JPH081506A - Polishing method for pipe inner surface - Google Patents

Polishing method for pipe inner surface

Info

Publication number
JPH081506A
JPH081506A JP16304394A JP16304394A JPH081506A JP H081506 A JPH081506 A JP H081506A JP 16304394 A JP16304394 A JP 16304394A JP 16304394 A JP16304394 A JP 16304394A JP H081506 A JPH081506 A JP H081506A
Authority
JP
Japan
Prior art keywords
pipe
polishing
abrasive
magnetic field
polished
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP16304394A
Other languages
Japanese (ja)
Inventor
Atsushi Kurobe
淳 黒部
Masahito Otsuka
雅人 大塚
Shigeo Matsubara
茂雄 松原
Kazunari Nakamoto
一成 中本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP16304394A priority Critical patent/JPH081506A/en
Publication of JPH081506A publication Critical patent/JPH081506A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Abstract

PURPOSE:To perform finish polishing at high smoothness by pressing an abrasive material to a pipe inner surface by magnetic force. CONSTITUTION:A pair of magnets 4 and 5 are arranged at positions opposing to each other with a pipe 1, a material to be polished, in-between to insert a block-like ferromagnetic body 2 and abrasives 3 into the pipe 1. The abrasives 3 are pressed to the inner surface of the pipe 1 by the ferromagnetic body 2 magnetized in the magnetic fields of the magnets 4 and 5 so as to polish the inner surface. The abrasives 3 in a condition of suspension in liquid is supplied to the inside of the pipe 1. Or, an abrasive cloth/paper or an abrasive nonwoven fabric stuck to the ferromagnetic body 2 can be used instead of the abrasives 3. Consequently, loss due to leakage flux is eliminated, and magnetic force is efficiently consumed for pressing an abrasive material to the inner surface of the pipe 1, allowing finish polishing to high smoothness.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、パイプ内面を極めて高
い平滑度に研磨する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for polishing an inner surface of a pipe to have extremely high smoothness.

【0002】[0002]

【従来の技術】食品,薬品,精密化学品の製造装置等に
使用されるパイプは、雑菌,不純物,通過する物質等が
付着しないように、また雑菌や異物の扇状除去を容易に
するため、鏡面に近い状態まで内面を研磨仕上げするこ
とが要求される。この種のパイプとしては、ステンレス
鋼製のサニタリーパイプが一般に使用されている。サニ
タリーパイプの内面は、もっとも良好な表面状態のもの
で表面粗さがRmax 0.4μm以下になっている。
2. Description of the Related Art Pipes used in manufacturing equipment for foods, chemicals, fine chemicals, etc. are designed to prevent bacteria, impurities, passing substances, etc. from adhering and to facilitate fan-shaped removal of bacteria and foreign substances. It is required to polish the inner surface to a state close to a mirror surface. As this type of pipe, a stainless steel sanitary pipe is generally used. The inner surface of the sanitary pipe has the best surface condition, and the surface roughness is R max 0.4 μm or less.

【0003】パイプ内面に対する仕上げ研磨は、バフ研
磨,電解研磨等が採用されている。バフ研磨では、研磨
砥粒を表面に付着させたバフや研磨砥粒とバフを一緒に
パイプ内に挿入し、棒状又はロープ状等の移動機器によ
りパイプ内面を研磨しながら通過させている。しかし、
被研磨材であるパイプの全長に渡ってバフを移動させる
ことが必要であるため、装置自体が大きくなる。特にサ
ニタリーパイプのように全長が4m以上にもなる長尺パ
イプにあっては、バフの移動が困難となり、研磨に長時
間を要する。また、パイプの内側にバフを通過させる形
式であることから、パイプ内面に凹凸がある場合、パイ
プ内面にバフを一定圧力で押し付けることができず、全
長に渡ってパイプ内面を均一な表面状態に仕上げること
が困難になる。
Buff polishing, electrolytic polishing, etc. are employed for finish polishing of the inner surface of the pipe. In the buff polishing, a buff having polishing abrasive particles adhered to the surface thereof or the polishing abrasive particles and the buff are inserted together into a pipe, and are passed while polishing the inner surface of the pipe by a rod-shaped or rope-shaped moving device. But,
Since it is necessary to move the buff over the entire length of the pipe to be polished, the device itself becomes large. Particularly in the case of a long pipe having a total length of 4 m or more like a sanitary pipe, it becomes difficult to move the buff, and polishing takes a long time. Also, since the buff is passed inside the pipe, if the inner surface of the pipe is uneven, the buff cannot be pressed against the inner surface of the pipe with a constant pressure, and the inner surface of the pipe has a uniform surface state over the entire length. Difficult to finish.

【0004】電解研磨では、内面がバフ研磨仕上げした
表面に相当するステンレス鋼パイプを電解液中に浸漬
し、パイプ全長に渡る陰極をパイプ内部に挿入・固定
し、パイプを陽極として電解することによってパイプ内
面を研磨する。この場合にも、パイプの全長に渡って陰
極を挿入・固定する必要があることから、バフ研磨と同
様な問題が生じる。更に、パイプからの溶出物が研磨後
の電解液に滞留するため、電解液を管理・処理する設備
や、研磨されたパイプから電解液を除去する設備が必要
になる。このようにバフ研磨や電解研磨は、工数及び作
業時間の増加や研磨設備の大型化が避けられず、電解液
処理設備のような付帯設備を必要とする欠点もある。そ
こで、これらの欠点を解消するものとして、パイプの外
面から磁場を印加しながら研磨する磁気研磨方法が開発
されている。
In electropolishing, a stainless steel pipe whose inner surface corresponds to a buffed surface is immersed in an electrolytic solution, a cathode over the entire length of the pipe is inserted and fixed inside the pipe, and electrolysis is performed by using the pipe as an anode. Polish the inner surface of the pipe. In this case as well, since it is necessary to insert and fix the cathode over the entire length of the pipe, the same problem as buffing occurs. Further, since the eluate from the pipe stays in the electrolytic solution after polishing, a facility for managing and treating the electrolytic solution and a facility for removing the electrolytic solution from the polished pipe are required. As described above, the buff polishing and the electrolytic polishing cannot avoid an increase in the number of steps and working time and an increase in the size of the polishing equipment, and have a drawback that an auxiliary equipment such as an electrolytic solution treatment equipment is required. Therefore, as a solution to these drawbacks, a magnetic polishing method has been developed in which polishing is performed while applying a magnetic field from the outer surface of the pipe.

【0005】たとえば、特開昭63−221965号公
報では、磁性粒子及び研磨砥粒を一体化した磁性研磨材
を小片のプラスチック磁石と共にパイプの内部に挿入
し、パイプ外面から磁場を加え、磁場又はパイプを回転
させながらパイプ内面を研磨している。また、特開昭6
3−300856号公報では、ブロック状の磁石又は強
磁性体をパイプ内部に挿入し、パイプの外側から印加さ
れた磁場によって磁石又は強磁性体をパイプ内面に押し
付けて研磨する方法が紹介されている。
For example, in Japanese Patent Laid-Open No. 63-221965, a magnetic abrasive material in which magnetic particles and abrasive grains are integrated is inserted into a pipe together with a small piece of a plastic magnet, and a magnetic field is applied from the outer surface of the pipe to generate a magnetic field. The inner surface of the pipe is polished while rotating the pipe. In addition, JP-A-6
In JP-A-3-300856, a method is introduced in which a block-shaped magnet or ferromagnetic material is inserted inside a pipe, and the magnet or ferromagnetic material is pressed against the inner surface of the pipe by a magnetic field applied from the outside of the pipe and polished. .

【0006】[0006]

【発明が解決しようとする課題】プラスチック磁石をパ
イプ内部に挿入して研磨する方法では、磁場漏洩の原因
となる小さな間隙がプラスチック磁石間にある。そのた
め、プラスチック磁石や磁性研磨材をパイプ内面に押し
付ける磁力が低下し、パイプ内面の研磨に必要な力が不
足する場合がある。また、被研磨材であるパイプの内径
が大きくなるに従って、パイプに挿入すべきプラスチッ
ク磁石の量も増加する。この量的増加に応じて間隙も多
くなり、パイプ外側から加えられる磁場だけではプラス
チック磁石及び磁性研磨材をパイプ内面に押圧状態で保
持できなくなる。
In the method of inserting a plastic magnet into a pipe and polishing it, there is a small gap between the plastic magnets which causes a magnetic field leakage. Therefore, the magnetic force that presses the plastic magnet or the magnetic polishing material against the inner surface of the pipe decreases, and the force necessary for polishing the inner surface of the pipe may be insufficient. Further, as the inner diameter of the pipe to be polished increases, the amount of plastic magnets to be inserted into the pipe also increases. Along with this quantitative increase, the gap also increases, and it becomes impossible to hold the plastic magnet and the magnetic abrasive in the pressed state on the inner surface of the pipe only by the magnetic field applied from the outside of the pipe.

【0007】ブロック化した磁石又は強磁性体をパイプ
内部に挿入して研磨する方法では、磁石又は強磁性体を
パイプの内面に押し付ける磁力を得るため、パイプ外面
の一側から磁場が加えられる。このように磁場を印加す
ると、パイプの長手方向に関する磁場の漏洩があり、パ
イプ端部近傍で磁石又は強磁性体をパイプ内面に押し付
ける力が低下しやすい。その結果、パイプの端部内面と
中央部内面とでは磁石又は強磁性体が押し付けられる力
に相違が生じ、一定した研磨仕上げが長手方向に関して
不均一になりやすい。本発明は、このような問題を解消
すべく案出されたものであり、研磨材をパイプ内面に押
し付ける磁力を大きくするように磁場を発生させること
により、高い内面平滑度でパイプ内面を研磨仕上げする
ことを目的とする。
In the method in which a blocked magnet or ferromagnetic material is inserted into a pipe and polished, a magnetic field is applied from one side of the outer surface of the pipe in order to obtain a magnetic force that presses the magnet or ferromagnetic material against the inner surface of the pipe. When the magnetic field is applied in this way, there is a magnetic field leakage in the longitudinal direction of the pipe, and the force for pressing the magnet or the ferromagnetic material against the inner surface of the pipe in the vicinity of the pipe end is likely to decrease. As a result, there is a difference in the force with which the magnet or the ferromagnetic material is pressed between the inner surface of the end portion and the inner surface of the central portion of the pipe, and uniform polishing finish tends to be uneven in the longitudinal direction. The present invention has been devised to solve such a problem, and by polishing the inner surface of the pipe with high inner surface smoothness by generating a magnetic field so as to increase the magnetic force that presses the abrasive against the inner surface of the pipe. The purpose is to do.

【0008】[0008]

【課題を解決するための手段】本発明のパイプ内面研磨
方法は、その目的を達成するため、被研磨材であるパイ
プを挟んで相対向する位置に一対の磁石を配置し、ブロ
ック状の強磁性体及び研磨砥粒を前記パイプに挿入し、
前記磁石の磁場で磁化される前記強磁性体によって前記
研磨砥粒を前記パイプの内面に押し付け、前記磁石又は
前記パイプを相対的に移動することを特徴とする。研磨
砥粒は、液体に懸濁された状態でパイプ内部に供給する
ことができる。或いは、ブロック状の強磁性体に貼り付
けた研磨布紙又は研磨織布を研磨材として使用すること
もできる。本発明に従って研磨されるパイプは、その材
質に制約を受けるものではなく、普通鋼,オーステナイ
ト系ステンレス鋼等の何れも同様に内面研磨することが
できる。
In order to achieve the object, the method for polishing a pipe inner surface according to the present invention has a pair of magnets arranged at opposite positions with a pipe as a material to be polished being sandwiched therebetween, and a block-shaped strong magnet. Insert the magnetic material and abrasive grains into the pipe,
The abrasive grains are pressed against the inner surface of the pipe by the ferromagnetic material magnetized by the magnetic field of the magnet, and the magnet or the pipe is relatively moved. The abrasive grains can be supplied inside the pipe in a state of being suspended in a liquid. Alternatively, an abrasive cloth paper or an abrasive woven cloth attached to a block-shaped ferromagnetic material can be used as the abrasive material. The pipe polished according to the present invention is not restricted by its material, and any of ordinary steel, austenitic stainless steel and the like can be similarly polished on the inner surface.

【0009】[0009]

【作用】パイプ内面に対する研磨砥粒又は研磨材の押付
け力を大きくするほど、研磨能率が向上する。押付け力
を大きくするには、被研磨材であるパイプを挟んでパイ
プ外側の相対向する位置に配置した磁石で磁場をかける
こと、及び磁場の漏洩を少なくするブロック状の強磁性
体をパイプ内部に挿入することが有効である。パイプ内
部に挿入された研磨砥粒又は研磨材は、パイプ外側の磁
場又はパイプ自体を移動させることによって、パイプの
長手方向に関して相対的に移動する。相対向する位置に
設置した磁石によって形成される磁場は、磁石を並列配
置した場合のような回り込む流れにならず、ほぼ直線的
になる。そのため、磁石面の外に漏洩する磁場が少なく
なる。磁場の漏洩は、パイプ内部に挿入した強磁性体に
より更に抑制される。本発明で使用するブロック状の強
磁性体は、強磁性を呈する物質である限り、その種類に
制約を受けるものではない。たとえば、普通鋼,特殊
鋼,Ni,Co,それらの合金又は化合物等が強磁性体
として使用される。ブロック状の強磁性体は、パイプ内
面との摺擦に起因した疵をつけないように、角部を丸く
した表面をもつもの、バフ,皮革,ゴム等の弾性体を装
着したもの等が好ましい。
The larger the pressing force of the abrasive grains or the abrasive against the inner surface of the pipe, the more the polishing efficiency improves. To increase the pressing force, apply a magnetic field with magnets placed at opposite positions on the outside of the pipe that sandwiches the pipe to be polished, and use a block-shaped ferromagnetic material that reduces the leakage of the magnetic field inside the pipe. It is effective to insert into. The abrasive grains or abrasives inserted inside the pipe move relative to the longitudinal direction of the pipe by moving the magnetic field outside the pipe or the pipe itself. The magnetic fields formed by the magnets installed at the positions opposite to each other are substantially linear instead of the wraparound flow that occurs when the magnets are arranged in parallel. Therefore, the magnetic field leaking out of the magnet surface is reduced. Magnetic field leakage is further suppressed by the ferromagnetic material inserted inside the pipe. The type of the block-shaped ferromagnet used in the present invention is not limited as long as it is a substance exhibiting ferromagnetism. For example, ordinary steel, special steel, Ni, Co, alloys or compounds thereof are used as the ferromagnetic material. It is preferable that the block-shaped ferromagnetic material has a surface with rounded corners so that it is not scratched due to friction with the inner surface of the pipe, and that an elastic material such as buff, leather or rubber is attached. .

【0010】研磨砥粒には、通常の研磨・研削で使用さ
れている砥粒が使用される。たとえば、アルミナ,炭化
ケイ素,ダイヤモンド,CBN等がある。或いは、ブロ
ック状強磁性体の表面に装着される研磨材を使用するこ
とも可能である。このような研磨材としては、表面に研
磨砥粒を付着させた研磨布紙,研磨不織布,研磨フィル
ム等がある。また、研磨砥粒を懸濁させた液体をパイプ
内部に注入して研磨することも可能である。研磨砥粒又
は研磨材と共にブロック状強磁性体を挿入したパイプに
対し、永久磁石,電磁石等によってパイプ外側から磁場
が加えられる。このとき、パイプ内面に対し均一な押付
け力を得るため、パイプ外側の相対向する位置に永久磁
石,電磁石等の磁場印加手段を配置することが好まし
い。この状態でパイプを回転又は静止させ、パイプ外側
の磁場又はパイプ自体をパイプの長手方向に相対移動さ
せる。
As the polishing abrasive grains, those used in ordinary polishing and grinding are used. For example, there are alumina, silicon carbide, diamond, CBN and the like. Alternatively, it is possible to use an abrasive that is mounted on the surface of the block-shaped ferromagnetic material. Examples of such an abrasive include abrasive cloth paper, abrasive non-woven cloth, and abrasive film having abrasive particles adhered to the surface thereof. It is also possible to inject a liquid in which polishing abrasive grains are suspended into the inside of the pipe for polishing. A magnetic field is applied from the outside of the pipe by a permanent magnet, an electromagnet or the like to the pipe in which a block-shaped ferromagnetic material is inserted together with abrasive grains or an abrasive. At this time, in order to obtain a uniform pressing force against the inner surface of the pipe, it is preferable to dispose magnetic field applying means such as a permanent magnet or an electromagnet at positions facing each other outside the pipe. In this state, the pipe is rotated or stopped to relatively move the magnetic field outside the pipe or the pipe itself in the longitudinal direction of the pipe.

【0011】被研磨材であるパイプにブロック状の強磁
性体を挿入し、パイプを挟んでパイプ外側の相対向する
位置に配置した磁場印加手段によって磁場を加えると
き、磁場の漏洩が抑制され、パイプ内面に対する研磨砥
粒又は研磨材の押付け力を大きくすることができる。そ
のため、従来のものに比較して安価な磁場印加手段を使
用することができ、研磨砥粒,研磨材としても従来の研
磨・研削に使用されているものが使用可能である。更
に、ブロック状の強磁性体としても普通鋼等の汎用材料
が使用されるため、安価な処理コストでパイプ内面を研
磨することが可能となる。しかも、パイプ外側の磁場又
はパイプを移動させながらパイプ全長に渡って内面研磨
するため、作業時間の短縮化が図られ、自動化ラインに
乗りやすい研磨方法となる。
When a block-shaped ferromagnetic material is inserted into a pipe which is a material to be polished and a magnetic field is applied by magnetic field applying means arranged at opposite positions outside the pipe with the pipe interposed, leakage of the magnetic field is suppressed, The pressing force of the abrasive grains or the abrasive against the inner surface of the pipe can be increased. Therefore, it is possible to use a magnetic field applying means that is less expensive than the conventional one, and it is possible to use the abrasive grains and the abrasives that have been used in the conventional polishing and grinding. Further, since a general-purpose material such as ordinary steel is also used as the block-shaped ferromagnetic material, the inner surface of the pipe can be polished at a low processing cost. Moreover, since the inner surface is polished over the entire length of the pipe while moving the magnetic field outside the pipe or moving the pipe, the working time can be shortened and the polishing method is easy to ride on the automated line.

【0012】[0012]

【実施例】【Example】

実施例1:被研磨材として、外形28.58mm,長さ
200mm,肉厚1mmのステンレス鋼SUS304製
TIG溶接丸パイプの芯引き材を使用した。図1に示す
ように、パイプ1の内部にブロック状の強磁性体2及び
研磨砥粒を懸濁させた液体3を挿入した。強磁性体2と
しては、高さ8mm,幅10mm及び長さ19mmの直
方体形状の角部にアールを付けた普通鋼ブロックを使用
した。研磨砥粒を懸濁させた液体3は、粒度#240の
アルミナ砥粒1重量部に水道水1重量部を加え、混合・
撹拌することにより調製した。パイプ1を挟んでパイプ
外面の相対向する位置に、一対の電磁石4,5を配置し
た。電磁石4,5には、直径30mmの鉄心に銅線を1
2,000巻きし、先端幅が10mmの台形状断面で長
さ40mmに設計したものを使用した本実施例では、電
磁石4,5を旋盤のテーブル上に固定し、パイプ1を長
手方向に移動可能に配置した。旋盤のチャックにパイプ
1を取り付け、ブロック状の強磁性体2と共に研磨砥粒
を懸濁させた液体3を100ccの量でパイプ1の内部
に挿入した。パイプ1の回転速度を75m/分,電磁石
4,5の相対移動速度を105mm/分,電磁石4,5
に供給する電流を2Aとし、1パスでパイプ1を内面研
磨した。
Example 1 As a material to be polished, a cored material of TIG welded round pipe made of stainless steel SUS304 having an outer diameter of 28.58 mm, a length of 200 mm and a wall thickness of 1 mm was used. As shown in FIG. 1, a block-shaped ferromagnetic material 2 and a liquid 3 in which abrasive grains were suspended were inserted into a pipe 1. As the ferromagnetic material 2, a normal steel block having a rectangular parallelepiped corner with a height of 8 mm, a width of 10 mm and a length of 19 mm was used. The liquid 3 in which the polishing abrasive grains are suspended is mixed by adding 1 part by weight of tap water to 1 part by weight of alumina abrasive grains having a particle size of # 240 and mixing.
Prepared by stirring. A pair of electromagnets 4 and 5 were arranged at opposite positions on the outer surface of the pipe with the pipe 1 interposed therebetween. For the electromagnets 4 and 5, a copper wire is attached to an iron core with a diameter of 30 mm.
In this embodiment, which uses 2,000 windings and has a trapezoidal cross section with a tip width of 10 mm and a length of 40 mm, the electromagnets 4 and 5 are fixed on the table of the lathe, and the pipe 1 is moved in the longitudinal direction. Arranged as possible. The pipe 1 was attached to the chuck of a lathe, and the liquid 3 in which the abrasive grains were suspended together with the block-shaped ferromagnetic body 2 was inserted into the pipe 1 in an amount of 100 cc. The rotation speed of the pipe 1 is 75 m / min, the relative movement speed of the electromagnets 4, 5 is 105 mm / min, the electromagnets 4, 5
The inner surface of the pipe 1 was polished in one pass with a current of 2 A supplied to the pipe.

【0013】比較例1:図2に示すように、直径100
μm及び長さ5mmの炭素鋼製金属短繊維6を2.5
g、直径80μm及び粒度#240のアルミナ砥粒を含
む磁性研磨材7を2.5gの量でパイプ1の内部に挿入
し、同じ条件下でパイプ1を内面研磨した。研磨時の磁
束密度を測定したところ、図3に示すように、ブロック
状の強磁性体2及び研磨砥粒を懸濁させた液体3を併用
した実施例1では、金属短繊維及び磁性研磨材を併用し
た比較例1に比べて磁束密度が約2倍ほど高くなってい
た。これは、発生した磁場がパイプ内面に対する研磨砥
粒の押付けに有効に消費され、漏洩による影響が抑制さ
れたことに由来するものと推察される。その結果、研磨
後のパイプ内面は、図4に示すように比較例1との対比
で表面粗さが大幅に小さくなっており、極めて平滑な表
面状態に仕上げられていた。
Comparative Example 1: As shown in FIG.
2.5 μm and 5 mm long carbon steel short metal fibers 6
A magnetic abrasive 7 containing alumina abrasive grains having a particle size of 80 μm and a grain size of # 240 was inserted into the pipe 1 in an amount of 2.5 g, and the pipe 1 was internally polished under the same conditions. When the magnetic flux density during polishing was measured, as shown in FIG. 3, in Example 1 in which the block-shaped ferromagnetic body 2 and the liquid 3 in which polishing abrasive grains were suspended were used together, short metal fibers and a magnetic polishing material were used. The magnetic flux density was about twice as high as that of Comparative Example 1 in which It is presumed that this is because the generated magnetic field was effectively consumed for pressing the polishing abrasive grains against the inner surface of the pipe, and the influence of leakage was suppressed. As a result, the inner surface of the pipe after polishing had a greatly reduced surface roughness as compared with Comparative Example 1 as shown in FIG. 4, and was finished in an extremely smooth surface state.

【0014】実施例2:実施例1と同じステンレス鋼S
US304製TIG溶接丸パイプの芯引き材を使用し、
図5に示すように、表面に研磨布紙又は研磨不織布8を
貼り付けたブロック状の強磁性体2をパイプ1に挿入し
た。研磨布紙としては粒度#30の砥粒を付着させたも
の、研磨不織布としては粒度#60,120,320の
砥粒を付着させたものを使用した。実施例1と同じ条件
下で磁場を印加しながら、パイプ1を内面研磨した。た
だし、研磨粒度#30,30,120,320の研磨布
紙又は研磨不織布8を使用した研磨を各1パスづつ、合
計4パスの研磨を行った。
Example 2: The same stainless steel S as in Example 1
Using core material of US304 TIG welded round pipe,
As shown in FIG. 5, a block-shaped ferromagnetic body 2 having a surface coated with a polishing paper or a polishing nonwoven fabric 8 was inserted into a pipe 1. As the abrasive cloth paper, those having abrasive grains of grain size # 30 adhered thereto were used, and as the abrasive non-woven fabric, those having abrasive grains of grain size # 60, 120, 320 adhered thereto were used. The inner surface of the pipe 1 was polished while applying a magnetic field under the same conditions as in Example 1. However, the polishing using the polishing cloth paper or the polishing nonwoven fabric 8 having the polishing grain sizes of # 30, 30, 120, and 320 was performed for each one pass, for a total of four passes.

【0015】比較例2:炭素鋼製で直径100μm及び
長さ5mmの金属短繊維6を2.5g,直径80μmの
アルミナ砥粒を含有する粒度#30,60,120,3
20の磁性研磨材7を2.5gの量でパイプ1の内部に
挿入した。そして、粒度#30,60,120,320
ごとに1パスづつ、合計4パスで内面研磨した。研磨さ
れたパイプの内面を実施例2及び比較例2で対比させた
ところ、実施例2で得られたパイプの内面は、図6に示
すように格段に表面粗さが小さいものであった。
Comparative Example 2: Grain size # 30, 60, 120, 3 containing 2.5 g of metal short fiber 6 made of carbon steel and having a diameter of 100 μm and a length of 5 mm, and alumina abrasive grains having a diameter of 80 μm.
Twenty magnetic abrasives 7 were inserted into the pipe 1 in an amount of 2.5 g. Then, the granularity # 30, 60, 120, 320
The inner surface was polished with a total of 4 passes, one pass for each. When the inner surface of the polished pipe was compared with that of Example 2 and Comparative Example 2, the inner surface of the pipe obtained in Example 2 had a remarkably small surface roughness as shown in FIG.

【0016】実施例3:実施例1と同じステンレス鋼S
US304製TIG溶接丸パイプの芯引き材を使用し、
図5に示すように、表面に研磨布紙又は研磨不織布8を
貼り付けたブロック状の強磁性体2をパイプ1に挿入し
た。研磨布紙としては粒度#30の砥粒を付着させたも
の、研磨不織布としては粒度#60,120,320の
砥粒を付着させたものを使用した。実施例1と同じ条件
下で磁場を印加しながら、パイプ1を内面研磨した。た
だし、研磨粒度#30,30,120,320の研磨布
紙又は研磨不織布8を使用した研磨を各1パスづつ、合
計4パスの研磨を行った。
Example 3: The same stainless steel S as in Example 1
Using core material of US304 TIG welded round pipe,
As shown in FIG. 5, a block-shaped ferromagnetic body 2 having a surface coated with a polishing paper or a polishing nonwoven fabric 8 was inserted into a pipe 1. As the abrasive cloth paper, those having abrasive grains of grain size # 30 adhered thereto were used, and as the abrasive non-woven fabric, those having abrasive grains of grain size # 60, 120, 320 adhered thereto were used. The inner surface of the pipe 1 was polished while applying a magnetic field under the same conditions as in Example 1. However, the polishing using the polishing cloth paper or the polishing nonwoven fabric 8 having the polishing grain sizes of # 30, 30, 120, and 320 was performed for each one pass, for a total of four passes.

【0017】比較例3:研磨布紙又は研磨不織布8を張
り付けた強磁性体2をパイプ1の内部に挿入し、図7に
示すように及びN極及びS極を並列させた電磁石9,9
をパイプ1の片側だけに配置した。その他は前述した実
施例1と同じ条件に設定し、パイプ1を内面研磨した。
研磨中に磁束密度を測定したところ、実施例3では0.
8テスラーであったのに対し、比較例3では0.4テス
ラーに止まっていた。このことから、パイプ1の片側だ
けに電磁石9,9を配置した場合に磁場の漏洩が多くな
ることが確認された。研磨後のパイプ内面を観察したと
ころ、一対の磁石をパイプ1を挟むようにして配置した
実施例3では、図8に示すようにRmax 0.4μmの極
めて平滑な表面であることが判った。これに対し、比較
例3で得られた表面粗さは、Rmax 7μmを超える表面
粗さになっており、漏洩磁束に起因して研磨材をパイプ
内面に押し付ける力が小さくなっていることが判る。
Comparative Example 3: An electromagnet 9, 9 in which a ferromagnetic material 2 to which an abrasive cloth paper or an abrasive nonwoven cloth 8 is attached is inserted into a pipe 1 and N pole and S pole are arranged in parallel as shown in FIG.
Was placed on only one side of pipe 1. Others were set to the same conditions as in Example 1 described above, and the inner surface of the pipe 1 was polished.
When the magnetic flux density was measured during polishing, it was found to be 0.
While it was 8 Tesler, in Comparative Example 3, it remained at 0.4 Tesler. From this, it was confirmed that when the electromagnets 9, 9 were arranged only on one side of the pipe 1, the leakage of the magnetic field increased. Observation of the inner surface of the pipe after polishing revealed that in Example 3 in which a pair of magnets were arranged so as to sandwich the pipe 1, it was an extremely smooth surface with R max of 0.4 μm as shown in FIG. On the other hand, the surface roughness obtained in Comparative Example 3 has a surface roughness exceeding R max of 7 μm, and the force of pressing the abrasive against the inner surface of the pipe is small due to the leakage magnetic flux. I understand.

【0018】[0018]

【発明の効果】以上に説明したように、本発明において
は、被研磨材であるパイプを挟んで相対向する位置に配
置した磁石により磁場を加えることにより、大きな押付
け力で研磨砥粒,研磨布紙,研磨不織布等の研磨材をパ
イプの内面に押し付けた状態で内面研磨するため、高い
表面平滑度の研磨仕上げが可能となる。また、漏洩磁束
に起因する磁力の損失がなく、磁場の作用が押付け力に
有効に消費され、作業時間の短縮や安価な磁場印加手段
の使用が可能となる。しかも、研磨の自動化が比較的容
易になるため、低コストで能率のよい研磨ラインが構築
される。
As described above, according to the present invention, a magnetic field is applied by magnets which are arranged at positions opposite to each other with a pipe as a material to be polished being sandwiched therebetween, so that a large pressing force is applied to polishing abrasive grains and polishing. Since the inner surface of the pipe is abraded with a polishing material such as a cloth paper or a non-woven fabric, the inner surface of the pipe is polished, so that a high surface smoothness can be achieved. In addition, there is no loss of magnetic force due to the leakage magnetic flux, the action of the magnetic field is effectively consumed by the pressing force, and the working time can be shortened and inexpensive magnetic field applying means can be used. Moreover, since the automation of polishing becomes relatively easy, a low-cost and efficient polishing line is constructed.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明実施例1における研磨状態FIG. 1 is a polishing state in Example 1 of the present invention.

【図2】 比較例1における研磨状態2 is a polishing state in Comparative Example 1. FIG.

【図3】 研磨時における磁束密度の比較FIG. 3 Comparison of magnetic flux densities during polishing

【図4】 粒度#240の研磨砥粒で研磨した場合の表
面粗さに比較
FIG. 4 is a comparison of surface roughness when polished with abrasive grains of grain size # 240.

【図5】 本発明実施例2における研磨状態FIG. 5: Polished state in Example 2 of the present invention

【図6】 研磨砥粒の粒度#30〜320まで研磨した
場合の表面粗さの比較
FIG. 6 is a comparison of surface roughness when the abrasive grains have a grain size of # 30 to 320.

【図7】 比較例3における研磨状態FIG. 7: Polished state in Comparative Example 3

【図8】 研磨砥粒の粒度#30〜320まで研磨した
実施例3と比較例3における表面粗さの比較
FIG. 8 is a comparison of surface roughness between Example 3 and Comparative Example 3 in which the abrasive grains have a particle size of # 30 to 320.

【符号の説明】[Explanation of symbols]

1:被研磨材であるパイプ 2:ブロック状の強磁性
体 3:研磨砥粒を懸濁させた液体 4,5:電磁
石 6:金属短繊維 7:磁性研磨材 8:研磨
布紙又は研磨不織布 9:電磁石
1: Pipe as a material to be polished 2: Block-shaped ferromagnetic material 3: Liquid in which abrasive grains are suspended 4,5: Electromagnet 6: Metal short fiber 7: Magnetic abrasive material 8: Abrasive cloth paper or abrasive non-woven fabric 9: Electromagnet

フロントページの続き (72)発明者 中本 一成 兵庫県尼崎市鶴町1番地 日新製鋼株式会 社加工技術研究所内Front page continued (72) Inventor Issei Nakamoto 1 Tsurumachi, Amagasaki City, Hyogo Prefecture Nisshin Steel Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 被研磨材であるパイプを挟んで相対向す
る位置に一対の磁石を配置し、ブロック状の強磁性体及
び研磨砥粒を前記パイプに挿入し、前記磁石の磁場で磁
化される前記強磁性体によって前記研磨砥粒を前記パイ
プの内面に押し付け、前記磁石又は前記パイプを相対的
に移動することを特徴とするパイプ内面の研磨方法。
1. A pair of magnets are arranged at positions opposed to each other with a pipe being a material to be polished interposed therebetween, and a block-shaped ferromagnetic material and abrasive grains are inserted into the pipe and magnetized by a magnetic field of the magnet. A method of polishing an inner surface of a pipe, characterized in that the abrasive grains are pressed against the inner surface of the pipe by the ferromagnetic material, and the magnet or the pipe is relatively moved.
【請求項2】 液体に懸濁された研磨砥粒をパイプ内部
に供給する請求項1記載のパイプ内面の研磨方法。
2. The method for polishing an inner surface of a pipe according to claim 1, wherein the abrasive grains suspended in a liquid are supplied into the pipe.
【請求項3】 被研磨材であるパイプを挟んで相対向す
る位置に一対の磁石を配置し、研磨布紙又は研磨不織布
を貼り付けたブロック状の強磁性体を前記パイプに挿入
し、前記磁石の磁場で磁化される前記強磁性体によって
前記研磨布紙又は研磨不織布を前記パイプの内面に押し
付け、前記磁石又は前記パイプを相対的に移動すること
を特徴とするパイプ内面の研磨方法。
3. A pair of magnets are arranged at positions opposite to each other with a pipe being a material to be polished interposed therebetween, and a block-shaped ferromagnetic material having abrasive cloth paper or abrasive non-woven fabric attached thereto is inserted into the pipe, and A method for polishing an inner surface of a pipe, comprising: pressing the polishing cloth paper or the polishing nonwoven fabric against the inner surface of the pipe by the ferromagnetic material magnetized by a magnetic field of a magnet, and relatively moving the magnet or the pipe.
JP16304394A 1994-06-22 1994-06-22 Polishing method for pipe inner surface Withdrawn JPH081506A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16304394A JPH081506A (en) 1994-06-22 1994-06-22 Polishing method for pipe inner surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16304394A JPH081506A (en) 1994-06-22 1994-06-22 Polishing method for pipe inner surface

Publications (1)

Publication Number Publication Date
JPH081506A true JPH081506A (en) 1996-01-09

Family

ID=15766103

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16304394A Withdrawn JPH081506A (en) 1994-06-22 1994-06-22 Polishing method for pipe inner surface

Country Status (1)

Country Link
JP (1) JPH081506A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001007206A1 (en) * 1999-07-27 2001-02-01 Japan Science And Technology Corporation Surface treating method and device using magnetic-anisotropy tool
JP2002254292A (en) * 2000-12-26 2002-09-10 Kyoei Denko Kk Method and device for inner surface treatment of member
US7175511B2 (en) 2003-07-15 2007-02-13 Hoya Corporation Method of manufacturing substrate for magnetic disk, apparatus for manufacturing substrate for magnetic disk, and method of manufacturing magnetic disk
KR100891176B1 (en) * 2007-07-20 2009-04-01 중앙대학교 산학협력단 Multi wheel type polishing device using magneto-rheological fluid
JP2015100915A (en) * 2013-11-27 2015-06-04 洛陽双瑞精鋳▲タイ▼業有限公司 Method of producing golf club head with ultrathin cap
CN107932277A (en) * 2017-11-20 2018-04-20 辽宁科技大学 The magnetic abrasive finishing assembly line and processing method of a kind of plane bend pipe internal surface
CN109848833A (en) * 2019-01-25 2019-06-07 辽宁科技大学 A kind of electromagnetism-wriggling multiple grinding polishes the method and device of long straight tube inner surface
CN113245931A (en) * 2021-05-25 2021-08-13 中国人民解放军国防科技大学 Cuboid optical material guide rail combination processing method and system

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001007206A1 (en) * 1999-07-27 2001-02-01 Japan Science And Technology Corporation Surface treating method and device using magnetic-anisotropy tool
JP2002254292A (en) * 2000-12-26 2002-09-10 Kyoei Denko Kk Method and device for inner surface treatment of member
JP4733794B2 (en) * 2000-12-26 2011-07-27 共栄電工株式会社 Method and apparatus for surface treatment of inner surface of member
US7175511B2 (en) 2003-07-15 2007-02-13 Hoya Corporation Method of manufacturing substrate for magnetic disk, apparatus for manufacturing substrate for magnetic disk, and method of manufacturing magnetic disk
KR100891176B1 (en) * 2007-07-20 2009-04-01 중앙대학교 산학협력단 Multi wheel type polishing device using magneto-rheological fluid
JP2015100915A (en) * 2013-11-27 2015-06-04 洛陽双瑞精鋳▲タイ▼業有限公司 Method of producing golf club head with ultrathin cap
CN107932277A (en) * 2017-11-20 2018-04-20 辽宁科技大学 The magnetic abrasive finishing assembly line and processing method of a kind of plane bend pipe internal surface
CN107932277B (en) * 2017-11-20 2019-07-26 辽宁科技大学 A kind of the magnetic abrasive finishing assembly line and processing method of plane bend pipe internal surface
CN109848833A (en) * 2019-01-25 2019-06-07 辽宁科技大学 A kind of electromagnetism-wriggling multiple grinding polishes the method and device of long straight tube inner surface
CN109848833B (en) * 2019-01-25 2023-06-16 辽宁科技大学 Method and device for polishing inner surface of long straight pipe by electromagnetic-peristaltic composite grinding
CN113245931A (en) * 2021-05-25 2021-08-13 中国人民解放军国防科技大学 Cuboid optical material guide rail combination processing method and system

Similar Documents

Publication Publication Date Title
Fox et al. Magnetic abrasive finishing of rollers
KR0139287B1 (en) Knife sharpening apparatus
Kim et al. Development of a magnetic abrasive jet machining system for precision internal polishing of circular tubes
JPH081506A (en) Polishing method for pipe inner surface
US4306386A (en) Method of finishing ferromagnetic articles by ferromagnetic abrasive powders in magnetic field
US3533928A (en) Method of and apparatus for the deburring of workpieces
JP6371645B2 (en) Magnetic polishing method and magnetic polishing apparatus using a magnet tool
US5868607A (en) Electrolytic in-process dressing method, electrolytic in process dressing apparatus and grindstone
JP4185986B2 (en) Magnetic deburring method
US6547648B1 (en) Method and device for high speed electrolytic in-process dressing for ultra-precision grinding
JPH0899224A (en) Electrolytic magnetic polishing method of pipe inside surface
KR100323065B1 (en) A poplshing apparatus based on the magnetic field forming principale of electromagnet
Jain et al. Experimental study and empirical modelling of magnetic abrasive finishing on ferromagnetic and non–ferromagnetic materials
Umehara et al. Internal polishing of tube with magnetic fluid grinding Part 1, fundamental polishing properties with taper-type tools
Umehara et al. Fundamental properties of magnetic fluid grinding with a floating polisher
JP3846052B2 (en) Magnetic polishing apparatus and magnetic polishing method
JPH0248391B2 (en)
JP2006272520A (en) Magnetism-assisted processing method and magnetic tool for use in it
DE4402032A1 (en) Ferromagnetic grinding belt fixed by magnetic shoe to conform with work piece
JP2005186239A (en) Grinding method using magnetic abrasive grain, and grinder
JP3350403B2 (en) Abrasive for magnetic field beam processing
JPS60191759A (en) Inner surface polishing method
JP2019030924A (en) Magnetic polishing method and magnetic polishing device
Xu et al. Study on Finishing of Polychlorotrifluoroethylene Resin by Magnetic Abrasive Finishing Process with Renewable Abrasive Particles
ROTHSTEIN¹ et al. Metallographic Specimen Preparation by Vibratory Polishing

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20010904