JPH08147634A - Magnetoresistance head and magnetic disk apparatus - Google Patents

Magnetoresistance head and magnetic disk apparatus

Info

Publication number
JPH08147634A
JPH08147634A JP6284760A JP28476094A JPH08147634A JP H08147634 A JPH08147634 A JP H08147634A JP 6284760 A JP6284760 A JP 6284760A JP 28476094 A JP28476094 A JP 28476094A JP H08147634 A JPH08147634 A JP H08147634A
Authority
JP
Japan
Prior art keywords
thin film
shield layer
film
compound
soft magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6284760A
Other languages
Japanese (ja)
Other versions
JP3936405B2 (en
Inventor
Katsuro Watanabe
克朗 渡辺
Shigeru Tadokoro
茂 田所
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP28476094A priority Critical patent/JP3936405B2/en
Publication of JPH08147634A publication Critical patent/JPH08147634A/en
Application granted granted Critical
Publication of JP3936405B2 publication Critical patent/JP3936405B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE: To obtain a magnetoresistance head which can perform high line density recording by a method wherein a shield layer in which a difference in worked difference is small and whose resistance is high can be manufactured. CONSTITUTION: A thin film, as a lower-part shield layer 111, in which 5mol% of zirconium oxide has been added to an Ni81 Fe15 thin film by a sputtering method is patterned to be a prescribed shape by an ion milling operation on a nonmagnetic substrate 10 on which an insulating layer such as alumina or the like has been formed to be a thin film and to which a precision polishing operation has been executed. A lower- part gap layer 121 is formed on it. An Ni-Fe-Nb-Co-based alloy as a soft magnetic thin film 13 which is used to apply a lateral-direction bias magnetic field, Ta as a nonmagnetic conductive thin film 14, Permalloy as a magnetoresistance-effect film and an FeMn thin film 16 which restrains the Barkhausen noise are formed and patterned. An electrode 17 is formed to be a prescribed shape, and an upper-part gap layer 122 is formed and patterned. Then, an upper-part shield layer 121 is formed and patterned, and a protective film 18 is formed. In order to magnetize the FeMn thin film 16, the thin film is heat-treated at 275 deg.C for 30 minutes while a DC magnetic field at 3kOe is being applied to a read-track-width-direction, and the substrate is then cut so as to be worked to be a slider.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は磁気媒体に記録された情
報の再生に用いられる磁気抵抗効果型ヘッドおよび磁気
ディスク装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetoresistive head and a magnetic disk device used for reproducing information recorded on a magnetic medium.

【0002】[0002]

【従来の技術】近年の磁気ディスク装置の小型化、高記
録密度化に対応するため、記録機能と再生機能を分けて
各々最適な特性で使用する記録・再生分離型ヘッドが提
案されている。一般的な記録・再生分離型ヘッドは、誘
導型薄膜ヘッドが記録ヘッドとして用いられ、磁気ヘッ
ドと磁気記録媒体の相対速度が小さくても大きな再生出
力が得られる磁気抵抗効果型ヘッドが再生ヘッドとして
用いられる。
2. Description of the Related Art In order to cope with recent miniaturization and high recording density of magnetic disk devices, there has been proposed a recording / reproducing separated type head which has a recording function and a reproducing function separately and uses them with optimum characteristics. In general, the recording / reproducing separated type head uses an induction type thin film head as a recording head, and a magnetoresistive head capable of obtaining a large reproducing output even if the relative speed between the magnetic head and the magnetic recording medium is small. Used.

【0003】磁気抵抗効果型ヘッドで高い分解能を実現
するため、ギャップ層を介して磁気抵抗効果膜の上下に
一対のシールド層を配置し、再生すべき信号磁界以外の
磁界を除去することが行われる。このシールド層の材料
は、特開平2−116009 号公報に記載のように軟磁性薄膜
が用いられる。
In order to realize high resolution in the magnetoresistive head, a pair of shield layers are arranged above and below the magnetoresistive film via a gap layer to remove magnetic fields other than the signal magnetic field to be reproduced. Be seen. As the material of this shield layer, a soft magnetic thin film is used as described in JP-A-2-116009.

【0004】[0004]

【発明が解決しようとする課題】しかし、薄膜磁気ヘッ
ドの浮上面(磁気記録媒体と対向する面)を研磨する際
に、非磁性基板、絶縁層である酸化物膜及びシールド層
の内でシールド層のエッチング速度が大きいため、図3
のように、シールド層の下端と非磁性基板面との間に段
差が生じるという問題がある。このような段差を加工段
差と呼ぶ。
However, when polishing the air bearing surface (the surface facing the magnetic recording medium) of the thin film magnetic head, a shield is provided between the nonmagnetic substrate, the oxide film as the insulating layer, and the shield layer. Due to the high etching rate of the layer, FIG.
As described above, there is a problem that a step is formed between the lower end of the shield layer and the surface of the non-magnetic substrate. Such a step is called a processing step.

【0005】また、磁気抵抗効果型ヘッドの感度を向上
させる手段として、 磁気抵抗効果膜の膜厚を薄くする。
As a means for improving the sensitivity of the magnetoresistive head, the magnetoresistive film is thinned.

【0006】 膜厚数nm程度の薄膜の積層膜で生じ
る巨大磁気抵抗効果を利用する。
The giant magnetoresistive effect generated in a laminated film of thin films having a thickness of several nm is used.

【0007】が考えられるが、何れの場合も薄い膜にし
た場合でも良好な電磁気特性及び熱安定性を示すことが
必要があり、そのためには下地となるシールド層の凹凸
が小さいことが望ましい。
In any case, it is necessary to exhibit good electromagnetic characteristics and thermal stability even when a thin film is formed. For that purpose, it is desirable that the underlying shield layer has small irregularities.

【0008】本発明の目的は、加工段差が小さく、かつ
膜表面の凹凸が小さいシールド層を用いることにより、
狭ギャップにも対応できる高い感度を有する磁気抵抗効
果型ヘッド、及び高記録密度対応の磁気ディスク装置を
提供することにある。
An object of the present invention is to use a shield layer having a small processing step and small unevenness on the film surface.
It is an object of the present invention to provide a magnetoresistive head having high sensitivity capable of coping with a narrow gap and a magnetic disk device capable of high recording density.

