JPH08149795A - Semiconductor power converter - Google Patents
Semiconductor power converterInfo
- Publication number
- JPH08149795A JPH08149795A JP6288020A JP28802094A JPH08149795A JP H08149795 A JPH08149795 A JP H08149795A JP 6288020 A JP6288020 A JP 6288020A JP 28802094 A JP28802094 A JP 28802094A JP H08149795 A JPH08149795 A JP H08149795A
- Authority
- JP
- Japan
- Prior art keywords
- power
- main circuit
- conductor
- circuit conductor
- converter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Power Conversion In General (AREA)
- Inverter Devices (AREA)
- Rectifiers (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は大電力の高速スイッチン
グする電力用半導体素子を用いてなる電力変換装置に係
り、特に主回路導体の浮遊インダクタンスの低減化を図
った半導体電力変換装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a power converter using a power semiconductor element for high-power and high-speed switching, and more particularly to a semiconductor power converter for reducing stray inductance of a main circuit conductor.
【0002】[0002]
【従来の技術】電力用半導体素子は省エネルギー化の社
会的なニーズから、大容量化、低ロス化、高速化の傾向
にあり、高性能で高効率な電力変換が可能となってき
た。反面高速のスイッチング素子を用い、スイッチング
周波数の高速化と高効率の電力変換装置を実現するに
は、主回路インダクタンスと速い電流変化率(di/d
t)によって発生する過大なサージ電圧から電力変換装
置を保護する対策が必要となる。2. Description of the Related Art Due to the social need for energy saving, power semiconductor elements tend to have large capacity, low loss, and high speed, and high-performance and highly-efficient power conversion has become possible. On the other hand, to realize a high-speed switching frequency and a high-efficiency power conversion device using a high-speed switching element, the main circuit inductance and the fast current change rate (di / d)
It is necessary to take measures to protect the power conversion device from an excessive surge voltage generated by t).
【0003】小容量変換器では電流密度が低い関係から
問題にならないが、大容量変換器では、主回路の浮遊イ
ンダクタンスの低減化が必要不可欠となる。一般的に電
圧形変換器でサージ過電圧を抑制する方法あるいは、変
化率の高い電流ほど導体表面に集中して流れる性質等を
勘案して以下の対策がとられる。A small capacity converter does not pose a problem because of its low current density, but a large capacity converter requires the reduction of the stray inductance of the main circuit. Generally, the following measures are taken in consideration of a method of suppressing surge overvoltage with a voltage-type converter, or the fact that a current having a higher rate of change is concentrated and flows on the conductor surface.
【0004】1)主回路配線長を最短にする。 2)磁束の変化を相殺する配線構造(又は密着ブス)と
する。 3)ブスの表面積を大きくし、表皮効果による電流集中
を回避する。1) Minimize the main circuit wiring length. 2) Use a wiring structure (or a close contact bus) that cancels the change in magnetic flux. 3) Increase the surface area of the bus to avoid current concentration due to the skin effect.
【0005】4)di/dtを小さくする。 5)スナバ回路で吸収する。 本来高速スイッチング素子はdi/dtが大きく、上記
の4)の対策項目は素子本来の使用目的に反し適当では
なく、また5)の項目の対策は、スナバ回路での損失が
増大し、変換器効率の低下を招くことから得策ではな
い。しかしながら、4)、5)の問題は1)、2)の対
策が実現できれば、必然的に解消される問題である。4) Reduce di / dt. 5) Absorb in the snubber circuit. Originally, a high-speed switching element has a large di / dt, and the countermeasure item 4) above is not appropriate against the original purpose of use of the element, and the countermeasure 5) causes the loss in the snubber circuit to increase It is not a good idea because it causes a drop in efficiency. However, the problems 4) and 5) are inevitably solved if the measures 1) and 2) can be realized.
【0006】ここで、図12ないし図14により従来の
電圧形変換器において、電源供給導体(正極側電源供給
導体、負極側電源供給導体)の浮遊インダクタンスによ
るサージ過電圧の発生原理を説明する。図12は従来の
電圧形変換器(図15の電圧形変換器)の上・下アーム
の一相分のみを主回路構成を示している。図12に於い
て、1は直流入力電源、2は平滑用コンデンサ、3は平
滑用コンデンサ2と上アーム5のスイッチ素子Q1まで
の正極側主回路導体(正極側電源供給導体)、4は平滑
用コンデンサ2と下アーム6のスイッチ素子Q2まで負
極側主回路導体(負極側電源供給導体)、5は正側スイ
ッチ素子Q1とダイオードD1を有する上アーム、6は
負側スイッチ素子Q2とダイオードD2を有する下アー
ム、7は上アーム5と下アーム6の接続点から導出され
た交流出力端子である。Lsaは正極側主回路導体3の浮
遊インダクタンス、Lsbは負極側主回路導体4の浮遊イ
ンダクタンスである。Here, the principle of generation of surge overvoltage due to the stray inductance of the power supply conductors (positive side power supply conductor, negative side power supply conductor) in the conventional voltage type converter will be described with reference to FIGS. FIG. 12 shows the main circuit configuration of only one phase of the upper and lower arms of the conventional voltage type converter (the voltage type converter of FIG. 15). In FIG. 12, 1 is a DC input power source, 2 is a smoothing capacitor, 3 is a smoothing capacitor 2, and a positive side main circuit conductor (positive side power supply conductor) up to the switch element Q1 of the upper arm 5 is a smoothing line. Capacitor 2 and the switch element Q2 of the lower arm 6 to the negative side main circuit conductor (negative side power supply conductor), 5 is the upper arm having the positive side switch element Q1 and the diode D1, 6 is the negative side switch element Q2 and the diode D2 And a lower arm 7 having an AC output terminal derived from a connection point between the upper arm 5 and the lower arm 6. Lsa is the stray inductance of the positive side main circuit conductor 3, and Lsb is the stray inductance of the negative side main circuit conductor 4.
【0007】図12において、サージ過電圧が発生する
のは、以下のときである。すなわち、交流出力端子7に
接続された図示しない誘導負荷の電流ID [図13
(ロ)]が上アーム5のダイオードD1に流れている状
態でQ2がターンオンすると、Q2のIc (コレクタ電
流)はdic/dtの立ち上がり時に増加し[図13
(イ)]、負荷電流を超過して流れる。この超過電流は
上アーム5のダイオードD1のリカバリー電流で、リカ
バリー電流がピークに達した後急激に減少する。この時
のリカバリー電流で、Q1のターンオン時には(1)式
のサージ過電圧VONが発生する[図13(ハ)]。In FIG. 12, surge overvoltage occurs at the following times. That is, the current ID of the inductive load (not shown) connected to the AC output terminal 7 [FIG.
(B)] is flowing in the diode D1 of the upper arm 5, when Q2 is turned on, Ic (collector current) of Q2 increases at the rise of dic / dt [Fig.
(B)], the current exceeds the load current. This excess current is the recovery current of the diode D1 of the upper arm 5, and it rapidly decreases after the recovery current reaches its peak. With the recovery current at this time, the surge overvoltage VON of the formula (1) is generated when Q1 is turned on [Fig. 13 (c)].
【0008】 VON=−L・dir/dt …(1) 但し、ir:ダイオードD1のリカバリー電流 L:主回路浮遊インダクタンス(Lsa+Lsb) また、Q2のターンオフ時はdic/dt[図14
(イ)]で(2)式のサージ過電圧VOFF が発生する
[図14(ロ)]。VON = −L · dir / dt (1) where ir: recovery current of diode D1 L: main circuit stray inductance (Lsa + Lsb) Further, when Q2 is turned off, dic / dt [FIG. 14]
In (a)], the surge overvoltage VOFF of the formula (2) is generated [Fig. 14 (b)].
【0009】 VOFF =−L・dic/dt …(2) 但し、ic:コレクタ電流 L:主回路浮遊インダクタンス(Lsa+Lsb) (1)式、(2)式からQ2のターンオン、Q2のター
ンオフ時に発生する何れのサージ過電圧VON、VOFF
も、主回路の浮遊インダクタンスLsa、Lsbが関与し、
平滑用コンデンサ2からスイッチ素子Q1、Q2に至る
主回路導体3,4の最短化が必要であることが判る。VOFF = −L · dic / dt (2) However, ic: collector current L: main circuit stray inductance (Lsa + Lsb) From equations (1) and (2), it is generated when Q2 is turned on and Q2 is turned off. Which surge overvoltage VON, VOFF
Also, the stray inductances Lsa and Lsb of the main circuit are involved,
It can be seen that the main circuit conductors 3 and 4 from the smoothing capacitor 2 to the switch elements Q1 and Q2 need to be minimized.
【0010】図15ないし図19は従来の電力変換装置
に有する主回路導体3、4の構成を説明するための図で
あり、図15はスイッチ素子にIGBT(絶縁ゲートバ
イポーラトランジスタ)を用いた逆変換器の主回路接続
図である。図16ないし図17は、従来の第1の電力変
換装置の主回路導体3、4を説明するための図で、図1
6は図15の逆変換器および主回路導体3、4の平面図
であり、図17は図16のX−Xの矢印方向に見た側面
図である。FIGS. 15 to 19 are diagrams for explaining the configuration of the main circuit conductors 3 and 4 included in the conventional power converter. FIG. 15 is a reverse diagram in which an IGBT (insulated gate bipolar transistor) is used as a switch element. It is a main circuit connection diagram of a converter. 16 to 17 are views for explaining the main circuit conductors 3 and 4 of the first conventional power conversion device.
6 is a plan view of the inverse converter and the main circuit conductors 3 and 4 of FIG. 15, and FIG. 17 is a side view as seen in the direction of arrow XX in FIG.
【0011】正極側主回路導体3は断面L字状導体であ
って、平滑用コンデンサ2の一方の端子とスイッチ素子
8、9、10のコレクタ端子の上部に載置し、これを固
定ビス13、14により密着接続したものである。同様
に、負極側主回路導体4は断面L字状導体であって、平
滑用コンデンサ2の他方の端子とスイッチ素子15、1
6、17のコレクタ端子の上部に載置し、これを固定ビ
ス18、19により密着接続したものである。図中、1
1は交流出力端子、12は冷却器である。The positive-side main circuit conductor 3 is an L-shaped conductor in cross section, and is placed on one terminal of the smoothing capacitor 2 and the collector terminals of the switch elements 8, 9 and 10, and this is fixed by a fixing screw 13. , 14 are closely connected. Similarly, the negative-side main circuit conductor 4 is an L-shaped conductor in cross section, and is connected to the other terminal of the smoothing capacitor 2 and the switch elements 15 and 1.
It is placed on top of collector terminals 6 and 17, and these are tightly connected by fixing screws 18 and 19. In the figure, 1
Reference numeral 1 is an AC output terminal, and 12 is a cooler.
【0012】このように構成して、各端子(各電極)部
分に接続される正極側主回路導体3、負極側主回路導体
4の表面積を大きくした例である。図18は従来の第2
の電力変換装置の平滑用コンデンサ2とスイッチ素子8
〜10間の各電極の主回路導体3、4を表面積の大きな
板状導体で構成した構造例の平面図であり、図19は図
18をX−Xの矢印方向に見た側面図である。11は交
流出力端子、12は冷却器である。This is an example in which the surface areas of the positive electrode side main circuit conductor 3 and the negative electrode side main circuit conductor 4 connected to each terminal (each electrode) portion are increased by the above configuration. FIG. 18 shows a conventional second
Smoothing capacitor 2 and switch element 8 of the power converter of
20 is a plan view of a structural example in which the main circuit conductors 3 and 4 of each electrode between 10 and 10 are configured by plate-shaped conductors having a large surface area, and FIG. 19 is a side view of FIG. 18 viewed in the direction of arrow XX. . Reference numeral 11 is an AC output terminal, and 12 is a cooler.
【0013】図16ないし図19の変換器構造はいずれ
も、密着して配置し導体に流れる互いに逆電流方向の電
流で発生する、発生磁界の磁束をキャンセルし導体イン
ピーダンスを下げて、サージ過電圧の抑制をはかったも
のである。In all of the converter structures shown in FIGS. 16 to 19, the magnetic fluxes of the generated magnetic fields, which are generated by the currents flowing in opposite directions to each other and which are arranged in close contact with each other, are canceled, the conductor impedance is lowered, and the surge overvoltage is reduced. It was intended to be suppressed.
【0014】導体の配置状態とインダクタンスの関係
は、前述したPOWER CONVERSION・JUNE1991 PROCEEDINGS
のp143に掲載されている。これによると、2つの
導体が互いに平行に配置された状態でにおいて、両導体
の設置間隔をa、導体幅をbとした場合の理論限界のイ
ンダクタンスは零にすることができる(a/b=0)と
示されている。The relationship between the arrangement of conductors and the inductance is described in the POWER CONVERSION / JUNE1991 PROCEEDINGS section above.
No. p143. According to this, when the two conductors are arranged in parallel with each other, the theoretical limit inductance can be made zero when the installation interval of both conductors is a and the conductor width is b (a / b = 0).
【0015】しかし、現実にはa/b=0にすることは
不可能で、サージ過電圧は発生し図15の主回路接続図
には記載されていないが、スイッチ素子をサージ過電圧
から保護するため、スイッチ素子8、9、10及び主回
路導体3、4の接する部分にDCスナバが、また各スイ
ッチ素子のコレクタ−エミッタ間にはコンデンサ、抵
抗、ダイオード等から成り立つ別個のスナバが取り付け
られる。However, in reality, it is impossible to set a / b = 0, and a surge overvoltage occurs, and although not shown in the main circuit connection diagram of FIG. 15, in order to protect the switch element from the surge overvoltage, , The switch elements 8, 9 and 10 and the main circuit conductors 3 and 4 are in contact with each other, and a DC snubber is attached between the collector and the emitter of each switch element.
【0016】一般的に大電力変換器では、スイッチ素子
の形状から主回路導体は必然的に長くなりインダクタン
スが増大し、di/dtの高いスイッチ素子でスイッチ
ングすれば、大きなサージ過電圧が生じ、スイッチ素子
の安全動作領域に納まる範囲に、DCスナバ回路や別個
スナバを用いて吸収される。この吸収されるエネルギー
は極めて大きく、現状の装置では熱として放出されてい
る。また当然ながらエネルギーが大きなことからスナバ
構造は大型となる。このようにスナバ回路で生じた発生
熱は、単なる熱の放出の形態で処理されることから、イ
ンバータ効率の低下の原因となっている。Generally, in a large power converter, the shape of the switch element inevitably lengthens the main circuit conductor and increases the inductance. If switching is performed with a switch element having a high di / dt, a large surge overvoltage occurs and the switch It is absorbed using a DC snubber circuit or a separate snubber within a range that falls within the safe operation area of the device. This absorbed energy is extremely large and is radiated as heat in the present devices. Also, of course, the snubber structure becomes large due to the large amount of energy. Since the heat generated in the snubber circuit is processed in the form of mere release of heat, it causes a decrease in inverter efficiency.
【0017】主回路導体3、4に起因し生じたスナバ損
失の増大又は、サージ過電圧の発生を抑え変換器効率の
向上あるいは装置の信頼性を向上するには、主回路導体
の確実な低インダクタンス化が必要となる。In order to increase snubber loss caused by the main circuit conductors 3 and 4, suppress surge overvoltage and improve converter efficiency or device reliability, a reliable low inductance of the main circuit conductor is required. Need to be converted.
【0018】[0018]
【発明が解決しようとする課題】前述したように主回路
導体3、4に浮遊インダクタンスが存在する回路で、d
i/dtの高いスイッチ素子でスイッチングした場合、
素子のターン・オン、ターン・オフ時に素子内蔵又は付
設のフライホイール・ダイオードのリカバリ時間に主回
路の浮遊インダクタンスが急峻で極めて大きなサージ過
電圧が発生する。As described above, in the circuit where stray inductance exists in the main circuit conductors 3 and 4, d
When switching with a switching element with high i / dt,
During turn-on and turn-off of the device, the stray inductance of the main circuit is steep during the recovery time of the flywheel diode built in the device or attached, and an extremely large surge overvoltage occurs.
【0019】このような急峻な過電圧を、単純な平板の
導体配置構造で浮遊インダクタンスの低減を図るにはお
のずと限界があり難しい。本発明は以上の点に基づきな
されたもので、比較的簡単な構造でありながら、主回路
導体のインダクタンスを低減し、スイッチング素子の高
いdi/dtと主回路導体の浮遊インダクタンスにより
生じるサージ過電圧の発生を抑え、これに伴い生じるス
ナバ損失の低減と小型化を実現して高効率、高性能な半
導体電力変換装置を提供することを目的とする。It is naturally difficult to reduce such a steep overvoltage by reducing the stray inductance with a simple flat conductor arrangement structure. The present invention has been made on the basis of the above points, and has a relatively simple structure, reduces the inductance of the main circuit conductor, and suppresses surge overvoltage caused by high di / dt of the switching element and stray inductance of the main circuit conductor. An object of the present invention is to provide a high-efficiency and high-performance semiconductor power conversion device that suppresses the generation of the snubber loss and realizes the reduction of the snubber loss and the miniaturization.
【0020】[0020]
【課題を解決するための手段】前記目的を達成するた
め、請求項1に対応する発明は、交流電源の交流電力を
順変換器により脈動の大きい直流電力に変換し、この変
換された脈動の大きい直流電力をコンデンサ等で構成さ
れた平滑回路部により小さい直流に変換する平滑回路部
と、前記平滑回路で得られた脈動の小さい直流電力を、
複数の半導体スイッチ素子で構成された逆変換器により
交流電力に変換する電力変換装置において、前記平滑回
路部と前記逆変換器の半導体スイッチ素子の間を電気的
に接続するものであって、各々が波形状に成形され、か
つ両者が互いに所定の絶縁間隔を保つようにほぼ平行に
配置された正極側主回路導体および負極側主回路導体を
絶縁コーティング材により一体化してなる主回路導体を
備えた半導体電力変換装置である。In order to achieve the above object, the invention according to claim 1 converts the AC power of an AC power supply into a DC power with large pulsation by a forward converter, and converts the converted pulsation. A smoothing circuit unit that converts a large DC power into a smaller DC in a smoothing circuit unit configured by a capacitor, and a DC power with small pulsation obtained by the smoothing circuit,
In a power conversion device for converting into AC power by an inverse converter composed of a plurality of semiconductor switching elements, the smoothing circuit section and the semiconductor switching elements of the inverse converter are electrically connected, each of which: A main circuit conductor formed by correlating the positive electrode side main circuit conductor and the negative electrode side main circuit conductor, which are formed in a corrugated shape and are arranged substantially parallel to each other so as to maintain a predetermined insulation distance from each other, by an insulating coating material. It is a semiconductor power converter.
【0021】前記目的を達成するため、請求項2に対応
する発明は、請求項1記載の半導体電力変換装置におい
て、前記主回路導体は、これを取り付ける前記逆変換器
の外側面とほぼ同一の寸法としたことを特徴とする半導
体電力変換装置である。In order to achieve the above object, the invention according to claim 2 is the semiconductor power conversion device according to claim 1, wherein the main circuit conductor is substantially the same as the outer surface of the inverse converter to which the main circuit conductor is attached. It is a semiconductor power conversion device characterized by having dimensions.
【0022】前記目的を達成するため、請求項3に対応
する発明は、交流電源の交流電力を順変換器により脈動
の大きい直流電力に変換し、この変換された脈動の大き
い直流電力をコンデンサ等で構成された平滑回路部によ
り小さい直流に変換する平滑回路部と、前記平滑回路で
得られた脈動の小さい直流電力を、複数の半導体スイッ
チ素子で構成された逆変換器により交流電力に変換する
電力変換装置において、前記平滑回路部と前記逆変換器
の半導体スイッチ素子の間を電気的に接続するものであ
って、各々が複数の断面ほぼ半円状の突起を有し、かつ
両者が互いに所定の絶縁間隔を保つようにほぼ平行に配
置された正極側主回路導体および負極側主回路導体を絶
縁コーティング材により一体化してなる主回路導体を備
えた半導体電力変換装置である。In order to achieve the above-mentioned object, the invention according to claim 3 converts the AC power of the AC power supply into DC power with large pulsation by a forward converter, and converts the converted DC power with large pulsation into a capacitor or the like. The smoothing circuit unit configured to convert into a smaller direct current, and the DC power with small pulsation obtained by the smoothing circuit is converted into AC power by an inverse converter composed of a plurality of semiconductor switch elements. In the power conversion device, the smoothing circuit section and the semiconductor switching element of the inverse converter are electrically connected, each having a plurality of semicircular cross-section projections, and both A semiconductor power converter including a main circuit conductor formed by integrating a positive side main circuit conductor and a negative side main circuit conductor, which are arranged substantially parallel to each other so as to maintain a predetermined insulation distance, by an insulating coating material. It is a device.
【0023】前記目的を達成するため、請求項4に対応
する発明は、交流電源の交流電力を順変換器により脈動
の大きい直流電力に変換し、この変換された脈動の大き
い直流電力をコンデンサ等で構成された平滑回路部によ
り小さい直流に変換する平滑回路部と、前記平滑回路で
得られた脈動の小さい直流電力を、複数の半導体スイッ
チ素子で構成された逆変換器により交流電力に変換する
電力変換装置において、前記平滑回路部と前記逆変換器
の半導体スイッチ素子の間を電気的に接続するものであ
って、各々が複数の波形導板をそれぞれ絶縁コーティン
グ材によりコーティングした主回路導体片を積層してな
る正極側主回路導体および負極側主回路導体を、互いに
ほぼ平行に配置してなる主回路導体を備えた半導体電力
変換装置である。In order to achieve the above object, the invention according to claim 4 is to convert the AC power of the AC power supply into DC power with large pulsation by a forward converter, and convert the converted DC power with large pulsation into a capacitor or the like. The smoothing circuit unit configured to convert into a smaller direct current, and the DC power with small pulsation obtained by the smoothing circuit is converted into AC power by an inverse converter composed of a plurality of semiconductor switch elements. In the power converter, the smoothing circuit section and the semiconductor switch element of the inverse converter are electrically connected, each main circuit conductor piece having a plurality of corrugated conductive plates coated with an insulating coating material. A semiconductor power conversion device comprising a main circuit conductor in which a positive side main circuit conductor and a negative side main circuit conductor formed by stacking are laminated substantially parallel to each other.
【0024】[0024]
【作用】請求項1または請求項2に対応する発明によれ
ば、平滑回路部と逆変換器の半導体スイッチ素子の間を
電気的に接続するものであって、各々が波形状に成形さ
れ、かつ両者が互いに所定の絶縁間隔を保つようにほぼ
平行に配置された正極側主回路導体および負極側主回路
導体を絶縁コーティング材により一体化してなる主回路
導体を備えているので、以下のような作用効果が得られ
る。すなわち、正極側主回路導体および負極側主回路導
体にそれぞれ方向の異なる電流が流れることによりこれ
らによって生じる磁束が互いに打ち消されるので、正極
側主回路導体および負極側主回路導体の浮遊インダクタ
ンスが減少し、また波形状の導体で実質的に、導体設置
間隔に対し導体の幅を増大することで、スイッチ素子で
構成された逆変換器のスイッチング動作と正極側主回路
導体および負極側主回路導体の浮遊インダクタンスで生
じるサージ過電圧が抑制できる。According to the invention according to claim 1 or 2, the smoothing circuit portion and the semiconductor switch element of the inverse converter are electrically connected, and each is formed in a wave shape. Moreover, since the main circuit conductor is formed by integrating the positive side main circuit conductor and the negative side main circuit conductor, which are arranged substantially parallel to each other so as to maintain a predetermined insulation distance from each other, with an insulating coating material, Various operational effects can be obtained. That is, since magnetic fluxes generated by currents flowing in different directions in the positive-side main circuit conductor and the negative-side main circuit conductor cancel each other out, stray inductance of the positive-side main circuit conductor and the negative-side main circuit conductor is reduced. In addition, by substantially increasing the width of the conductor with respect to the conductor installation interval with the corrugated conductor, the switching operation of the inverse converter composed of the switch element and the positive side main circuit conductor and the negative side main circuit conductor Surge overvoltage caused by stray inductance can be suppressed.
【0025】請求項3に対応する発明によれば、平滑回
路部と前記逆変換器の半導体スイッチ素子の間を電気的
に接続するものであって、各々が複数の断面ほぼ半円状
の突起を有し、かつ両者が互いに所定の絶縁間隔を保つ
ようにほぼ平行に配置された正極側主回路導体および負
極側主回路導体を絶縁コーティング材により一体化して
なる主回路導体を備えているので、請求項1または請求
項2と同様な作用効果が得られる。According to the invention corresponding to claim 3, the smoothing circuit portion and the semiconductor switch element of the inverse converter are electrically connected to each other, and each of the plurality of protrusions has a semicircular cross section. And a main circuit conductor formed by integrating a positive-side main circuit conductor and a negative-side main circuit conductor, which are arranged substantially parallel to each other so as to maintain a predetermined insulation distance from each other, by an insulating coating material. The same effects as those of claim 1 or claim 2 can be obtained.
【0026】請求項4に対応する発明によれば、平滑回
路部と前記逆変換器の半導体スイッチ素子の間を電気的
に接続するものであって、各々が複数の波形導板をそれ
ぞれ絶縁コーティング材によりコーティングした主回路
導体片を積層してなる正極側主回路導体および負極側主
回路導体を、互いにほぼ平行に配置してなる主回路導体
を備えているので、主回路導体の浮遊インダクタンス
や、スイッチ素子の速いスイッチング動作による高周波
電流で、電流が主回路導体の表面に集中するいわゆる表
皮効果によって、導体抵抗の増加を防止することができ
ると共に低インダクタンス化も合わせて可能となる。According to a fourth aspect of the present invention, the smoothing circuit portion and the semiconductor switch element of the inverse converter are electrically connected to each other, and each of the plurality of corrugated conductive plates is provided with an insulating coating. Since the positive-side main circuit conductor and the negative-side main circuit conductor, which are formed by laminating the main circuit conductor pieces coated with a material, are provided substantially parallel to each other, the stray inductance of the main circuit conductor and The so-called skin effect in which the current is concentrated on the surface of the main circuit conductor by the high-frequency current due to the fast switching operation of the switch element can prevent the increase of the conductor resistance and also reduce the inductance.
【0027】[0027]
【実施例】以下、本発明の実施例を図面によって説明す
るが、ここでは、半導体電力変換装置の一例としてイン
バータをあげて説明するが、これに限らずなんでもよ
い。 (第1実施例)図1ないし図4は、本発明の第1実施例
を説明するための図であり、図1は半導体電力変換装置
の平面図、図2は図1をY−Yの矢印方向に見た側面
図、図3は図1の主回路導体を示した平面図、図4は図
3をY−Yの矢印方向に見た側面図である。尚図1ない
し図4に於いて従来の技術で示した図12ないし図19
と同一要素は同一記号で示す。Embodiments of the present invention will be described below with reference to the drawings. Here, an inverter will be described as an example of the semiconductor power conversion device, but the present invention is not limited to this. (First Embodiment) FIGS. 1 to 4 are views for explaining a first embodiment of the present invention. FIG. 1 is a plan view of a semiconductor power converter, and FIG. FIG. 3 is a side view seen in the direction of the arrow, FIG. 3 is a plan view showing the main circuit conductor of FIG. 1, and FIG. 4 is a side view seen in the direction of the arrow YY of FIG. 12 to 19 shown in the prior art in FIGS. 1 to 4.
The same elements as are indicated by the same symbols.
【0028】本実施例は、図15に示す回路において、
平滑用コンデンサ2と逆変換器を構成している半導体ス
イッチ素子8〜10、16〜18の間を電気的に接続す
る正極側主回路導体3および負極側主回路導体4を以下
のような主回路導体30に構成したものである。すなわ
ち、主回路導体30は2枚の帯状導体が波形状(蛇腹
状)に成形され、かつ両者が互いに所定の絶縁間隔aを
保つようにほぼ平行に配置された正極側主回路導体34
および負極側主回路導体35を絶縁コーティング材33
により一体化し、これに後述する端子に電気的に接続
(接触固定)するための取付座36が複数個互いに所定
間隔を存して固着されている。In this embodiment, in the circuit shown in FIG.
The positive-side main circuit conductor 3 and the negative-side main circuit conductor 4 that electrically connect between the smoothing capacitor 2 and the semiconductor switch elements 8 to 10 and 16 to 18 forming the inverse converter are connected as follows. The circuit conductor 30 is configured. That is, the main circuit conductor 30 is a positive electrode side main circuit conductor 34 in which two strip-shaped conductors are formed in a corrugated shape (bellows shape) and are arranged substantially parallel to each other so as to maintain a predetermined insulation distance a therebetween.
And the negative side main circuit conductor 35 with an insulating coating material 33
, And a plurality of mounting seats 36 for electrically connecting (contact-fixing) to a terminal described later are fixed to each other at a predetermined interval.
【0029】このような構成の主回路導体30の一端
は、直流電源1および平滑用コンデンサ2の端子にそれ
ぞれビス31により取付座36が固定され、また主回路
導体30の他端は逆変換器を構成している半導体スイッ
チ素子21、22、23および24、25、26(図1
5の半導体スイッチ素子8〜10、16〜18に相当)
の端子にそれぞれビス32により取付座36が固定され
ている。At one end of the main circuit conductor 30 having such a structure, mounting seats 36 are fixed to the terminals of the DC power source 1 and the smoothing capacitor 2 by screws 31, respectively, and the other end of the main circuit conductor 30 is an inverse converter. The semiconductor switch elements 21, 22, 23 and 24, 25, 26 (see FIG.
(Corresponding to semiconductor switch elements 8 to 10 and 16 to 18 of 5)
A mounting seat 36 is fixed to each of the terminals by a screw 32.
【0030】なお、図1ないし図4に於いて、20はヒ
ートシンク、27〜29は負荷出力用の出力導体であ
る。以上述べた第1実施例の主回路導体30は、従来の
平板の平行導体に比べ、a(図4の導体間隔)/b(図
4の導体幅)の商を零あるいは小さくすることができ
る。これは波形状であることから、導体幅bの項が大き
くなるからである。In FIGS. 1 to 4, 20 is a heat sink and 27 to 29 are output conductors for load output. In the main circuit conductor 30 of the first embodiment described above, the quotient of a (conductor spacing in FIG. 4) / b (conductor width in FIG. 4) can be reduced to zero or smaller than that of the conventional flat parallel conductor. . This is because the term of the conductor width b becomes large because of the wavy shape.
【0031】この結果、従来の平板の平行導体に比べ導
体の浮遊インダクタンスが減少し、サージ過電圧の発生
を抑えることが可能となる。また密着し配置した導体3
4、35にそれぞれ流れる電流が互いに逆方向であるた
め、この電流により生ずる磁束変化が打ち消されるた
め、これによっても浮遊インダクタンスの低減方向に作
用する。As a result, the stray inductance of the conductor is reduced as compared with the conventional flat parallel conductor, and the surge overvoltage can be suppressed. Conductor 3 placed in close contact
Since the currents flowing in the respective Nos. 4 and 35 are in opposite directions, the change in magnetic flux caused by this current is canceled out, and this also acts in the direction of reducing the stray inductance.
【0032】この浮遊インダクタンスが小さくなり、か
つサージ過電圧が抑制されることから、DCスナバある
いはスイッチ素子の個別スナバの損失が少なくなり、ス
ナバを小容量化が可能となり、装置の小型化を図ること
ができる。また一対の電源供給導体をコーティング材で
一体化することで組立工数が下がる。Since the stray inductance is reduced and the surge overvoltage is suppressed, the loss of the DC snubber or the individual snubber of the switch element is reduced, and the snubber can be downsized, and the device can be downsized. You can In addition, by integrating the pair of power supply conductors with the coating material, the number of assembling steps can be reduced.
【0033】(第2実施例)図5ないし図6は、第2実
施例を説明するための図で、図5は半導体電力変換装置
の平面図であり、図6は図5をY−Yの矢印方向に見た
側面図である。(Second Embodiment) FIGS. 5 to 6 are views for explaining the second embodiment, FIG. 5 is a plan view of a semiconductor power converter, and FIG. It is the side view seen in the arrow direction.
【0034】前述の第1実施例では主回路導体の全体の
形状を帯状としたが、本実施例は全体の形状を主回路導
体を取り付ける逆変換器の外側面とほぼ同一の寸法の平
板状としたもので、これ以外の点は第1実施例と同一で
ある。In the first embodiment described above, the overall shape of the main circuit conductor is band-shaped, but in the present embodiment, the overall shape is a flat plate having substantially the same size as the outer surface of the inverse converter to which the main circuit conductor is attached. The other points are the same as those in the first embodiment.
【0035】主回路導体は、具体的には波形状の正極側
主回路導体38と波形状の負極側主回路導体39を互い
に所定間隔を存した状態で絶縁コーティング37により
コーティングしたものである。Specifically, the main circuit conductor is formed by coating a corrugated positive side main circuit conductor 38 and a corrugated negative side main circuit conductor 39 with an insulating coating 37 at a predetermined interval.
【0036】このような構成の主回路導体は、負極固定
ビス40、正極固定ビス41、正極固定ビス42、負極
固定ビス43により、直流電源1および平滑用コンデン
サ2、逆変換器を構成しているスイッチ素子の端子にそ
れぞれ固定されている。なお、44は冷却器である。In the main circuit conductor having such a structure, the negative electrode fixing screw 40, the positive electrode fixing screw 41, the positive electrode fixing screw 42, and the negative electrode fixing screw 43 constitute the DC power source 1, the smoothing capacitor 2, and the inverse converter. It is fixed to each terminal of the switch element. In addition, 44 is a cooler.
【0037】以上述べた第2実施例も前述した第1実施
例と同様な作用効果が得られる。 (第3実施例)図7ないし図8は本発明の第3実施例を
示すもので、図7は主回路導体の平面図であり、図8は
図7をX−Xの矢印方向に見た側面図である。The second embodiment described above can also obtain the same effects as the first embodiment described above. (Third Embodiment) FIGS. 7 to 8 show a third embodiment of the present invention, FIG. 7 is a plan view of a main circuit conductor, and FIG. 8 is a view of FIG. 7 viewed in the direction of arrow XX. FIG.
【0038】主回路導体は、正極側主回路導体45、負
極側主回路導体46、絶縁コーティング33からなり、
正極側主回路導体45、負極側主回路導体46はいずれ
も帯状導体に多数の断面ほぼ半円状の突起50を形成し
たものであり、両者が互いに所定の絶縁間隔を保つよう
にほぼ平行に配置された状態で正極側主回路導体45、
負極側主回路導体46を絶縁コーティング材33により
一体化したものである。The main circuit conductor comprises a positive side main circuit conductor 45, a negative side main circuit conductor 46 and an insulating coating 33,
Each of the positive electrode side main circuit conductor 45 and the negative electrode side main circuit conductor 46 is a strip-shaped conductor formed with a large number of projections 50 each having a substantially semicircular cross section, and the two are substantially parallel to each other so as to maintain a predetermined insulation interval therebetween. The main circuit conductor 45 on the positive electrode side in the arranged state,
The negative side main circuit conductor 46 is integrated by the insulating coating material 33.
【0039】以上述べた第3実施例も前述した第1実施
例と同様な作用効果が得られる。 (第4実施例)図9ないし図11は本発明の第4実施例
を示すもので、図9は主回路導体の平面図であり、図1
0は図9をX−Xの矢印方向に見た側面図であり、図1
1は主回路導体の浮遊インダクタンスと浮遊容量を説明
するための図である。The third embodiment described above can also obtain the same operational effects as the first embodiment described above. (Fourth Embodiment) FIGS. 9 to 11 show a fourth embodiment of the present invention. FIG. 9 is a plan view of a main circuit conductor.
0 is a side view of FIG. 9 as seen in the direction of arrow XX, and FIG.
FIG. 1 is a diagram for explaining the stray inductance and stray capacitance of the main circuit conductor.
【0040】主回路導体は、正極側主回路導体47と、
負極側主回路導体48と、絶縁コーティング33からな
り、正極側主回路導体47は波形の薄板導体を絶縁コー
ティングでコーティングしたものを複数枚積層し、また
負極側主回路導体48は波形の薄板導体を絶縁コーティ
ング材でコーティングしたものを複数枚積層したものを
使用し、正極側主回路導体47と負極側主回路導体48
を所定間隔を存して互いに平行に配置した状態で、全体
を絶縁コーティング材33でコーティングしたものであ
る。The main circuit conductor is composed of the positive side main circuit conductor 47,
The negative side main circuit conductor 48 and the insulating coating 33 are formed. The positive side main circuit conductor 47 is formed by laminating a plurality of corrugated thin plate conductors coated with an insulating coating, and the negative side main circuit conductor 48 is a corrugated thin plate conductor. A plurality of positive electrode side main circuit conductors 47 and negative electrode side main circuit conductors 48, which are obtained by stacking a plurality of layers coated with an insulating coating material, are used.
Are arranged in parallel with each other at a predetermined interval, and the whole is coated with an insulating coating material 33.
【0041】以上述べた第4実施例によれば、主回路導
体47,48の浮遊インダクタンスや、スイッチ素子2
1〜26の速いスイッチング動作による高周波電流で、
電流が主回路導体47,48の表面に集中するいわゆる
表皮効果によって、導体抵抗の増加を防止することがで
きると共に低インダクタンス化も合わせて可能となる。According to the fourth embodiment described above, the stray inductance of the main circuit conductors 47 and 48 and the switching element 2
With high frequency current due to fast switching operation of 1-26,
Due to the so-called skin effect in which the current concentrates on the surfaces of the main circuit conductors 47, 48, it is possible to prevent an increase in conductor resistance and also to reduce the inductance.
【0042】又、複数の導体をそれぞれ絶縁コーティン
グしかつこれら積層した構造の主回路導体47,48を
さらに全体を絶縁コーティングしたので、前述の低イン
ダクタンスの効果の他に、高速スイッチングあるいはサ
ージ発生時に生じる高周波電流の表皮効果による導体抵
抗の増加現象を防止することができる。さらに、積層し
た導体を使用することで、高速スイッチング等による高
周波電流で導体抵抗の増加を抑えることができ、各相の
出力電流のアンバランスを小さくすることができる。Further, since the main circuit conductors 47 and 48 having a structure in which a plurality of conductors are respectively insulation-coated and laminated on each other are further insulation-coated, in addition to the above-mentioned effect of low inductance, when high-speed switching or surge occurs. It is possible to prevent an increase phenomenon of the conductor resistance due to the skin effect of the generated high frequency current. Furthermore, by using the laminated conductors, it is possible to suppress an increase in conductor resistance due to high-frequency current due to high-speed switching or the like, and to reduce the imbalance of the output current of each phase.
【0043】ここで、第4実施例の主回路導体の、平滑
用コンデンサからスイッチ素子の導体の浮遊インダクタ
ンス及び浮遊容量は図11の様に示すことができる。図
11に於いて、Lp1〜Lpnは正極側主回路導体の浮遊イ
ンダクタンス、Ln1〜Lnnは負極側主回路導体の浮遊イ
ンダクタンス、Cs1〜Csnは主回路導体の密着配置によ
って導体間に生じる浮遊容量である。この様な梯子回路
はノイズフィルタと同様で、回路インピーダンスを下げ
サージ過電圧の発生を防止する場合に使用される。Here, the stray inductance and stray capacitance from the smoothing capacitor to the switch element conductor of the main circuit conductor of the fourth embodiment can be shown as shown in FIG. In FIG. 11, Lp1 to Lpn are stray inductances of the positive side main circuit conductor, Ln1 to Lnn are stray inductances of the negative side main circuit conductor, and Cs1 to Csn are stray capacitances generated between the conductors due to the close arrangement of the main circuit conductors. is there. Such a ladder circuit is similar to a noise filter and is used when lowering the circuit impedance and preventing the occurrence of surge overvoltage.
【0044】[0044]
【発明の効果】本発明によれば、比較的簡単な構造であ
りながら、主回路導体のインダクタンスを低減し、スイ
ッチング素子の高いdi/dtと主回路導体の浮遊イン
ダクタンスにより生じるサージ過電圧の発生を抑え、こ
れに伴い生じるスナバ損失の低減と小型化を実現して高
効率、高性能な半導体電力変換装置を提供することがで
きる。According to the present invention, although the structure is relatively simple, the inductance of the main circuit conductor is reduced, and surge overvoltage caused by high di / dt of the switching element and stray inductance of the main circuit conductor is prevented. It is possible to provide a highly efficient and high-performance semiconductor power conversion device by suppressing the snubber loss and reducing the snubber loss.
【図1】本発明の半導体電力変換装置の第1実施例を示
す平面図。FIG. 1 is a plan view showing a first embodiment of a semiconductor power conversion device of the present invention.
【図2】図1のY−Y矢印方向に見た側面図。FIG. 2 is a side view seen in the direction of the arrow Y-Y in FIG.
【図3】図1の主回路導体のみを示した平面図。3 is a plan view showing only the main circuit conductor of FIG. 1. FIG.
【図4】図3のY−Y矢印方向に見た側面図。FIG. 4 is a side view seen in the direction of the arrow Y-Y in FIG.
【図5】本発明の半導体電力変換装置の第2実施例を示
す平面図。FIG. 5 is a plan view showing a second embodiment of the semiconductor power conversion device of the present invention.
【図6】図5をY−Yの方向に見た側面図。FIG. 6 is a side view of FIG. 5 as seen in the direction YY.
【図7】本発明の半導体電力変換装置の第3実施例を示
す平面図。FIG. 7 is a plan view showing a third embodiment of the semiconductor power conversion device of the present invention.
【図8】図7をX−Xの矢印方向に見た側面図。FIG. 8 is a side view of FIG. 7 viewed in the direction of arrow XX.
【図9】本発明の半導体電力変換装置の第4実施例を示
す平面図。FIG. 9 is a plan view showing a fourth embodiment of the semiconductor power conversion device of the present invention.
【図10】図9をY−Yの矢印方向に見た側面図。FIG. 10 is a side view of FIG. 9 viewed in the direction of the arrow YY.
【図11】図9の電源供給導体の浮遊インダクタンス及
び浮遊容量を示す概念図。11 is a conceptual diagram showing stray inductance and stray capacitance of the power supply conductor of FIG.
【図12】従来の電圧形変換器におけるサージ過電圧発
生原理を示すための上・下アーム構成の主回路接続図。FIG. 12 is a main circuit connection diagram of upper and lower arm configurations for illustrating the principle of surge overvoltage generation in the conventional voltage type converter.
【図13】図12のスイッチ素子のターンオン時のサー
ジ過電圧波形図。FIG. 13 is a surge overvoltage waveform diagram at the time of turning on the switch element of FIG. 12;
【図14】図12のスイッチ素子のターンオフ時のサー
ジ過電圧波形図。FIG. 14 is a surge overvoltage waveform diagram when the switch element of FIG. 12 is turned off.
【図15】従来の半導体電力変換装置の一例を示す主回
路接続図。FIG. 15 is a main circuit connection diagram showing an example of a conventional semiconductor power conversion device.
【図16】図15の半導体電力変換装置の平面図。16 is a plan view of the semiconductor power conversion device of FIG.
【図17】図16をX−Xの矢印方向に見た側面図。FIG. 17 is a side view of FIG. 16 seen in the direction of arrow XX.
【図18】従来の半導体電力変換装置の他の例を示す主
回路接続図。FIG. 18 is a main circuit connection diagram showing another example of the conventional semiconductor power conversion device.
【図19】図18をX−Xの矢印方向に見た側面図。FIG. 19 is a side view of FIG. 18 viewed in the direction of arrow XX.
1…直流電源、2…平滑用コンデンサ、3…正極側主回
路導体(正極側電源供給導体)、4…負極側主回路導体
(負極側電源給導体)、5…正側スイッチ素子、6…負
側スイッチ素子、7…交流出力端子、8…U相スイッチ
素子、9…V相スイッチ素子、10…W相スイッチ素
子、11…交流出力端子、12、44…冷却器、20…
ヒートシンク、21〜26…スイッチ素子、27〜29
…出力導体、30…絶縁コーティング材、31、32…
ビス、33、37…絶縁コーティング、34、39、4
5、47…正極側主回路導体、35、38、46、48
…負極側主回路導体、36、49…取付座、40、43
…負極固定ビス、41、42…正極固定ビス、Lp1〜L
pn…正極側主回路導体の浮遊インダクタンス、Ln1〜L
nn…負極側主回路導体の浮遊インダクタンス、Cs1〜C
sn…浮遊容量。DESCRIPTION OF SYMBOLS 1 ... DC power supply, 2 ... Smoothing capacitor, 3 ... Positive side main circuit conductor (positive side power supply conductor), 4 ... Negative side main circuit conductor (negative side power supply conductor), 5 ... Positive side switch element, 6 ... Negative side switch element, 7 ... AC output terminal, 8 ... U phase switch element, 9 ... V phase switch element, 10 ... W phase switch element, 11 ... AC output terminal, 12, 44 ... Cooler, 20 ...
Heat sink, 21-26 ... Switch element, 27-29
... Output conductor, 30 ... Insulation coating material, 31, 32 ...
Screws, 33, 37 ... Insulating coating, 34, 39, 4
5, 47 ... Positive side main circuit conductor, 35, 38, 46, 48
... Negative electrode side main circuit conductor, 36, 49 ... Mounting seat, 40, 43
… Negative electrode fixing screws, 41, 42… Positive electrode fixing screws, Lp1 to L
pn: Stray inductance of the positive side main circuit conductor, Ln1 to L
nn ... Stray inductance of the negative side main circuit conductor, Cs1 to C
sn ... stray capacitance.
Claims (4)
動の大きい直流電力に変換し、この変換された脈動の大
きい直流電力をコンデンサ等で構成された平滑回路部に
より小さい直流に変換する平滑回路部と、前記平滑回路
で得られた脈動の小さい直流電力を、複数の半導体スイ
ッチ素子で構成された逆変換器により交流電力に変換す
る電力変換装置において、 前記平滑回路部と前記逆変換器の半導体スイッチ素子の
間を電気的に接続するものであって、各々が波形状に成
形され、かつ両者が互いに所定の絶縁間隔を保つように
ほぼ平行に配置された正極側主回路導体および負極側主
回路導体を絶縁コーティング材により一体化してなる主
回路導体を備えた半導体電力変換装置。1. A smoothing device for converting AC power of an AC power supply into DC power with large pulsation by a forward converter, and converting the converted DC power with large pulsation into smaller DC in a smoothing circuit section composed of a capacitor or the like. A circuit unit and a power converter that converts direct-current power with small pulsation obtained by the smoothing circuit into alternating-current power by an inverse converter composed of a plurality of semiconductor switch elements, wherein the smoothing circuit unit and the inverse converter For electrically connecting the semiconductor switch elements, each of which is formed in a wavy shape, and which are arranged substantially parallel to each other so as to maintain a predetermined insulation distance from each other. A semiconductor power conversion device comprising a main circuit conductor formed by integrating side main circuit conductors with an insulating coating material.
いて、前記主回路導体は、これを取り付ける前記逆変換
器の外側面とほぼ同一の寸法としたことを特徴とする半
導体電力変換装置。2. The semiconductor power conversion device according to claim 1, wherein the main circuit conductor has substantially the same size as an outer surface of the inverse converter to which the main circuit conductor is attached.
動の大きい直流電力に変換し、この変換された脈動の大
きい直流電力をコンデンサ等で構成された平滑回路部に
より小さい直流に変換する平滑回路部と、前記平滑回路
で得られた脈動の小さい直流電力を、複数の半導体スイ
ッチ素子で構成された逆変換器により交流電力に変換す
る電力変換装置において、 前記平滑回路部と前記逆変換器の半導体スイッチ素子の
間を電気的に接続するものであって、各々が複数の断面
ほぼ半円状の突起を有し、かつ両者が互いに所定の絶縁
間隔を保つようにほぼ平行に配置された正極側主回路導
体および負極側主回路導体を絶縁コーティング材により
一体化してなる主回路導体を備えた半導体電力変換装
置。3. A smoothing for converting AC power of an AC power supply into DC power with large pulsation by a forward converter, and converting the converted DC power with large pulsation into smaller DC in a smoothing circuit section composed of a capacitor or the like. A circuit unit and a power converter that converts DC power with small pulsation obtained by the smoothing circuit into AC power by an inverse converter composed of a plurality of semiconductor switch elements, wherein the smoothing circuit unit and the inverse converter For electrically connecting the semiconductor switch elements, each having a plurality of semi-circular protrusions in cross section, and arranged substantially parallel to each other so as to maintain a predetermined insulation distance from each other. A semiconductor power conversion device comprising a main circuit conductor in which a positive side main circuit conductor and a negative side main circuit conductor are integrated by an insulating coating material.
動の大きい直流電力に変換し、この変換された脈動の大
きい直流電力をコンデンサ等で構成された平滑回路部に
より小さい直流に変換する平滑回路部と、前記平滑回路
で得られた脈動の小さい直流電力を、複数の半導体スイ
ッチ素子で構成された逆変換器により交流電力に変換す
る電力変換装置において、 前記平滑回路部と前記逆変換器の半導体スイッチ素子の
間を電気的に接続するものであって、各々が複数の波形
導板をそれぞれ絶縁コーティング材によりコーティング
した主回路導体片を積層してなる正極側主回路導体およ
び負極側主回路導体を、互いにほぼ平行に配置してなる
主回路導体を備えた半導体電力変換装置。4. A smoothing device for converting AC power of an AC power supply into DC power with large pulsation by a forward converter, and converting the converted DC power with large pulsation into smaller DC in a smoothing circuit section composed of a capacitor or the like. A circuit unit and a power converter that converts DC power with small pulsation obtained by the smoothing circuit into AC power by an inverse converter composed of a plurality of semiconductor switch elements, wherein the smoothing circuit unit and the inverse converter For electrically connecting the semiconductor switching elements of the above, each of which is formed by laminating main circuit conductor pieces, each of which is formed by coating a plurality of corrugated conductive plates with an insulating coating material. A semiconductor power conversion device comprising a main circuit conductor in which circuit conductors are arranged substantially parallel to each other.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6288020A JPH08149795A (en) | 1994-11-22 | 1994-11-22 | Semiconductor power converter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6288020A JPH08149795A (en) | 1994-11-22 | 1994-11-22 | Semiconductor power converter |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH08149795A true JPH08149795A (en) | 1996-06-07 |
Family
ID=17724778
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6288020A Pending JPH08149795A (en) | 1994-11-22 | 1994-11-22 | Semiconductor power converter |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH08149795A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10285907A (en) * | 1997-04-10 | 1998-10-23 | Toshiba Corp | Power converting device |
WO2010016426A1 (en) * | 2008-08-06 | 2010-02-11 | 日立オートモティブシステムズ株式会社 | Semiconductor device and power converter using the semiconductor device |
JP2011151981A (en) * | 2010-01-22 | 2011-08-04 | Mitsubishi Electric Corp | Onboard power converter |
JP2013074023A (en) * | 2011-09-27 | 2013-04-22 | Keihin Corp | Semiconductor device |
US8542467B2 (en) | 2010-01-26 | 2013-09-24 | Denso Corporation | Switching device |
US9048721B2 (en) | 2011-09-27 | 2015-06-02 | Keihin Corporation | Semiconductor device |
-
1994
- 1994-11-22 JP JP6288020A patent/JPH08149795A/en active Pending
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10285907A (en) * | 1997-04-10 | 1998-10-23 | Toshiba Corp | Power converting device |
WO2010016426A1 (en) * | 2008-08-06 | 2010-02-11 | 日立オートモティブシステムズ株式会社 | Semiconductor device and power converter using the semiconductor device |
JP2010041838A (en) * | 2008-08-06 | 2010-02-18 | Hitachi Ltd | Semiconductor device and power converter using the semiconductor device |
US20110051371A1 (en) * | 2008-08-06 | 2011-03-03 | Hitachi Automotive Systems, Ltd | Semiconductor Device, and Power Conversion Device Using Semiconductor Device |
US8422235B2 (en) | 2008-08-06 | 2013-04-16 | Hitachi Automotive Systems, Ltd. | Semiconductor device, and power conversion device using semiconductor device |
EP2315347A4 (en) * | 2008-08-06 | 2017-12-27 | Hitachi Automotive Systems, Ltd. | Semiconductor device and power converter using the semiconductor device |
JP2011151981A (en) * | 2010-01-22 | 2011-08-04 | Mitsubishi Electric Corp | Onboard power converter |
US8686601B2 (en) | 2010-01-22 | 2014-04-01 | Mitsubishi Electric Corporation | Power conversion apparatus for vehicle use |
US8542467B2 (en) | 2010-01-26 | 2013-09-24 | Denso Corporation | Switching device |
JP2013074023A (en) * | 2011-09-27 | 2013-04-22 | Keihin Corp | Semiconductor device |
US9048721B2 (en) | 2011-09-27 | 2015-06-02 | Keihin Corporation | Semiconductor device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10116201B2 (en) | High power density inverter (I) | |
US6028779A (en) | Power inverter device | |
JP5798412B2 (en) | Semiconductor module | |
US10811958B2 (en) | Water-cooling power supply module | |
JP2020504459A (en) | High power multilayer module with low inductance and fast switching for connecting power devices in parallel | |
US10312801B2 (en) | High power density inverter (II) | |
KR102039013B1 (en) | Power converter | |
EP3171499A1 (en) | High power density inverter (i) | |
US9287765B2 (en) | Power system, power module therein and method for fabricating power module | |
US20130039103A1 (en) | Power-converting apparatus having improved electro-thermal characteristics | |
JPH06225545A (en) | Semiconductor power converter | |
JP3420021B2 (en) | Semiconductor power converter | |
JPH08149795A (en) | Semiconductor power converter | |
JP3873743B2 (en) | Power converter | |
JP2751543B2 (en) | Inverter | |
JPH1094256A (en) | Power-conversion element module | |
JPH0541396U (en) | Inverter device | |
JP2003047259A (en) | Power converter | |
JPS63157677A (en) | Bridge type inverter | |
US11462997B2 (en) | DC to DC converter for a vehicle alternator | |
JPH02174564A (en) | Main circuitry for inverter | |
JP3213671B2 (en) | Power converter | |
JP2000102260A (en) | Power conversion device | |
EP3171684B1 (en) | High power density inverter (ii) | |
WO2005020331A1 (en) | Electric power transforming apparatus |