JPH08148717A - Blue light emitting diode - Google Patents

Blue light emitting diode

Info

Publication number
JPH08148717A
JPH08148717A JP28073294A JP28073294A JPH08148717A JP H08148717 A JPH08148717 A JP H08148717A JP 28073294 A JP28073294 A JP 28073294A JP 28073294 A JP28073294 A JP 28073294A JP H08148717 A JPH08148717 A JP H08148717A
Authority
JP
Japan
Prior art keywords
light emitting
emitting chip
thin film
wavelength
led
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28073294A
Other languages
Japanese (ja)
Other versions
JP3009091B2 (en
Inventor
Takao Yamada
孝夫 山田
Shuji Nakamura
修二 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Chemical Industries Ltd
Original Assignee
Nichia Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Chemical Industries Ltd filed Critical Nichia Chemical Industries Ltd
Priority to JP28073294A priority Critical patent/JP3009091B2/en
Publication of JPH08148717A publication Critical patent/JPH08148717A/en
Application granted granted Critical
Publication of JP3009091B2 publication Critical patent/JP3009091B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Led Devices (AREA)

Abstract

PURPOSE: To reduce the deterioration of a blue high-brightness LED by providing a light emitting chip for reducing the deterioration of resin where the LED is molded. CONSTITUTION: In a light emitting diode where a light emitting chip in that a semiconductor material 2 is laminated on a substrate 1 is molded by resin and where the main light emitting wavelength of the light emitting chip is 500nm or less and output is 500μW or more at a forward current of 20mA, a thin film 3 for absorbing a wavelength which is at least shorter than the main light emitting wavelength is formed on the reverse side of a light emitting chip, thus cutting short wavelength components and reducing the deterioration in resin.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は500nm以下の波長に
発光する半導体材料より成る高輝度青色発光ダイオード
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-intensity blue light emitting diode made of a semiconductor material that emits light having a wavelength of 500 nm or less.

【0002】[0002]

【従来の技術】緑色〜赤外域の発光ダイオード(LE
D)はGaAs、GaP、AlInGaP等の化合物半
導体が発光源として用いられている。一方、紫外〜青色
に発光する化合物半導体にはZnSe、ZnSに代表さ
れるII−VI族系化合物半導体、GaNに代表される窒化
ガリウム系化合物半導体、SiC、ダイヤモンド等が知
られており、最近窒化ガリウム系化合物半導体を用いた
高輝度青色LEDが発表された。
2. Description of the Related Art Green to infrared light emitting diodes (LE
In D), a compound semiconductor such as GaAs, GaP or AlInGaP is used as a light emitting source. On the other hand, as compound semiconductors that emit ultraviolet to blue light, ZnSe, II-VI group compound semiconductors represented by ZnS, gallium nitride compound semiconductors represented by GaN, SiC, diamond and the like are known, and recently nitrided. A high brightness blue LED using a gallium compound semiconductor was announced.

【0003】図4に窒化ガリウム系化合物半導体よりな
る青色LEDの一発光スペクトルを示す。これはZnと
SiとがドープされたInGaNを発光層とするダブル
へテロ構造の青色LEDのスペクトルを示している。こ
の青色LEDは順方向電流(If)20mAにおいて出
力2.5mW以上、光度2cd以上を達成した高輝度L
EDである。
FIG. 4 shows one emission spectrum of a blue LED made of a gallium nitride compound semiconductor. This shows a spectrum of a blue LED having a double hetero structure having InGaN doped with Zn and Si as a light emitting layer. This blue LED has a high brightness L that achieves an output of 2.5 mW or more and a luminous intensity of 2 cd or more at a forward current (If) of 20 mA.
It is ED.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、高輝度
青色LEDが実現されると、従来の緑色LED、赤色L
EDでは全く無かった新たな問題が発生してきた。これ
は従来1cd以上の高輝度な青色LEDが実現されてい
なかったことによる。
However, when a high-intensity blue LED is realized, the conventional green LED and red L
A new problem that has never existed in ED has occurred. This is because a high-intensity blue LED of 1 cd or more has not been realized conventionally.

【0005】例えばその問題の一つに、LEDをモール
ドしている樹脂(一般的には、無色透明のエポキシ樹脂
が使用されている。)が青色LEDの発する熱、光によ
り非常に劣化しやすいという問題がある。モールド樹脂
には紫外線に対し劣化が少なく、耐候性のよいエポキシ
樹脂が市販されているが、一般にエポキシ樹脂は太陽光
等の外部からの弱い光、熱に対しては耐候性に優れてい
るが、LED内部からの強い光、熱に対しては非常に弱
い。このため、発光チップが劣化していないにもかかわ
らずモールド樹脂が劣化して光度が急激に低下し、例え
ば1000時間で光度が半分に低下してしまうものがあ
る。
For example, one of the problems is that the resin molding the LED (generally, a colorless and transparent epoxy resin is used) is very easily deteriorated by the heat and light emitted from the blue LED. There is a problem. Epoxy resins with little deterioration against ultraviolet rays and good weather resistance are commercially available as mold resins, but generally epoxy resins have excellent weather resistance against external weak light such as sunlight and heat. , It is very weak against strong light and heat from inside the LED. Therefore, although the light emitting chip is not deteriorated, the mold resin is deteriorated and the luminous intensity is drastically reduced. For example, the luminous intensity is reduced to half in 1000 hours.

【0006】従って本発明はこのような事情を鑑み成さ
れたものであり、その目的とするところは、光度の劣化
が少ない高輝度青色LEDを実現することにあり、具体
的にはLEDをモールドしている樹脂の劣化を少なくす
る発光チップを提供することにより青色LEDの劣化を
少なくすることにある。
Therefore, the present invention has been made in view of the above circumstances, and an object thereof is to realize a high-intensity blue LED with little deterioration in luminous intensity. Specifically, the LED is molded. It is to reduce the deterioration of the blue LED by providing a light emitting chip that reduces the deterioration of the resin being processed.

【0007】[0007]

【課題を解決するための手段】我々は、高輝度青色LE
Dの発光スペクトルと、モールド樹脂について鋭意研究
を重ねたところ、発光チップの発光スペクトルの特定の
波長以下で特に樹脂が劣化しやすいことを見いだし、そ
の特定の波長を樹脂が吸収しなくなるように、発光チッ
プを改良することで前記問題を解決するに至った。即
ち、本発明の青色LEDは、基板上に半導体材料が積層
されてなる発光チップを樹脂でモールドしたLEDであ
って、発光チップの主発光波長が500nm以下にあ
り、If20mAにおいて500μW以上の出力を有す
る青色LEDにおいて、前記発光チップの表面に少なく
とも主発光波長より短い波長を吸収する薄膜が形成され
ていることを特徴とする。
[Means for Solving the Problems]
As a result of diligent research on the emission spectrum of D and the mold resin, it was found that the resin is particularly likely to deteriorate below a specific wavelength of the emission spectrum of the light emitting chip, and the resin does not absorb the specific wavelength. The problems have been solved by improving the light emitting chip. That is, the blue LED of the present invention is an LED obtained by molding a light emitting chip in which a semiconductor material is laminated on a substrate with a resin, the main light emitting wavelength of the light emitting chip is 500 nm or less, and an output of 500 μW or more at If 20 mA. In the blue LED, the light emitting chip is characterized in that a thin film absorbing at least a wavelength shorter than a main emission wavelength is formed on the surface of the light emitting chip.

【0008】発光チップを構成する半導体層の発光層の
主発光波長が500nm以下にあり、If20mAにお
いて500μW以上の出力を有するLEDとなる発光チ
ップには、現在のところ、窒化ガリウム系化合物半導体
(InXAlYGa1-X-YN、0≦X、0≦Y、X+Y≦
1)、またはZnおよびSeを含むII−VI族化合物半導
体(ZnaCd1-aSebTe1-b、0≦a、0≦b)を挙げ
ることができ、前にも述べたように窒化ガリウム系化合
物半導体は既に実用化されている。窒化ガリウム系化合
物半導体で本発明のLEDの条件を満たすには、例えば
X値を0.5以下としたInXAlYGa1-X-YN層を活性
層としたダブルへテロ構造の発光チップ、またSiCを
基板として結晶性のよい半導体層を積層したホモ、シン
グルへテロ、ダブルへテロ構造の発光チップ、あるいは
窒化ガリウム系化合物半導体と格子定数が近似した基板
を使用して結晶欠陥の少ない半導体層を積層した発光チ
ップを実現することにより可能である。
[0008] At present, gallium nitride compound semiconductor (In) is used for a light emitting chip which has an emission wavelength of 500 nm or less in a semiconductor layer constituting a light emitting chip and has an output of 500 μW or more at If 20 mA. X Al Y Ga 1-XY N, 0 ≦ X, 0 ≦ Y, X + Y ≦
1), or II-VI compound semiconductor containing Zn and Se (Zn a Cd 1-a Se b Te 1-b, 0 ≦ a, 0 ≦ b) can be exemplified, as described before Gallium nitride-based compound semiconductors have already been put to practical use. To meet the conditions of the LED of the present invention with a gallium nitride-based compound semiconductor, for example,
A double heterostructure light emitting chip using an In X Al Y Ga 1-XY N layer with an X value of 0.5 or less as an active layer, or a homo or single layer in which a semiconductor layer with good crystallinity is laminated using SiC as a substrate. It is possible to realize a light emitting chip having a terrorism or double hetero structure, or a light emitting chip in which semiconductor layers having few crystal defects are stacked using a substrate having a lattice constant similar to that of a gallium nitride compound semiconductor.

【0009】本発明のLEDにおいて、発光チップの表
面に形成する薄膜は、その発光チップの主発光ピークよ
りも短波長を吸収する材料であれば、どのような材料で
もよく、例えばケイ酸アルカリガラス、ソーダ石灰ガラ
ス、鉛ガラス、バリウムガラス等のガラス組成物、また
はSiO2、TiO2、GeO2のような酸化物、さらに
そのガラス組成物または酸化物に必要な波長成分を吸収
させるために、例えば鉄、クロム、ニッケル、銅、コバ
ルト、希土類元素(セリウム、ネオジム等)のような金
属イオン、金属コロイドを含む着色剤を添加したものを
好ましく形成できる。着色剤を含むガラス材料、酸化物
は紫外線に対しても変色することがほとんど無く、熱に
対しても非常に安定であるという利点を有する。
In the LED of the present invention, the thin film formed on the surface of the light emitting chip may be any material as long as it absorbs a wavelength shorter than the main emission peak of the light emitting chip, for example, an alkali silicate glass. A glass composition such as soda lime glass, lead glass, barium glass, or an oxide such as SiO 2 , TiO 2 , or GeO 2 , and a glass composition or an oxide for absorbing a necessary wavelength component. For example, a colorant containing a metal ion such as iron, chromium, nickel, copper, cobalt, a rare earth element (cerium, neodymium, etc.), or a metal colloid can be preferably formed. A glass material and an oxide containing a colorant have an advantage that they are hardly discolored by ultraviolet rays and are very stable even by heat.

【0010】次に発光チップの表面に前記薄膜を形成す
る方法について述べる。まず第一に前記ガラス組成物を
形成するには、発光チップの電極となる部分を適当な材
料でマスクした後、発光チップまたはウェーハを溶融し
たガラス組成物の中に浸漬することで形成可能である。
溶融したガラス組成物に発光チップを浸漬して、チップ
表面にガラス組成物の薄膜を形成した後、マスクをウェ
ット、ドライエッチングにより除去する。生産性よく薄
膜を形成するにはウェーハの状態でガラス組成物の薄膜
を形成する方が好ましい。第二に酸化物薄膜を形成する
には、半導体ウェーハの所定の部分に所定の形状でマス
クを形成した後、薄膜となる酸化物材料を蒸着、スパッ
タ等の薄膜形成技術を用いることにより形成可能であ
る。形成後、酸化物薄膜を強固に付着させる目的でアニ
ーリングを行ってもよい。
Next, a method of forming the thin film on the surface of the light emitting chip will be described. First of all, in order to form the glass composition, it can be formed by masking a portion to be an electrode of the light emitting chip with an appropriate material and then immersing the light emitting chip or the wafer in a molten glass composition. is there.
The light emitting chip is immersed in the molten glass composition to form a thin film of the glass composition on the chip surface, and then the mask is removed by wet or dry etching. In order to form a thin film with high productivity, it is preferable to form a thin film of the glass composition in a wafer state. Second, the oxide thin film can be formed by forming a mask on a predetermined part of the semiconductor wafer in a predetermined shape, and then using a thin film forming technique such as vapor deposition or sputtering of the oxide material to be the thin film. Is. After formation, annealing may be performed for the purpose of firmly adhering the oxide thin film.

【0011】さらに本発明のLEDにおいて、発光チッ
プの材料には窒化ガリウム系化合物半導体を選択するこ
とが特に好ましい。なぜなら窒化ガリウム系化合物半導
体はGaNが約1100℃、AlNが1200℃以上、
InNでも約600℃とすべて高融点であり、半導体自
身が非常に安定であるので、前記のようにして薄膜を形
成する際に、ガラスの溶融温度、アニーリング熱に対し
て半導体が分解すること無く、薄膜形成可能だからであ
る。
Further, in the LED of the present invention, it is particularly preferable to select a gallium nitride compound semiconductor as the material of the light emitting chip. This is because gallium nitride-based compound semiconductors have a GaN temperature of about 1100 ° C. and an AlN temperature of 1200 ° C. or higher.
Even InN has a high melting point of about 600 ° C., and the semiconductor itself is extremely stable. Therefore, when the thin film is formed as described above, the semiconductor does not decompose against the melting temperature of glass and the annealing heat. This is because a thin film can be formed.

【0012】[0012]

【作用】図3に本発明の一実施例の薄膜の透過率曲線を
破線で示す。これはカリガラスにCu、酸化ニッケル等
を混入して440nm以下の波長を吸収するように着色
したガラスである。なお透過率曲線は空気の透過率を1
00%として示している。さらに、この着色ガラスを図
3の実線で示す発光スペクトルを有する発光チップの表
面に形成した発光チップの発光スペクトルを図4に示
す。
In FIG. 3, a broken line shows the transmittance curve of the thin film of one embodiment of the present invention. This is a glass colored by mixing Cu, nickel oxide and the like into potash glass so as to absorb a wavelength of 440 nm or less. Note that the transmittance curve shows the transmittance of air as 1
It is shown as 00%. Further, FIG. 4 shows an emission spectrum of a light emitting chip in which this colored glass is formed on the surface of a light emitting chip having an emission spectrum shown by the solid line in FIG.

【0013】図3と図4のスペクトルを比較しても分か
るように、本発明の青色LEDは発光波長の短波長成分
が大巾にカットされている。短波長成分がカットされた
LEDは、カットされていないものに比べてモールド樹
脂を劣化させるのが少ないので、LEDの寿命が飛躍的
に向上する。また副次的な効果として発光スペクトルの
半値幅が狭くなり色純度も向上させることができる。
As can be seen by comparing the spectra of FIGS. 3 and 4, in the blue LED of the present invention, the short wavelength component of the emission wavelength is largely cut. The LED in which the short-wavelength component is cut does not deteriorate the molding resin less than the LED in which the short-wavelength component is not cut, so that the life of the LED is dramatically improved. As a secondary effect, the full width at half maximum of the emission spectrum is narrowed and the color purity can be improved.

【0014】本発明のLEDにおいて、発光チップ表面
に形成する薄膜の透過率は、吸収させようとする波長の
50%以下、さらに好ましくは30%以下に調整するこ
とが望ましい。透過率が50%よりも大きいとLEDの
発光出力の低下が少ないという利点はあるが、短波長の
吸収が不十分となって、モールド樹脂が劣化しやすい傾
向にあるからである。また薄膜の膜厚は特に限定するも
のではないが、前記透過率が維持できる厚さに形成し、
例えば10μm以下の厚さで形成することが好ましい。
In the LED of the present invention, the transmittance of the thin film formed on the surface of the light emitting chip is preferably adjusted to 50% or less, more preferably 30% or less of the wavelength to be absorbed. If the transmittance is greater than 50%, there is an advantage that the light emission output of the LED is less reduced, but short wavelength absorption is insufficient and the mold resin tends to deteriorate. Although the thickness of the thin film is not particularly limited, it is formed to a thickness that can maintain the transmittance,
For example, it is preferably formed with a thickness of 10 μm or less.

【0015】さらに、本発明は主発光波長が500nm
以下で発光出力が20mAにおいて500μW以上を有
する青色LEDに適用する必要がある。500nmより
も長波長に発光ピークのあるLEDでは短波長の発光成
分の強度が小さいのでモールド樹脂を劣化させることは
ほとんどない。また500nm以下の波長に発光ピーク
のある青色LEDであっても、発光出力が500μW以
下のLEDでは、主発光ピークよりも短波長成分の強度
は微弱であり、チップに発生する熱も低いためモールド
樹脂を劣化させることはほとんどない。
Further, the present invention has a main emission wavelength of 500 nm.
In the following, it is necessary to apply to a blue LED having an emission output of 500 μW or more at 20 mA. In an LED having an emission peak at a wavelength longer than 500 nm, the intensity of a short-wavelength emission component is small, and therefore the mold resin is hardly deteriorated. In addition, even for a blue LED having an emission peak at a wavelength of 500 nm or less, an LED having an emission output of 500 μW or less has a weak wavelength component intensity lower than the main emission peak, and the heat generated in the chip is low, so that the mold is used. It hardly deteriorates the resin.

【0016】[0016]

【実施例】【Example】

[実施例1]サファイア基板1上に、GaNよりなるバ
ッファ層と、Siドープn型GaNよりなるn型コンタ
クト層と、Siドープn型AlGaNよりなるn型クラ
ッド層と、SiおよびZnドープn型InGaNよりな
る活性層と、Mgドープp型AlGaNよりなるp型ク
ラッド層と、Mgドープp型GaNよりなるp型コンタ
クト層とが順に積層された窒化ガリウム系化合物半導体
層2よりなるダブルへテロ構造のウェーハを用意する。
なお、このウェーハは350μm角の発光チップに分離
して、図1のように窒化ガリウム系化合物半導体層を形
成していないサファイア基板面を発光観測面としたLE
Dを実現した場合、15度の半値幅の指向特性を持つL
EDで、If20mAにおいて、発光ピーク波長450
nm、光度4cd、発光出力6.0mWを有している。
[Example 1] On a sapphire substrate 1, a buffer layer made of GaN, an n-type contact layer made of Si-doped n-type GaN, an n-type cladding layer made of Si-doped n-type AlGaN, and Si- and Zn-doped n-type Double hetero structure including a gallium nitride-based compound semiconductor layer 2 in which an active layer made of InGaN, a p-type clad layer made of Mg-doped p-type AlGaN, and a p-type contact layer made of Mg-doped p-type GaN are sequentially stacked. Wafers are prepared.
This wafer was separated into 350 μm square light emitting chips, and the LE was used as the emission observation surface on the sapphire substrate surface on which the gallium nitride based compound semiconductor layer was not formed as shown in FIG.
When D is realized, L having a directional characteristic with a full width at half maximum of 15 degrees
ED, if 20 mA, emission peak wavelength 450
nm, luminous intensity 4 cd, and light emission output 6.0 mW.

【0017】次に、前記ウェーハの窒化ガリウム系化合
物半導体層2が形成された面と対向するサファイア基板
1面に酸化物薄膜3を蒸着する。酸化物薄膜3の原料は
SiO2に無機着色物質として微量のFeイオン、Cr
イオン等を含むものを利用し、図4の破線に示すよう
に、440nm以下の波長の透過率が90%以下の透過
率曲線を示すように調整する。
Next, an oxide thin film 3 is deposited on the surface of the sapphire substrate 1 facing the surface of the wafer on which the gallium nitride compound semiconductor layer 2 is formed. The raw material of the oxide thin film 3 is SiO 2 containing a small amount of Fe ions and Cr as inorganic coloring substances.
By using a material containing ions and the like, as shown by the broken line in FIG. 4, adjustment is performed so that a transmittance curve of a wavelength of 440 nm or less has a transmittance of 90% or less.

【0018】酸化物薄膜3蒸着後、ウェーハの窒化ガリ
ウム系化合物半導体層をエッチングし、n型コンタクト
層に負電極4、p型コンタクト層に正電極5を設けた
後、350μm角のチップに分離する。分離後のチップ
の断面図を図1に示す。図1では、窒化ガリウム系化合
物半導体層2は前記のように各層に分かれているが、特
に各層の構成を図示していない。
After depositing the oxide thin film 3, the gallium nitride-based compound semiconductor layer of the wafer is etched to form a negative electrode 4 on the n-type contact layer and a positive electrode 5 on the p-type contact layer, and then separate into chips of 350 μm square. To do. A cross-sectional view of the chip after separation is shown in FIG. In FIG. 1, the gallium nitride-based compound semiconductor layer 2 is divided into each layer as described above, but the structure of each layer is not particularly shown.

【0019】次にこのチップを酸化物薄膜3が発光観測
面側となるようにリードフレームに設置し、エポキシ樹
脂でモールドして15度の半値幅の指向特性を持つLE
Dとした。このLEDを40mAで発光させて、500
時間後の出力の低下を測定したところ、出力は5%しか
低下していなかった。なお比較のため、酸化物薄膜を形
成していないチップを有するLEDを同様にして試験し
たところ、500時間で50%も出力が低下していた。
Next, this chip is placed on a lead frame so that the oxide thin film 3 is on the side of the light emission observation surface, and is molded with epoxy resin to obtain LE having a directional characteristic of a half value width of 15 degrees.
D. This LED emits light at 40 mA, 500
When the decrease in the output after the lapse of time was measured, the output was decreased by only 5%. For comparison, when an LED having a chip on which an oxide thin film was not formed was similarly tested, the output decreased by 50% after 500 hours.

【0020】[実施例2]活性層のInGaN組成が異
なり、490nmに発光ピークを有する窒化ガリウム系
化合物半導体層2’がサファイア基板1に形成されたウ
ェーハを用いる。なお、このウェーハを350μm角の
発光チップに分離して、窒化ガリウム系化合物半導体層
2’側を発光観測面側とするLEDを実現すると、If
20mAで、光度2cd、出力2.5mWを有してい
る。
Example 2 A wafer having a sapphire substrate 1 on which a gallium nitride compound semiconductor layer 2'having a different InGaN composition of the active layer and having an emission peak at 490 nm is formed is used. Note that if this wafer is divided into 350 μm square light emitting chips to realize an LED in which the gallium nitride compound semiconductor layer 2 ′ side is the light emission observation surface side, If
It has a luminous intensity of 2 cd and an output of 2.5 mW at 20 mA.

【0021】前記ウェーハのp型コンタクト層表面に所
定の形状のマスクを形成した後、窒化ガリウム系化合物
半導体層2’を実施例1と同様にしてエッチングしn型
コンタクト層に負電極4、p型コンタクト層に正電極5
を設けた後、350μm角のチップに分離する。
After forming a mask having a predetermined shape on the surface of the p-type contact layer of the wafer, the gallium nitride compound semiconductor layer 2'is etched in the same manner as in Example 1 to form the negative electrode 4, p on the n-type contact layer. Positive electrode 5 on the mold contact layer
After providing, the chips are separated into 350 μm square chips.

【0022】一方、ガラス材料としてナトリウムガラス
にCuイオン、Niイオン等の着色剤が混入されて、4
70nm以下の波長を80%以上吸収するような着色ガ
ラスを用意する。
On the other hand, when a coloring material such as Cu ion or Ni ion is mixed in sodium glass as a glass material,
A colored glass that absorbs 80% or more of a wavelength of 70 nm or less is prepared.

【0023】前記発光チップの電極面をマスクした後、
前記着色ガラスをチップ全面に蒸着してガラス薄膜3’
を形成する。ガラス薄膜形成後、強固にガラス薄膜を付
着させるために400℃以上でアニーリングを行い、最
後にエッチングしてマスクを除去する。マスクを除去し
た後の発光チップの構造を示す断面図を図2に示す。
After masking the electrode surface of the light emitting chip,
The colored glass is deposited on the entire surface of the chip to form a glass thin film 3 '.
To form. After forming the glass thin film, annealing is performed at 400 ° C. or higher to firmly attach the glass thin film, and finally the mask is removed by etching. A cross-sectional view showing the structure of the light emitting chip after removing the mask is shown in FIG.

【0024】次にこのチップを電極側が発光観測面側と
なるようにリードフレームに設置し、エポキシ樹脂でモ
ールドして15度の半値幅の指向特性を持つLEDとし
た。このLEDを同様に40mAで発光させて、500
時間後の出力の低下を測定したところ、出力は5%しか
低下していなかった。なお比較のため、酸化物薄膜を形
成していないチップを有するLEDを同様にして試験し
たところ、500時間で35%出力が低下していた。
Next, this chip was placed on a lead frame with the electrode side facing the emission observation surface and molded with an epoxy resin to obtain an LED having a directional characteristic with a half value width of 15 degrees. Similarly, this LED is made to emit light at 40 mA, and 500
When the decrease in the output after the lapse of time was measured, the output was decreased by only 5%. For comparison, when an LED having a chip on which an oxide thin film was not formed was similarly tested, the output decreased by 35% after 500 hours.

【0025】[比較例]主発光波長505nm、20m
Aにおける発光出力800μWの発光チップに実施例2
と同様にして490nm以下の波長を吸収するガラス薄
膜を形成したが、薄膜の効果は最初の出力が低下しただ
けであって、40mAの劣化試験においては薄膜を形成
していないものとほぼ同等であり、出力の低下は5%以
内とごくわずかであった。
[Comparative Example] Main emission wavelength 505 nm, 20 m
Example 2 for a light emitting chip with a light emission output of 800 μW in A.
Although a glass thin film absorbing a wavelength of 490 nm or less was formed in the same manner as above, the effect of the thin film was only the first output was lowered, and in the deterioration test of 40 mA, it was almost the same as that not forming a thin film. Yes, the decrease in output was very small, within 5%.

【0026】[0026]

【発明の効果】以上説明したように、本発明によると特
定の波長領域と出力とを備えるLEDの寿命を向上させ
て信頼性を高める青色LEDを実現することができる。
しかも本発明の青色LEDの発光チップに形成した薄膜
はフィルターとして作用するので、発光スペクトルの半
値幅を狭くして視感度も向上させることができ、LED
ディスプレイを実現する上で好適である。また本発明の
実施例では窒化ガリウム系化合物半導体についてのみ説
明したが、500nm以下に主発光ピークを有すし、出
力が500μW以上ある青色LEDをであれば、他の半
導体材料よりなる発光チップに適用可能であることはい
うまでもない。
As described above, according to the present invention, it is possible to realize a blue LED which has an improved life by improving the life of the LED having a specific wavelength region and output.
Moreover, since the thin film formed on the light emitting chip of the blue LED of the present invention acts as a filter, it is possible to narrow the half width of the emission spectrum and improve the visibility.
It is suitable for realizing a display. Although only the gallium nitride-based compound semiconductor has been described in the embodiments of the present invention, a blue LED having a main emission peak at 500 nm or less and an output of 500 μW or more is applicable to a light emitting chip made of another semiconductor material. It goes without saying that it is possible.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の一実施例に係るLEDの発光チップ
の構造を示す模式断面図。
FIG. 1 is a schematic cross-sectional view showing a structure of a light emitting chip of an LED according to an embodiment of the present invention.

【図2】 本発明の他の実施例に係るLEDの発光チッ
プの構造を示す模式断面図。
FIG. 2 is a schematic sectional view showing the structure of a light emitting chip of an LED according to another embodiment of the present invention.

【図3】 従来の青色LEDの発光スペクトルと、本発
明の発光チップに形成する薄膜の透過率曲線とを示す
図。
FIG. 3 is a diagram showing an emission spectrum of a conventional blue LED and a transmittance curve of a thin film formed on the light emitting chip of the present invention.

【図4】 本発明の一実施例に係る青色LEDの発光ス
ペクトルを示す図。
FIG. 4 is a diagram showing an emission spectrum of a blue LED according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1・・・・基板 2、2’・・・・窒化ガリウム系化合物半導体層 3、3’・・・・薄膜 4・・・・負電極 5・・・・正電極 1 ... Substrate 2, 2 '... Gallium nitride compound semiconductor layer 3, 3' ... Thin film 4 ... Negative electrode 5 ... Positive electrode

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 基板上に半導体材料が積層されてなる発
光チップを樹脂でモールドした発光ダイオードであっ
て、発光チップの主発光波長が500nm以下にあり、
順方向電流20mAにおいて500μW以上の出力を有
する青色発光ダイオードにおいて、 前記発光チップの表面に少なくとも主発光波長より短い
波長を吸収する薄膜が形成されていることを特徴とする
青色発光ダイオード。
1. A light emitting diode in which a light emitting chip formed by laminating a semiconductor material on a substrate is molded with a resin, and the main light emission wavelength of the light emitting chip is 500 nm or less,
A blue light emitting diode having an output of 500 μW or more at a forward current of 20 mA, wherein a thin film absorbing at least a wavelength shorter than a main emission wavelength is formed on the surface of the light emitting chip.
【請求項2】 前記薄膜は着色剤が混入されたガラス材
料か、または着色剤が混入された酸化物よりなることを
特徴とする請求項1に記載の青色発光ダイオード。
2. The blue light emitting diode according to claim 1, wherein the thin film is made of a glass material containing a colorant or an oxide containing a colorant.
【請求項3】 前記半導体材料は窒化ガリウム系化合物
半導体(InXAlYGa1-X-YN、0≦X、0≦Y、X+Y
≦1)よりなることを特徴とする請求項1または請求項
2に記載の青色発光ダイオード。
3. The semiconductor material is a gallium nitride-based compound semiconductor (In X Al Y Ga 1-XY N, 0 ≦ X, 0 ≦ Y, X + Y.
≦ 1), The blue light emitting diode according to claim 1 or 2.
JP28073294A 1994-11-15 1994-11-15 Blue light emitting diode Expired - Lifetime JP3009091B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28073294A JP3009091B2 (en) 1994-11-15 1994-11-15 Blue light emitting diode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28073294A JP3009091B2 (en) 1994-11-15 1994-11-15 Blue light emitting diode

Publications (2)

Publication Number Publication Date
JPH08148717A true JPH08148717A (en) 1996-06-07
JP3009091B2 JP3009091B2 (en) 2000-02-14

Family

ID=17629183

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28073294A Expired - Lifetime JP3009091B2 (en) 1994-11-15 1994-11-15 Blue light emitting diode

Country Status (1)

Country Link
JP (1) JP3009091B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1140858A (en) * 1997-07-17 1999-02-12 Nichia Chem Ind Ltd Light-emitting diode and its forming method
JP2002252375A (en) * 2001-02-23 2002-09-06 Kanegafuchi Chem Ind Co Ltd Light-emitting diode and its manufacturing method
JP2005244245A (en) * 2004-02-27 2005-09-08 Osram Opto Semiconductors Gmbh Light-emitting semiconductor chip and method for manufacturing semiconductor chip of this type
JP2005244259A (en) * 2005-05-23 2005-09-08 Nichia Chem Ind Ltd Light emitting diode
JP2009506558A (en) * 2005-08-30 2009-02-12 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Method of manufacturing semiconductor device having planar contact forming portion and semiconductor device
US8039855B2 (en) 2001-03-15 2011-10-18 Osram Gmbh Radiation-emitting optical component
JP2011233939A (en) * 2004-06-24 2011-11-17 Toyoda Gosei Co Ltd Method of manufacturing light-emitting device
JP2016510178A (en) * 2013-03-12 2016-04-04 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツングOsram Opto Semiconductors GmbH Optoelectronic component and method for manufacturing optoelectronic component

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1140858A (en) * 1997-07-17 1999-02-12 Nichia Chem Ind Ltd Light-emitting diode and its forming method
JP2002252375A (en) * 2001-02-23 2002-09-06 Kanegafuchi Chem Ind Co Ltd Light-emitting diode and its manufacturing method
US8039855B2 (en) 2001-03-15 2011-10-18 Osram Gmbh Radiation-emitting optical component
JP2005244245A (en) * 2004-02-27 2005-09-08 Osram Opto Semiconductors Gmbh Light-emitting semiconductor chip and method for manufacturing semiconductor chip of this type
JP2011233939A (en) * 2004-06-24 2011-11-17 Toyoda Gosei Co Ltd Method of manufacturing light-emitting device
JP2005244259A (en) * 2005-05-23 2005-09-08 Nichia Chem Ind Ltd Light emitting diode
JP2009506558A (en) * 2005-08-30 2009-02-12 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Method of manufacturing semiconductor device having planar contact forming portion and semiconductor device
KR101295606B1 (en) * 2005-08-30 2013-08-12 오스람 옵토 세미컨덕터스 게엠베하 Method for the production of a semiconductor component comprising a planar contact, and semiconductor component
JP2016510178A (en) * 2013-03-12 2016-04-04 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツングOsram Opto Semiconductors GmbH Optoelectronic component and method for manufacturing optoelectronic component

Also Published As

Publication number Publication date
JP3009091B2 (en) 2000-02-14

Similar Documents

Publication Publication Date Title
US6576933B2 (en) Semiconductor light emitting device and method for manufacturing same
JP4653671B2 (en) Light emitting device
US7049635B2 (en) Opposed terminal structure having a nitride semiconductor element
EP1385215B1 (en) Nitride semiconductor device comprising bonded substrate and fabrication method of the same
JP2001352101A (en) Light emitting device
JP4572597B2 (en) Nitride semiconductor device
US20090127572A1 (en) Nitride Semiconductor Light Emitting Device
JP3772801B2 (en) Light emitting diode
JP2005268770A (en) White light emitting element and white light source
JP2002134786A (en) Nitride semiconductor light-emitting element
JP2005191326A (en) Semiconductor light emitting device
JPH0614564B2 (en) Semiconductor light emitting element
JP2008098486A (en) Light emitting element
JP4770058B2 (en) LIGHT EMITTING ELEMENT AND DEVICE
JP3009091B2 (en) Blue light emitting diode
KR20210018452A (en) Ultraviolet light emitting diode chip that can improve light extraction efficiency and its manufacturing method
JP4032704B2 (en) Nitride semiconductor device
JP2890392B2 (en) III-V nitride semiconductor light emitting device
JP3509665B2 (en) Light emitting diode
JP2003037291A (en) Light-emitting element
KR102302320B1 (en) Light emitting device
US20240063344A1 (en) Metallic layer for dimming light-emitting diode chips
JP2003197969A (en) GaN-BASED SEMICONDUCTOR LIGHT EMITTING ELEMENT AND LIGHT EMITTING DEVICE USING THE SAME
KR102464031B1 (en) Light emitting device
KR102358689B1 (en) Light emitting device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071203

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081203

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091203

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091203

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091203

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101203

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101203

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111203

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111203

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121203

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121203

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131203

Year of fee payment: 14

EXPY Cancellation because of completion of term