【0009】[0009]

【課題を解決するための手段】下部シールド層及び上部
シールド層のうち少なくとも一方を、Ni,Fe,Co
の一種以上と、酸化ジルコニウム,酸化アルミニウム,
酸化ハフニウム,酸化チタン,酸化ベリリウム,酸化マ
グネシウム,窒化ジルコニウム,窒化アルミニウム,窒
化ハフニウム,窒化チタン,窒化ベリリウム,窒化マグ
ネシウム,窒化シリコンのうちから選ばれた一種以上と
からなる化合物含有軟磁性薄膜で構成する。このとき、
化合物含有軟磁性薄膜としては、化合物が2から18m
ol%含まれる薄膜を用いる。
At least one of a lower shield layer and an upper shield layer is made of Ni, Fe, Co.
One or more of zirconium oxide, aluminum oxide,
Consists of a compound-containing soft magnetic thin film containing one or more selected from hafnium oxide, titanium oxide, beryllium oxide, magnesium oxide, zirconium nitride, aluminum nitride, hafnium nitride, titanium nitride, beryllium nitride, magnesium nitride, and silicon nitride. To do. At this time,
The compound-containing soft magnetic thin film contains 2 to 18 m of the compound.
A thin film containing ol% is used.

【0010】また、シールド層を単層膜ではなく、化合
物含有軟磁性薄膜を含む多層膜で構成することもでき
る。組成の異なる化合物含有軟磁性薄膜を複数層含む多
層膜は、上部及び下部シールド層のどちらにも用いるこ
とができる。化合物含有軟磁性薄膜と軟磁性薄膜をそれ
ぞれ一層以上含む多層膜もどちらのシールド層にも用い
ることができるが、材料の組合せによってより望ましい
構成がある。例えば、下部シールド層に化合物含有軟磁
性薄膜と、パーマロイまたは窒素を添加されたパーマロ
イの多層膜を用いる場合には、下部シールド層の最上層
が化合物含有軟磁性薄膜である方が望ましい。また、下
部シールド層に化合物含有軟磁性薄膜と非晶質軟磁性薄
膜の多層膜を用いる場合には、下部シールド層の最上層
が非晶質軟磁性薄膜であることが望ましい。また、上部
シールド層に化合物含有軟磁性薄膜と非晶質軟磁性薄膜
の多層膜を用いる場合には、上部シールド層の最下層が
化合物含有軟磁性薄膜であることが望ましい。
Further, the shield layer may be composed not of a single layer film but of a multilayer film containing a compound-containing soft magnetic thin film. The multilayer film including a plurality of compound-containing soft magnetic thin films having different compositions can be used for both the upper and lower shield layers. A compound-containing soft magnetic thin film and a multilayer film including one or more soft magnetic thin films can be used for either shield layer, but there is a more desirable configuration depending on the combination of materials. For example, when a compound-containing soft magnetic thin film and a permalloy or nitrogen-added permalloy multilayer film are used for the lower shield layer, the uppermost layer of the lower shield layer is preferably the compound-containing soft magnetic thin film. When a multilayer film including a compound-containing soft magnetic thin film and an amorphous soft magnetic thin film is used for the lower shield layer, it is desirable that the uppermost layer of the lower shield layer be the amorphous soft magnetic thin film. When a multilayer film of a compound-containing soft magnetic thin film and an amorphous soft magnetic thin film is used for the upper shield layer, it is desirable that the lowermost layer of the upper shield layer be the compound-containing soft magnetic thin film.

【0011】この磁気抵抗効果型ヘッドを磁気ディスク
装置に搭載することにより、線記録密度を170kBP
I以上または面記録密度を1.5Gb/in2以上とするこ
とができる。
By mounting this magnetoresistive head on a magnetic disk device, the linear recording density is 170 kBP.
I or more or the areal recording density can be set to 1.5 Gb / in 2 or more.

【0012】[0012]

【作用】シールド層の加工段差は、シールド層に耐食性
の良い材料を用いることにより小さくすることができ
る。磁性金属であるNi,Fe,Coの一種以上を含む
軟磁性薄膜に酸化物あるいは窒化物の一種以上を薄膜中
で分解せずに化合物として存在するように混入させる
と、磁気特性を大きく損なうことなく、電気抵抗が大き
く、耐食性が良い化合物含有軟磁性薄膜を得ることがで
きる。このような薄膜では、化合物が金属薄膜のなかに
混入することにより結晶粒が小さくなるので、薄膜表面
の凹凸も小さくすることができる。このような効果を生
む酸化物,窒化物は結合の強い化合物であり、酸化物は
酸化ジルコニウム,酸化アルミニウム,酸化ハフニウ
ム,酸化チタン,酸化ベリリウム,酸化マグネシウム
が、窒化物としては窒化ジルコニウム,窒化アルミニウ
ム,窒化ハフニウム,窒化チタン,窒化ベリリウム,窒
化マグネシウム,窒化シリコンがある。これらの化合物
の含有量が少ないと耐食性の向上が見られず、また多す
ぎるとシールド層として必要な透磁率が得られないこと
から、化合物含有量が2から18mol% の薄膜が適用で
きる。
The steps of processing the shield layer can be reduced by using a material having good corrosion resistance for the shield layer. If one or more oxides or nitrides are mixed in a soft magnetic thin film containing one or more of magnetic metals Ni, Fe and Co so as to exist as a compound without being decomposed in the thin film, the magnetic properties are greatly impaired. In addition, a compound-containing soft magnetic thin film having high electric resistance and good corrosion resistance can be obtained. In such a thin film, the compound is mixed into the metal thin film, so that the crystal grains become small, so that the unevenness on the surface of the thin film can be made small. Oxides and nitrides that produce such effects are compounds having a strong bond, and oxides are zirconium oxide, aluminum oxide, hafnium oxide, titanium oxide, beryllium oxide, and magnesium oxide, and nitrides are zirconium nitride and aluminum nitride. , Hafnium nitride, titanium nitride, beryllium nitride, magnesium nitride, and silicon nitride. When the content of these compounds is small, the corrosion resistance is not improved, and when the content is too large, the magnetic permeability required for the shield layer cannot be obtained. Therefore, a thin film having a compound content of 2 to 18 mol% can be applied.

【0013】シールド層には数百程度以上の大きさの透
磁率を有することが要求されるが、線記録密度が大きく
なりギャップ層の膜厚が薄くなると、絶縁性に優れたギ
ャップ層が作製しにくくなるため、ギャップ層に接する
シールド層表面の電気抵抗が大きいことも必要になって
くる。この場合、電気抵抗も透磁率も大きい化合物含有
軟磁性薄膜の単層膜を用いる方法の他、抵抗の異なる化
合物含有軟磁性薄膜を少なくとも2層以上積層し、最も
抵抗の大きな薄膜をギャップ層側に配置する方法があ
る。一方、分解能を優先させる場合には、透磁率の大き
な化合物含有軟磁性薄膜をギャップ層側に配置する構造
が望ましい。このように、多層膜を用いると、異なる目
的に容易に対応することができる。
The shield layer is required to have a magnetic permeability of several hundreds or more. When the linear recording density increases and the thickness of the gap layer becomes thin, a gap layer having excellent insulation properties is produced. Since it becomes difficult to do so, it is necessary that the electric resistance of the surface of the shield layer in contact with the gap layer is large. In this case, in addition to the method of using a single layer film of a compound-containing soft magnetic thin film having high electric resistance and magnetic permeability, at least two layers of compound-containing soft magnetic thin films having different resistances are laminated, and the thin film having the highest resistance is the gap layer side. There is a way to place it. On the other hand, when priority is given to resolution, a structure in which a compound-containing soft magnetic thin film having a large magnetic permeability is arranged on the gap layer side is desirable. As described above, the use of the multilayer film can easily serve different purposes.

【0014】シールド層の磁気特性を損なわずに耐食性
を向上させるには、化合物含有軟磁性薄膜と軟磁性薄膜
をそれぞれ一層以上含む多層膜でシールド層を構成すれ
ばよい。このとき、下部シールド層最上面の凹凸を小さ
くするためには、粒径の小さい薄膜を下部シールド層の
最上層とすることが必要であり、パーマロイまたは窒素
を添加したパーマロイとの組合せでは化合物含有軟磁性
薄膜を、非晶質軟磁性薄膜との組合せでは非晶質軟磁性
薄膜を最上層とする。
In order to improve the corrosion resistance without impairing the magnetic properties of the shield layer, the shield layer may be composed of a compound-containing soft magnetic thin film and a multilayer film containing one or more soft magnetic thin films. At this time, in order to reduce the unevenness of the uppermost surface of the lower shield layer, it is necessary to use a thin film having a small grain size as the uppermost layer of the lower shield layer. In combination with permalloy or permalloy containing nitrogen, the compound containing When the soft magnetic thin film is combined with the amorphous soft magnetic thin film, the amorphous soft magnetic thin film is the uppermost layer.

【0015】非晶質軟磁性薄膜は密着性が悪く接着層が
必要である。上部シールド層に非晶質軟磁性薄膜を適用
する場合、非磁性薄膜の密着層ではギャップ層が厚くな
るため、磁性薄膜を密着層に用いる必要がある。この際
に、スループットを考えると基板を加熱せずに良好な磁
気特性が得られる材料が望ましく、この点で化合物含有
軟磁性薄膜は好適である。このように、最下層を化合物
含有軟磁性薄膜とすることにより、非晶質軟磁性薄膜を
上部シールド層に用いることができる。
Amorphous soft magnetic thin films have poor adhesion and require an adhesive layer. When an amorphous soft magnetic thin film is applied to the upper shield layer, the gap layer becomes thicker in the non-magnetic thin film adhesion layer, and therefore the magnetic thin film must be used as the adhesion layer. At this time, in view of throughput, it is desirable to use a material that can obtain good magnetic characteristics without heating the substrate. From this point, the compound-containing soft magnetic thin film is preferable. As described above, by forming the compound-containing soft magnetic thin film as the lowermost layer, the amorphous soft magnetic thin film can be used as the upper shield layer.

【0016】化合物含有軟磁性薄膜をシールド層に用い
ると、磁気特性を大きく損なうことなく表面が平坦で抵
抗の高いシールド層が得られるため、ギャップ層を薄く
することができ、高い線記録密度に対応することが可能
となる。さらに、記録・再生分離型ヘッドで上部シール
ド層が記録ヘッドの下部磁極を兼ねる場合、上部シール
ド層に高飽和磁束密度,高透磁率の材料(例えば非晶質
磁性材料など)を用いることにより、上部シールド層を
薄くすることができる。これにより、記録トラックと再
生トラックの位置ずれの低減、及び記録トラック幅の低
減ができるので、トラック密度を高めることができ、そ
の結果面記録密度が向上する。
When the compound-containing soft magnetic thin film is used for the shield layer, a shield layer having a flat surface and high resistance can be obtained without largely deteriorating the magnetic characteristics, so that the gap layer can be made thin and a high linear recording density can be obtained. It becomes possible to respond. Further, in the case of the recording / reproducing separated type head, when the upper shield layer also serves as the lower magnetic pole of the recording head, by using a material having a high saturation magnetic flux density and a high magnetic permeability (for example, an amorphous magnetic material) in the upper shield layer, The top shield layer can be thin. As a result, the positional deviation between the recording track and the reproducing track and the recording track width can be reduced, so that the track density can be increased, and as a result, the areal recording density is improved.

【0017】[0017]

【実施例】以下、実施例により本発明を詳述する。EXAMPLES The present invention will be described in detail below with reference to examples.

【0018】(実施例1)まず、化合物を添加した薄膜
の特性について述べる。薄膜は、種々の化合物の粉体
と、Ni,Fe,Coを一種以上含む合金の粉体を混合
して固めたものをターゲットとして用い、RFコンベン
ショナルスパッタリング装置により、Arガス圧力2m
Torrで作製した。ここで、磁気異方性を誘導するため、
約40Oeの磁界を印加しながら成膜を行った。膜厚約
1μmの薄膜について、pHが約10のアルカリ性液体
における分極特性から求めた腐食速度,比抵抗,周波数
1MHzにおける比透磁率,平均面粗さを評価した。表1
は、Ni81Fe19に、酸化ジルコニウム,酸化アルミニ
ウム,酸化ハフニウム,酸化チタン,酸化ベリリウム,
酸化マグネシウム,窒化ジルコニウム,窒化アルミニウ
ム,窒化ハフニウム,窒化チタン,窒化ベリリウム,窒
化マグネシウム,窒化シリコンを約5%添加した薄膜の
評価結果である。
(Example 1) First, the characteristics of a thin film containing a compound will be described. The thin film was prepared by mixing powders of various compounds and powders of alloys containing one or more of Ni, Fe, and Co and solidifying them, and using an RF conventional sputtering device, Ar gas pressure 2m.
Made with Torr. Here, in order to induce magnetic anisotropy,
Film formation was performed while applying a magnetic field of about 40 Oe. Corrosion rate, resistivity, frequency obtained from polarization characteristics of alkaline liquid with pH of about 10 for thin film with thickness of about 1 μm
The relative permeability and average surface roughness at 1MHz were evaluated. Table 1
Is Ni 81 Fe 19 , zirconium oxide, aluminum oxide, hafnium oxide, titanium oxide, beryllium oxide,
It is the evaluation result of the thin film to which about 5% of magnesium oxide, zirconium nitride, aluminum nitride, hafnium nitride, titanium nitride, beryllium nitride, magnesium nitride, and silicon nitride was added.

【0019】[0019]

【表1】 [Table 1]

【0020】比較のため、酸化シリコンを約5%添加し
た薄膜と化合物を添加していないNi81Fe19薄膜につ
いても評価を行った。酸化シリコンを除く上記の化合物
を添加した薄膜の腐食速度は、Ni81Fe19薄膜に比べ
小さくなっているが、酸化シリコンを添加した薄膜は、
Ni81Fe19薄膜より大きくなっている。これは、酸化
シリコン以外の化合物を添加した薄膜では、化合物が分
解せず結合した状態で存在しており、酸化シリコンの場
合は膜中で一部分解していることによるものと考えられ
る。なお、表1には示していないが、酸性溶液でも酸化
シリコン以外の化合物を添加した薄膜は、Ni81Fe19
薄膜に比べて耐食性が向上しており、腐食速度は、酸に
対して安定な化合物を添加しているため表1に示した値
より約0.008nm/h 小さな値になっている。比抵
抗は、酸化シリコン以外の化合物を添加した薄膜につい
ては70μΩ・cm以上の値を示すが、Ni81Fe19薄膜
及び酸化シリコンを添加した薄膜は30μΩ・cm以下で
ある。比透磁率については、化合物を添加すると900
程度まで低下するが、シールド層としては十分な値であ
る。平均面粗さは、Ni81Fe19薄膜の場合12.6n
m であるが、化合物を添加することにより最大でも8.
8nm まで小さくなっている。このように、化合物を
添加することにより、耐食性が向上し、比抵抗が増加
し、薄膜の表面の凹凸が小さくなるが、透磁率が減少す
ることが分かる。
For comparison, a thin film containing about 5% silicon oxide and a Ni 81 Fe 19 thin film containing no compound were also evaluated. The corrosion rate of the thin film added with the above compounds except silicon oxide is lower than that of the Ni 81 Fe 19 thin film, but the thin film added with silicon oxide is
It is larger than the Ni 81 Fe 19 thin film. It is considered that this is because in the thin film to which the compound other than silicon oxide is added, the compound exists in a state of being bonded without being decomposed, and in the case of silicon oxide, it is partially decomposed in the film. Although not shown in Table 1, a thin film added with a compound other than silicon oxide even in an acidic solution is Ni 81 Fe 19
The corrosion resistance is improved as compared with the thin film, and the corrosion rate is about 0.008 nm / h smaller than the value shown in Table 1 because the compound stable to acid is added. The resistivity shows a value of 70 μΩ · cm or more for the thin film to which a compound other than silicon oxide is added, but is 30 μΩ · cm or less for the Ni 81 Fe 19 thin film and the thin film to which silicon oxide is added. Regarding the relative magnetic permeability, it was 900 when the compound was added.
Although it decreases to some extent, it is a sufficient value for the shield layer. The average surface roughness is 12.6 n for Ni 81 Fe 19 thin film.
m, but at most 8. by adding the compound.
It is as small as 8 nm. Thus, it can be seen that the addition of the compound improves the corrosion resistance, increases the specific resistance, and reduces the surface irregularities of the thin film, but decreases the magnetic permeability.

【0021】表1で比透磁率の値が小さい酸化チタンを
例に説明する。Ni81Fe19薄膜に酸化チタンを添加し
た薄膜の評価結果を表2に示す。腐食速度は、酸化チタ
ンを2mol% 以上添加するとNi81Fe19薄膜における
腐食速度よりも小さくなり、さらに酸化チタン含有量が
増えると、12mol% における0.010nm/h まで
小さくなる。12mol% 以上では腐食速度は大きくなる
が、20mol% 添加してもNi81Fe19薄膜に比べると
小さな値であった。腐食速度がこのように変化する理由
は、酸化チタンを添加することにより耐食性が次第に向
上するが、試験液がアルカリ性であるため、含有量があ
る値以上から酸化チタンが溶け始めることによるものと
思われる。なお、酸性の試験液では、酸化チタン含有量
が増加すると、腐食速度は単調に減少する。比抵抗は、
酸化チタン含有量が増加すると単調に増大し、平均面粗
さ及び比透磁率は減少する。比透磁率に関しては、望ま
しくは500以上、小さくとも400程度の値は必要で
あると考えており、酸化チタンの含有量は18mol% 以
下でなければならない。酸化チタンの含有量は、腐食速
度と比透磁率によって、2mol% 以上18mol% 以下と
決定される。ここでは比透磁率の小さい酸化チタンを例
にして説明したが、表1の酸化シリコン以外の化合物に
ついても同様の結果が得られている。
Titanium oxide having a small relative magnetic permeability value will be described in Table 1 as an example. Table 2 shows the evaluation results of the thin film obtained by adding titanium oxide to the Ni 81 Fe 19 thin film. The corrosion rate becomes smaller than that in the Ni 81 Fe 19 thin film when titanium oxide is added in an amount of 2 mol% or more, and when the titanium oxide content is further increased, it becomes as low as 0.010 nm / h at 12 mol%. Although the corrosion rate increases at 12 mol% or more, it is smaller than that of the Ni 81 Fe 19 thin film even when 20 mol% is added. The reason why the corrosion rate changes in this way seems to be that the corrosion resistance gradually improves by adding titanium oxide, but since the test solution is alkaline, the titanium oxide begins to dissolve from the content above a certain value. Be done. In the acidic test solution, the corrosion rate monotonically decreases as the titanium oxide content increases. The specific resistance is
When the titanium oxide content increases, it increases monotonically, and the average surface roughness and relative permeability decrease. Regarding the relative magnetic permeability, it is considered that a value of preferably 500 or more, at least about 400, is necessary, and the content of titanium oxide must be 18 mol% or less. The content of titanium oxide is determined to be 2 mol% or more and 18 mol% or less depending on the corrosion rate and the relative magnetic permeability. Although titanium oxide having a small relative magnetic permeability has been described as an example here, similar results are obtained for compounds other than silicon oxide shown in Table 1.

【0022】[0022]

【表2】 [Table 2]

【0023】表3は種々の金属薄膜に酸化ジルコニウム
を添加した場合の評価結果である。
Table 3 shows the evaluation results when zirconium oxide was added to various metal thin films.

【0024】[0024]

【表3】 [Table 3]

【0025】比較のため、酸化ジルコニウムを添加しな
い場合の特性についても示してある。酸化ジルコニウム
を添加しない鉄、及び鉄−コバルトは明瞭な磁気異方性
が誘導されなかったため、比透磁率は700程度である
が、酸化ジルコニウムを添加すると磁気異方性が誘導さ
れて比透磁率が1600程度に向上している。ニッケル
−鉄−コバルトについては、酸化ジルコニウムの添加に
より軟磁気特性が向上するため、表1のNi81Fe19
膜に比べて比透磁率の劣化が小さくなっている。他の特
性については、Ni81Fe19薄膜の場合と同様に、酸化
ジルコニウムを添加すると、腐食速度及び平均面粗さは
小さくなり、比抵抗は増大する。
For comparison, the characteristics when zirconium oxide is not added are also shown. Since iron and iron-cobalt to which zirconium oxide was not added did not induce a clear magnetic anisotropy, the relative magnetic permeability was about 700, but when zirconium oxide was added, magnetic anisotropy was induced and the relative magnetic permeability was increased. Has improved to about 1600. With regard to nickel-iron-cobalt, the addition of zirconium oxide improves the soft magnetic characteristics, and therefore the relative permeability is less deteriorated than the Ni 81 Fe 19 thin film in Table 1. Regarding other characteristics, as in the case of the Ni 81 Fe 19 thin film, when zirconium oxide is added, the corrosion rate and the average surface roughness are reduced and the specific resistance is increased.

【0026】化合物含有軟磁性薄膜をシールド層に用い
た本発明の実施例による磁気抵抗効果型ヘッドの斜視図
を図1に示す。アルミナなどの絶縁層を薄膜形成し精密
研磨を施した非磁性基板10の上に、下部シールド層1
11としてスパッタリング法によりNi81Fe19薄膜に
酸化ジルコニウムを5mol% 添加した薄膜を形成し、イ
オンミリングを用いて所定の形状にパターン化し、その
上に下部ギャップ層121を成膜した。横方向バイアス
磁界を印加するための軟磁性薄膜13であるNi−Fe
−Nb−Co系合金および非磁性導電性薄膜14である
Taと、磁気抵抗効果膜15であるパーマロイと、磁気
抵抗効果膜15から発生するバルクハウゼンノイズを抑
制するための反強磁性膜であるFeMn薄膜16をスパ
ッタリングにより成膜し、イオンミリングにより所定の
パターンを形成した。FeMn薄膜16は、読取りトラ
ック部分をイオンミリングにより除去した。電極膜17
を所定の形状に形成した後、上部ギャップ層122を成
膜、パターン化した。Ni81Fe19薄膜に酸化ジルコニ
ウムを5mol% 添加した薄膜からなる上部シールド層1
12を成膜、パターン化し、保護膜18を形成した。F
eMn薄膜16を着磁するため、読取りトラック幅方向
に3kOeの直流磁界を印加しながら275℃で30分
間熱処理を行った後、基板を切断,スライダに加工し
た。
FIG. 1 is a perspective view of a magnetoresistive head according to an embodiment of the present invention in which a compound-containing soft magnetic thin film is used as a shield layer. A lower shield layer 1 is formed on a non-magnetic substrate 10 on which an insulating layer such as alumina is formed into a thin film and precision polished.
As No. 11, a thin film in which 5 mol% of zirconium oxide was added to a Ni 81 Fe 19 thin film was formed by a sputtering method, patterned into a predetermined shape by ion milling, and a lower gap layer 121 was formed thereon. Ni-Fe which is a soft magnetic thin film 13 for applying a lateral bias magnetic field
-Nb-Co alloy and nonmagnetic conductive thin film Ta, magnetoresistive film 15 permalloy, and antiferromagnetic film for suppressing Barkhausen noise generated from magnetoresistive film 15. The FeMn thin film 16 was formed by sputtering, and a predetermined pattern was formed by ion milling. In the FeMn thin film 16, the read track portion was removed by ion milling. Electrode film 17
After being formed into a predetermined shape, the upper gap layer 122 was formed and patterned. Top shield layer 1 consisting of a thin film of Ni 81 Fe 19 thin film with 5 mol% zirconium oxide added
12 was formed into a film and patterned to form a protective film 18. F
In order to magnetize the eMn thin film 16, heat treatment was performed at 275 ° C. for 30 minutes while applying a DC magnetic field of 3 kOe in the reading track width direction, and then the substrate was cut and processed into a slider.

【0027】本実施例では、軟磁性薄膜13としてNi
−Fe−Nb−Co系合金を、非磁性導電性薄膜14と
してTaを、磁気抵抗効果膜15としてパーマロイを、
磁区制御膜16としてFeMn薄膜を用いたが、特にこ
れらの薄膜に限定されるものではない。
In this embodiment, Ni is used as the soft magnetic thin film 13.
-Fe-Nb-Co alloy, Ta as the non-magnetic conductive thin film 14, Permalloy as the magnetoresistive film 15,
Although the FeMn thin film is used as the magnetic domain control film 16, it is not particularly limited to these thin films.

【0028】以上のように作製した磁気抵抗効果型ヘッ
ドのシールド層の加工段差は5nmであった。比較のた
めにシールド層にNi−Fe合金を用いた磁気抵抗効果
型ヘッドを作製し、シールド層の加工段差を測定したと
ころ8nmであった。また、下部シールド層と上部シー
ルド層の間隔の異なる磁気抵抗効果型ヘッドを作製し、
下部ギャップ層と上部ギャップ層の絶縁性を調べた。シ
ールド層に漏れることなくセンス電流を磁気抵抗効果膜
に流すことができる、最小の下部シールド層と上部シー
ルド層の間隔は、Ni−Fe合金を用いた場合は0.3
0μm であったのに対し、本実施例の磁気抵抗効果型
ヘッドは0.25μm であった。なお、シールド層とし
て、表1に示した酸化シリコン以外の化合物を添加した
薄膜を用いても同様の結果が得られている。以上のよう
に、化合物含有軟磁性薄膜をシールド層に用いることに
より、狭ギャップにすることができるため、線記録密度
の高い磁気ディスク装置に適用できる。
The processing step of the shield layer of the magnetoresistive head manufactured as described above was 5 nm. For comparison, a magnetoresistive head using a Ni—Fe alloy in the shield layer was manufactured, and the processing step of the shield layer was measured to be 8 nm. In addition, a magnetoresistive head having a different distance between the lower shield layer and the upper shield layer was manufactured,
The insulating properties of the lower gap layer and the upper gap layer were investigated. The minimum distance between the lower shield layer and the upper shield layer that allows the sense current to flow through the magnetoresistive film without leaking to the shield layer is 0.3 when the Ni--Fe alloy is used.
While it was 0 μm, the magnetoresistive head of this example had a thickness of 0.25 μm. Similar results were obtained when a thin film containing a compound other than silicon oxide shown in Table 1 was used as the shield layer. As described above, by using the compound-containing soft magnetic thin film for the shield layer, a narrow gap can be obtained, so that it can be applied to a magnetic disk device having a high linear recording density.

【0029】(実施例2)本発明の別の実施例による磁
気抵抗効果型ヘッドの斜視図を図2に示す。非磁性基板
10の上に、下部シールド層21として、Ni81Fe19
薄膜に酸化ジルコニウムを5mol% 添加した薄膜211
と12mol% 添加した薄膜212の積層膜を形成し、イ
オンミリングを用いて所定の形状にパターン化し、その
上に下部ギャップ層121を成膜した。軟磁性薄膜13
と,非磁性導電性薄膜14と,磁気抵抗効果膜15と,
反強磁性膜16と,電極膜17と,上部ギャップ層12
2は実施例1と同様に作製した。上部シールド層22と
して、Ni81Fe19薄膜に酸化ジルコニウムを12mol
% 添加した薄膜221とCoTaZr非晶質薄膜222の積
層膜を成膜,パターン化した後、保護膜18を形成し
た。実施例1と同様に、反強磁性膜16の着磁を行った
後、基板を切断,スライダに加工した。
(Embodiment 2) A perspective view of a magnetoresistive head according to another embodiment of the present invention is shown in FIG. On the non-magnetic substrate 10, a Ni 81 Fe 19 layer is formed as the lower shield layer 21.
Thin film 211 in which 5 mol% zirconium oxide is added to the thin film
Then, a laminated film of a thin film 212 added with 12 mol% was formed and patterned into a predetermined shape by ion milling, and the lower gap layer 121 was formed thereon. Soft magnetic thin film 13
A non-magnetic conductive thin film 14, a magnetoresistive film 15,
Antiferromagnetic film 16, electrode film 17, upper gap layer 12
2 was manufactured in the same manner as in Example 1. As the upper shield layer 22, 12 mol of zirconium oxide is applied to a Ni 81 Fe 19 thin film.
After forming and patterning a laminated film of the added thin film 221 and the CoTaZr amorphous thin film 222, the protective film 18 was formed. After the antiferromagnetic film 16 was magnetized in the same manner as in Example 1, the substrate was cut and processed into a slider.

【0030】本実施例の磁気抵抗効果型ヘッドの加工段
差は3nmであった。絶縁を保ち得る最小の下部シール
ド層と上部シールド層の間隔は、ギャップ層に近い側に
抵抗の高い薄膜を配置したことにより、0.20μm ま
で狭くすることができた。また、上部シールド層に飽和
磁束密度が約1.3T のCoTaZr非晶質薄膜を用いている
ので、上部シールド層が書込みヘッドの下部磁極を兼ね
ている記録・再生分離型ヘッドを作製する場合には優れ
た記録特性が期待できる。また、記録・再生分離型ヘッ
ドをロータリアクチュエータで位置決めする際には、上
部シールド層を薄くすることができ、再生ヘッドと記録
ヘッドの間隔を縮めることができる。これにより、記録
トラックと再生トラックの位置ずれが小さくなり、記録
トラックの幅も狭くすることができるので、トラック密
度が向上し、高記録密度化が達成できる。なお、下部シ
ールド層では下部ギャップ層に近い側が抵抗の高い化合
物含有軟磁性薄膜であり、上部シールド層では上部ギャ
ップ層に近い側が抵抗の高い化合物含有軟磁性薄膜で、
記録ヘッドに近い側が高飽和磁束密度,高透磁率を有す
る材料であれば、同様の性能向上が期待できる。
The processing step of the magnetoresistive head of this example was 3 nm. The minimum distance between the lower shield layer and the upper shield layer that can maintain insulation can be narrowed to 0.20 μm by disposing a thin film having high resistance on the side close to the gap layer. Moreover, since the CoTaZr amorphous thin film having a saturation magnetic flux density of about 1.3 T is used for the upper shield layer, when the recording / reproducing separated type head in which the upper shield layer also serves as the lower magnetic pole of the write head is manufactured. Can be expected to have excellent recording characteristics. Further, when the recording / reproducing separated type head is positioned by the rotary actuator, the upper shield layer can be thinned and the distance between the reproducing head and the recording head can be shortened. As a result, the positional deviation between the recording track and the reproducing track can be reduced and the width of the recording track can be narrowed, so that the track density can be improved and a higher recording density can be achieved. In the lower shield layer, the side close to the lower gap layer is a high resistance compound-containing soft magnetic thin film, and in the upper shield layer the side close to the upper gap layer is a high resistance compound-containing soft magnetic thin film,
If the material near the recording head has a high saturation magnetic flux density and a high magnetic permeability, similar performance improvement can be expected.

【0031】[0031]

【発明の効果】本発明によれば、加工段差が小さく、高
抵抗のシールド層が作製できるので、実質的に低浮上に
なり、シールド層の間隔を狭くできるので、高い線記録
密度に対応できる磁気抵抗効果型ヘッドが得られる。ま
た、膜表面の凹凸を小さくすることができるため、薄い
磁性膜や積層膜でも良好な特性が得られるので、高感度
の磁気抵抗効果型ヘッドが得られる。従って、本発明の
磁気抵抗効果型ヘッドを搭載することにより、高い面記
録密度を有する磁気ディスク装置が得られる。
According to the present invention, since a shield layer having a small processing step and a high resistance can be produced, the flying height is substantially low and the gap between the shield layers can be narrowed, so that a high linear recording density can be dealt with. A magnetoresistive head can be obtained. Further, since the unevenness of the film surface can be reduced, good characteristics can be obtained even with a thin magnetic film or a laminated film, so that a highly sensitive magnetoresistive head can be obtained. Therefore, by mounting the magnetoresistive head of the present invention, a magnetic disk device having a high areal recording density can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例による磁気抵抗効果型ヘッド
の斜視図。
FIG. 1 is a perspective view of a magnetoresistive head according to an embodiment of the present invention.

【図2】本発明の第二の実施例による磁気抵抗効果型ヘ
ッドの斜視図。
FIG. 2 is a perspective view of a magnetoresistive head according to a second embodiment of the present invention.

【図3】加工段差の説明図。FIG. 3 is an explanatory view of a processing step.

【符号の説明】[Explanation of symbols]

10…非磁性基板、13…軟磁性薄膜、14…非磁性導
電性薄膜、15…磁気抵抗効果膜、16…反強磁性膜、
17…電極膜、18…保護膜、111…下部シールド
層、112上部シールド層、121…下部ギャップ層、
122…上部ギャップ層。
10 ... Nonmagnetic substrate, 13 ... Soft magnetic thin film, 14 ... Nonmagnetic conductive thin film, 15 ... Magnetoresistive effect film, 16 ... Antiferromagnetic film,
17 ... Electrode film, 18 ... Protective film, 111 ... Lower shield layer, 112 Upper shield layer, 121 ... Lower gap layer,
122 ... upper gap layer.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】下部磁気シールド層と,下部ギャップ層
と,磁気記録媒体からの信号磁界を検出する磁気抵抗効
果膜と,再生信号を線形にするために前記磁気抵抗効果
膜にバイアス磁界を印加する手段と,バルクハウゼンノ
イズを抑止するための磁区制御層と,前記磁気抵抗効果
膜に検出電流を流し同時に出力電圧を読み取る導体部
と,上部ギャップ層と,上部磁気シールド層とからなる
磁気抵抗効果型ヘッドにおいて、前記下部磁気シールド
層および/または前記上部磁気シールド層が、Ni,F
e,Coの一種以上と、酸化ジルコニウム,酸化アルミ
ニウム,酸化ハフニウム,酸化チタン,酸化ベリリウ
ム,酸化マグネシウム,窒化ジルコニウム,窒化アルミ
ニウム,窒化ハフニウム,窒化チタン,窒化ベリリウ
ム,窒化マグネシウム,窒化シリコンの内から選択され
た一種以上とからなる化合物含有軟磁性薄膜からなるこ
とを特徴とする磁気抵抗効果型ヘッド。
1. A lower magnetic shield layer, a lower gap layer, a magnetoresistive effect film for detecting a signal magnetic field from a magnetic recording medium, and a bias magnetic field applied to the magnetoresistive effect film for linearizing a reproduction signal. Means, a magnetic domain control layer for suppressing Barkhausen noise, a conductor part for supplying a detection current to the magnetoresistive film and reading an output voltage at the same time, an upper gap layer, and an upper magnetic shield layer. In the effect type head, the lower magnetic shield layer and / or the upper magnetic shield layer are made of Ni, F
One or more of e and Co, and selected from zirconium oxide, aluminum oxide, hafnium oxide, titanium oxide, beryllium oxide, magnesium oxide, zirconium nitride, aluminum nitride, hafnium nitride, titanium nitride, beryllium nitride, magnesium nitride, and silicon nitride. A magnetoresistive head, comprising a compound-containing soft magnetic thin film of one or more of the above.
【請求項2】請求項1において、化合物が2から18mo
l% 含まれる磁気抵抗効果型ヘッド。
2. The compound according to claim 1, wherein the compound is 2 to 18 mo.
l% included magnetoresistive head.
【請求項3】請求項2において、前記下部シールド層ま
たは前記上部シールド層が、前記化合物含有軟磁性薄膜
の組成の異なる薄膜を複数層含む多層膜である磁気抵抗
効果型ヘッド。
3. The magnetoresistive head according to claim 2, wherein the lower shield layer or the upper shield layer is a multilayer film including a plurality of thin films having different compositions of the compound-containing soft magnetic thin film.
【請求項4】請求項2において、前記下部シールド層ま
たは前記上部シールド層が、前記化合物含有軟磁性薄膜
と金属磁性薄膜をそれぞれ少なくとも一層以上含む多層
膜である磁気抵抗効果型ヘッド。
4. The magnetoresistive head according to claim 2, wherein the lower shield layer or the upper shield layer is a multilayer film including at least one or more of the compound-containing soft magnetic thin film and the metal magnetic thin film.
【請求項5】請求項4において、前記下部シールド層
が、前記化合物含有軟磁性薄膜と、パーマロイまたは窒
素を添加されたパーマロイの多層膜であり、下部シール
ド層の最上層が前記化合物含有軟磁性薄膜である磁気抵
抗効果型ヘッド。
5. The lower shield layer according to claim 4, which is a multilayer film of the compound-containing soft magnetic thin film and permalloy or nitrogen-added permalloy, and the uppermost layer of the lower shield layer is the compound-containing soft magnetic film. A magnetoresistive head that is a thin film.
【請求項6】請求項4において、前記下部シールド層
が、前記化合物含有軟磁性薄膜と非晶質軟磁性薄膜の多
層膜であり、下部シールド層の最上層が前記非晶質軟磁
性薄膜である磁気抵抗効果型ヘッド。
6. The lower shield layer according to claim 4, which is a multilayer film of the compound-containing soft magnetic thin film and the amorphous soft magnetic thin film, and the uppermost layer of the lower shield layer is the amorphous soft magnetic thin film. A magnetoresistive head.
【請求項7】請求項4において、前記上部シールド層
が、前記化合物含有軟磁性薄膜と非晶質軟磁性薄膜の多
層膜であり、上部シールド層の最下層が前記化合物含有
軟磁性薄膜である磁気抵抗効果型ヘッド。
7. The upper shield layer according to claim 4, which is a multilayer film of the compound-containing soft magnetic thin film and the amorphous soft magnetic thin film, and the lowermost layer of the upper shield layer is the compound-containing soft magnetic thin film. Magnetoresistive head.
【請求項8】請求項1,2,3,4,5,6または7に
おいて、情報を記憶する磁気記録媒体と、前記磁気記録
媒体を回転させる駆動部と、前記磁気抵抗効果型ヘッド
と、磁気ヘッドを所定の位置に移動させるアクチュエー
タを具備し、線記録密度が170kBPI以上または面
記録密度が1.5Gb/in2以上である磁気ディスク装
置。
8. A magnetic recording medium for storing information, a drive unit for rotating the magnetic recording medium, and the magnetoresistive head according to claim 1, 2, 3, 4, 5, 6 or 7. A magnetic disk device comprising an actuator for moving a magnetic head to a predetermined position and having a linear recording density of 170 kBPI or more or an areal recording density of 1.5 Gb / in 2 or more.
JP28476094A 1994-11-18 1994-11-18 Magnetoresistive head and magnetic disk drive Expired - Fee Related JP3936405B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28476094A JP3936405B2 (en) 1994-11-18 1994-11-18 Magnetoresistive head and magnetic disk drive

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28476094A JP3936405B2 (en) 1994-11-18 1994-11-18 Magnetoresistive head and magnetic disk drive

Publications (2)

Publication Number Publication Date
JPH08147634A true JPH08147634A (en) 1996-06-07
JP3936405B2 JP3936405B2 (en) 2007-06-27

Family

ID=17682659

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28476094A Expired - Fee Related JP3936405B2 (en) 1994-11-18 1994-11-18 Magnetoresistive head and magnetic disk drive

Country Status (1)

Country Link
JP (1) JP3936405B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6123780A (en) * 1997-09-19 2000-09-26 Fujitsu Limited Spin valve magnetoresistive head and manufacturing method therefor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6123780A (en) * 1997-09-19 2000-09-26 Fujitsu Limited Spin valve magnetoresistive head and manufacturing method therefor

Also Published As

Publication number Publication date
JP3936405B2 (en) 2007-06-27

Similar Documents

Publication Publication Date Title
US5995338A (en) Magnetoresistive head and magnetic disk apparatus
EP1310944B1 (en) Giant magnetoresistive transducer
US6804089B2 (en) Yoke-type magnetic head and magnetic recording/reproducing device
JP2817501B2 (en) Magnetic disk drive and magnetic head used therefor
JPH1055514A (en) Magnetoresistive element and its production
JP2006286669A (en) Method of manufacturing magnetoresistance effect element
JP2008124288A (en) Magnetoresistive element, its manufacturing method, as well as thin film magnetic head, head gimbal assembly, head arm assembly, and magnetic disk device
JPH10241125A (en) Thin film magnetic head and recording/reproducing separation type magnetic head and magnetic recording/ reproducing apparatus using the same
JP3936405B2 (en) Magnetoresistive head and magnetic disk drive
JPH05250642A (en) Magnetoresist effect sensor
JP4539876B2 (en) Method for manufacturing magnetoresistive element
JP3840826B2 (en) Magnetoresistive sensor and method for manufacturing magnetic head provided with the sensor
JP2821586B2 (en) Thin film magnetic head
JP3083090B2 (en) Magnetoresistive sensor
JPH11112052A (en) Magnetoresistive sensor and magnetic recorder/player employing it
JPH07320235A (en) Magneto-resistance effect type head and its production
JP3008910B2 (en) Magnetoresistive element, magnetoresistive head and magnetic recording / reproducing apparatus using the same
JPH06103536A (en) Magneto-resistance effect type magnetic head
JP2781103B2 (en) Magnetoresistive head and method of manufacturing the same
JPH09153652A (en) Magnetoresistive effect element
JPH08221717A (en) Magneto-resistive magnetic head
JPH065573B2 (en) Magnetoresistive effect head
JP2002008213A (en) Method for manufacturing magnetoresistive element
JPH09245318A (en) Magnetoresistive head
JP2005063643A (en) Magnetoresistance effect type magnetic head, and magnetic recording and reproducing device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040329

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040413

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040706

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060427

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070323

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100330

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100330

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110330

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110330

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120330

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130330

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130330

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130330

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140330

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees