JP3936405B2 - Magnetoresistive head and magnetic disk drive - Google Patents

Magnetoresistive head and magnetic disk drive Download PDF

Info

Publication number
JP3936405B2
JP3936405B2 JP28476094A JP28476094A JP3936405B2 JP 3936405 B2 JP3936405 B2 JP 3936405B2 JP 28476094 A JP28476094 A JP 28476094A JP 28476094 A JP28476094 A JP 28476094A JP 3936405 B2 JP3936405 B2 JP 3936405B2
Authority
JP
Japan
Prior art keywords
thin film
shield layer
compound
soft magnetic
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP28476094A
Other languages
Japanese (ja)
Other versions
JPH08147634A (en
Inventor
克朗 渡辺
茂 田所
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP28476094A priority Critical patent/JP3936405B2/en
Publication of JPH08147634A publication Critical patent/JPH08147634A/en
Application granted granted Critical
Publication of JP3936405B2 publication Critical patent/JP3936405B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Magnetic Heads (AREA)
  • Hall/Mr Elements (AREA)

Description

【0001】
【産業上の利用分野】
本発明は磁気媒体に記録された情報の再生に用いられる磁気抵抗効果型ヘッドおよび磁気ディスク装置に関する。
【0002】
【従来の技術】
近年の磁気ディスク装置の小型化、高記録密度化に対応するため、記録機能と再生機能を分けて各々最適な特性で使用する記録・再生分離型ヘッドが提案されている。一般的な記録・再生分離型ヘッドは、誘導型薄膜ヘッドが記録ヘッドとして用いられ、磁気ヘッドと磁気記録媒体の相対速度が小さくても大きな再生出力が得られる磁気抵抗効果型ヘッドが再生ヘッドとして用いられる。
【0003】
磁気抵抗効果型ヘッドで高い分解能を実現するため、ギャップ層を介して磁気抵抗効果膜の上下に一対のシールド層を配置し、再生すべき信号磁界以外の磁界を除去することが行われる。このシールド層の材料は、特開平2−116009 号公報に記載のように軟磁性薄膜が用いられる。
【0004】
【発明が解決しようとする課題】
しかし、薄膜磁気ヘッドの浮上面(磁気記録媒体と対向する面)を研磨する際に、非磁性基板、絶縁層である酸化物膜及びシールド層の内でシールド層のエッチング速度が大きいため、図3のように、シールド層の下端と非磁性基板面との間に段差が生じるという問題がある。このような段差を加工段差と呼ぶ。
【0005】
また、磁気抵抗効果型ヘッドの感度を向上させる手段として、
▲1▼ 磁気抵抗効果膜の膜厚を薄くする。
【0006】
▲2▼ 膜厚数nm程度の薄膜の積層膜で生じる巨大磁気抵抗効果を利用する。
【0007】
が考えられるが、何れの場合も薄い膜にした場合でも良好な電磁気特性及び熱安定性を示すことが必要があり、そのためには下地となるシールド層の凹凸が小さいことが望ましい。
【0008】
本発明の目的は、加工段差が小さく、かつ膜表面の凹凸が小さいシールド層を用いることにより、狭ギャップにも対応できる高い感度を有する磁気抵抗効果型ヘッド、及び高記録密度対応の磁気ディスク装置を提供することにある。
【0009】
【課題を解決するための手段】
下部シールド層及び上部シールド層のうち少なくとも一方を、Ni,Fe, Coの一種以上と、酸化ジルコニウム,酸化アルミニウム,酸化ハフニウム,酸化チタン,酸化ベリリウム,酸化マグネシウム,窒化ジルコニウム,窒化アルミニウム,窒化ハフニウム,窒化チタン,窒化ベリリウム,窒化マグネシウム,窒化シリコンのうちから選ばれた一種以上とからなる化合物含有軟磁性薄膜で構成する。このとき、化合物含有軟磁性薄膜としては、化合物が2から18mol%含まれる薄膜を用いる。
【0010】
また、シールド層を単層膜ではなく、化合物含有軟磁性薄膜を含む多層膜で構成することもできる。組成の異なる化合物含有軟磁性薄膜を複数層含む多層膜は、上部及び下部シールド層のどちらにも用いることができる。化合物含有軟磁性薄膜と軟磁性薄膜をそれぞれ一層以上含む多層膜もどちらのシールド層にも用いることができるが、材料の組合せによってより望ましい構成がある。例えば、下部シールド層に化合物含有軟磁性薄膜と、パーマロイまたは窒素を添加されたパーマロイの多層膜を用いる場合には、下部シールド層の最上層が化合物含有軟磁性薄膜である方が望ましい。また、下部シールド層に化合物含有軟磁性薄膜と非晶質軟磁性薄膜の多層膜を用いる場合には、下部シールド層の最上層が非晶質軟磁性薄膜であることが望ましい。また、上部シールド層に化合物含有軟磁性薄膜と非晶質軟磁性薄膜の多層膜を用いる場合には、上部シールド層の最下層が化合物含有軟磁性薄膜であることが望ましい。
【0011】
この磁気抵抗効果型ヘッドを磁気ディスク装置に搭載することにより、線記録密度を170kBPI以上または面記録密度を1.5Gb/in2以上とすることができる。
【0012】
【作用】
シールド層の加工段差は、シールド層に耐食性の良い材料を用いることにより小さくすることができる。磁性金属であるNi,Fe,Coの一種以上を含む軟磁性薄膜に酸化物あるいは窒化物の一種以上を薄膜中で分解せずに化合物として存在するように混入させると、磁気特性を大きく損なうことなく、電気抵抗が大きく、耐食性が良い化合物含有軟磁性薄膜を得ることができる。このような薄膜では、化合物が金属薄膜のなかに混入することにより結晶粒が小さくなるので、薄膜表面の凹凸も小さくすることができる。このような効果を生む酸化物,窒化物は結合の強い化合物であり、酸化物は酸化ジルコニウム,酸化アルミニウム,酸化ハフニウム,酸化チタン,酸化ベリリウム,酸化マグネシウムが、窒化物としては窒化ジルコニウム,窒化アルミニウム,窒化ハフニウム,窒化チタン,窒化ベリリウム,窒化マグネシウム,窒化シリコンがある。これらの化合物の含有量が少ないと耐食性の向上が見られず、また多すぎるとシールド層として必要な透磁率が得られないことから、化合物含有量が2から18mol% の薄膜が適用できる。
【0013】
シールド層には数百程度以上の大きさの透磁率を有することが要求されるが、線記録密度が大きくなりギャップ層の膜厚が薄くなると、絶縁性に優れたギャップ層が作製しにくくなるため、ギャップ層に接するシールド層表面の電気抵抗が大きいことも必要になってくる。この場合、電気抵抗も透磁率も大きい化合物含有軟磁性薄膜の単層膜を用いる方法の他、抵抗の異なる化合物含有軟磁性薄膜を少なくとも2層以上積層し、最も抵抗の大きな薄膜をギャップ層側に配置する方法がある。一方、分解能を優先させる場合には、透磁率の大きな化合物含有軟磁性薄膜をギャップ層側に配置する構造が望ましい。このように、多層膜を用いると、異なる目的に容易に対応することができる。
【0014】
シールド層の磁気特性を損なわずに耐食性を向上させるには、化合物含有軟磁性薄膜と軟磁性薄膜をそれぞれ一層以上含む多層膜でシールド層を構成すればよい。このとき、下部シールド層最上面の凹凸を小さくするためには、粒径の小さい薄膜を下部シールド層の最上層とすることが必要であり、パーマロイまたは窒素を添加したパーマロイとの組合せでは化合物含有軟磁性薄膜を、非晶質軟磁性薄膜との組合せでは非晶質軟磁性薄膜を最上層とする。
【0015】
非晶質軟磁性薄膜は密着性が悪く接着層が必要である。上部シールド層に非晶質軟磁性薄膜を適用する場合、非磁性薄膜の密着層ではギャップ層が厚くなるため、磁性薄膜を密着層に用いる必要がある。この際に、スループットを考えると基板を加熱せずに良好な磁気特性が得られる材料が望ましく、この点で化合物含有軟磁性薄膜は好適である。このように、最下層を化合物含有軟磁性薄膜とすることにより、非晶質軟磁性薄膜を上部シールド層に用いることができる。
【0016】
化合物含有軟磁性薄膜をシールド層に用いると、磁気特性を大きく損なうことなく表面が平坦で抵抗の高いシールド層が得られるため、ギャップ層を薄くすることができ、高い線記録密度に対応することが可能となる。さらに、記録・再生分離型ヘッドで上部シールド層が記録ヘッドの下部磁極を兼ねる場合、上部シールド層に高飽和磁束密度,高透磁率の材料(例えば非晶質磁性材料など)を用いることにより、上部シールド層を薄くすることができる。これにより、記録トラックと再生トラックの位置ずれの低減、及び記録トラック幅の低減ができるので、トラック密度を高めることができ、その結果面記録密度が向上する。
【0017】
【実施例】
以下、実施例により本発明を詳述する。
【0018】
(実施例1)
まず、化合物を添加した薄膜の特性について述べる。薄膜は、種々の化合物の粉体と、Ni,Fe,Coを一種以上含む合金の粉体を混合して固めたものをターゲットとして用い、RFコンベンショナルスパッタリング装置により、Arガス圧力2mTorrで作製した。ここで、磁気異方性を誘導するため、約40Oeの磁界を印加しながら成膜を行った。膜厚約1μmの薄膜について、pHが約10のアルカリ性液体における分極特性から求めた腐食速度,比抵抗,周波数1MHzにおける比透磁率,平均面粗さを評価した。表1は、Ni81Fe19に、酸化ジルコニウム,酸化アルミニウム,酸化ハフニウム,酸化チタン,酸化ベリリウム,酸化マグネシウム,窒化ジルコニウム,窒化アルミニウム,窒化ハフニウム,窒化チタン,窒化ベリリウム,窒化マグネシウム,窒化シリコンを約5%添加した薄膜の評価結果である。
【0019】
【表1】

Figure 0003936405
【0020】
比較のため、酸化シリコンを約5%添加した薄膜と化合物を添加していない Ni81Fe19薄膜についても評価を行った。酸化シリコンを除く上記の化合物を添加した薄膜の腐食速度は、Ni81Fe19薄膜に比べ小さくなっているが、酸化シリコンを添加した薄膜は、Ni81Fe19薄膜より大きくなっている。これは、酸化シリコン以外の化合物を添加した薄膜では、化合物が分解せず結合した状態で存在しており、酸化シリコンの場合は膜中で一部分解していることによるものと考えられる。なお、表1には示していないが、酸性溶液でも酸化シリコン以外の化合物を添加した薄膜は、Ni81Fe19薄膜に比べて耐食性が向上しており、腐食速度は、酸に対して安定な化合物を添加しているため表1に示した値より約0.008nm/h 小さな値になっている。比抵抗は、酸化シリコン以外の化合物を添加した薄膜については70μΩ・cm以上の値を示すが、Ni81Fe19薄膜及び酸化シリコンを添加した薄膜は30μΩ・cm以下である。比透磁率については、化合物を添加すると900程度まで低下するが、シールド層としては十分な値である。平均面粗さは、Ni81Fe19薄膜の場合12.6nm であるが、化合物を添加することにより最大でも8.8nm まで小さくなっている。このように、化合物を添加することにより、耐食性が向上し、比抵抗が増加し、薄膜の表面の凹凸が小さくなるが、透磁率が減少することが分かる。
【0021】
表1で比透磁率の値が小さい酸化チタンを例に説明する。Ni81Fe19薄膜に酸化チタンを添加した薄膜の評価結果を表2に示す。腐食速度は、酸化チタンを2mol% 以上添加するとNi81Fe19薄膜における腐食速度よりも小さくなり、さらに酸化チタン含有量が増えると、12mol% における0.010nm/h まで小さくなる。12mol% 以上では腐食速度は大きくなるが、20mol% 添加してもNi81Fe19薄膜に比べると小さな値であった。腐食速度がこのように変化する理由は、酸化チタンを添加することにより耐食性が次第に向上するが、試験液がアルカリ性であるため、含有量がある値以上から酸化チタンが溶け始めることによるものと思われる。なお、酸性の試験液では、酸化チタン含有量が増加すると、腐食速度は単調に減少する。比抵抗は、酸化チタン含有量が増加すると単調に増大し、平均面粗さ及び比透磁率は減少する。比透磁率に関しては、望ましくは500以上、小さくとも400程度の値は必要であると考えており、酸化チタンの含有量は18mol% 以下でなければならない。酸化チタンの含有量は、腐食速度と比透磁率によって、2mol% 以上18mol% 以下と決定される。ここでは比透磁率の小さい酸化チタンを例にして説明したが、表1の酸化シリコン以外の化合物についても同様の結果が得られている。
【0022】
【表2】
Figure 0003936405
【0023】
表3は種々の金属薄膜に酸化ジルコニウムを添加した場合の評価結果である。
【0024】
【表3】
Figure 0003936405
【0025】
比較のため、酸化ジルコニウムを添加しない場合の特性についても示してある。酸化ジルコニウムを添加しない鉄、及び鉄−コバルトは明瞭な磁気異方性が誘導されなかったため、比透磁率は700程度であるが、酸化ジルコニウムを添加すると磁気異方性が誘導されて比透磁率が1600程度に向上している。ニッケル−鉄−コバルトについては、酸化ジルコニウムの添加により軟磁気特性が向上するため、表1のNi81Fe19薄膜に比べて比透磁率の劣化が小さくなっている。他の特性については、Ni81Fe19薄膜の場合と同様に、酸化ジルコニウムを添加すると、腐食速度及び平均面粗さは小さくなり、比抵抗は増大する。
【0026】
化合物含有軟磁性薄膜をシールド層に用いた本発明の実施例による磁気抵抗効果型ヘッドの斜視図を図1に示す。アルミナなどの絶縁層を薄膜形成し精密研磨を施した非磁性基板10の上に、下部シールド層111としてスパッタリング法によりNi81Fe19薄膜に酸化ジルコニウムを5mol% 添加した薄膜を形成し、イオンミリングを用いて所定の形状にパターン化し、その上に下部ギャップ層 121を成膜した。横方向バイアス磁界を印加するための軟磁性薄膜13であるNi−Fe−Nb−Co系合金および非磁性導電性薄膜14であるTaと、磁気抵抗効果膜15であるパーマロイと、磁気抵抗効果膜15から発生するバルクハウゼンノイズを抑制するための反強磁性膜であるFeMn薄膜16をスパッタリングにより成膜し、イオンミリングにより所定のパターンを形成した。FeMn薄膜16は、読取りトラック部分をイオンミリングにより除去した。電極膜17を所定の形状に形成した後、上部ギャップ層122を成膜、パターン化した。 Ni81Fe19薄膜に酸化ジルコニウムを5mol% 添加した薄膜からなる上部シールド層112を成膜、パターン化し、保護膜18を形成した。FeMn薄膜16を着磁するため、読取りトラック幅方向に3kOeの直流磁界を印加しながら 275℃で30分間熱処理を行った後、基板を切断,スライダに加工した。
【0027】
本実施例では、軟磁性薄膜13としてNi−Fe−Nb−Co系合金を、非磁性導電性薄膜14としてTaを、磁気抵抗効果膜15としてパーマロイを、磁区制御膜16としてFeMn薄膜を用いたが、特にこれらの薄膜に限定されるものではない。
【0028】
以上のように作製した磁気抵抗効果型ヘッドのシールド層の加工段差は5nmであった。比較のためにシールド層にNi−Fe合金を用いた磁気抵抗効果型ヘッドを作製し、シールド層の加工段差を測定したところ8nmであった。また、下部シールド層と上部シールド層の間隔の異なる磁気抵抗効果型ヘッドを作製し、下部ギャップ層と上部ギャップ層の絶縁性を調べた。シールド層に漏れることなくセンス電流を磁気抵抗効果膜に流すことができる、最小の下部シールド層と上部シールド層の間隔は、Ni−Fe合金を用いた場合は0.30μm であったのに対し、本実施例の磁気抵抗効果型ヘッドは0.25μm であった。なお、シールド層として、表1に示した酸化シリコン以外の化合物を添加した薄膜を用いても同様の結果が得られている。以上のように、化合物含有軟磁性薄膜をシールド層に用いることにより、狭ギャップにすることができるため、線記録密度の高い磁気ディスク装置に適用できる。
【0029】
(実施例2)
本発明の別の実施例による磁気抵抗効果型ヘッドの斜視図を図2に示す。非磁性基板10の上に、下部シールド層21として、Ni81Fe19薄膜に酸化ジルコニウムを5mol% 添加した薄膜211と12mol% 添加した薄膜212の積層膜を形成し、イオンミリングを用いて所定の形状にパターン化し、その上に下部ギャップ層121を成膜した。軟磁性薄膜13と,非磁性導電性薄膜14と,磁気抵抗効果膜15と,反強磁性膜16と,電極膜17と,上部ギャップ層122は実施例1と同様に作製した。上部シールド層22として、Ni81Fe19薄膜に酸化ジルコニウムを12mol% 添加した薄膜221とCoTaZr非晶質薄膜222の積層膜を成膜,パターン化した後、保護膜18を形成した。実施例1と同様に、反強磁性膜16の着磁を行った後、基板を切断,スライダに加工した。
【0030】
本実施例の磁気抵抗効果型ヘッドの加工段差は3nmであった。絶縁を保ち得る最小の下部シールド層と上部シールド層の間隔は、ギャップ層に近い側に抵抗の高い薄膜を配置したことにより、0.20μm まで狭くすることができた。また、上部シールド層に飽和磁束密度が約1.3T のCoTaZr非晶質薄膜を用いているので、上部シールド層が書込みヘッドの下部磁極を兼ねている記録・再生分離型ヘッドを作製する場合には優れた記録特性が期待できる。また、記録・再生分離型ヘッドをロータリアクチュエータで位置決めする際には、上部シールド層を薄くすることができ、再生ヘッドと記録ヘッドの間隔を縮めることができる。これにより、記録トラックと再生トラックの位置ずれが小さくなり、記録トラックの幅も狭くすることができるので、トラック密度が向上し、高記録密度化が達成できる。なお、下部シールド層では下部ギャップ層に近い側が抵抗の高い化合物含有軟磁性薄膜であり、上部シールド層では上部ギャップ層に近い側が抵抗の高い化合物含有軟磁性薄膜で、記録ヘッドに近い側が高飽和磁束密度,高透磁率を有する材料であれば、同様の性能向上が期待できる。
【0031】
【発明の効果】
本発明によれば、加工段差が小さく、高抵抗のシールド層が作製できるので、実質的に低浮上になり、シールド層の間隔を狭くできるので、高い線記録密度に対応できる磁気抵抗効果型ヘッドが得られる。また、膜表面の凹凸を小さくすることができるため、薄い磁性膜や積層膜でも良好な特性が得られるので、高感度の磁気抵抗効果型ヘッドが得られる。従って、本発明の磁気抵抗効果型ヘッドを搭載することにより、高い面記録密度を有する磁気ディスク装置が得られる。
【図面の簡単な説明】
【図1】本発明の一実施例による磁気抵抗効果型ヘッドの斜視図。
【図2】本発明の第二の実施例による磁気抵抗効果型ヘッドの斜視図。
【図3】加工段差の説明図。
【符号の説明】
10…非磁性基板、13…軟磁性薄膜、14…非磁性導電性薄膜、15…磁気抵抗効果膜、16…反強磁性膜、17…電極膜、18…保護膜、111…下部シールド層、112上部シールド層、121…下部ギャップ層、122…上部ギャップ層。[0001]
[Industrial application fields]
The present invention relates to a magnetoresistive head and a magnetic disk apparatus used for reproducing information recorded on a magnetic medium.
[0002]
[Prior art]
In order to cope with the recent miniaturization and high recording density of magnetic disk devices, a recording / reproducing separated type head has been proposed in which a recording function and a reproducing function are separately used with optimum characteristics. In general recording / reproducing separated type heads, an inductive thin film head is used as a recording head, and a magnetoresistive head capable of obtaining a large reproduction output even if the relative speed between the magnetic head and the magnetic recording medium is small Used.
[0003]
In order to achieve high resolution with a magnetoresistive head, a pair of shield layers are arranged above and below the magnetoresistive film via a gap layer to remove magnetic fields other than the signal magnetic field to be reproduced. As the material of the shield layer, a soft magnetic thin film is used as described in JP-A-2-11609.
[0004]
[Problems to be solved by the invention]
However, when polishing the air bearing surface (the surface facing the magnetic recording medium) of the thin film magnetic head, the etching speed of the shield layer is large among the nonmagnetic substrate, the oxide film as the insulating layer, and the shield layer. 3, there is a problem that a step is generated between the lower end of the shield layer and the nonmagnetic substrate surface. Such a step is called a processing step.
[0005]
As a means to improve the sensitivity of the magnetoresistive head,
(1) Reduce the thickness of the magnetoresistive film.
[0006]
(2) Utilizing the giant magnetoresistive effect generated in a thin film having a thickness of several nanometers.
[0007]
However, in any case, even when a thin film is used, it is necessary to exhibit good electromagnetic characteristics and thermal stability. For this purpose, it is desirable that the unevenness of the shield layer as a base is small.
[0008]
SUMMARY OF THE INVENTION An object of the present invention is to provide a magnetoresistive head having high sensitivity that can cope with a narrow gap by using a shield layer having a small processing step and small irregularities on the film surface, and a magnetic disk device compatible with high recording density. Is to provide.
[0009]
[Means for Solving the Problems]
At least one of the lower shield layer and the upper shield layer is made of at least one of Ni, Fe, Co, zirconium oxide, aluminum oxide, hafnium oxide, titanium oxide, beryllium oxide, magnesium oxide, zirconium nitride, aluminum nitride, hafnium nitride, It is composed of a compound-containing soft magnetic thin film made of at least one selected from titanium nitride, beryllium nitride, magnesium nitride, and silicon nitride. At this time, a thin film containing 2 to 18 mol% of the compound is used as the compound-containing soft magnetic thin film.
[0010]
In addition, the shield layer may be formed of a multilayer film including a compound-containing soft magnetic thin film instead of a single layer film. A multilayer film including a plurality of compound-containing soft magnetic thin films having different compositions can be used for both the upper and lower shield layers. A multilayer film containing one or more compound-containing soft magnetic thin films and one or more soft magnetic thin films can be used for both shield layers, but there are more desirable configurations depending on the combination of materials. For example, when a compound-containing soft magnetic thin film and a permalloy multilayer film to which permalloy or nitrogen is added are used for the lower shield layer, the uppermost layer of the lower shield layer is preferably a compound-containing soft magnetic thin film. Further, when a multilayer film of a compound-containing soft magnetic thin film and an amorphous soft magnetic thin film is used for the lower shield layer, it is desirable that the uppermost layer of the lower shield layer is an amorphous soft magnetic thin film. Further, when a compound-containing soft magnetic thin film and an amorphous soft magnetic thin film are used for the upper shield layer, the lowermost layer of the upper shield layer is preferably a compound-containing soft magnetic thin film.
[0011]
By mounting this magnetoresistive head on a magnetic disk device, the linear recording density can be set to 170 kBPI or more, or the surface recording density can be set to 1.5 Gb / in 2 or more.
[0012]
[Action]
The processing step of the shield layer can be reduced by using a material having good corrosion resistance for the shield layer. If a soft magnetic thin film containing one or more of the magnetic metals Ni, Fe, and Co is mixed with one or more oxides or nitrides so as to exist as a compound without being decomposed in the thin film, the magnetic properties are greatly impaired. In addition, a compound-containing soft magnetic thin film having a large electric resistance and good corrosion resistance can be obtained. In such a thin film, the crystal grains are reduced when the compound is mixed into the metal thin film, so that the unevenness on the surface of the thin film can also be reduced. Oxides and nitrides that produce such effects are strongly bonded compounds, and oxides include zirconium oxide, aluminum oxide, hafnium oxide, titanium oxide, beryllium oxide, and magnesium oxide, and nitrides include zirconium nitride and aluminum nitride. , Hafnium nitride, titanium nitride, beryllium nitride, magnesium nitride, and silicon nitride. When the content of these compounds is small, the corrosion resistance is not improved, and when the content is too large, the magnetic permeability required for the shield layer cannot be obtained, so that a thin film having a compound content of 2 to 18 mol% can be applied.
[0013]
The shield layer is required to have a permeability of several hundreds or more, but if the linear recording density increases and the gap layer thickness decreases, it becomes difficult to produce a gap layer with excellent insulation. Therefore, it is necessary that the electric resistance of the shield layer surface in contact with the gap layer is large. In this case, in addition to a method using a single layer film of a compound-containing soft magnetic thin film having a large electric resistance and magnetic permeability, at least two compound-containing soft magnetic thin films having different resistances are stacked, and the thin film having the largest resistance is disposed on the gap layer side. There is a way to arrange. On the other hand, when giving priority to resolution, a structure in which a compound-containing soft magnetic thin film having a high magnetic permeability is arranged on the gap layer side is desirable. As described above, when a multilayer film is used, it is possible to easily cope with different purposes.
[0014]
In order to improve the corrosion resistance without impairing the magnetic properties of the shield layer, the shield layer may be composed of a multilayer film including at least one compound-containing soft magnetic thin film and one or more soft magnetic thin films. At this time, in order to reduce the unevenness on the uppermost surface of the lower shield layer, it is necessary to use a thin film having a small particle size as the uppermost layer of the lower shield layer. In combination with permalloy or permalloy to which nitrogen is added, a compound is contained. When the soft magnetic thin film is combined with the amorphous soft magnetic thin film, the amorphous soft magnetic thin film is the uppermost layer.
[0015]
Amorphous soft magnetic thin films have poor adhesion and require an adhesive layer. When an amorphous soft magnetic thin film is applied to the upper shield layer, the gap layer becomes thick in the nonmagnetic thin film adhesion layer, and therefore the magnetic thin film needs to be used for the adhesion layer. At this time, considering the throughput, a material that can obtain good magnetic properties without heating the substrate is desirable, and a compound-containing soft magnetic thin film is preferable in this respect. Thus, the amorphous soft magnetic thin film can be used for the upper shield layer by making the lowermost layer a compound-containing soft magnetic thin film.
[0016]
When a compound-containing soft magnetic thin film is used for the shield layer, a shield layer with a flat surface and high resistance can be obtained without greatly deteriorating the magnetic properties, so that the gap layer can be made thin and high linear recording density can be accommodated. Is possible. Furthermore, when the upper shield layer also serves as the lower magnetic pole of the recording head in the recording / reproducing separated type head, by using a material with high saturation magnetic flux density and high permeability (for example, amorphous magnetic material) for the upper shield layer, The upper shield layer can be made thin. As a result, the positional deviation between the recording track and the reproduction track can be reduced and the recording track width can be reduced, so that the track density can be increased, and as a result, the surface recording density is improved.
[0017]
【Example】
Hereinafter, the present invention will be described in detail by way of examples.
[0018]
Example 1
First, the characteristics of the thin film to which the compound is added will be described. The thin film was prepared by mixing a powder of various compounds and a powder of an alloy containing one or more kinds of Ni, Fe, and Co as a target and using an RF conventional sputtering apparatus at an Ar gas pressure of 2 mTorr. Here, in order to induce magnetic anisotropy, film formation was performed while applying a magnetic field of about 40 Oe. For a thin film having a thickness of about 1 μm, the corrosion rate, the specific resistance, the relative permeability at a frequency of 1 MHz, and the average surface roughness were evaluated from the polarization characteristics of an alkaline liquid having a pH of about 10. Table 1 shows about Ni 81 Fe 19 with zirconium oxide, aluminum oxide, hafnium oxide, titanium oxide, beryllium oxide, magnesium oxide, zirconium nitride, aluminum nitride, hafnium nitride, titanium nitride, beryllium nitride, magnesium nitride, and silicon nitride. It is the evaluation result of the thin film added 5%.
[0019]
[Table 1]
Figure 0003936405
[0020]
For comparison, evaluation was also performed on a thin film to which about 5% of silicon oxide was added and a Ni 81 Fe 19 thin film to which no compound was added. The corrosion rate of the thin film to which the above-described compound except silicon oxide is added is smaller than that of the Ni 81 Fe 19 thin film, but the thin film to which silicon oxide is added is larger than that of the Ni 81 Fe 19 thin film. This is presumably because the thin film to which a compound other than silicon oxide is added exists in a bonded state without being decomposed, and in the case of silicon oxide, it is partially decomposed in the film. Although not shown in Table 1, the thin film to which a compound other than silicon oxide is added even in an acidic solution has improved corrosion resistance compared to the Ni 81 Fe 19 thin film, and the corrosion rate is stable against acid. Since the compound is added, the value is about 0.008 nm / h smaller than the value shown in Table 1. The specific resistance shows a value of 70 μΩ · cm or more for the thin film to which a compound other than silicon oxide is added, but the value of the Ni 81 Fe 19 thin film and the thin film to which silicon oxide is added is 30 μΩ · cm or less. The relative permeability decreases to about 900 when a compound is added, but is a sufficient value as a shield layer. The average surface roughness is 12.6 nm in the case of Ni 81 Fe 19 thin film, but is reduced to 8.8 nm at the maximum by adding a compound. Thus, by adding a compound, it turns out that corrosion resistance improves, a specific resistance increases, the unevenness | corrugation of the surface of a thin film becomes small, but a magnetic permeability reduces.
[0021]
Table 1 will be described using titanium oxide having a small relative permeability as an example. Table 2 shows the evaluation results of the thin film obtained by adding titanium oxide to the Ni 81 Fe 19 thin film. When the titanium oxide is added in an amount of 2 mol% or more, the corrosion rate becomes smaller than that in the Ni 81 Fe 19 thin film, and further decreases to 0.010 nm / h at 12 mol% when the titanium oxide content increases. When the amount is 12 mol% or more, the corrosion rate increases, but even when 20 mol% is added, the value is smaller than that of the Ni 81 Fe 19 thin film. The reason why the corrosion rate changes in this way is that corrosion resistance gradually improves by adding titanium oxide, but the test solution is alkaline, so the content of titanium oxide starts to dissolve from a certain value or more. It is. In an acidic test solution, the corrosion rate decreases monotonically as the titanium oxide content increases. The specific resistance increases monotonically with increasing titanium oxide content, and the average surface roughness and relative permeability decrease. Regarding the relative magnetic permeability, a value of preferably 500 or more and at least about 400 is considered necessary, and the content of titanium oxide must be 18 mol% or less. The content of titanium oxide is determined to be 2 mol% or more and 18 mol% or less depending on the corrosion rate and relative permeability. Here, titanium oxide having a small relative magnetic permeability has been described as an example, but similar results are obtained for compounds other than silicon oxide in Table 1.
[0022]
[Table 2]
Figure 0003936405
[0023]
Table 3 shows the evaluation results when zirconium oxide is added to various metal thin films.
[0024]
[Table 3]
Figure 0003936405
[0025]
For comparison, the characteristics when no zirconium oxide is added are also shown. Iron and iron-cobalt to which no zirconium oxide is added did not induce a clear magnetic anisotropy, so the relative permeability is about 700. However, the addition of zirconium oxide induces the magnetic anisotropy and the relative permeability. Is improved to about 1600. Regarding nickel-iron-cobalt, soft magnetic properties are improved by addition of zirconium oxide, so that the relative permeability is less deteriorated than the Ni 81 Fe 19 thin film shown in Table 1. As for other characteristics, as in the case of the Ni 81 Fe 19 thin film, when zirconium oxide is added, the corrosion rate and the average surface roughness are reduced, and the specific resistance is increased.
[0026]
FIG. 1 is a perspective view of a magnetoresistive head according to an embodiment of the present invention in which a compound-containing soft magnetic thin film is used as a shield layer. On the non-magnetic substrate 10 formed by forming a thin insulating layer such as alumina and finely polished, a thin film in which 5 mol% of zirconium oxide is added to a Ni 81 Fe 19 thin film is formed as a lower shield layer 111 by sputtering. And a lower gap layer 121 was formed thereon. Ni—Fe—Nb—Co-based alloy, which is a soft magnetic thin film 13 for applying a lateral bias magnetic field, Ta, which is a nonmagnetic conductive thin film 14, permalloy, which is a magnetoresistive effect film 15, and a magnetoresistive effect film An FeMn thin film 16, which is an antiferromagnetic film for suppressing Barkhausen noise generated from 15, was formed by sputtering, and a predetermined pattern was formed by ion milling. In the FeMn thin film 16, the read track portion was removed by ion milling. After the electrode film 17 was formed in a predetermined shape, the upper gap layer 122 was formed and patterned. An upper shield layer 112 made of a thin film obtained by adding 5 mol% of zirconium oxide to a Ni 81 Fe 19 thin film was formed and patterned to form a protective film 18. In order to magnetize the FeMn thin film 16, heat treatment was performed at 275 ° C. for 30 minutes while applying a DC magnetic field of 3 kOe in the read track width direction, and then the substrate was cut and processed into a slider.
[0027]
In this example, Ni—Fe—Nb—Co alloy was used as the soft magnetic thin film 13, Ta was used as the nonmagnetic conductive thin film 14, Permalloy was used as the magnetoresistive effect film 15, and FeMn thin film was used as the magnetic domain control film 16. However, it is not particularly limited to these thin films.
[0028]
The processing step of the shield layer of the magnetoresistive head manufactured as described above was 5 nm. For comparison, a magnetoresistive head using a Ni—Fe alloy for the shield layer was produced, and the processing step of the shield layer was measured and found to be 8 nm. In addition, magnetoresistive heads with different distances between the lower shield layer and the upper shield layer were produced, and the insulation between the lower gap layer and the upper gap layer was examined. The minimum gap between the lower shield layer and the upper shield layer, which allows a sense current to flow through the magnetoresistive film without leaking into the shield layer, was 0.30 μm when using a Ni—Fe alloy. The magnetoresistive head of this example was 0.25 μm. In addition, the same result was obtained even if it used the thin film which added compounds other than the silicon oxide shown in Table 1 as a shield layer. As described above, by using the compound-containing soft magnetic thin film for the shield layer, a narrow gap can be obtained, and therefore, it can be applied to a magnetic disk device having a high linear recording density.
[0029]
(Example 2)
A perspective view of a magnetoresistive head according to another embodiment of the present invention is shown in FIG. On the nonmagnetic substrate 10, a laminated film of a thin film 211 in which 5 mol% of zirconium oxide is added to a Ni 81 Fe 19 thin film and a thin film 212 in which 12 mol% is added is formed as a lower shield layer 21, and a predetermined film is formed using ion milling. Patterned into a shape, a lower gap layer 121 was formed thereon. The soft magnetic thin film 13, the nonmagnetic conductive thin film 14, the magnetoresistive effect film 15, the antiferromagnetic film 16, the electrode film 17, and the upper gap layer 122 were produced in the same manner as in Example 1. A laminated film of a thin film 221 in which 12 mol% of zirconium oxide was added to a Ni 81 Fe 19 thin film and a CoTaZr amorphous thin film 222 were formed and patterned as the upper shield layer 22, and then the protective film 18 was formed. Similarly to Example 1, after the antiferromagnetic film 16 was magnetized, the substrate was cut and processed into a slider.
[0030]
The processing step of the magnetoresistive head of this example was 3 nm. The minimum distance between the lower shield layer and the upper shield layer that can maintain insulation could be reduced to 0.20 μm by arranging a thin film with high resistance on the side close to the gap layer. In addition, since a CoTaZr amorphous thin film having a saturation magnetic flux density of about 1.3 T is used for the upper shield layer, when the recording / reproducing separated type head in which the upper shield layer also serves as the lower magnetic pole of the write head is manufactured. Can be expected to have excellent recording characteristics. Further, when the recording / reproducing separated type head is positioned by the rotary actuator, the upper shield layer can be made thin, and the interval between the reproducing head and the recording head can be reduced. As a result, the positional deviation between the recording track and the reproduction track is reduced, and the width of the recording track can be reduced, so that the track density is improved and a high recording density can be achieved. In the lower shield layer, the side near the lower gap layer is a high-resistance compound-containing soft magnetic thin film. In the upper shield layer, the side near the upper gap layer is a high-resistance compound-containing soft magnetic thin film, and the side near the recording head is highly saturated. If the material has magnetic flux density and high magnetic permeability, the same performance improvement can be expected.
[0031]
【The invention's effect】
According to the present invention, since a high-resistance shield layer can be produced with a small processing step, the magnetic resistance effect-type head can be made to cope with a high linear recording density because the flying height is substantially low and the interval between the shield layers can be narrowed. Is obtained. Further, since the unevenness of the film surface can be reduced, good characteristics can be obtained even with a thin magnetic film or a laminated film, so that a highly sensitive magnetoresistive head can be obtained. Therefore, by mounting the magnetoresistive head of the present invention, a magnetic disk device having a high surface recording density can be obtained.
[Brief description of the drawings]
FIG. 1 is a perspective view of a magnetoresistive head according to an embodiment of the present invention.
FIG. 2 is a perspective view of a magnetoresistive head according to a second embodiment of the invention.
FIG. 3 is an explanatory diagram of a processing step.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 ... Nonmagnetic board | substrate, 13 ... Soft magnetic thin film, 14 ... Nonmagnetic conductive thin film, 15 ... Magnetoresistive film, 16 ... Antiferromagnetic film, 17 ... Electrode film, 18 ... Protective film, 111 ... Lower shield layer, 112 upper shield layer 121 121 lower gap layer 122 122 upper gap layer

Claims (7)

下部磁気シールド層と,下部ギャップ層と,磁気記録媒体からの信号磁界を検出する磁気抵抗効果膜と,前記磁気抵抗効果膜にバイアス磁界を印加する手段と,磁区制御層と,前記磁気抵抗効果膜に検出電流を流し同時に出力電圧を読み取る導体部と,上部ギャップ層と,上部磁気シールド層とを有し、前記上部磁気シールド層または前記下部磁気シールド層は、Ni,Fe,Coの一種以上の金属と、酸化ジルコニウム,酸化アルミニウム,酸化ハフニウム,酸化チタン,酸化ベリリウム,酸化マグネシウム,窒化ジルコニウム,窒化アルミニウム,窒化ハフニウム,窒化チタン,窒化ベリリウム,窒化マグネシウム,窒化シリコンの内から選択されたいずれか一種以上の化合物とを含有する化合物含有軟磁性薄膜からなることを特徴とする磁気抵抗効果型ヘッド。A lower magnetic shield layer, a lower gap layer, a magnetoresistive effect film for detecting a signal magnetic field from a magnetic recording medium, means for applying a bias magnetic field to the magnetoresistive effect film, a magnetic domain control layer, and the magnetoresistive effect A conductor portion for passing a detection current through the film and simultaneously reading an output voltage; an upper gap layer; and an upper magnetic shield layer, wherein the upper magnetic shield layer or the lower magnetic shield layer is one or more of Ni, Fe, Co And any one selected from the group consisting of zirconium oxide, aluminum oxide, hafnium oxide, titanium oxide, beryllium oxide, magnesium oxide, zirconium nitride, aluminum nitride, hafnium nitride, titanium nitride, beryllium nitride, magnesium nitride, and silicon nitride It is characterized by comprising a compound-containing soft magnetic thin film containing one or more compounds. Magnetoresistive head. 請求項1に記載の磁気ヘッドにおいて、前記化合物の濃度は2から18mol% であることを特徴とする磁気抵抗効果型ヘッド。2. The magnetoresistive head according to claim 1, wherein the concentration of the compound is 2 to 18 mol%. 請求項2に記載の磁気ヘッドにおいて、前記下部シールド層または前記上部シールド層は、組成の異なる化合物含有軟磁性薄膜を複数層含む多層膜であることを特徴とする磁気抵抗効果型ヘッド。3. The magnetoresistive head according to claim 2, wherein the lower shield layer or the upper shield layer is a multilayer film including a plurality of compound-containing soft magnetic thin films having different compositions. 請求項2に記載の磁気ヘッドにおいて、前記下部シールド層または前記上部シールド層が、前記化合物含有軟磁性薄膜と金属磁性薄膜をそれぞれ少なくとも一層以上含む多層膜である磁気抵抗効果型ヘッド。3. The magnetoresistive head according to claim 2, wherein the lower shield layer or the upper shield layer is a multilayer film including at least one compound-containing soft magnetic thin film and a metal magnetic thin film. 請求項4において、前記下部シールド層が、前記化合物含有軟磁性薄膜と、パーマロイまたは窒素を添加されたパーマロイの多層膜であり、下部シールド層の最上層が前記化合物含有軟磁性薄膜である磁気抵抗効果型ヘッド。5. The magnetic resistance according to claim 4, wherein the lower shield layer is a multilayer film of the compound-containing soft magnetic thin film and permalloy or nitrogen added with permalloy, and the uppermost layer of the lower shield layer is the compound-containing soft magnetic thin film. Effect type head. 請求項4において、前記下部シールド層が、前記化合物含有軟磁性薄膜と非晶質軟磁性薄膜の多層膜であり、前記下部シールド層の最上層が前記非晶質軟磁性薄膜である磁気抵抗効果型ヘッド。5. The magnetoresistive effect according to claim 4, wherein the lower shield layer is a multilayer film of the compound-containing soft magnetic thin film and an amorphous soft magnetic thin film, and the uppermost layer of the lower shield layer is the amorphous soft magnetic thin film. Mold head. 請求項4において、前記上部シールド層が、前記化合物含有軟磁性薄膜と非晶質軟磁性薄膜の多層膜であり、上部シールド層の最下層が前記化合物含有軟磁性薄膜である磁気抵抗効果型ヘッド。5. The magnetoresistive head according to claim 4, wherein the upper shield layer is a multilayer film of the compound-containing soft magnetic thin film and an amorphous soft magnetic thin film, and the lowermost layer of the upper shield layer is the compound-containing soft magnetic thin film. .
JP28476094A 1994-11-18 1994-11-18 Magnetoresistive head and magnetic disk drive Expired - Fee Related JP3936405B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28476094A JP3936405B2 (en) 1994-11-18 1994-11-18 Magnetoresistive head and magnetic disk drive

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28476094A JP3936405B2 (en) 1994-11-18 1994-11-18 Magnetoresistive head and magnetic disk drive

Publications (2)

Publication Number Publication Date
JPH08147634A JPH08147634A (en) 1996-06-07
JP3936405B2 true JP3936405B2 (en) 2007-06-27

Family

ID=17682659

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28476094A Expired - Fee Related JP3936405B2 (en) 1994-11-18 1994-11-18 Magnetoresistive head and magnetic disk drive

Country Status (1)

Country Link
JP (1) JP3936405B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1196516A (en) * 1997-09-19 1999-04-09 Fujitsu Ltd Production of spin valve magneto-resistive head and spin valve magneto-resistive head produced by the production process

Also Published As

Publication number Publication date
JPH08147634A (en) 1996-06-07

Similar Documents

Publication Publication Date Title
US6157526A (en) Magnetoresistive head and magnetic disk apparatus
EP0790600B1 (en) Magnetoresistive effect head
US6034847A (en) Apparatus and thin film magnetic head with magnetic membrane layers of different resistivity
US7072155B2 (en) Magnetoresistive sensor including magnetic domain control layers having high electric resistivity, magnetic head and magnetic disk apparatus
EP1310944B1 (en) Giant magnetoresistive transducer
KR100320896B1 (en) Mr effect element and mr sensor, mr sensing system and magnetic storage system using the same
US6804089B2 (en) Yoke-type magnetic head and magnetic recording/reproducing device
JP2817501B2 (en) Magnetic disk drive and magnetic head used therefor
US7085100B2 (en) Magnetic head having a bilayer pole tip
JP2856165B2 (en) Magnetoresistive element and method of manufacturing the same
WO1997008687A1 (en) Magnetic head and magnetic memory apparatus using the head
JP3936405B2 (en) Magnetoresistive head and magnetic disk drive
JP2003060266A (en) Manufacturing method of magnetoresistive effect element, thin film magnetic head, and head unit
JP3840826B2 (en) Magnetoresistive sensor and method for manufacturing magnetic head provided with the sensor
JPH05250642A (en) Magnetoresist effect sensor
JP3083090B2 (en) Magnetoresistive sensor
JP2821586B2 (en) Thin film magnetic head
JPH09251619A (en) Magnetiresistive magnetic head and magnetic recording and reproducing device
JPH09153652A (en) Magnetoresistive effect element
JPH07320235A (en) Magneto-resistance effect type head and its production
JPH11112052A (en) Magnetoresistive sensor and magnetic recorder/player employing it
JPH07176020A (en) Magneto-resistance effect head and its production
JP2001067626A (en) Spin valve element and magnetic head using the same
JPH09293219A (en) Composite type thin film magnetic head
JPH08153313A (en) Magneto-resistance effect type head and magnetic disk device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040329

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040413

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040706

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060427

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070323

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100330

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100330

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110330

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110330

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120330

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130330

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130330

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130330

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140330

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees