opening degree of the cooling water pipe side of the three-way valve 31 in FIG. Valve 31
Of the bypass pipe 30 side is controlled to a ratio m1 of the cooling water flow rate on the bypass pipe 30 side calculated based on the following equation 1 to the total cooling water flow rate, and the cooling water pipe 24 of the three-way valve 31 is controlled.
A program for controlling the opening on the side to be the opening obtained by subtracting the opening on the side of the bypass pipe 30 from 1 is stored.

【0033】 m×Cp×T3=m1×Cp×T1+(m−m1)×Cp×T2…式1 上記式1において、m=全体の冷却水流量=1、T1=
冷却水の吸収器流入側温度の上限値、T2=凝縮器の流
出側温度の上限値、T3=冷却水の冷却塔入口側の上限
値即ち冷却水出口温度の上限値、Cp=冷却水の比熱で
ある。ここで、冷却水の吸収器流入側温度の上限値T1
は予め吸収冷温水機が設置される地域の気候などに応じ
て変化し、例えば32℃に設定され、凝縮器の流出側温
度の上限値T2は吸収冷温水機の温水供給運転時の運転
状態によって予め例えば80℃に設定され、冷却水出口
温度の上限値T3は予め冷却塔6の損傷を防止できる温
度以下である例えば45℃に設定されている。そして、
式1に上記上限値T1、T2及びT3を代入することに
よって三方弁31のバイパス管30側の開度m1=0.
73が算出される。
M × Cp × T3 = m1 × Cp × T1 + (m−m1) × Cp × T2 Equation 1 In the above Equation 1, m = total cooling water flow rate = 1, T1 =
Upper limit of cooling water absorber inflow side temperature, T2 = upper limit value of condenser outflow side temperature, T3 = upper limit value of cooling water on the cooling tower inlet side, that is, upper limit value of cooling water outlet temperature, Cp = cooling water It has a specific heat. Here, the upper limit value T1 of the cooling water absorber inflow side temperature
Varies according to the climate of the area where the absorption chiller-heater is installed in advance, and is set to, for example, 32 ° C., and the upper limit value T2 of the condenser outlet temperature is the operating state of the absorption chiller-heater during hot water supply operation. Is set in advance to, for example, 80 ° C., and the upper limit value T3 of the cooling water outlet temperature is set in advance to, for example, 45 ° C., which is equal to or lower than the temperature at which damage to the cooling tower 6 can be prevented. And
By substituting the upper limit values T1, T2, and T3 into Expression 1, the opening degree m1 of the three-way valve 31 on the side of the bypass pipe 30 = 0.
73 is calculated.

【0034】また、冷却水配管24には上記第1の実施
例と同様に、冷却水出口温度を検出する第1の温度検出
器33が設けられ、制御装置32に接続されている。制
御装置32の記憶装置34には、第1の温度検出器33
が検出した冷却水出口温度に基づく三方弁31制御のプ
ログラムが記憶されている。そして、制御装置32は第
1の温度検出器33の検出温度、即ち冷却水出口温度が
予め設定された下限温度である例えば40℃まで低下し
たとき、三方弁31へ信号を出力して、三方弁31の冷
却水配管4側の開度を100%に、バイパス管30側の
開度を0%に制御し、冷却水ポンプ27から吐出した冷
却水の全量が吸収器熱交換器25及び凝縮器熱交換器2
6に流れ、上記冷水供給運転時のように冷水が供給され
る。
Further, the cooling water pipe 24 is provided with a first temperature detector 33 for detecting the cooling water outlet temperature, which is connected to the controller 32, as in the first embodiment. The first temperature detector 33 is stored in the storage device 34 of the control device 32.
A program for controlling the three-way valve 31 based on the cooling water outlet temperature detected by is stored. Then, the control device 32 outputs a signal to the three-way valve 31 when the temperature detected by the first temperature detector 33, that is, the cooling water outlet temperature is lowered to a preset lower limit temperature, for example, 40 ° C. The opening of the valve 31 on the side of the cooling water pipe 4 is controlled to 100% and the opening of the valve 31 on the side of the bypass pipe 30 to 0% so that the entire amount of the cooling water discharged from the cooling water pump 27 is absorbed by the absorber heat exchanger 25 and the condenser. Heat exchanger 2
6, the cold water is supplied as in the cold water supply operation.

【0035】上記のように構成された吸収冷温水機の例
えば試運転時、運転時、冷水供給運転と温水供給運転と
が上記第1の実施例に示され運転と同様に行われる。そ
して吸収式冷凍機の温水供給運転から冷水供給運転への
切換時、制御装置32は三方弁31へ開度信号を出力す
る。例えば、秋季、冬季あるいは春季に、吸収式冷凍機
が温水供給運転を行っているとき、店舗の混雑によって
室内温度が上昇して温水供給運転から冷水供給運転へ切
換える。
The absorption chiller-heater configured as described above performs, for example, a trial operation, an operation, a cold water supply operation and a hot water supply operation in the same manner as the operation shown in the first embodiment. Then, at the time of switching the hot water supply operation of the absorption chiller to the cold water supply operation, the control device 32 outputs an opening signal to the three-way valve 31. For example, when the absorption chiller is performing hot water supply operation in autumn, winter, or spring, the indoor temperature rises due to congestion in the store, and the hot water supply operation is switched to the cold water supply operation.

【0036】冷水運転への切換時、制御装置32が動作
して三方弁31へ信号を出力し、バイパス管30側の開
度は上記73%に、冷却水配管側の開度は27%に制御
される。このため、冷水供給運転時、即ち暖房運転時に
温度上昇した吸収器熱交換器25及び凝縮器熱交換器2
6の温水は三方弁31でバイパス管30からの冷水と混
ざり、温度低下して冷却塔6へ戻る。また、冷却水ポン
プ27から吐出された冷水の一部が吸収器熱交換器25
及び凝縮器熱交換器26へ流れ、滞留していた温水の温
度は次第に低下する。また、冷却塔6は切換わり直後か
ら運転を開始する。
At the time of switching to the cold water operation, the controller 32 operates to output a signal to the three-way valve 31, the opening degree on the bypass pipe 30 side is 73%, and the opening degree on the cooling water pipe side is 27%. Controlled. Therefore, during the cold water supply operation, that is, during the heating operation, the temperature of the absorber heat exchanger 25 and the condenser heat exchanger 2 are increased.
The hot water of No. 6 is mixed with the cold water from the bypass pipe 30 by the three-way valve 31, the temperature of the hot water is lowered, and the hot water of the No. 6 returns to the cooling tower 6. Further, part of the cold water discharged from the cooling water pump 27 is absorbed by the absorber heat exchanger 25.
And to the condenser heat exchanger 26, the temperature of the warm water that has accumulated is gradually lowered. The cooling tower 6 starts operation immediately after switching.

【0037】時間の経過に伴い、冷却水出口温度は次第
に低下して第1の温度検出器33の検出温度が下限温度
まで低下したときには、制御装置32が動作して三方弁
31へ信号を出力する。このため、三方弁31の冷却水
配管4側の開度は100%に、バイパス管30側の開度
は0%になり、冷却水ポンプ27から吐出した冷却水の
全量が吸収器熱交換器25及び凝縮器熱交換器26に流
れ、上記通常の冷水供給運転時と同様に吸収冷温水機か
ら冷水が供給される。
When the cooling water outlet temperature gradually decreases with the lapse of time and the temperature detected by the first temperature detector 33 decreases to the lower limit temperature, the controller 32 operates and outputs a signal to the three-way valve 31. To do. Therefore, the opening degree of the three-way valve 31 on the cooling water pipe 4 side becomes 100%, and the opening degree of the bypass pipe 30 side becomes 0%, and the total amount of the cooling water discharged from the cooling water pump 27 becomes the absorber heat exchanger. 25 and the condenser heat exchanger 26, and cold water is supplied from the absorption chiller-heater as in the normal cold water supply operation.

【0038】以後同様に、温水供給運転から、冷水供給
運転への切換時には、三方弁33の開度が上記説明と同
様に制御される。上記第2の実施例によれば、温水供給
運転から冷水供給運転への切換時の三方弁31のバイパ
ス管30側の開度は、予め、上記式1に冷却水の吸収器
流入側温度の上限値T1、凝縮器の流出側温度の上限値
T2、冷却水の冷却塔入口側の上限値即ち冷却水出口温
度の上限値T3、冷却水の比熱Cp及び全体の冷却水流
量m=1を代入して算出される。そして、実際の吸収冷
温水機の運転時、温水供給運転から冷水供給運転への切
換時、三方弁31のバイパス管30側の開度が予め算出
された上記開度に制御される。この結果、冷却水の吸収
器流入側の温度が上限値T1近くまで上昇していると
き、凝縮器の流出側の冷却水温度が上限値T2近くまで
上昇しているとき、あるいは冷却水の吸収器流入側の温
度及び凝縮器の流出側の冷却水温度が上限値T1、T2
近くまで上昇しているときにも、冷却水出口温度は上限
値T3より確実に低く抑えられ、冷却塔6が高温の冷却
水によって破損することを容易に回避することができ
る。また、冷却塔6の故障、冷却能力の低下等を防止
し、冷却水循環回路の安全性を向上することができる。
Similarly, when the hot water supply operation is switched to the cold water supply operation, the opening degree of the three-way valve 33 is controlled in the same manner as described above. According to the second embodiment described above, the opening degree of the three-way valve 31 on the side of the bypass pipe 30 at the time of switching from the hot water supply operation to the cold water supply operation is set in advance by the above equation 1 to the absorber inflow side temperature of the cooling water. The upper limit value T1, the upper limit value T2 of the outflow side temperature of the condenser, the upper limit value of the cooling water inlet side of the cooling tower, that is, the upper limit value T3 of the cooling water outlet temperature, the specific heat Cp of the cooling water, and the total cooling water flow rate m = 1 Calculated by substituting. Then, during the actual operation of the absorption chiller-heater, at the time of switching from the hot water supply operation to the cold water supply operation, the opening degree of the three-way valve 31 on the bypass pipe 30 side is controlled to the previously calculated opening degree. As a result, when the temperature of the cooling water on the inflow side of the absorber rises near the upper limit value T1, when the temperature of the cooling water on the outflow side of the condenser rises near the upper limit value T2, or when the cooling water absorbs The temperature on the inlet side of the reactor and the temperature of the cooling water on the outlet side of the condenser are the upper limit values T1 and T2.
Even when the temperature rises to the vicinity, the cooling water outlet temperature can be reliably suppressed to be lower than the upper limit value T3, and the cooling tower 6 can be easily avoided from being damaged by the high temperature cooling water. Further, it is possible to prevent a failure of the cooling tower 6, a decrease in cooling capacity, etc., and improve the safety of the cooling water circulation circuit.

【0039】また、制御装置32は第1の温度検出器3
3が検出した冷却水出口温度が下限温度まで低下すると
動作し、三方弁31へ信号を出力し、三方弁31の冷却
水配管4側の開度は100%に、バイパス管30側の開
度は0%になり、冷却水ポンプ27から吐出した冷却水
の全量が吸収器熱交換器25及び凝縮器熱交換器26に
流れ、短時間で通常の冷水供給運転に切換えることがで
きる。
Further, the control device 32 uses the first temperature detector 3
When the cooling water outlet temperature detected by 3 falls to the lower limit temperature, it operates and outputs a signal to the three-way valve 31, the opening degree of the cooling water pipe 4 side of the three-way valve 31 is 100%, and the opening degree of the bypass pipe 30 side is 100%. Becomes 0%, and the entire amount of the cooling water discharged from the cooling water pump 27 flows to the absorber heat exchanger 25 and the condenser heat exchanger 26, and the normal cooling water supply operation can be switched in a short time.

【0040】以下、本発明の第3の実施例を図4に基づ
いて説明する。尚、図4において、図1及び図3と同符
号のものは同様のものであり、その詳細な説明は省略す
る。制御装置32の記憶装置34には、上記実施例で説
明した図2の冷却水出口温度と三方弁31のバイパス管
側の開度と冷却水配管側の開度との関係の代わりに、三
方弁31のバイパス管30側の開度を、下式に基づいて
算出したバイパス管30側の冷却水流量の全冷却水流量
に対する比m1に制御し、かつ三方弁31の冷却水配管
24側の開度を1からバイパス管30側の開度を引いた
開度に制御するプログラムが記憶されている。
The third embodiment of the present invention will be described below with reference to FIG. In FIG. 4, the same symbols as those in FIGS. 1 and 3 are the same, and the detailed description thereof will be omitted. Instead of the relationship between the cooling water outlet temperature of FIG. 2 and the opening degree of the bypass pipe side and the opening degree of the cooling water pipe side of the three-way valve 31 in FIG. The opening degree of the valve 31 on the bypass pipe 30 side is controlled to a ratio m1 of the cooling water flow rate on the bypass pipe 30 side calculated based on the following formula to the total cooling water flow rate, and on the cooling water pipe 24 side of the three-way valve 31. A program for controlling the opening to 1 by subtracting the opening on the bypass pipe 30 side is stored.

【0041】 m×Cp×T3=m1×Cp×t1+(m−m1)×Cp×t2……式2 上記式2において、mは全体の冷却水流量であり=1、
t1=冷却水の吸収器流入側温度、t2=凝縮器の流出
側温度、T3=冷却水の冷却塔入口側温度の上限値即ち
冷却水出口温度の上限値、Cp=冷却水の比熱である。
ここで、冷却水出口温度の上限値T3は予め冷却塔6の
損傷を防止できる温度以下である例えば45℃に設定さ
れ、記憶装置に34に記憶されている。
M × Cp × T3 = m1 × Cp × t1 + (m−m1) × Cp × t2 ... Equation 2 In the above Equation 2, m is the entire cooling water flow rate = 1,
t1 = cooling water absorber inlet side temperature, t2 = condenser outlet side temperature, T3 = cooling tower inlet side temperature upper limit value, that is, cooling water outlet temperature upper limit value, Cp = specific heat of cooling water. .
Here, the upper limit value T3 of the cooling water outlet temperature is set in advance to, for example, 45 ° C., which is a temperature at which damage to the cooling tower 6 can be prevented, and is stored in the storage device 34.

【0042】そして、第3の実施例に関する吸収冷温水
機には冷却水の吸収器5流入側の温度を検出する第2の
温度検出器40が冷却水配管22に設けられ、冷却水の
凝縮器2流出側の温度を検出する第3の温度検出器41
が冷却水配管24の三方弁31より凝縮器側に設けられ
ている。上記のように構成された吸収冷温水機の運転
時、冷水供給運転と温水供給運転とが第1の実施例に示
されたように行われる。そして、温水供給運転から冷水
供給運転への切換時、制御装置32は冷却水出口温度が
上限値の45℃以下になるように三方弁31へ開度信号
を出力する。例えば、切換直後で第2の温度検出器40
が検出した冷却水の吸収器流入側温度が30℃、第3の
温度検出器41が検出した冷却水の凝縮器流出側温度が
75℃のときには、制御装置32は、上記式2にm=
1、Cp=1、T3=45、t1=30及びt2=70
を代入してm1=0.625(62.5%)を算出す
る。そして。制御装置32は冷却水出口温度が上限値以
下になるように、三方弁33のバイパス管側の開度を上
記算出開度より僅かに大きい63%に、冷却水配管側の
開度を100―63=37%に制御する。
A second temperature detector 40 for detecting the temperature on the inflow side of the cooling water absorber 5 is provided in the cooling water pipe 22 in the absorption chiller-heater according to the third embodiment to condense the cooling water. Third temperature detector 41 for detecting the temperature on the outflow side of the container 2
Is provided on the condenser side of the three-way valve 31 of the cooling water pipe 24. During the operation of the absorption chiller-heater configured as described above, the cold water supply operation and the hot water supply operation are performed as shown in the first embodiment. Then, when switching from the hot water supply operation to the cold water supply operation, the control device 32 outputs an opening degree signal to the three-way valve 31 so that the cooling water outlet temperature becomes equal to or lower than the upper limit value of 45 ° C. For example, immediately after switching, the second temperature detector 40
When the temperature of the inlet side of the cooling water detected by the detector is 30 ° C. and the temperature of the outlet side of the cooling water detected by the third temperature detector 41 is 75 ° C., the controller 32 sets m =
1, Cp = 1, T3 = 45, t1 = 30 and t2 = 70
To calculate m1 = 0.625 (62.5%). And. The control device 32 sets the opening of the three-way valve 33 on the bypass pipe side to 63%, which is slightly larger than the calculated opening, and sets the opening on the cooling water pipe side to 100-, so that the cooling water outlet temperature becomes equal to or lower than the upper limit value. 63 = 37% control.

【0043】その後、冷却水からの放熱によって時間の
経過に伴い凝縮器出口側温度が次第に低下する。そし
て、制御装置32による算出値、即ち三方弁33のバイ
パス管側の開度m1が次第に減少し、冷却水配管側の開
度が次第に増加する。例えば、第2の温度検出器40が
検出した冷却水の吸収器流入側温度が30℃、第3の温
度検出器41が検出した冷却水の凝縮器流出側温度が5
0℃のときには、制御装置32は、上記式2にm=1、
Cp=1、T3=45、t1=30及びt2=50を代
入してm1=0.250(25.0%)を算出する。そ
して。制御装置32は冷却水出口温度が上限値以下にな
るように、三方弁33のバイパス管側の開度を上記算出
開度より僅かに大きい例えば26%に、冷却水配管側の
開度を100―26=74%に制御する。
After that, the temperature at the outlet side of the condenser gradually decreases with the passage of time due to heat radiation from the cooling water. Then, the value calculated by the control device 32, that is, the opening m1 of the three-way valve 33 on the bypass pipe side gradually decreases, and the opening of the cooling water pipe side gradually increases. For example, the temperature of the cooling water absorber inflow side detected by the second temperature detector 40 is 30 ° C., and the temperature of the cooling water condenser outflow side detected by the third temperature detector 41 is 5 ° C.
When the temperature is 0 ° C., the controller 32 uses m = 1 in Equation 2 above,
Cp = 1, T3 = 45, t1 = 30 and t2 = 50 are substituted to calculate m1 = 0.250 (25.0%). And. The control device 32 sets the opening of the three-way valve 33 on the bypass pipe side to slightly larger than the calculated opening, for example, 26%, and sets the opening on the cooling water pipe side to 100 so that the cooling water outlet temperature becomes equal to or lower than the upper limit value. It is controlled to -26 = 74%.

【0044】さらに、時間が経過して冷却水の凝縮器流
出側の温度が冷却水出口温度の上限温度と等しい45℃
になったときには、制御装置32はm1=0を算出し、
三方弁33のバイパス管側の開度を0%に、冷却水配管
側の開度を100%に制御し、冷却水ポンプ27から吐
出された冷却水の全量が吸収器熱交換器25及び凝縮器
熱交換器26へ流れるようになる。この結果、上記通常
の冷水供給運転時と同様に吸収冷温水機から冷水が供給
される。
Further, after a lapse of time, the temperature of the cooling water on the outlet side of the condenser is equal to the upper limit temperature of the cooling water outlet temperature of 45 ° C.
Then, the controller 32 calculates m1 = 0,
The degree of opening of the bypass pipe side of the three-way valve 33 is controlled to 0%, and the degree of opening of the cooling water pipe side is controlled to 100% so that the total amount of the cooling water discharged from the cooling water pump 27 is absorbed by the absorber heat exchanger 25 and the condenser. It flows to the heat exchanger 26. As a result, cold water is supplied from the absorption chiller-heater as in the normal cold water supply operation.

【0045】上記第3の実施例によれば、温水供給運転
から冷水供給運転への切換時の三方弁31のバイパス管
30側の開度は、上記式2に冷却水の吸収器流入側温度
t1、凝縮器の流出側温度t2、冷却水の冷却塔入口側
の上限値即ち冷却水出口温度の上限値T3、冷却水の比
熱Cp及び全体の冷却水流量m=1を代入して算出され
る。そして、実際の吸収冷温水機の運転時での温水供給
運転から冷水供給運転への切換時、三方弁31のバイパ
ス管30側の開度が算出された上記開度に制御される。
このため、冷却水の吸収器流入側の温度が高いほど、あ
るいは、凝縮器の流出側の冷却水温度が高いほど制御装
置32による三方弁31バイパス管側の開度は大きくな
り、それぞれの温度に応じて三方弁31の開度を制御で
き、冷却水出口温度は上限値T3より確実に低く抑えら
れ、冷却塔6が高温の冷却水によって破損することを容
易に回避することができ、かつ、冷却水の吸収器流入側
の温度が低いほど、あるいは、凝縮器の流出側の冷却水
温度が低いほど制御装置32による三方弁31バイパス
管側の開度は小さくなり、その分吸収器熱交換器25及
び凝縮器熱交換器26に流れる冷却水の量を増加させる
ことができる。この結果、冷水供給運転への切換後、吸
収器5及び凝縮器2の能力を冷却水の温度に応じて短時
間で向上させることができ、冷水供給運転への切換わり
に要する時間を一層短縮することができる。
According to the third embodiment described above, the opening degree of the three-way valve 31 on the bypass pipe 30 side at the time of switching from the hot water supply operation to the cold water supply operation is expressed by the above equation 2 as the cooling water absorber inlet side temperature. t1, the outflow side temperature t2 of the condenser, the upper limit value of the cooling water on the inlet side of the cooling tower, that is, the upper limit value T3 of the cooling water outlet temperature, the specific heat Cp of the cooling water, and the total cooling water flow rate m = 1 are calculated. It When the hot water supply operation is switched to the cold water supply operation during the actual operation of the absorption chiller-heater, the opening degree of the three-way valve 31 on the bypass pipe 30 side is controlled to the calculated opening degree.
Therefore, the higher the temperature of the cooling water on the inflow side of the absorber or the higher the temperature of the cooling water on the outflow side of the condenser, the larger the opening of the control device 32 on the side of the bypass pipe of the three-way valve 31 becomes. The opening degree of the three-way valve 31 can be controlled according to the above, the cooling water outlet temperature can be reliably suppressed to be lower than the upper limit value T3, and the cooling tower 6 can be easily prevented from being damaged by the high temperature cooling water, and The lower the temperature of the cooling water on the inlet side of the absorber, or the lower the temperature of the cooling water on the outlet side of the condenser, the smaller the opening of the control device 32 on the side of the three-way valve 31 bypass pipe. The amount of cooling water flowing through the exchanger 25 and the condenser heat exchanger 26 can be increased. As a result, after switching to the cold water supply operation, the capacities of the absorber 5 and the condenser 2 can be improved in a short time according to the temperature of the cooling water, and the time required for switching to the cold water supply operation is further shortened. be able to.

【0046】尚、本願発明は、上記実施例に限定される
ものではなく、本願発明の主旨を逸脱しない範囲にて種
々に実施が可能である。例えば上記各実施例において
は、一重効用の吸収冷温水機について説明したが、高温
再生器及び低温再生器を備えた二重効用の吸収冷温水機
に本願発明を実施した場合にも、上記各実施例と同様の
作用効果を得ることができる。
The invention of the present application is not limited to the above-described embodiments, but can be variously implemented without departing from the gist of the invention of the present application. For example, in each of the above embodiments, the single-effect absorption chiller-heater was described, but even when the present invention is carried out in a double-effect absorption chiller-heater equipped with a high temperature regenerator and a low temperature regenerator, each of the above It is possible to obtain the same effect as that of the embodiment.

【0047】また、図5及び図6に示したように三方弁
の代わりにバイパス管30あるいは冷却水配管24の途
中に二方弁50、51を設け、温水供給運転から冷水供
給運転への切換わり時、各弁の開度を上記各実施例の三
方弁のバイパス管側開度と冷却水配管側開度との制御と
同様に制御した場合にも同様の効果を得ることができ
る。
Further, as shown in FIGS. 5 and 6, two-way valves 50 and 51 are provided in the middle of the bypass pipe 30 or the cooling water pipe 24 instead of the three-way valve to switch from the hot water supply operation to the cold water supply operation. Alternatively, the same effect can be obtained when the opening of each valve is controlled in the same manner as the control of the opening on the bypass pipe side and the opening on the cooling water pipe of the three-way valve in each of the above embodiments.

【0048】[0048]

【発明の効果】本発明は上記のような吸収冷温水機であ
り、請求項1の発明によれば、温水供給運転から冷水供
給運転に切換わったとき、制御装置は温度検出器が検出
した冷却塔へ流れる冷却水の温度である冷却水出口温度
に基づいて三方弁の開度を制御し、冷却塔に高温の冷却
水がそのまま戻ってくることを回避でき、冷却塔を構成
する熱交換器等の部材が破損することを回避でき、冷却
塔の故障、冷却能力の低下等を防止し、冷却水循環回路
の安全性を向上することができる。
The present invention is the absorption chiller-heater as described above, and according to the invention of claim 1, when the hot water supply operation is switched to the chilled water supply operation, the controller detects the temperature detector. The opening of the three-way valve is controlled based on the cooling water outlet temperature, which is the temperature of the cooling water that flows to the cooling tower, and it is possible to avoid the high temperature cooling water from returning to the cooling tower as it is, and the heat exchange that constitutes the cooling tower. It is possible to avoid damage to members such as the vessel, prevent failure of the cooling tower, decrease in cooling capacity, etc., and improve the safety of the cooling water circulation circuit.

【0049】また、制御装置は温度検出器が検出した冷
却水出口温度に基づいて三方弁の開度を制御するので、
運転切換わり直後の吸収器熱交換器及び凝縮器熱交換器
の冷却水温度によって制御装置による三方弁の開度制御
が変化し、吸収器熱交換器及び凝縮器熱交換器あるいは
冷却塔からの冷却水の温度が比較的低いときには、短時
間で冷却水の全量が吸収器熱交換器及び凝縮器熱交換器
に流れるようになり、切換わり短縮することができる。
Further, since the control device controls the opening degree of the three-way valve based on the cooling water outlet temperature detected by the temperature detector,
The opening control of the three-way valve by the controller changes depending on the cooling water temperature of the absorber heat exchanger and the condenser heat exchanger immediately after the operation switching, and the absorber heat exchanger and condenser heat exchanger or the cooling tower When the temperature of the cooling water is relatively low, the entire amount of the cooling water flows to the absorber heat exchanger and the condenser heat exchanger in a short time, and switching can be shortened.

【0050】さらに、運転の切換わり後に温度低下した
冷却水が全量吸収器熱交換器及び凝縮器熱交換器に急激
に流れることを防止できる。この結果、吸収器の吸収能
力及び凝縮器の凝縮能力の急激な変化を回避でき、運転
切換わり後の冷水出口温度のハンチングを防止して運転
を安定することができる。また、請求項2の発明によれ
ば、温水供給運転から冷水供給運転への切換時の三方弁
のバイパス管側の開度は、予め、冷却水の吸収器流入側
温度の上限値T1、凝縮器の流出側温度の上限値T2、
冷却水の冷却塔入口側の上限値即ち冷却水出口温度の上
限値T3、冷却水の比熱Cp及び全体の冷却水流量m=
1によって算出され、実際の吸収冷温水機の運転時の温
水供給運転から冷水供給運転への切換時、三方弁のバイ
パス管側の開度が予め算出された上記開度に制御され
る。この結果、冷却水の吸収器流入側の温度または凝縮
器の流出側の冷却水温度が上限値T1、T2近くまで上
昇しているとき、あるいは冷却水の吸収器流入側の温度
及び凝縮器の流出側の冷却水温度が上限値T1、T2近
くまで上昇しているときにも、冷却水出口温度は上限値
T3より確実に低く抑えられ、冷却塔が高温の冷却水に
よって破損することを容易に回避することができる。ま
た、冷却塔の故障、冷却能力の低下等を防止し、冷却水
循環回路の安全性を向上することができる。
Further, it is possible to prevent the cooling water whose temperature has dropped after the operation is switched from suddenly flowing to the absorber heat exchanger and the condenser heat exchanger. As a result, it is possible to avoid a sudden change in the absorption capacity of the absorber and the condensation capacity of the condenser, prevent hunting of the cold water outlet temperature after the operation switching, and stabilize the operation. According to the invention of claim 2, the opening degree of the three-way valve on the bypass pipe side at the time of switching from the hot water supply operation to the cold water supply operation is such that the upper limit value T1 of the cooling water absorber inflow side temperature is set in advance. Upper limit value T2 of the outflow side temperature of the vessel,
The upper limit value of the cooling water on the inlet side of the cooling tower, that is, the upper limit value T3 of the cooling water outlet temperature, the specific heat Cp of the cooling water, and the total cooling water flow rate m =
1, the opening of the three-way valve on the bypass pipe side is controlled to the previously calculated opening when switching from the hot water supply operation to the cold water supply operation during the actual operation of the absorption chiller-heater. As a result, when the temperature of the cooling water on the absorber inflow side or the temperature of the cooling water on the outflow side of the condenser rises to near the upper limit values T1 and T2, or the temperature of the cooling water on the absorber inflow side and the condenser Even when the temperature of the cooling water on the outflow side has risen to near the upper limit values T1 and T2, the cooling water outlet temperature can be reliably kept lower than the upper limit value T3, and the cooling tower can be easily damaged by the high temperature cooling water. Can be avoided. Further, it is possible to prevent the failure of the cooling tower, the deterioration of the cooling capacity, etc., and improve the safety of the cooling water circulation circuit.

【0051】また、制御装置は温度検出器が検出した冷
却水出口温度が下限温度まで低下すると動作し、三方弁
の冷却水配管側の開度は100%に、バイパス管側の開
度は0%になり、冷却水ポンプから吐出した冷却水の全
量が吸収器熱交換器及び凝縮器熱交換器に流れ、短時間
で通常の冷水供給運転に切換えることができる。また、
請求項3の発明によれば、温水供給運転から冷水供給運
転への切換時の三方弁のバイパス管側の開度は、冷却水
の吸収器流入側温度t1、凝縮器の流出側温度t2、冷
却水の冷却塔入口側の上限値即ち冷却水出口温度の上限
値T3、冷却水の比熱Cp及び全体の冷却水流量m=1
に基づいて算出され、実際の吸収冷温水機の運転時での
温水供給運転から冷水供給運転への切換時、三方弁のバ
イパス管側の開度が算出された上記開度に制御される。
このため、冷却水の吸収器流入側の温度、あるいは、凝
縮器の流出側の温度が高いほど制御装置による三方弁の
バイパス管側の開度は大きくなり、それぞれの温度に応
じて三方弁の開度を制御でき、冷却水出口温度は上限値
T3より確実に低く抑えられ、冷却塔が高温の冷却水に
よって破損することを容易に回避することができ、か
つ、冷却水の吸収器流入側の温度が低いほど、あるい
は、凝縮器の流出側の冷却水温度が低いほど三方弁のバ
イパス管側の開度は小さくなり、その分吸収器熱交換器
及び凝縮器熱交換器に流れる冷却水の量を増加させるこ
とができる。この結果、冷水供給運転への切換後、吸収
器及び凝縮器の能力を冷却水の温度に応じて短時間で向
上させることができ、冷水供給運転への切換わりに要す
る時間を一層短縮することができる。
Further, the control device operates when the cooling water outlet temperature detected by the temperature detector falls to the lower limit temperature, the opening of the three-way valve on the cooling water pipe side is 100%, and the opening on the bypass pipe side is 0%. %, The entire amount of the cooling water discharged from the cooling water pump flows to the absorber heat exchanger and the condenser heat exchanger, and the normal cooling water supply operation can be switched in a short time. Also,
According to the invention of claim 3, the opening degree of the bypass pipe side of the three-way valve at the time of switching from the hot water supply operation to the cold water supply operation is the absorber inlet side temperature t1 of the cooling water, the outlet side temperature t2 of the condenser, The upper limit value of the cooling water on the inlet side of the cooling tower, that is, the upper limit value T3 of the cooling water outlet temperature, the specific heat Cp of the cooling water, and the total cooling water flow rate m = 1.
The opening degree of the three-way valve on the bypass pipe side is controlled to the calculated opening degree when switching from the hot water supply operation to the cold water supply operation during the actual operation of the absorption chiller-heater.
For this reason, the higher the temperature of the cooling water on the inlet side of the absorber or the higher the temperature on the outlet side of the condenser, the greater the degree of opening of the bypass pipe side of the three-way valve by the control device. The opening degree can be controlled, the cooling water outlet temperature can be surely kept lower than the upper limit value T3, and the cooling tower can be easily prevented from being damaged by the high temperature cooling water, and the cooling water absorber inflow side The lower the temperature of, or the lower the temperature of the cooling water on the outflow side of the condenser, the smaller the opening of the three-way valve on the bypass pipe side, and the cooling water flowing to the absorber heat exchanger and the condenser heat exchanger correspondingly. The amount of can be increased. As a result, after switching to the cold water supply operation, the capacities of the absorber and the condenser can be improved in a short time according to the temperature of the cooling water, and the time required for switching to the cold water supply operation can be further shortened. it can.

【0052】また、請求項4の発明によれば、温水供給
運転から冷水供給運転に切換わったとき、制御装置は温
度検出器が検出した冷却水出口温度に基づいて三方弁の
開度を制御し、冷却塔に高温の冷却水が戻ってくること
を回避でき、冷却塔を構成する熱交換器等の部材が破損
することを回避でき、冷却水循環回路の安全性を向上す
ることができるのは勿論、温水供給運転から冷水供給運
転への切換わり直後から冷却塔は運転を開始するので、
冷却塔に戻った冷却水は切換わり直後から放熱し冷却さ
れ、吸収器熱交換器及び凝縮器熱交換器へ流れ、各熱交
換器の温度低下を促進することができる。
Further, according to the invention of claim 4, when the hot water supply operation is switched to the cold water supply operation, the control device controls the opening degree of the three-way valve based on the cooling water outlet temperature detected by the temperature detector. However, it is possible to avoid returning high-temperature cooling water to the cooling tower, avoid damage to members such as the heat exchanger that configure the cooling tower, and improve the safety of the cooling water circulation circuit. Of course, since the cooling tower starts operation immediately after switching from the hot water supply operation to the cold water supply operation,
The cooling water returned to the cooling tower radiates heat immediately after switching and is cooled, flows to the absorber heat exchanger and the condenser heat exchanger, and can promote the temperature decrease of each heat exchanger.

【図面の簡単な説明】[Brief description of drawings]

【図1】本願発明の請求項1及び請求項4の実施例を示
す吸収冷温水機の概略構成図である。
FIG. 1 is a schematic configuration diagram of an absorption chiller-heater showing embodiments of claims 1 and 4 of the present invention.

【図2】冷却水出口温度と三方弁のバイパス側開度及び
冷却水出口側開度との関係図である。
FIG. 2 is a relationship diagram of a cooling water outlet temperature, a bypass side opening degree of a three-way valve, and a cooling water outlet side opening degree.

【図3】本願発明の請求項2の実施例を示す吸収冷温水
機の概略構成図である。
FIG. 3 is a schematic configuration diagram of an absorption chiller-heater showing an embodiment of claim 2 of the present invention.

【図4】本願発明の請求項3の実施例を示す吸収冷温水
機の概略構成図である。
FIG. 4 is a schematic configuration diagram of an absorption chiller-heater showing an embodiment of claim 3 of the present invention.

【図5】本願発明の他の実施例を示す吸収冷温水機の概
略構成図である。
FIG. 5 is a schematic configuration diagram of an absorption chiller-heater showing another embodiment of the present invention.

【図6】本願発明の他の実施例を示す吸収冷温水機の概
略構成図である。
FIG. 6 is a schematic configuration diagram of an absorption chiller-heater according to another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

A 吸収冷温水機 1 再生器 2 凝縮器 4 蒸発器 5 吸収器 6 冷却塔 22 冷却水配管 23 冷却水配管 24 冷却水配管 27 冷却水ポンプ 30 バイパス管 31 三方弁 32 制御装置 33 第1の温度検出器 40 第2の温度検出器 41 第3の温度検出器 A Absorption chiller / heater 1 Regenerator 2 Condenser 4 Evaporator 5 Absorber 6 Cooling tower 22 Cooling water pipe 23 Cooling water pipe 24 Cooling water pipe 27 Cooling water pump 30 Bypass pipe 31 Three-way valve 32 Control device 33 First temperature Detector 40 Second temperature detector 41 Third temperature detector

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 再生器、凝縮器、蒸発器及び吸収器など
を配管接続して冷媒及び吸収液の循環路を形成し、吸収
器、凝縮器、冷却塔及び冷却水ポンプを順次配管接続し
て冷却水循環路を形成し、蒸発器から冷水を供給する冷
水供給運転と、再生器から蒸発器へ冷媒蒸気を送り蒸発
器から温水を供給する温水供給運転とを切換えて行う吸
収冷温水機において、冷却水ポンプの下流側と凝縮器か
ら冷却塔へ至る冷却水循環路との間に制御弁を介して接
続され、吸収器及び凝縮器を側路するバイパス管と、冷
却塔へ流入する冷却水の温度を検出する温度検出器と、
温水供給運転から冷水供給運転への切換え後この温度検
出器の検出温度が高くなるのに伴いバイパス管に流れる
冷却水の流量が増大するように制御弁の開度を制御する
制御装置とを備えたことを特徴とする吸収冷温水機。
1. A regenerator, a condenser, an evaporator, an absorber, etc. are connected by piping to form a circulation path for a refrigerant and an absorption liquid, and an absorber, a condenser, a cooling tower, and a cooling water pump are connected in order by piping. In the absorption chiller-heater, which forms a cooling water circulation path by switching between cold water supply operation in which cold water is supplied from the evaporator and hot water supply operation in which refrigerant vapor is sent from the regenerator to the evaporator and hot water is supplied from the evaporator , A bypass pipe connected by way of a control valve between the downstream side of the cooling water pump and the cooling water circulation path from the condenser to the cooling tower, bypassing the absorber and the condenser, and the cooling water flowing into the cooling tower. Temperature detector to detect the temperature of
After switching from the hot water supply operation to the cold water supply operation, the control device controls the opening degree of the control valve so that the flow rate of the cooling water flowing through the bypass pipe increases as the temperature detected by the temperature detector increases. Absorption chiller / heater characterized by
【請求項2】 再生器、凝縮器、蒸発器及び吸収器など
を配管接続して冷媒及び吸収液の循環路を形成し、吸収
器、凝縮器、冷却塔及び冷却水ポンプを順次配管接続し
て冷却水循環路を形成し、蒸発器から冷水を供給する冷
水供給運転と、再生器から蒸発器へ冷媒蒸気を送り蒸発
器から温水を供給する温水供給運転とを切換えて行う吸
収冷温水機において、冷却水ポンプの下流側と凝縮器か
ら冷却塔へ至る冷却水循環路との間に制御弁を介して接
続され、吸収器及び凝縮器を側路するバイパス管と、冷
却塔へ流入する冷却水の温度を検出する温度検出器と、
温水供給運転から冷水供給運転への切換え後、温度検出
器の検出温度が設定温度まで下がるまで、下式 m×Cp×T3=m1×Cp×T1+(m−m1)×C
p×T2 にm=1、T1=冷却水の吸収器流入側温度の上限値、
T2=凝縮器の流出側温度の上限値、T3=冷却水の冷
却塔入口側温度の上限値及びCp=冷却水の比熱を入力
して得られたバイパス管へ流す冷却水の割合m1に制御
弁のバイパス管側の開度を制御する制御装置とを備えた
ことを特徴とする吸収冷温水機。
2. A regenerator, a condenser, an evaporator, an absorber and the like are connected by piping to form a circulation path for a refrigerant and an absorption liquid, and an absorber, a condenser, a cooling tower and a cooling water pump are connected in order by piping. In the absorption chiller-heater, which forms a cooling water circulation path by switching between cold water supply operation in which cold water is supplied from the evaporator and hot water supply operation in which refrigerant vapor is sent from the regenerator to the evaporator and hot water is supplied from the evaporator , A bypass pipe connected by way of a control valve between the downstream side of the cooling water pump and the cooling water circulation path from the condenser to the cooling tower, bypassing the absorber and the condenser, and the cooling water flowing into the cooling tower. Temperature detector to detect the temperature of
After switching from the hot water supply operation to the cold water supply operation, the following formula is applied until the temperature detected by the temperature detector falls to the set temperature: m × Cp × T3 = m1 × Cp × T1 + (m-m1) × C
m = 1 in p × T2, T1 = upper limit value of the cooling water absorber inflow side temperature,
T2 = the upper limit value of the outlet side temperature of the condenser, T3 = the upper limit value of the cooling tower inlet side temperature of the cooling water, and Cp = the cooling water flow rate to the bypass pipe obtained by inputting the specific heat of the cooling water. An absorption chiller-heater, comprising: a control device that controls the opening of the valve on the bypass pipe side.
【請求項3】 再生器、凝縮器、蒸発器及び吸収器など
を配管接続して冷媒及び吸収液の循環路を形成し、吸収
器、凝縮器、冷却塔及び冷却水ポンプを順次配管接続し
て冷却水循環路を形成し、蒸発器から冷水を供給する冷
水供給運転と、再生器から蒸発器へ冷媒蒸気を送り蒸発
器から温水を供給する温水供給運転とを切換えて行う吸
収冷温水機において、冷却水ポンプの下流側と凝縮器か
ら冷却塔へ至る冷却水循環路との間に制御弁を介して接
続され、吸収器及び凝縮器を側路するバイパス管と、吸
収器の流入側の冷却水温度を検出する冷却水入口温度検
出器と、凝縮器の出口側の冷却水温度を検出する冷却水
出口温度検出器と、冷却水出口温度検出器及び冷却水入
口温度検出器から温度信号を入力して温水供給運転から
冷水供給運転への切換え後、下式 m×Cp×T3=m1×Cp×T1+(m−m1)×C
p×T2 にm=1、T1=冷却水入口温度検出器の検出温度、T
2=冷却水出口温度検出器の検出温度、T3=冷却水の
冷却塔入口側の温度の上限値及びCp=冷却水の比熱を
入力して得られたバイパス管へ流す冷却水の割合m1に
制御弁のバイパス管側の開度を制御する制御装置とを備
えたことを特徴とする吸収冷温水機。
3. A regenerator, a condenser, an evaporator, an absorber and the like are connected by piping to form a circulation path for a refrigerant and an absorption liquid, and an absorber, a condenser, a cooling tower and a cooling water pump are connected in order by piping. In the absorption chiller-heater, which forms a cooling water circulation path by switching between cold water supply operation in which cold water is supplied from the evaporator and hot water supply operation in which refrigerant vapor is sent from the regenerator to the evaporator and hot water is supplied from the evaporator , A bypass pipe connected by a control valve between the downstream side of the cooling water pump and the cooling water circulation path from the condenser to the cooling tower, bypassing the absorber and the condenser, and cooling the inflow side of the absorber. Temperature signals from the cooling water inlet temperature detector that detects the water temperature, the cooling water outlet temperature detector that detects the cooling water temperature on the outlet side of the condenser, the cooling water outlet temperature detector, and the cooling water inlet temperature detector Input to switch from hot water supply operation to cold water supply operation After replacement, the following formula m × Cp × T3 = m1 × Cp × T1 + (m−m1) × C
In p × T2, m = 1, T1 = cooling water inlet temperature detector detection temperature, T
2 = the temperature detected by the cooling water outlet temperature detector, T3 = the upper limit of the temperature of the cooling water at the inlet side of the cooling tower, and Cp = the ratio m1 of the cooling water flowing to the bypass pipe obtained by inputting the specific heat of the cooling water. An absorption chiller-heater comprising: a control device that controls an opening of a control valve on a bypass pipe side.
【請求項4】 再生器、凝縮器、蒸発器及び吸収器など
を配管接続して冷媒及び吸収液の循環路を形成し、吸収
器、凝縮器、冷却塔及び冷却水ポンプを順次配管接続し
て冷却水循環路を形成し、蒸発器から冷水を供給する冷
水供給運転と、再生器から蒸発器へ冷媒蒸気を送り蒸発
器から温水を供給する温水供給運転とを切換えて行う吸
収冷温水機において、冷却水ポンプの下流側と凝縮器か
ら冷却塔へ至る冷却水循環路との間に制御弁を介して接
続され、吸収器及び凝縮器を側路するバイパス管と、冷
却塔へ流入する冷却水の温度を検出する温度検出器と、
温水供給運転から冷水供給運転への切換え後この温度検
出器の検出温度が高くなるのに伴いバイパス管に流れる
冷却水の流量が増大するように制御弁の開度を制御する
と共に冷却塔へ運転信号を連続して出力する制御装置と
を備えたことを特徴とする吸収冷温水機。
4. A regenerator, a condenser, an evaporator, an absorber and the like are connected by piping to form a circulation path for a refrigerant and an absorption liquid, and an absorber, a condenser, a cooling tower and a cooling water pump are connected in sequence by piping. In the absorption chiller-heater, which forms a cooling water circulation path by switching between cold water supply operation in which cold water is supplied from the evaporator and hot water supply operation in which refrigerant vapor is sent from the regenerator to the evaporator and hot water is supplied from the evaporator , A bypass pipe connected by way of a control valve between the downstream side of the cooling water pump and the cooling water circulation path from the condenser to the cooling tower, bypassing the absorber and the condenser, and the cooling water flowing into the cooling tower. Temperature detector to detect the temperature of
After switching from the hot water supply operation to the cold water supply operation, the opening of the control valve is controlled so that the flow rate of the cooling water flowing through the bypass pipe increases as the temperature detected by this temperature detector rises, and the operation goes to the cooling tower. An absorption chiller-heater, comprising: a controller that continuously outputs a signal.
JP06295330A 1994-11-29 1994-11-29 Absorption chiller / heater Expired - Fee Related JP3075944B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06295330A JP3075944B2 (en) 1994-11-29 1994-11-29 Absorption chiller / heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06295330A JP3075944B2 (en) 1994-11-29 1994-11-29 Absorption chiller / heater

Publications (2)

Publication Number Publication Date
JPH08152225A true JPH08152225A (en) 1996-06-11
JP3075944B2 JP3075944B2 (en) 2000-08-14

Family

ID=17819222

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06295330A Expired - Fee Related JP3075944B2 (en) 1994-11-29 1994-11-29 Absorption chiller / heater

Country Status (1)

Country Link
JP (1) JP3075944B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102778070A (en) * 2012-05-31 2012-11-14 苟仲武 Absorption-type refrigerating system and method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6511729B1 (en) 1999-07-19 2003-01-28 Tdk Corporation Optical information medium and making method
JP5729910B2 (en) 2010-03-05 2015-06-03 三菱重工業株式会社 Hot water heat pump and control method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102778070A (en) * 2012-05-31 2012-11-14 苟仲武 Absorption-type refrigerating system and method
CN102778070B (en) * 2012-05-31 2015-04-01 苟仲武 Absorption-type refrigerating system and method

Also Published As

Publication number Publication date
JP3075944B2 (en) 2000-08-14

Similar Documents

Publication Publication Date Title
JP4827307B2 (en) Air conditioner
JP6814071B2 (en) Absorption chiller system and absorption chiller using waste heat
JP3075944B2 (en) Absorption chiller / heater
JP2009236369A (en) Absorption chiller/heater
JP2985513B2 (en) Absorption cooling and heating system and its control method
JP4169453B2 (en) Hot water storage hot water source
JP3081490B2 (en) Absorption refrigerator
JP3143251B2 (en) Absorption refrigerator
JP2850811B2 (en) Water heater
JP3824441B2 (en) Absorption refrigeration equipment
JP2779422B2 (en) Absorption chiller / heater
JP3173234B2 (en) Cold water supply system using a direct-fired absorption refrigerator
JP2816012B2 (en) Control device for absorption refrigerator
JP3157668B2 (en) Absorption chiller / heater
JPH08100959A (en) Air conditioner
JP2737543B2 (en) Heat pump water heater
JP2895974B2 (en) Absorption refrigerator
JP2823266B2 (en) Regenerator control device
JP3434280B2 (en) Absorption refrigerator and its operation method
JP3280261B2 (en) Absorption refrigeration equipment
JP4149653B2 (en) Operation method of absorption chiller using exhaust heat
JP3133538B2 (en) Absorption refrigerator
JP2000111154A (en) Heat pump hot water supply device
JP2000257979A (en) Method for operating absorption heater chiller utilizing exhaust heat
JP2885637B2 (en) Absorption refrigeration apparatus and control method thereof

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees