JPH08148660A - Manufacture of soi substrate - Google Patents

Manufacture of soi substrate

Info

Publication number
JPH08148660A
JPH08148660A JP28852094A JP28852094A JPH08148660A JP H08148660 A JPH08148660 A JP H08148660A JP 28852094 A JP28852094 A JP 28852094A JP 28852094 A JP28852094 A JP 28852094A JP H08148660 A JPH08148660 A JP H08148660A
Authority
JP
Japan
Prior art keywords
layer
substrate
active layer
insulating layer
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28852094A
Other languages
Japanese (ja)
Inventor
Hiroyuki Hasegawa
博之 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Silicon Corp
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Silicon Corp
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Silicon Corp, Mitsubishi Materials Corp filed Critical Mitsubishi Materials Silicon Corp
Priority to JP28852094A priority Critical patent/JPH08148660A/en
Publication of JPH08148660A publication Critical patent/JPH08148660A/en
Pending legal-status Critical Current

Links

Landscapes

  • Weting (AREA)

Abstract

PURPOSE: To improve the property of interface between an Si active layer and an insulating layer, and lessen the diffusion to an Si active layer of impurities caused by the heat treatment at the time of lamination by forming the said Si active layer, which has an equal thickness with small dispersion and has small surface roughness, on an insulating layer. CONSTITUTION: An Si active layer 14, where the concentration of impurities is less than 1×10<18> /cm<3> or which does not contain impurities, is made on the first Si substrate 11 which contains As or Sb by 1×10<18> /cm<3> or over, and an insulating layer 16 is made on this Si active layer 14, and the main face of a support substrate 17 is stuck onto this insulating layer 16. Next, a great part of the first Si substrate 11 is removed to make it into an Si film 11a 5μm or less in thickness, and then this Si film 11a is removed in specified chemical etchant, leaving the insulating layer 16 and the Si active layer 14 on the main face of the support substrate 17.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はSiO2絶縁層上にSi
活性層を形成するSOI(Silicon-On-Insulator)基板
の製造法に関する。更に詳しくはシリコンウェーハ同士
を絶縁膜を介して貼り合わせる貼り合わせウェーハ法に
基づくSOI基板の製造法に関するものである。
The present invention relates to a Si on SiO 2 insulation layer
The present invention relates to a method for manufacturing an SOI (Silicon-On-Insulator) substrate for forming an active layer. More specifically, it relates to a method for manufacturing an SOI substrate based on a bonded wafer method in which silicon wafers are bonded to each other via an insulating film.

【0002】[0002]

【従来の技術】シリコン(Si)を用いた超LSIの限
界を打破するために、絶縁基体上に単結晶Si層を形成
するSOI技術が世界的に広く研究されている。このS
OI技術としては、現在、SIMOX(Separation by
Implanted Oxygen)法及び貼り合わせウェーハ法が注目
されている。このうちSIMOX法は、Si基板中に酸
素を高濃度にイオン注入してSOI(SiO2絶縁層上
のSi活性層)を形成する方法であるが、このように酸
素を高濃度にイオン注入することによりSi活性層に発
生する転位などの結晶欠陥がこのSi活性層を用いて形
成される素子(例えば、CMOS)の性能を制限してし
まう。一方、貼り合わせウェーハ法では、二枚のウェー
ハのうち一枚又は二枚のウェーハを熱酸化した後、二枚
のウェーハ同士を接着し、一方のウェーハを薄膜化する
ことによりSOIを形成する。このウェーハの薄膜化の
ための技術としては、研削や研磨などの技術が用いられ
ているが、現状の機械研磨法では研磨精度に限界があ
り、1μm±10%程度の膜厚でしかも膜厚のばらつき
が大きいSi活性層しか得ることができなかった。
2. Description of the Related Art In order to break the limit of VLSI using silicon (Si), SOI technology for forming a single crystal Si layer on an insulating substrate has been widely studied worldwide. This S
As OI technology, SIMOX (Separation by
Implanted Oxygen) method and bonded wafer method are attracting attention. Among them, the SIMOX method is a method of ion-implanting oxygen into a Si substrate at a high concentration to form an SOI (Si active layer on a SiO 2 insulating layer). In this way, oxygen is ion-implanted at a high concentration. As a result, crystal defects such as dislocations generated in the Si active layer limit the performance of devices (for example, CMOS) formed using this Si active layer. On the other hand, in the bonded wafer method, one or two of the two wafers are thermally oxidized, then the two wafers are bonded to each other, and one wafer is thinned to form an SOI. Techniques such as grinding and polishing are used as the technique for thinning the wafer, but the current mechanical polishing method has a limitation in polishing precision, and the film thickness is about 1 μm ± 10% and the film thickness is It was possible to obtain only a Si active layer with a large variation in

【0003】この点を解決するため、従来、図4に示す
SOI基板の製造法が提案されている(特開平5−23
4985)。この製造法では、表面から一定の深さに濃
度ピークが現れるようにシードウェーハであるSi基板
1にホウ素(B)イオン注入して高濃度B層2を形成し
(図4(a),(b))、一方、ハンドルウェーハとも
呼ばれる別のSi基板の支持基板7に絶縁層6を形成し
(図4(c),(d))、高濃度B層2の上層のSi活
性層1a及び絶縁層6を介して両基板1及び7を互いに
重ね合わせて熱処理することにより貼り合わせ(図4
(e))、貼り合わせたSi基板1の裏面を高濃度B層
2の近傍まで機械的に研削してSi基板1をSi薄膜1
bにし(図4(f))、次いでB濃度が高いほどエッチ
ング速度が小さいエッチング液を用いてSi薄膜1bを
除去した後(図4(g))、更にこのエッチング面を研
磨して高濃度B層2を除去することにより支持基板7上
に絶縁層6とSi活性層1aが残される。この製造法に
よれば、表面平滑度や膜厚の均一性が優れたSi活性層
が形成できる。
In order to solve this point, a method of manufacturing an SOI substrate shown in FIG. 4 has been conventionally proposed (Japanese Patent Laid-Open No. 5-23).
4985). In this manufacturing method, a high-concentration B layer 2 is formed by implanting boron (B) ions into a Si substrate 1 that is a seed wafer so that a concentration peak appears at a certain depth from the surface (see FIGS. b)), on the other hand, the insulating layer 6 is formed on the supporting substrate 7 of another Si substrate also called a handle wafer (FIGS. 4C and 4D), and the Si active layer 1a and the upper Si active layer 1a of the high concentration B layer 2 are formed. Both substrates 1 and 7 are superposed on each other via the insulating layer 6 and heat-treated to bond them together (see FIG.
(E)), the back surface of the bonded Si substrate 1 is mechanically ground to the vicinity of the high-concentration B layer 2 to form the Si substrate 1 into the Si thin film 1.
b (FIG. 4 (f)), and then the Si thin film 1b is removed by using an etching solution having a lower etching rate as the B concentration is higher (FIG. 4 (g)). By removing the B layer 2, the insulating layer 6 and the Si active layer 1a are left on the supporting substrate 7. According to this manufacturing method, an Si active layer having excellent surface smoothness and film thickness uniformity can be formed.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上述の
従来のSOI基板の製造方法では、Si活性層と絶縁
層との界面が二枚の基板の貼り合わせ面であるため、S
i活性層と絶縁層との界面の特性が良好でない欠点があ
った。また選択エッチング比を高くしようとして高濃
度B層2へのBイオン濃度を高めた場合には、高濃度B
層2内に転位などの結晶欠陥が生じたりする不具合があ
った。更にSi中のBの拡散係数は比較的大きいた
め、ウェーハ貼り合わせ時の高温熱処理により高濃度B
層2中のBがSi活性層1a中に拡散し、Si活性層の
膜のTTV(Total Thickness Variation)を膜厚の1
0%以下にすることが困難な問題点があった。
However, in the above-described conventional method for manufacturing an SOI substrate, since the interface between the Si active layer and the insulating layer is the bonding surface of the two substrates, S
There is a drawback that the characteristics of the interface between the i active layer and the insulating layer are not good. If the B ion concentration in the high-concentration B layer 2 is increased in order to increase the selective etching ratio, the high-concentration B layer 2
There is a problem that crystal defects such as dislocations occur in the layer 2. Furthermore, since the diffusion coefficient of B in Si is relatively large, high concentration B can be obtained by high temperature heat treatment during wafer bonding.
B in the layer 2 diffuses into the Si active layer 1a, and the TTV (Total Thickness Variation) of the film of the Si active layer is set to 1
There was a problem that it was difficult to set it to 0% or less.

【0005】本発明の目的は、膜厚のばらつき(TT
V)が小さくて均一なSi活性層を有しかつ小さな表面
粗度を有するSi活性層を絶縁層上に形成するSOI基
板の製造法を提供することにある。本発明の別の目的
は、Si活性層と絶縁層との界面の特性が良好で、ウェ
ーハ貼り合わせ時の高温熱処理に起因した不純物のSi
活性層への拡散が少ないSOI基板の製造法を提供する
ことにある。
An object of the present invention is to obtain a film thickness variation (TT
It is an object of the present invention to provide a method for manufacturing an SOI substrate in which an Si active layer having a small V) and a uniform Si active layer and having a small surface roughness is formed on an insulating layer. Another object of the present invention is that the characteristics of the interface between the Si active layer and the insulating layer are good, and the impurity Si caused by the high temperature heat treatment during wafer bonding is used.
An object of the present invention is to provide a method for manufacturing an SOI substrate with less diffusion into the active layer.

【0006】[0006]

【課題を解決するための手段】本発明者らは、従来のS
OI基板の製造方法の上記課題を解決すべく鋭意研究を
行った結果、従来のSOI基板の製造方法において、高
濃度B層の代わりに、Si中の拡散係数がBより小さ
く、Siと比べてエッチング速度を高めることができる
As又はSbを高濃度に含む層を用いることにより本発
明に到達した。
The inventors of the present invention have proposed the conventional S
As a result of intensive studies to solve the above-mentioned problems of the method for manufacturing an OI substrate, in the conventional method for manufacturing an SOI substrate, the diffusion coefficient in Si is smaller than B, and the diffusion coefficient in Si is smaller than that in Si in the conventional high concentration B layer. The present invention has been achieved by using a layer containing As or Sb at a high concentration that can increase the etching rate.

【0007】(a) 第1のSOI基板の製造方法 本発明の第1のSOI基板の製造方法は、図1に示すよ
うに、As又はSbを1×1018/cm3以上含む第1
Si基板11上に不純物濃度が1×1018/cm3未満
のSi活性層14を形成する工程と(図1(a))、こ
のSi活性層14上に絶縁層16を形成する工程と(図
1(b))、この絶縁層16上に支持基板17の主面を
貼り合わせる工程と(図1(c),(d))、第1Si
基板11の大部分を除去して厚さ5μm以下のSi薄膜
11aにする工程と(図1(e))、このSi薄膜11
aを所定の化学エッチング液で除去して支持基板17の
主面上に絶縁層16とSi活性層14とを残す工程と
(図1(f))を有することを特徴とする。
(A) First SOI Substrate Manufacturing Method As shown in FIG. 1, the first SOI substrate manufacturing method according to the first embodiment of the present invention includes a first SOI substrate containing As or Sb of 1 × 10 18 / cm 3 or more.
A step of forming the Si active layer 14 having an impurity concentration of less than 1 × 10 18 / cm 3 on the Si substrate 11 (FIG. 1A), and a step of forming the insulating layer 16 on the Si active layer 14 ( FIG. 1B), a step of bonding the main surface of the support substrate 17 onto the insulating layer 16 (FIGS. 1C and 1D), and the first Si
A step of removing most of the substrate 11 to form a Si thin film 11a having a thickness of 5 μm or less (FIG. 1 (e)).
It is characterized by including a step of removing a with a predetermined chemical etching solution to leave the insulating layer 16 and the Si active layer 14 on the main surface of the supporting substrate 17 (FIG. 1F).

【0008】第1Si基板11はSi中における拡散係
数が比較的小さいAs又はSbを1×1018/cm3
上含むn+型Si単結晶基板である。As又はSbの濃
度は1019/cm3以上であることが好ましい。このS
i基板11のAs又はSbの濃度及びSi活性層14の
不純物濃度が上記値でないと、エッチング選択比を十分
にとることができない。Si基板11に含まれる不純物
として、AsとSbを比較した場合、Asの方がSbよ
りSi中への固溶度が高く、かつ拡散係数がより小さい
ため、好ましい。Si活性層14はB,P,As,Sb
等の不純物濃度が1×1018/cm3未満のものであっ
て、不純物を含まない所謂「ノンドープ」層であっても
よい。このSi活性層の膜厚はSOI基板の用途に応じ
て3nm〜3μmの範囲で形成される。このSi活性層
の形成方法としては、CVD(化学気相成長)法、MB
E(分子線エピタキシャル成長)法等によりエピタキシ
ャル成長させるか、或いはSi基板11を熱処理して基
板表層のSi中のAs又はSbを外方拡散させる方法が
ある。
The first Si substrate 11 is an n + type Si single crystal substrate containing As or Sb having a relatively small diffusion coefficient in Si of 1 × 10 18 / cm 3 or more. The concentration of As or Sb is preferably 10 19 / cm 3 or more. This S
If the As or Sb concentration of the i substrate 11 and the impurity concentration of the Si active layer 14 are not the above values, a sufficient etching selection ratio cannot be obtained. When As and Sb are compared as impurities contained in the Si substrate 11, As is preferable because As has a higher solid solubility in Si and a smaller diffusion coefficient than Sb. The Si active layer 14 is made of B, P, As, Sb.
It may be a so-called “non-doped” layer having an impurity concentration of less than 1 × 10 18 / cm 3 and containing no impurities. The thickness of the Si active layer is formed in the range of 3 nm to 3 μm depending on the application of the SOI substrate. As a method of forming this Si active layer, a CVD (chemical vapor deposition) method, MB
There is a method of performing epitaxial growth by an E (Molecular Beam Epitaxial Growth) method or the like, or a method of heat-treating the Si substrate 11 to outwardly diffuse As or Sb in Si of the substrate surface layer.

【0009】Si活性層14上に形成される絶縁層16
は、SiO2層であって、熱酸化又はCVD法により形
成される。熱酸化の場合、Si基板11中のAs又はS
bがSi活性層12に熱拡散することを防止するために
熱酸化温度は950℃以下が好ましい。700〜900
℃程度がより好ましい。絶縁層16上に支持基板17の
主面を貼り合わせるには、両基板11,17の表面をS
C1等の洗浄液で洗浄して活性化した後、互いに重ね合
わせて熱処理を行い固着させる。熱処理温度は熱酸化と
同じ理由で950℃以下が好ましく、700〜900℃
程度がより好ましい。第1Si基板11を研削、研磨し
て除去し、As又はSbが高濃度のSi薄膜11aにす
る。このSi薄膜11aは5μm以下、好ましくは1μ
m以下にする。この膜厚を薄くし、膜厚のばらつきを小
さくする程最終的なSi活性層の平坦度が良くなる。S
i薄膜11aを所定の化学エッチング液で完全に除去す
ることにより、Si活性層14を最終的な活性層とする
SOI基板が得られる。所定の化学エッチング液として
は、例えばフッ酸−硝酸−酢酸の混合液が挙げられる。
不純物濃度が1×1017/cm3以下のSi単結晶と1
×1019/cm3以上のSi単結晶とでは1:100以
上のエッチング選択比が得られる。なお、最終的なSi
活性層を熱酸化してSiO2膜を形成し、このSiO2
をフッ酸処理して除去すると、この活性層をより薄くす
ることができる。またSi活性層14を形成した後、深
さ5〜200nmの範囲で層表面を研磨すると、表面粗
度がより向上し、好ましい。
Insulating layer 16 formed on Si active layer 14
Is a SiO 2 layer and is formed by thermal oxidation or a CVD method. In the case of thermal oxidation, As or S in the Si substrate 11
The thermal oxidation temperature is preferably 950 ° C. or lower in order to prevent b from being thermally diffused into the Si active layer 12. 700-900
A temperature of about ° C is more preferable. In order to bond the main surface of the supporting substrate 17 onto the insulating layer 16, the surfaces of both substrates 11 and 17 should be S.
After cleaning and activation with a cleaning liquid such as C1 and the like, they are heat-laid on each other and fixed. The heat treatment temperature is preferably 950 ° C. or lower for the same reason as thermal oxidation, 700 to 900 ° C.
The degree is more preferable. The first Si substrate 11 is ground and polished to be removed to form a Si thin film 11a having a high concentration of As or Sb. The Si thin film 11a has a thickness of 5 μm or less, preferably 1 μm.
m or less. The final flatness of the Si active layer is improved as the thickness is reduced and the variation in the thickness is reduced. S
By completely removing the i thin film 11a with a predetermined chemical etching solution, an SOI substrate having the Si active layer 14 as a final active layer is obtained. Examples of the predetermined chemical etching solution include a mixed solution of hydrofluoric acid-nitric acid-acetic acid.
Si single crystal with an impurity concentration of 1 × 10 17 / cm 3 or less and 1
An etching selection ratio of 1: 100 or more can be obtained with a Si single crystal of × 10 19 / cm 3 or more. The final Si
The active layer is thermally oxidized to form a SiO 2 film, removal of the SiO 2 film by hydrofluoric acid treatment, it can be thinner the active layer. Moreover, after forming the Si active layer 14, it is preferable to polish the layer surface in a depth range of 5 to 200 nm because the surface roughness is further improved.

【0010】(b) 第2のSOI基板の製造方法 本発明の第2のSOI基板の製造方法は、図2に示すよ
うに、不純物濃度が1×1018/cm3未満の第2Si
基板18上にAs又はSbを1×1018/cm3以上含
む不純物リッチSi層19を形成する工程と(図2
(a))、この不純物リッチSi層19上に不純物濃度
が1×1018/cm3未満のSi活性層14を形成する
工程と(図2(b))、このSi活性層14上に絶縁層
16を形成する工程と(図2(c))、この絶縁層16
上に支持基板17の主面を貼り合わせる工程と(図2
(d),(e))、第2Si基板18の全部及び不純物
リッチSi層19の一部を除去して厚さ5μm以下のS
i薄膜19aにする工程と(図3(f))、このSi薄
膜19aを所定の化学エッチング液で除去して支持基板
17の主面上に絶縁層16とSi活性層14とを残す工
程と(図2(g))を有することを特徴とする。
(B) Second SOI Substrate Manufacturing Method As shown in FIG. 2, the second SOI substrate manufacturing method according to the second embodiment of the present invention has a second Si substrate having an impurity concentration of less than 1 × 10 18 / cm 3 .
A step of forming an impurity-rich Si layer 19 containing As or Sb of 1 × 10 18 / cm 3 or more on the substrate 18 (see FIG.
(A)), a step of forming the Si active layer 14 having an impurity concentration of less than 1 × 10 18 / cm 3 on the impurity-rich Si layer 19 (FIG. 2B), and insulating on the Si active layer 14. The step of forming the layer 16 (FIG. 2C), the insulating layer 16
A step of bonding the main surface of the support substrate 17 on top (see FIG.
(D), (e)), the entire second Si substrate 18 and a part of the impurity-rich Si layer 19 are removed to remove S having a thickness of 5 μm or less.
a step of forming the i thin film 19a (FIG. 3 (f)), and a step of removing the Si thin film 19a with a predetermined chemical etching solution to leave the insulating layer 16 and the Si active layer 14 on the main surface of the supporting substrate 17. (FIG. 2 (g)).

【0011】第2Si基板18はB,P,As,Sb等
の不純物濃度が1×1018/cm3未満のものである。
不純物濃度がこの数値未満であれば、Si基板18はn
型のSi単結晶基板であってもp型のSi単結晶基板で
あってもよい。不純物リッチSi層19は図1の第1S
i基板11に相当するものである。不純物リッチ層19
の不純物は所謂「ドーパント(dopant)」をいう。この
不純物リッチSi層19の形成方法としてはイオン注入
法の他に熱拡散法、CVD法、MBE法等のエピタキシ
ャル成長法がある。なお、不純物リッチSi層19を形
成した後、深さ5〜200nmの範囲で層表面を研磨す
ると、表面粗度がより向上し、好ましい。
The second Si substrate 18 has an impurity concentration of B, P, As, Sb, etc. less than 1 × 10 18 / cm 3 .
If the impurity concentration is less than this value, the Si substrate 18 is n
Type Si single crystal substrate or p type Si single crystal substrate. The impurity-rich Si layer 19 is the first S of FIG.
It corresponds to the i substrate 11. Impurity rich layer 19
Impurities are so-called "dopants". As a method for forming the impurity-rich Si layer 19, there are an epitaxial growth method such as a thermal diffusion method, a CVD method, and an MBE method, in addition to the ion implantation method. After forming the impurity-rich Si layer 19, it is preferable to polish the layer surface in the depth range of 5 to 200 nm because the surface roughness is further improved.

【0012】(c) 第3のSOI基板の製造方法 本発明の第3のSOI基板の製造方法は、図3に示すよ
うに、不純物濃度が1×1018/cm3未満の第3Si
基板21中に基板表面から所定の深さにAs又はSbを
1×1018/cm3以上含むように埋込んだ埋込みSi
層22を形成する工程と(図3(a),(b))、この
埋込みSi層22より上層の第3Si基板21のSi活
性層21a上に絶縁層16を形成する工程と(図3
(c))、この絶縁層16上に支持基板17の主面を貼
り合わせる工程と(図3(d),(e))、埋込みSi
層22より下層の第3Si基板21及び埋込みSi層2
2の一部を除去して厚さ5μm以下のSi薄膜22aに
する工程と(図3(f))、このSi薄膜22aを所定
の化学エッチング液で除去して支持基板17の主面上に
絶縁層16とSi活性層21aとを残す工程と(図3
(g))を有することを特徴とする。埋込みSi層22
はAsイオン又はSbイオンを高濃度に第3Si基板2
1の内部に注入した後、アニール処理して形成される。
この埋込みSi層22はSi基板21表面から所定の深
さ、例えば3nm〜3μmの領域に500nm〜3μm
の厚さで形成される。
(C) Third SOI Substrate Manufacturing Method As shown in FIG. 3, the third SOI substrate manufacturing method according to the third embodiment of the present invention has an impurity concentration of less than 1 × 10 18 / cm 3 of the third Si substrate.
Embedded Si embedded in the substrate 21 to a predetermined depth from the substrate surface so as to contain As or Sb of 1 × 10 18 / cm 3 or more.
The step of forming the layer 22 (FIGS. 3A and 3B) and the step of forming the insulating layer 16 on the Si active layer 21a of the third Si substrate 21 above the embedded Si layer 22 (FIG. 3A).
(C)), a step of bonding the main surface of the support substrate 17 onto the insulating layer 16 (FIGS. 3D and 3E), and embedded Si
Third Si substrate 21 and buried Si layer 2 below layer 22
A step of removing a part of 2 to form a Si thin film 22a having a thickness of 5 μm or less (FIG. 3 (f)); A step of leaving the insulating layer 16 and the Si active layer 21a (see FIG.
(G)) is included. Buried Si layer 22
Is a high concentration of As or Sb ions in the third Si substrate 2
After being injected into the inside of No. 1, it is formed by annealing treatment.
The embedded Si layer 22 has a predetermined depth from the surface of the Si substrate 21, for example, 500 nm to 3 μm in a region of 3 nm to 3 μm.
Formed with a thickness of.

【0013】[0013]

【作用】従来では、Si中の拡散係数の大きなBをイオ
ン注入した高濃度B層をエッチングストップ層とする
と、表面粗度が大きく、しかも絶縁層を形成するための
熱酸化、又は貼り合わせ後のアニール処理でBの濃度の
プロファイルが大きく変化して、化学エッチング後の層
表面の平坦性及び層厚の均一性に劣ったものが、本発明
ではSi中の拡散係数がBより小さいAs又はSbを高
濃度に含むSi基板又はSi層を高濃度B層の代わりに
用いるので、従来の方法と比較して高温熱処理してもA
s又はSbの濃度のプロファイルを急峻に保てるため、
化学エッチング後の活性層の厚みのばらつき(TTV)
は小さく、しかも層表面の平坦性が良好となる。
In the prior art, when a high-concentration B layer in which B having a large diffusion coefficient in Si is ion-implanted is used as an etching stop layer, the surface roughness is large, and further, thermal oxidation for forming an insulating layer or after bonding is performed. However, in the present invention, the diffusion coefficient in B is smaller than B or the flatness of the layer surface after chemical etching is poor and the uniformity of the layer thickness is poor. Since a Si substrate or Si layer containing a high concentration of Sb is used in place of the high concentration B layer, A
In order to keep the concentration profile of s or Sb steep,
Thickness variation of active layer after chemical etching (TTV)
Is small, and the flatness of the layer surface is good.

【0014】[0014]

【実施例】次に、本発明の実施例を図面に基づいて詳し
く説明する。 <実施例1>先ず、第1の製造方法で得られるSOI基
板について、図1に基づいて説明する。図1(a)〜図
1(f)に示すように、シードウェーハとなる例えば
(100)面方位のAsを1×1020/cm3含む第1
Si基板11上にノンドープのSi活性層14をCVD
法により形成した。具体的にはH2雰囲気中、3Tor
rで900℃、3分間前処理した後、反応ガスとしてS
iH4ガス又はSi26ガスを用いて、700℃の温度
で成長させ、Si活性層14を形成した。このSi活性
層14の厚さはこの例では500nmであった。
Embodiments of the present invention will now be described in detail with reference to the drawings. Example 1 First, an SOI substrate obtained by the first manufacturing method will be described with reference to FIG. As shown in FIGS. 1 (a) to 1 (f), for example, a first wafer containing As having a (100) plane orientation of 1 × 10 20 / cm 3 becomes a seed wafer.
CVD of non-doped Si active layer 14 on Si substrate 11
Formed by the method. Specifically, in a H 2 atmosphere, 3 Tor
After pretreatment at 900 ° C for 3 minutes at r, S as a reaction gas
An iH 4 gas or a Si 2 H 6 gas was used to grow at a temperature of 700 ° C. to form a Si active layer 14. The thickness of the Si active layer 14 was 500 nm in this example.

【0015】次いでこのSi活性層14の表面を深さ1
00nm研磨した後、水蒸気雰囲気中900℃で熱酸化
してSi活性層14上にSiO2絶縁層16を形成し
た。Si基板11及びハンドルウエーハとなる別の支持
基板17をSC1の洗浄液で洗浄して両基板の貼り合わ
せ面を活性化した後、絶縁層16を支持基板17の主面
と重ね合わせ、900℃で熱処理した。
Next, the surface of the Si active layer 14 is cut to a depth of 1
After polishing to 00 nm, it was thermally oxidized at 900 ° C. in a water vapor atmosphere to form a SiO 2 insulating layer 16 on the Si active layer 14. After cleaning the Si substrate 11 and another supporting substrate 17 to be the handle wafer with the cleaning liquid of SC1 to activate the bonding surface of both substrates, the insulating layer 16 is superposed on the main surface of the supporting substrate 17, and at 900 ° C. Heat treated.

【0016】次にSi基板11の貼り合わせ面と反対面
からSi基板11を研削及び研磨してその大部分を除去
して薄膜化し、約1μmのSi薄膜11aを残した。こ
のSi薄膜11aをフッ酸−硝酸−酢酸の混合液により
化学エッチングして除去し、図1(f)に示すように支
持基板17の主面上に絶縁層16とSi活性層14とを
残したSOI基板を得た。この例ではAsが高濃度のS
i基板11とSi活性層12との選択エッチング比は、
1:150程度とることができた。このSOI基板はS
i活性層14の膜厚が200nmであって、TTVが膜
厚の3%で、表面粗度が0.2nmであった。
Next, the Si substrate 11 was ground and polished from the surface opposite to the bonding surface of the Si substrate 11 to remove most of the thin film, and a thin film of about 1 μm was left. The Si thin film 11a is removed by chemical etching with a mixed solution of hydrofluoric acid-nitric acid-acetic acid, leaving the insulating layer 16 and the Si active layer 14 on the main surface of the supporting substrate 17 as shown in FIG. An SOI substrate was obtained. In this example, S with high As concentration
The selective etching ratio between the i substrate 11 and the Si active layer 12 is
I was able to get about 1: 150. This SOI substrate is S
The film thickness of the i active layer 14 was 200 nm, TTV was 3% of the film thickness, and the surface roughness was 0.2 nm.

【0017】<実施例2>次に、第2の製造方法で得ら
れるSOI基板について、図2に基づいて説明する。図
2(a)〜図2(g)に示すように、シードウェーハと
なる例えば(100)面方位のPを1×1015/cm3
含む第2Si基板18上にAsを1×1020/cm3
む不純物リッチSi層19とノンドープのSi活性層1
4をそれぞれCVD法により形成した。具体的にはH2
雰囲気中、10Torrで900℃、3分間前処理した
後、反応ガスとしてAsH3ガスとSiH4ガス又はAs
3ガスとSi26ガスを用いて、700℃の温度で不
純物リッチSi層19を形成した後、SiH4ガス又は
Si26ガスを用いて、700℃の温度でSi活性層1
4を形成した。この例では不純物リッチSi層19の厚
さは1.5μmであった。
<Embodiment 2> Next, an SOI substrate obtained by the second manufacturing method will be described with reference to FIG. As shown in FIGS. 2A to 2G, for example, P in the (100) plane direction, which becomes the seed wafer, is 1 × 10 15 / cm 3.
An impurity-rich Si layer 19 containing 1 × 10 20 / cm 3 of As and a non-doped Si active layer 1 on the second Si substrate 18 containing
4 was formed by the CVD method. Specifically, H 2
After pretreatment in an atmosphere at 10 Torr at 900 ° C. for 3 minutes, AsH 3 gas and SiH 4 gas or As as reaction gases
After forming the impurity-rich Si layer 19 at a temperature of 700 ° C. by using H 3 gas and Si 2 H 6 gas, Si active layer 1 is formed at a temperature of 700 ° C. by using SiH 4 gas or Si 2 H 6 gas.
4 was formed. In this example, the thickness of the impurity-rich Si layer 19 was 1.5 μm.

【0018】以下、実施例1と同様にしてSi活性層1
4上に絶縁層16を形成し、この絶縁層16を支持基板
17の主面と重ね合せ、900℃で熱処理した後、Si
基板18の貼り合わせ面と反対面からSi基板18を研
削及び研磨してその大部分を除去して薄膜化し、約1μ
mのSi薄膜19aを残した。実施例1と同様にしてこ
のSi薄膜19aを化学エッチングして除去し、図2
(g)に示すように支持基板17の主面上に絶縁層16
とSi活性層14とを残したSOI基板を得た。このS
OI基板はSi活性層14の膜厚が500nmであっ
て、TTVが膜厚の3%で、表面粗度が0.2nmであ
った。
Thereafter, in the same manner as in Example 1, the Si active layer 1
4, an insulating layer 16 is formed on the insulating layer 16 and the insulating layer 16 is superposed on the main surface of the supporting substrate 17 and heat-treated at 900 ° C.
The Si substrate 18 is ground and polished from the surface opposite to the bonding surface of the substrate 18 to remove most of it and reduce the thickness to about 1 μm.
The Si thin film 19a of m was left. This Si thin film 19a was removed by chemical etching in the same manner as in Example 1,
As shown in (g), the insulating layer 16 is formed on the main surface of the supporting substrate 17.
An SOI substrate in which the Si active layer 14 and the Si active layer 14 were left was obtained. This S
In the OI substrate, the film thickness of the Si active layer 14 was 500 nm, TTV was 3% of the film thickness, and the surface roughness was 0.2 nm.

【0019】<実施例3>更に、第3の製造方法で得ら
れるSOI基板について、図3に基づいて説明する。図
3(a)〜図3(g)に示すように、先ずシードウェー
ハとなる例えば(100)面方位のPを1×1015/c
3含む第3Si基板21に加速電圧750keV、ド
ーズ量1×1016/cm2でAsイオンを注入した。こ
のSi基板21をArとO2の混合ガス雰囲気中、11
00℃でアニール処理を施して、Asイオンを注入した
領域を埋込みSi層22に変えた。この埋込みSi層2
2は基板表面から300nmで厚さ1μmであった。2
1aは基板表面側のSi活性層である。
<Embodiment 3> Furthermore, an SOI substrate obtained by the third manufacturing method will be described with reference to FIG. As shown in FIGS. 3A to 3G, first, for example, P in the (100) plane direction which becomes the seed wafer is 1 × 10 15 / c.
As ions were implanted into the third Si substrate 21 containing m 3 at an accelerating voltage of 750 keV and a dose amount of 1 × 10 16 / cm 2 . The Si substrate 21 is placed in a mixed gas atmosphere of Ar and O 2 in an atmosphere of 11
Annealing was performed at 00 ° C. to change the region into which As ions were implanted into the buried Si layer 22. This embedded Si layer 2
No. 2 was 300 nm from the substrate surface and had a thickness of 1 μm. Two
1a is a Si active layer on the front surface side of the substrate.

【0020】以下、実施例1と同様にしてSi活性層2
1a上に絶縁層16を形成し、この絶縁層16を支持基
板17の主面と重ね合せ、900℃で熱処理した後、S
i基板21の貼り合わせ面と反対面からSi基板21を
研削及び研磨してその大部分を除去して薄膜化し、約1
μmのSi薄膜22aを残した。実施例1と同様にして
このSi薄膜22aを化学エッチングして除去し、図3
(g)に示すように支持基板17の主面上に絶縁層16
とSi活性層21aとを残したSOI基板を得た。この
SOI基板はSi活性層21aの膜厚が150nmであ
って、TTVが膜厚の10%で、表面粗度が0.5nm
であった。
Thereafter, in the same manner as in Example 1, the Si active layer 2
An insulating layer 16 is formed on 1a, and the insulating layer 16 is superposed on the main surface of the supporting substrate 17 and heat-treated at 900 ° C.
The Si substrate 21 is ground and polished from the surface opposite to the bonding surface of the i substrate 21 to remove most of the Si substrate 21 to form a thin film.
The Si thin film 22a of μm was left. This Si thin film 22a is removed by chemical etching in the same manner as in Example 1,
As shown in (g), the insulating layer 16 is formed on the main surface of the supporting substrate 17.
An SOI substrate having the Si active layer 21a and the Si active layer 21a was obtained. In this SOI substrate, the Si active layer 21a has a thickness of 150 nm, the TTV is 10% of the thickness, and the surface roughness is 0.5 nm.
Met.

【0021】[0021]

【発明の効果】以上述べたように、本発明のSOI基板
の製造方法によれば、Si中の拡散係数がBより小さい
As又はSbを高濃度に含むSi基板又はSi層を従来
の高濃度B層の代わりに用いるので、従来の方法と比較
して高温熱処理してもAs又はSbの濃度のプロファイ
ルを急峻に保てるため、化学エッチング後のSi活性層
の厚みのばらつき(TTV)は小さく、しかも層表面の
平坦性が良好となる。また貼り合わせ面の表面粗度が小
さいため、貼り合わせ面のボイド発生の確率を低くする
ことができる。更に貼り合わせ面をSi活性層と絶縁層
の界面としないため、Si活性層と絶縁層との界面の特
性が良好で、しかもウェーハ貼り合わせ時の高温熱処理
に起因した不純物のSi活性層への拡散が少なく、超L
SI・CMOSに適する半導体集積回路基板が得られ
る。
As described above, according to the method of manufacturing an SOI substrate of the present invention, the Si substrate or Si layer containing As or Sb having a diffusion coefficient in Si smaller than B in a high concentration is used as the conventional high concentration. Since it is used in place of the B layer, the profile of the concentration of As or Sb can be kept steep even in the high temperature heat treatment as compared with the conventional method, so that the variation in thickness (TTV) of the Si active layer after chemical etching is small, Moreover, the flatness of the layer surface is improved. Further, since the surface roughness of the bonded surface is small, the probability of occurrence of voids in the bonded surface can be reduced. Further, since the bonding surface is not the interface between the Si active layer and the insulating layer, the characteristics of the interface between the Si active layer and the insulating layer are good, and the impurities caused by the high temperature heat treatment during wafer bonding to the Si active layer Little diffusion, super L
A semiconductor integrated circuit substrate suitable for SI / CMOS can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1のSOI基板の製造方法を工程順
に示す断面図。
FIG. 1 is a cross-sectional view showing a method of manufacturing a first SOI substrate of the present invention in the order of steps.

【図2】本発明の第2のSOI基板の製造方法を工程順
に示す断面図。
2A to 2D are cross-sectional views showing a method of manufacturing a second SOI substrate of the present invention in the order of steps.

【図3】本発明の第3のSOI基板の製造方法を工程順
に示す断面図。
3A to 3C are cross-sectional views showing a method of manufacturing a third SOI substrate of the present invention in the order of steps.

【図4】従来のSOI基板の製造方法を工程順に示す断
面図。
FIG. 4 is a cross-sectional view showing a method of manufacturing a conventional SOI substrate in the order of steps.

【符号の説明】[Explanation of symbols]

11 第1Si基板 11a Si薄膜 14 Si活性層 16 絶縁層 17 支持基板 18 第2Si基板 19 不純物リッチSi層 19a Si薄膜 21 第3Si基板 21a Si活性層 22 埋込みSi層 22a Si薄膜 11 First Si Substrate 11a Si Thin Film 14 Si Active Layer 16 Insulating Layer 17 Supporting Substrate 18 Second Si Substrate 19 Impurity Rich Si Layer 19a Si Thin Film 21 Third Si Substrate 21a Si Active Layer 22 Embedded Si Layer 22a Si Thin Film

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成7年12月11日[Submission date] December 11, 1995

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】特許請求の範囲[Name of item to be amended] Claims

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【特許請求の範囲】[Claims]

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0004[Correction target item name] 0004

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上述の
従来のSOI基板の製造方法では、Si活性層と絶縁
層との界面が二枚の基板の貼り合わせ面であるため、S
i活性層と絶縁層との界面の特性が良好でない欠点があ
った。また選択エッチング比を高くしようとして高濃
度B層2へのBイオン濃度を高めた場合には、高濃度B
層2内に転位などの結晶欠陥が生じたりする不具合があ
った。更にSi中のBの拡散係数は比較的大きいた
め、ウェーハ貼り合わせ時の高温熱処理により高濃度B
層2中のBがSi活性層1a中に拡散し、Si活性層の
10%以下に活性層の膜厚ばらつきを抑えることが困難
であるという問題点があった。
However, in the above-described conventional method for manufacturing an SOI substrate, since the interface between the Si active layer and the insulating layer is the bonding surface of the two substrates, S
There is a drawback that the characteristics of the interface between the i active layer and the insulating layer are not good. If the B ion concentration in the high-concentration B layer 2 is increased in order to increase the selective etching ratio, the high-concentration B layer 2
There is a problem that crystal defects such as dislocations occur in the layer 2. Furthermore, since the diffusion coefficient of B in Si is relatively large, high concentration B can be obtained by high temperature heat treatment during wafer bonding.
B in the layer 2 diffuses into the Si active layer 1a,
It is difficult to suppress the thickness variation of the active layer to 10% or less
There is a problem that is.

【手続補正3】[Procedure 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0005[Name of item to be corrected] 0005

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0005】本発明の目的は、膜厚のばらつきが小さく
て均一なSi活性層を有しかつ小さな表面粗度を有する
Si活性層を絶縁層上に形成するSOI基板の製造法を
提供することにある。本発明の別の目的は、Si活性層
と絶縁層との界面の特性が良好で、ウェーハ貼り合わせ
時の高温熱処理に起因した不純物のSi活性層への拡散
が少ないSOI基板の製造法を提供することにある。
An object of the present invention, provides a method for producing an SOI substrate to form a Si active layer with Baratsu Kiga smaller have a uniform Si active layer and small surface roughness of the film thickness on the insulating layer To do. Another object of the present invention is to provide a method for manufacturing an SOI substrate, which has good characteristics of the interface between the Si active layer and the insulating layer and has less diffusion of impurities into the Si active layer due to high temperature heat treatment during wafer bonding. To do.

【手続補正4】[Procedure amendment 4]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0007[Correction target item name] 0007

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0007】(a) 第1のSOI基板の製造方法 本発明の第1のSOI基板の製造方法は、図1に示すよ
うに、As又はSbを1×1018/cm3以上含む第1
Si基板11上に不純物濃度が1×1018/cm3未満
であるか又は不純物を含まないSi活性層14を形成す
る工程と(図1(a))、このSi活性層14上に絶縁
層16を形成する工程と(図1(b))、この絶縁層1
6上に支持基板17の主面を貼り合わせる工程と(図1
(c),(d))、第1Si基板11の大部分を除去し
て厚さ5μm以下のSi薄膜11aにする工程と(図1
(e))、このSi薄膜11aを所定の化学エッチング
液で除去して支持基板17の主面上に絶縁層16とSi
活性層14とを残す工程と(図1(f))を有すること
を特徴とする。
(A) First SOI Substrate Manufacturing Method As shown in FIG. 1, the first SOI substrate manufacturing method according to the first embodiment of the present invention includes a first SOI substrate containing As or Sb of 1 × 10 18 / cm 3 or more.
Impurity concentration on Si substrate 11 is less than 1 × 10 18 / cm 3.
Or a step of forming a Si active layer 14 containing no impurities (FIG. 1A), a step of forming an insulating layer 16 on the Si active layer 14 (FIG. 1B), Layer 1
And a step of attaching the main surface of the support substrate 17 onto the substrate 6 (see FIG.
(C), (d), a step of removing most of the first Si substrate 11 to form a Si thin film 11a having a thickness of 5 μm or less (FIG.
(E)), the Si thin film 11a is removed by a predetermined chemical etching solution to remove the insulating layer 16 and Si on the main surface of the supporting substrate 17.
The method is characterized by including a step of leaving the active layer 14 (FIG. 1F).

【手続補正5】[Procedure Amendment 5]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0010[Correction target item name] 0010

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0010】(b) 第2のSOI基板の製造方法 本発明の第2のSOI基板の製造方法は、図2に示すよ
うに、不純物濃度が1×1018/cm3未満の第2Si
基板18上にAs又はSbを1×1018/cm3以上含
む不純物リッチSi層19を形成する工程と(図2
(a))、この不純物リッチSi層19上に不純物濃度
が1×1018/cm3未満であるか又は不純物を含まな
Si活性層14を形成する工程と(図2(b))、こ
のSi活性層14上に絶縁層16を形成する工程と(図
2(c))、この絶縁層16上に支持基板17の主面を
貼り合わせる工程と(図2(d),(e))、第2Si
基板18の全部及び不純物リッチSi層19の一部を除
去して厚さ5μm以下のSi薄膜19aにする工程と
(図3(f))、このSi薄膜19aを所定の化学エッ
チング液で除去して支持基板17の主面上に絶縁層16
とSi活性層14とを残す工程と(図2(g))を有す
ることを特徴とする。
(B) Second SOI Substrate Manufacturing Method As shown in FIG. 2, the second SOI substrate manufacturing method according to the second embodiment of the present invention has a second Si substrate having an impurity concentration of less than 1 × 10 18 / cm 3 .
A step of forming an impurity-rich Si layer 19 containing As or Sb of 1 × 10 18 / cm 3 or more on the substrate 18 (see FIG.
(A)), on the impurity-rich Si layer 19, the impurity concentration is less than 1 × 10 18 / cm 3 or no impurity is contained.
Forming a have Si active layer 14 and (FIG. 2 (b)), forming an insulating layer 16 on the Si active layer 14 (FIG. 2 (c)), the supporting substrate 17 on the insulating layer 16 And the step of bonding the main surfaces of the second Si (FIGS. 2D and 2E).
A step of removing the entire substrate 18 and a part of the impurity-rich Si layer 19 to form a Si thin film 19a having a thickness of 5 μm or less (FIG. 3 (f)), and removing the Si thin film 19a with a predetermined chemical etching solution. The insulating layer 16 on the main surface of the supporting substrate 17.
And the step of leaving the Si active layer 14 (FIG. 2 (g)).

【手続補正6】[Procedure correction 6]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0012[Correction target item name] 0012

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0012】(c) 第3のSOI基板の製造方法 本発明の第3のSOI基板の製造方法は、図3に示すよ
うに、不純物濃度が1×1018/cm3未満であるか又
は不純物を含まない第3Si基板21中に基板表面から
所定の深さにAs又はSbを1×1018/cm3以上含
むように埋込んだ埋込みSi層22を形成する工程と
(図3(a),(b))、この埋込みSi層22より上
層の第3Si基板21のSi活性層21a上に絶縁層1
6を形成する工程と(図3(c))、この絶縁層16上
に支持基板17の主面を貼り合わせる工程と(図3
(d),(e))、埋込みSi層22より下層の第3S
i基板21及び埋込みSi層22の一部を除去して厚さ
5μm以下のSi薄膜22aにする工程と(図3
(f))、このSi薄膜22aを所定の化学エッチング
液で除去して支持基板17の主面上に絶縁層16とSi
活性層21aとを残す工程と(図3(g))を有するこ
とを特徴とする。埋込みSi層22はAsイオン又はS
bイオンを高濃度に第3Si基板21の内部に注入した
後、アニール処理して形成される。この埋込みSi層2
2はSi基板21表面から所定の深さ、例えば3nm〜
3μmの領域に500nm〜3μmの厚さで形成され
る。
[0012] (c) a third method of the SOI substrate manufacturing the third SOI substrate manufacturing method of the present invention, as shown in FIG. 3, or the impurity concentration is less than 1 × 10 18 / cm 3 The
Is a step of forming a buried Si layer 22 in which a third Si substrate 21 containing no impurities is buried to a predetermined depth from the substrate surface so as to contain As or Sb at 1 × 10 18 / cm 3 or more (see FIG. a) and (b)), the insulating layer 1 is formed on the Si active layer 21a of the third Si substrate 21 above the embedded Si layer 22.
6 (FIG. 3C), and a step of bonding the main surface of the support substrate 17 onto the insulating layer 16 (FIG. 3C).
(D), (e)), the third S below the buried Si layer 22.
a step of removing a part of the i substrate 21 and the embedded Si layer 22 to form a Si thin film 22a having a thickness of 5 μm or less (see FIG.
(F)), the Si thin film 22a is removed by a predetermined chemical etching solution to remove the insulating layer 16 and Si on the main surface of the supporting substrate 17.
It is characterized by including a step of leaving the active layer 21a (FIG. 3 (g)). The embedded Si layer 22 is As ions or S
It is formed by implanting a high concentration of b ions into the inside of the third Si substrate 21 and then performing an annealing treatment. This embedded Si layer 2
2 is a predetermined depth from the surface of the Si substrate 21, for example, 3 nm to
It is formed in a region of 3 μm with a thickness of 500 nm to 3 μm.

【手続補正7】[Procedure Amendment 7]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0013[Correction target item name] 0013

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0013】[0013]

【作用】従来では、Si中の拡散係数の大きなBをイオ
ン注入した高濃度B層をエッチングストップ層とする
と、表面粗度が大きく、しかも絶縁層を形成するための
熱酸化、又は貼り合わせ後のアニール処理でBの濃度の
プロファイルが大きく変化して、化学エッチング後の層
表面の平坦性及び層厚の均一性に劣ったものが、本発明
ではSi中の拡散係数がBより小さいAs又はSbを高
濃度に含むSi基板又はSi層を高濃度B層の代わりに
用いるので、従来の方法と比較して高温熱処理してもA
s又はSbの濃度のプロファイルを急峻に保てるため、
化学エッチング後の活性層の厚みのばらつきは小さく、
しかも層表面の平坦性が良好となる。
In the prior art, when a high-concentration B layer in which B having a large diffusion coefficient in Si is ion-implanted is used as an etching stop layer, the surface roughness is large, and further, thermal oxidation for forming an insulating layer or after bonding is performed. However, in the present invention, the diffusion coefficient in B is smaller than B or the flatness of the layer surface after chemical etching is poor and the uniformity of the layer thickness is poor. Since a Si substrate or Si layer containing a high concentration of Sb is used in place of the high concentration B layer, A
In order to keep the concentration profile of s or Sb steep,
Small-out Baratsu the thickness of the active layer after the chemical etching,
Moreover, the flatness of the layer surface is improved.

【手続補正8】[Procedure Amendment 8]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0021[Correction target item name] 0021

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0021】[0021]

【発明の効果】以上述べたように、本発明のSOI基板
の製造方法によれば、Si中の拡散係数がBより小さい
As又はSbを高濃度に含むSi基板又はSi層を従来
の高濃度B層の代わりに用いるので、従来の方法と比較
して高温熱処理してもAs又はSbの濃度のプロファイ
ルを急峻に保てるため、化学エッチング後のSi活性層
の厚みのばらつきは小さく、しかも層表面の平坦性が良
好となる。また貼り合わせ面の表面粗度が小さいため、
貼り合わせ面のボイド発生の確率を低くすることができ
る。更に貼り合わせ面をSi活性層と絶縁層の界面とし
ないため、Si活性層と絶縁層との界面の特性が良好
で、しかもウェーハ貼り合わせ時の高温熱処理に起因し
た不純物のSi活性層への拡散が少なく、超LSI・C
MOSに適する半導体集積回路基板が得られる。
As described above, according to the method of manufacturing an SOI substrate of the present invention, the Si substrate or Si layer containing As or Sb having a diffusion coefficient in Si smaller than B in a high concentration is used as the conventional high concentration. since used in place of the B layer, since even if the high temperature heat treatment as compared with conventional methods kept steep profile of the concentration of as or Sb,-out Baratsu thickness of the Si active layer after the chemical etching is small and The flatness of the layer surface becomes good. Also, since the surface roughness of the bonding surface is small,
It is possible to reduce the probability of occurrence of voids on the bonding surface. Further, since the bonding surface is not the interface between the Si active layer and the insulating layer, the characteristics of the interface between the Si active layer and the insulating layer are good, and the impurities caused by the high temperature heat treatment during wafer bonding to the Si active layer Little diffusion, VLSI / C
A semiconductor integrated circuit substrate suitable for MOS can be obtained.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 As又はSbを1×1018/cm3以上
含む第1Si基板(11)上に不純物濃度が1×1018/c
3未満のSi活性層(14)を形成する工程と、 前記Si活性層(14)上に絶縁層(16)を形成する工程と、 前記絶縁層(16)上に支持基板(17)の主面を貼り合わせる
工程と、 前記第1Si基板(11)の大部分を除去して厚さ5μm以
下のSi薄膜(11a)にする工程と、 前記Si薄膜(11a)を所定の化学エッチング液で除去し
て前記支持基板(17)の主面上に前記絶縁層(16)と前記S
i活性層(14)とを残す工程とを有することを特徴とする
SOI基板の製造法。
1. An impurity concentration of 1 × 10 18 / c on a first Si substrate (11) containing 1 × 10 18 / cm 3 or more of As or Sb.
a step of forming a Si active layer (14) of less than m 3 ; a step of forming an insulating layer (16) on the Si active layer (14); and a step of forming a support substrate (17) on the insulating layer (16). A step of bonding the main surfaces, a step of removing most of the first Si substrate (11) to form a Si thin film (11a) having a thickness of 5 μm or less, and a step of etching the Si thin film (11a) with a predetermined chemical etching solution. The insulating layer (16) and the S are removed on the main surface of the supporting substrate (17).
and a step of leaving an i active layer (14).
【請求項2】 不純物濃度が1×1018/cm3未満の
第2Si基板(18)上にAs又はSbを1×1018/cm
3以上含む不純物リッチSi層(19)を形成する工程と、 前記不純物リッチSi層(19)上に不純物濃度が1×10
18/cm3未満のSi活性層(14)を形成する工程と、 前記Si活性層(14)上に絶縁層(16)を形成する工程と、 前記絶縁層(16)上に支持基板(17)の主面を貼り合わせる
工程と、 前記第2Si基板(18)の全部及び前記不純物リッチSi
層(19)の一部を除去して厚さ5μm以下のSi薄膜(19
a)にする工程と、 前記Si薄膜(19a)を所定の化学エッチング液で除去し
て前記支持基板(17)の主面上に前記絶縁層(16)と前記S
i活性層(14)とを残す工程とを有することを特徴とする
SOI基板の製造法。
2. As or Sb on the second Si substrate (18) having an impurity concentration of less than 1 × 10 18 / cm 3 and 1 × 10 18 / cm.
A step of forming an impurity-rich Si layer (19) containing 3 or more, and an impurity concentration of 1 × 10 on the impurity-rich Si layer (19).
A step of forming a Si active layer (14) of less than 18 / cm 3, a step of forming an insulating layer (16) on the Si active layer (14), and a support substrate (17) on the insulating layer (16). ) Bonding the main surfaces of the second Si substrate (18) and the whole of the second Si substrate (18) and the impurity-rich Si
By removing a part of the layer (19), a Si thin film (19
a) and removing the Si thin film (19a) with a predetermined chemical etching solution to form the insulating layer (16) and the S on the main surface of the supporting substrate (17).
and a step of leaving an i active layer (14).
【請求項3】 不純物濃度が1×1018/cm3未満の
第3Si基板(21)中に基板表面から所定の深さにAs又
はSbを1×1018/cm3以上含むように埋込んだ埋
込みSi層(22)を形成する工程と、 前記埋込みSi層(22)より上層の第3Si基板(21)のS
i活性層(21a)上に絶縁層(16)を形成する工程と、 前記絶縁層(16)上に支持基板(17)の主面を貼り合わせる
工程と、 前記埋込みSi層(22)より下層の第3Si基板(21)及び
前記埋込みSi層(22)の一部を除去して厚さ5μm以下
のSi薄膜(22a)にする工程と、 前記Si薄膜(22a)を所定の化学エッチング液で除去し
て前記支持基板(17)の主面上に前記絶縁層(16)と前記S
i活性層(21a)とを残す工程とを有することを特徴とす
るSOI基板の製造法。
Wherein Umakon as impurity concentration containing As or Sb 1 × 10 18 / cm 3 or more at a predetermined depth from the substrate surface during the 3Si substrate of less than 1 × 10 18 / cm 3 ( 21) A step of forming a buried Si layer (22), and S of the third Si substrate (21) above the buried Si layer (22).
a step of forming an insulating layer (16) on the i active layer (21a), a step of bonding the main surface of the support substrate (17) on the insulating layer (16), and a layer lower than the embedded Si layer (22) A step of removing a part of the third Si substrate (21) and the embedded Si layer (22) to form a Si thin film (22a) having a thickness of 5 μm or less, and the Si thin film (22a) with a predetermined chemical etching solution. The insulating layer (16) and the S are removed on the main surface of the supporting substrate (17).
and a step of leaving the i active layer (21a).
JP28852094A 1994-11-24 1994-11-24 Manufacture of soi substrate Pending JPH08148660A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28852094A JPH08148660A (en) 1994-11-24 1994-11-24 Manufacture of soi substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28852094A JPH08148660A (en) 1994-11-24 1994-11-24 Manufacture of soi substrate

Publications (1)

Publication Number Publication Date
JPH08148660A true JPH08148660A (en) 1996-06-07

Family

ID=17731303

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28852094A Pending JPH08148660A (en) 1994-11-24 1994-11-24 Manufacture of soi substrate

Country Status (1)

Country Link
JP (1) JPH08148660A (en)

Similar Documents

Publication Publication Date Title
JP3265493B2 (en) Method for manufacturing SOI substrate
US7521334B2 (en) Method for producing direct bonded wafer and direct bonded wafer
US7445977B2 (en) Method of creating defect free high Ge content (&gt; 25%) SiGe-on-insulator (SGOI) substrates using wafer bonding techniques
JP2806277B2 (en) Semiconductor device and manufacturing method thereof
US6054363A (en) Method of manufacturing semiconductor article
JP3542376B2 (en) Manufacturing method of semiconductor substrate
US7915148B2 (en) Method of producing a tensioned layer on a substrate
US7232743B2 (en) Semiconductor structure for providing strained crystalline layer on insulator and method for fabricating same
US7253080B1 (en) Silicon-on-insulator semiconductor wafer
JP2002164520A (en) Method for manufacturing semiconductor wafer
JP2006270000A (en) PROCESS FOR PRODUCING STRAINED Si-SOI SUBSTRATE AND STRAINED Si-SOI SUBSTRATE PRODUCED BY THAT METHOD
JPH0719839B2 (en) Method for manufacturing semiconductor substrate
KR20080090319A (en) Method for producing semiconductor substrate
US5985728A (en) Silicon on insulator process with recovery of a device layer from an etch stop layer
JPH10242154A (en) Method of treating surface of thin film semiconductor substrate
EP1437764A1 (en) A compliant substrate for a heteroepitaxy, a heteroepitaxial structure and a method for fabricating a compliant substrate
US7767548B2 (en) Method for manufacturing semiconductor wafer including a strained silicon layer
JP2000196047A (en) Soi substrate and manufacture thereof
JP2003078116A (en) Method of manufacturing semiconductor member and semiconductor device
JPH08148660A (en) Manufacture of soi substrate
JP2007250676A (en) Manufacturing method of laminated substrate of dissimilar material
JP2006269999A (en) PROCESS FOR PRODUCING STRAINED Si-SOI SUBSTRATE AND STRAINED Si-SOI SUBSTRATE PRODUCED BY THAT METHOD
JPH08148659A (en) Manufacture of soi substrate
WO2022054429A1 (en) Method for manufacturing soi wafer, and soi wafer
EP0706203A1 (en) Method of manufacturing SOI substrate

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20011204