JP2005063643A - Magnetoresistance effect type magnetic head, and magnetic recording and reproducing device - Google Patents

Magnetoresistance effect type magnetic head, and magnetic recording and reproducing device Download PDF

Info

Publication number
JP2005063643A
JP2005063643A JP2004234018A JP2004234018A JP2005063643A JP 2005063643 A JP2005063643 A JP 2005063643A JP 2004234018 A JP2004234018 A JP 2004234018A JP 2004234018 A JP2004234018 A JP 2004234018A JP 2005063643 A JP2005063643 A JP 2005063643A
Authority
JP
Japan
Prior art keywords
film
thin film
magnetic
magnetoresistive
head
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004234018A
Other languages
Japanese (ja)
Inventor
Katsuro Watanabe
克朗 渡辺
Shigeru Tadokoro
茂 田所
Takashi Kawabe
隆 川辺
Hiroshi Kamio
浩 神尾
Takao Imagawa
尊雄 今川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HGST Inc
Original Assignee
HGST Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HGST Inc filed Critical HGST Inc
Priority to JP2004234018A priority Critical patent/JP2005063643A/en
Publication of JP2005063643A publication Critical patent/JP2005063643A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a magnetoresistance effect type magnetic head, and a magnetic recording and reproducing device which does not have Barkhausen noise, and the variation in reproduction characteristics is small. <P>SOLUTION: The magnetoresistance effect type magnetic head is provided with a vertical bias impression layer having a ground film consisting of ferromagnetic thin film whose crystal structure is a body-centered cubic lattice, an amorphous ferromagnetic thin film or an antiferromagnetic thin film, whose crystal structure is a body-centered cubic lattice and a hard magnetic thin film formed on the ground film. The magnetic recording and reproducing device using this magnetoresistance effect type magnetic head is also provided. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、磁気的に記録された情報の再生に用いられる磁気抵抗効果型磁気ヘッド及び磁気記録再生装置に関する。   The present invention relates to a magnetoresistive head and a magnetic recording / reproducing apparatus used for reproducing magnetically recorded information.

近年の磁気ディスク装置の小型化,高密度化の進行に伴い、ディスクとヘッドの相対速度に依存せずに高い再生出力電圧が得られる磁気抵抗効果型磁気ヘッド(MRヘッド)が実用化されている。現在磁気ディスク装置に搭載されている MRヘッドには、磁性膜の磁化の方向と信号検出電流が流れる方向とのなす角度に依存して電気抵抗が変化する異方性磁気抵抗効果が用いられており、ヘッド構造や薄膜材料の改良により高性能化が図られている。数Gb/in2 程度の高い面記録密度になると、異方性磁気抵抗効果を用いたMRヘッドでは感度不足が予想されるため、非磁性導電性薄膜を介して積層された2層の磁性薄膜の互いの磁化の方向のなす角度によって電気抵抗が変化する巨大磁気抵抗効果を用いたヘッドが研究されている。いずれのMRヘッドにおいても、磁気抵抗効果膜の磁化が回転することによって電気抵抗の変化が生じており、ノイズのない再生波形を得るためには磁壁移動を抑えなければならない。 With the recent progress of miniaturization and higher density of magnetic disk devices, magnetoresistive heads (MR heads) that can obtain a high reproduction output voltage without depending on the relative speed of the disk and the head have been put into practical use. Yes. The MR head currently mounted on the magnetic disk drive uses an anisotropic magnetoresistive effect in which the electrical resistance changes depending on the angle between the direction of magnetization of the magnetic film and the direction in which the signal detection current flows. Therefore, high performance is achieved by improving the head structure and thin film material. When the surface recording density is as high as several Gb / in 2, the MR head using the anisotropic magnetoresistive effect is expected to be insensitive, so two magnetic thin films laminated via a nonmagnetic conductive thin film A head using a giant magnetoresistive effect, in which the electrical resistance changes depending on the angle between the directions of magnetization of each other, has been studied. In any MR head, a change in electric resistance is caused by the rotation of the magnetization of the magnetoresistive film, and the domain wall motion must be suppressed in order to obtain a noise-free reproduced waveform.

磁壁移動に起因するバルクハウゼンノイズを抑制する手段として、特開平2− 220213号には感磁部以外の部分において硬磁性薄膜を非磁性下地膜を介して磁気抵抗効果膜の上に積層した構造が、特開平3−125311号に磁気抵抗効果膜の両脇に硬磁性薄膜を配置した構造が開示されている。   As a means for suppressing Barkhausen noise caused by domain wall motion, JP-A-2-220213 discloses a structure in which a hard magnetic thin film is laminated on a magnetoresistive effect film through a nonmagnetic underlayer in a portion other than the magnetic sensitive portion. However, JP-A-3-12511 discloses a structure in which hard magnetic thin films are arranged on both sides of a magnetoresistive film.

特開平2−220213号公報JP-A-2-220213

特開平3−125311号公報Japanese Patent Laid-Open No. 3-125311

バルクハウゼンノイズを抑制するために磁気抵抗効果型磁気ヘッドに用いられる硬磁性薄膜には、二つの磁気特性が要求される。その一つは、保磁力が大きいことである。MRヘッドには、記録媒体からの信号磁界や、記録ヘッドからの記録磁界が作用するので、このような外部磁界の下でも安定な再生特性を有するためには、硬磁性薄膜から磁気抵抗効果膜に入る縦バイアス磁界が変動しないように、十分な大きさの保磁力が必要となる。もう一つは、磁化の膜面内成分が大きいこと、即ち、面内方向に磁界を印加して測定した磁化曲線の角形比が大きいことである。硬磁性薄膜の磁化成分のうち、縦バイアス磁界として有効に作用するのは、膜面内成分であるため、外部磁界が作用しても縦バイアス磁界が変動しないためには、この膜面内成分が大きく、磁化曲線の角形比が大きいことが必要である。   In order to suppress Barkhausen noise, a hard magnetic thin film used in a magnetoresistive head is required to have two magnetic characteristics. One of them is a large coercive force. Since a signal magnetic field from a recording medium and a recording magnetic field from the recording head act on the MR head, in order to have stable reproduction characteristics even under such an external magnetic field, the hard magnetic thin film is changed to a magnetoresistive effect film. A sufficiently large coercive force is required so that the longitudinal bias magnetic field that enters the magnetic field does not fluctuate. The other is that the in-plane component of magnetization is large, that is, the squareness ratio of the magnetization curve measured by applying a magnetic field in the in-plane direction is large. Of the magnetization components of the hard magnetic thin film, it is the in-film component that effectively acts as the longitudinal bias magnetic field. Therefore, the longitudinal bias magnetic field does not vary even when an external magnetic field acts. And the squareness ratio of the magnetization curve must be large.

図15は、特開平2−220213 号に開示されているMRヘッドの構造を示す図である。本従来技術は、Cr等の非磁性下地膜251の上に形成された硬磁性薄膜26から発生する磁界によって、磁気抵抗効果膜15のバルクハウゼンノイズを抑制しようとするものである。非磁性下地膜251を用いることにより、保磁力及び角形比の大きな硬磁性薄膜26を得ることはできるが、硬磁性薄膜26から発生する磁界の一部がMR素子部(軟磁性薄膜13,非磁性導電性薄膜14,磁気抵抗効果膜15で構成される)を通って還流するため、図15に示されているように、感磁部とその両端で磁気抵抗効果膜15の磁化が逆向きになる。従って、磁気抵抗効果膜15の磁化状態は非常に不安定であり、バルクハウゼンノイズを抑制することは困難である。   FIG. 15 is a view showing the structure of an MR head disclosed in Japanese Patent Laid-Open No. 2-220213. This prior art is intended to suppress Barkhausen noise of the magnetoresistive effect film 15 by a magnetic field generated from a hard magnetic thin film 26 formed on a nonmagnetic base film 251 such as Cr. Although the hard magnetic thin film 26 having a large coercive force and squareness ratio can be obtained by using the nonmagnetic base film 251, a part of the magnetic field generated from the hard magnetic thin film 26 is part of the MR element (soft magnetic thin film 13, non-magnetic thin film 13). As shown in FIG. 15, the magnetization of the magnetoresistive effect film 15 is reversed between the magnetosensitive portion and both ends thereof. become. Therefore, the magnetization state of the magnetoresistive film 15 is very unstable, and it is difficult to suppress Barkhausen noise.

特開平3−125311 号には、図16に示すように、磁気抵抗効果膜内に逆向きの磁化成分を有する領域を存在させないために、硬磁性薄膜から発生した磁界が特定の一方向のみに作用するように、MR素子部の両脇に硬磁性薄膜を配置した構造が開示されている。軟磁性薄膜13,非磁性導電性薄膜14,磁気抵抗効果膜15から構成される積層膜(以下、軟磁性薄膜/非磁性導電性薄膜/磁気抵抗効果膜と記す)が、実質的に感磁部のみ残るようにエッチングした後、その両脇に硬磁性薄膜26を形成し、さらに、硬磁性薄膜26の上に電極を形成するものである。   In Japanese Patent Laid-Open No. 3-125111, as shown in FIG. 16, the magnetic field generated from the hard magnetic thin film is only in one specific direction so that there is no region having the opposite magnetization component in the magnetoresistive film. A structure in which hard magnetic thin films are arranged on both sides of the MR element portion is disclosed so as to work. A laminated film composed of the soft magnetic thin film 13, the nonmagnetic conductive thin film 14, and the magnetoresistive effect film 15 (hereinafter referred to as soft magnetic thin film / nonmagnetic conductive thin film / magnetoresistance effect film) is substantially magnetosensitive. After etching so that only the portion remains, a hard magnetic thin film 26 is formed on both sides thereof, and an electrode is formed on the hard magnetic thin film 26.

その際、軟磁性薄膜/非磁性導電性薄膜/磁気抵抗効果膜と、硬磁性薄膜26及び電極との間に、磁気的及び電気的な接触を保つために、軟磁性薄膜/非磁性導電性薄膜/磁気抵抗効果膜の端部が緩やかな傾斜が形成されるようにエッチングすることが必要となり、硬磁性薄膜26の一部が、軟磁性薄膜/非磁性導電性薄膜/磁気抵抗効果膜からなる緩やかな傾斜上に形成されることになる。ところが、軟磁性薄膜13、或いは磁気抵抗効果膜15の結晶構造が、一般に面心立方格子であるため、これらの膜の上に形成された硬磁性薄膜の特性、特に保磁力が、他の部分に比べ、著しく劣化してしまうという問題がある。   At that time, in order to maintain magnetic and electrical contact between the soft magnetic thin film / non-magnetic conductive thin film / magnetoresistance effect film and the hard magnetic thin film 26 and the electrode, the soft magnetic thin film / non-magnetic conductive It is necessary to perform etching so that the end of the thin film / magnetoresistance effect film has a gentle slope, and a part of the hard magnetic thin film 26 is formed from the soft magnetic thin film / nonmagnetic conductive thin film / magnetoresistance effect film. It will be formed on a gentle slope. However, since the crystal structure of the soft magnetic thin film 13 or the magnetoresistive effect film 15 is generally a face-centered cubic lattice, the characteristics of the hard magnetic thin film formed on these films, in particular the coercive force, are other parts. There is a problem that it is significantly deteriorated.

また、硬磁性薄膜26として一般的に用いられているCo−Cr−Pt系硬磁性薄膜やCo−Cr系硬磁性薄膜の場合、軟磁性薄膜13、或いは磁気抵抗効果膜15の上以外の部分において、十分な大きさの磁化の膜面内成分、即ち大きな角形比を得ることが困難であるという問題がある。薄膜には、結晶の最密面が膜面と平行になるように成長する性質があり、これらの硬磁性薄膜の場合、(001)面が膜面と平行に配向し易い。一方、磁化容易方向は〈001〉方向であるため、磁化は膜面に対して垂直な方向を向き易くなるため、縦バイアス磁界として有効に作用する膜面内成分が小さくなってしまうのである。   In the case of a Co—Cr—Pt hard magnetic thin film or a Co—Cr hard magnetic thin film generally used as the hard magnetic thin film 26, the portion other than the soft magnetic thin film 13 or the magnetoresistive effect film 15. However, there is a problem that it is difficult to obtain a sufficiently large in-film component of magnetization, that is, a large squareness ratio. The thin film has a property of growing so that the close-packed surface of the crystal is parallel to the film surface. In the case of these hard magnetic thin films, the (001) plane is easily oriented parallel to the film surface. On the other hand, since the easy magnetization direction is the <001> direction, the magnetization is likely to be directed in a direction perpendicular to the film surface, so that the in-film component that effectively acts as a longitudinal bias magnetic field is reduced.

これらの問題は、適当な下地膜を設けて、その上に硬磁性薄膜を形成することによって解決することができる。磁気記録媒体の研究に依れば、Cr等の非磁性下地膜が有効であることが知られているが、MRヘッドに用いられている硬磁性薄膜に非磁性下地膜を設けると、硬磁性薄膜26と、軟磁性薄膜13及び磁気抵抗効果膜15との間の磁気的交換結合を遮断することになり、軟磁性薄膜13及び磁気抵抗効果膜15の端部の磁化を安定化させる作用が働かなくなってしまう。これにより、これらの強磁性薄膜の磁化が不安定になり、バルクハウゼンノイズの発生や、再生特性の変動が起こり易くなる。   These problems can be solved by providing a suitable base film and forming a hard magnetic thin film thereon. According to research on magnetic recording media, it is known that a nonmagnetic underlayer such as Cr is effective. However, if a nonmagnetic underlayer is provided on the hard magnetic thin film used in the MR head, the hard magnetic layer The magnetic exchange coupling between the thin film 26 and the soft magnetic thin film 13 and the magnetoresistive effect film 15 is cut off, and the action of stabilizing the magnetization of the end portions of the soft magnetic thin film 13 and the magnetoresistive effect film 15 is achieved. I will not work. As a result, the magnetization of these ferromagnetic thin films becomes unstable, and Barkhausen noise is likely to occur and reproduction characteristics are likely to vary.

以上、従来技術に記載されている、異方性磁気抵抗効果を用いたMRヘッドについて課題を述べたが、巨大磁気抵抗効果を用いたMRヘッドにおいても、MR素子部が、結晶構造が面心立方格子である強磁性薄膜から構成されているため、共通の課題となる。   As described above, the problems with the MR head using the anisotropic magnetoresistive effect described in the prior art have been described. However, in the MR head using the giant magnetoresistive effect, the MR element portion has a centered crystal structure. Since it is composed of a ferromagnetic thin film having a cubic lattice, it is a common problem.

本発明の目的は、硬磁性薄膜の保磁力及び角形比の向上を図り、結晶構造が面心立方格子である強磁性薄膜の上でも、硬磁性薄膜の保磁力の低下を抑え、さらに、硬磁性薄膜と、MR素子部を構成する強磁性薄膜との間に磁気的交換結合を保つことにより、バルクハウゼンノイズがなく、再生特性が安定した磁気抵抗効果型磁気ヘッド及び磁気記録再生装置を提供することである。   The object of the present invention is to improve the coercive force and squareness ratio of the hard magnetic thin film, suppress the decrease in the coercive force of the hard magnetic thin film even on the ferromagnetic thin film whose crystal structure is a face-centered cubic lattice. Provided a magnetoresistive head and a magnetic recording / reproducing apparatus having no Barkhausen noise and stable reproduction characteristics by maintaining magnetic exchange coupling between the magnetic thin film and the ferromagnetic thin film constituting the MR element portion It is to be.

上記の目的は、磁気抵抗効果を用いて磁気的信号を電気的信号に変換する磁気抵抗効果膜と、前記磁気抵抗効果膜に信号検出電流を流すための一対の電極と、前記磁気抵抗効果膜に縦バイアス磁界を印加するために設けられた縦バイアス印加層とを有する磁気抵抗効果型磁気ヘッドにおいて、前記縦バイアス印加層を、強磁性薄膜からなる下地膜と、その上に形成された硬磁性薄膜とを有する構造にすることにより達成される。   The above object is to provide a magnetoresistive effect film that converts a magnetic signal into an electrical signal using the magnetoresistive effect, a pair of electrodes for causing a signal detection current to flow through the magnetoresistive effect film, and the magnetoresistive effect film. In the magnetoresistive effect type magnetic head having a longitudinal bias application layer provided for applying a longitudinal bias magnetic field to the magnetic field, a longitudinal bias application layer is formed of a base film made of a ferromagnetic thin film and a hard film formed thereon. This is achieved by forming a structure having a magnetic thin film.

ここで、強磁性薄膜からなる下地膜としては、結晶構造が体心立方格子である強磁性薄膜,非晶質強磁性薄膜を用いることができる。また、強磁性薄膜からなる下地膜の代わりに、反強磁性薄膜からなる下地膜を用いることによっても、上記目的は達成される。   Here, a ferromagnetic thin film or an amorphous ferromagnetic thin film whose crystal structure is a body-centered cubic lattice can be used as the base film made of a ferromagnetic thin film. The above object can also be achieved by using a base film made of an antiferromagnetic thin film instead of a base film made of a ferromagnetic thin film.

なお、磁気抵抗効果膜が異方性磁気抵抗効果を示す材料である場合には、磁気抵抗効果膜に横バイアス磁界を印加する手段を備えていることが必要である。その代表的な方法は、磁気抵抗効果膜と非磁性導電性薄膜を介して隣接して設けられた軟磁性薄膜によって印加するものである。   When the magnetoresistive film is a material exhibiting an anisotropic magnetoresistive effect, it is necessary to include means for applying a lateral bias magnetic field to the magnetoresistive film. A typical method is to apply a magnetoresistive film and a soft magnetic thin film provided adjacent to each other via a nonmagnetic conductive thin film.

また、磁気抵抗効果膜として、非磁性導電性薄膜を中間層として第1の磁性薄膜と第2の磁性薄膜が積層されており、前記第1の磁性薄膜の磁化方向が隣接して設けられた反強磁性層によって固定されており、外部磁界を印加しない状態で前記第2の磁性薄膜の磁化方向が前記第1の磁性薄膜の磁化方向に対し略垂直であり、前記第1の磁性薄膜の磁化の方向と前記第2の磁性薄膜の磁化の方向の相対的な角度によって電気抵抗が変化する磁気抵抗効果積層膜を用いることもできる。   Further, as the magnetoresistive effect film, a first magnetic thin film and a second magnetic thin film are laminated with a nonmagnetic conductive thin film as an intermediate layer, and the magnetization directions of the first magnetic thin film are provided adjacent to each other. Fixed by an antiferromagnetic layer, the magnetization direction of the second magnetic thin film is substantially perpendicular to the magnetization direction of the first magnetic thin film without applying an external magnetic field, and It is also possible to use a magnetoresistive effect laminated film in which the electric resistance changes depending on the relative angle between the magnetization direction and the magnetization direction of the second magnetic thin film.

硬磁性薄膜の材料として、CoとM1(M1はCr,Ta,Ni,Pt及びReの群から選択される少なくとも1種類以上の元素)を主成分とした合金、或いはCoとM1 からなる合金にM2(M2は酸化シリコン,酸化ジルコニウム,酸化アルミニウム及び酸化タンタルの群から選択される少なくとも1種類の酸化物)を添加した酸化物添加合金を用いる。代表的なものとして、Co−Cr−Pt系合金,Co−Re系合金,Co−Cr系合金,Co−Ta−Cr系合金,Co− Ni−Pt系合金,(Co−Cr−Pt)−SiO2合金,(Co−Cr−Pt) −ZrO2 合金などがある。 As a material of the hard magnetic thin film, an alloy mainly composed of Co and M 1 (M 1 is at least one element selected from the group consisting of Cr, Ta, Ni, Pt and Re), or Co and M 1 An oxide-added alloy in which M 2 (M 2 is at least one oxide selected from the group consisting of silicon oxide, zirconium oxide, aluminum oxide, and tantalum oxide) is added to the alloy. Typical examples include Co—Cr—Pt alloys, Co—Re alloys, Co—Cr alloys, Co—Ta—Cr alloys, Co—Ni—Pt alloys, (Co—Cr—Pt) — There are SiO 2 alloy, (Co—Cr—Pt) —ZrO 2 alloy, and the like.

硬磁性薄膜の下地膜となる結晶構造が体心立方格子である強磁性薄膜の材料としては、Fe−Cr合金の他、Fe,Fe−Ni系合金,Fe−Co系合金, Fe−Ni−Co系合金、或いはこれらにM3(M3はSi,V,Cr,Nb, Mo,Ta及びWの群から選択される少なくとも1種類以上の元素)を添加した合金を用いる。 As a material for the ferromagnetic thin film having a body-centered cubic lattice as the base film of the hard magnetic thin film, Fe—Cr alloy, Fe, Fe—Ni alloy, Fe—Co alloy, Fe—Ni— Co-based alloys or alloys in which M 3 (M 3 is at least one element selected from the group consisting of Si, V, Cr, Nb, Mo, Ta, and W) are used.

Fe−Ni系合金の場合はFe−0〜25at.%Ni であり、Fe−Co系合金ではFe−0〜80at.%Coであり、Fe−Ni−Co系合金では、 Fe100-a-bNiaCob で表わした時の、0≦a≦25,0≦b≦80の組成範囲である。Fe及びこれらのFe系合金に上記の非磁性元素を添加した合金においては、安定な体心立方構造を示し、かつ磁気ディスク装置の使用環境温度である約100℃において強磁性を示す組成範囲が、強磁性下地膜として使用できる。Feと上記添加元素との組合せでは、添加量の上限は、Siでは32at.%、 Vでは48at.%、Crでは45at.%であり、Nb,Mo,Ta及びWでは6 at.%である。Fe−Cr合金が特に好ましく、Cr5〜45at.%が高耐食性の点から好ましい。 In the case of an Fe—Ni based alloy, Fe-0 to 25 at.% Ni, in an Fe—Co based alloy, Fe-0 to 80 at.% Co, and in an Fe—Ni—Co based alloy, Fe 100-ab Ni. when expressed in a Co b, a composition range of 0 ≦ a ≦ 25,0 ≦ b ≦ 80. Fe and alloys obtained by adding the above-mentioned non-magnetic elements to these Fe-based alloys have a composition range that exhibits a stable body-centered cubic structure and exhibits ferromagnetism at about 100 ° C., which is the operating environment temperature of the magnetic disk device. It can be used as a ferromagnetic underlayer. In the combination of Fe and the above additive elements, the upper limit of the addition amount is 32 at.% For Si, 48 at.% For V, 45 at.% For Cr, and 6 at.% For Nb, Mo, Ta and W. . An Fe—Cr alloy is particularly preferable, and Cr of 5 to 45 at.% Is preferable from the viewpoint of high corrosion resistance.

非晶質強磁性薄膜からなる下地膜の材料としては、CoとM5(M5はTi,V,Cr,Zr,Nb,Mo,Hf,Ta,Y,Ru,Rh,Pd,Cu,Ag,Au及びPtの群から選択される少なくとも1種類以上の元素)を主成分とした非晶質合金を用いる。 The material of the base film made of an amorphous ferromagnetic thin film includes Co and M 5 (M 5 is Ti, V, Cr, Zr, Nb, Mo, Hf, Ta, Y, Ru, Rh, Pd, Cu, Ag. , At least one element selected from the group of Au and Pt) is used.

また、結晶構造が体心立方格子である反強磁性薄膜の材料としては、Crと MnとM4(M4はCu,Au,Ag,Co,Ni及び白金族元素の群から選択される少なくとも1種類以上の元素)を主成分とした合金を用いる。 The material of the antiferromagnetic thin film having a body-centered cubic lattice is Cr, Mn, M 4 (M 4 is at least selected from the group consisting of Cu, Au, Ag, Co, Ni and platinum group elements). An alloy mainly composed of one or more elements is used.

下地膜として、結晶構造が体心立方格子である強磁性薄膜,非晶質強磁性薄膜、或いは結晶構造が体心立方格子である反強磁性薄膜を用いることにより、以下の作用を生じることができる。   By using a ferromagnetic thin film, an amorphous ferromagnetic thin film with a crystal structure of body-centered cubic lattice, or an antiferromagnetic thin film with a crystal structure of body-centered cubic lattice as the underlying film, the following effects may occur. it can.

硬磁性薄膜の磁化容易方向である〈001〉方向が、膜面方向に垂直な方向から膜面方向に傾く、或いは完全に膜面方向に向くことにより、保磁力及び角形比が向上することである。   The <001> direction, which is the easy magnetization direction of the hard magnetic thin film, is tilted from the direction perpendicular to the film surface direction to the film surface direction or completely toward the film surface direction, thereby improving the coercive force and the squareness ratio. is there.

また、硬磁性薄膜が、面心立方構造を有する強磁性薄膜の上に形成される際に、下地膜を設けることにより硬磁性薄膜内に結晶磁気異方性の小さい面心立方格子を有する結晶粒の成長を抑制することができ、これにより保磁力の低下を抑えることができる。上記の硬磁性薄膜の材料では、結晶磁気異方性の大きい最密六方格子の他にも、結晶磁気異方性の小さい面心立方格子を有する結晶が存在することが知られている。硬磁性薄膜が形成される層が面心立方格子を有する場合には、硬磁性薄膜の結晶構造も影響を受けて、面心立方格子を有する結晶粒が形成され易くなる。上記の下地膜を用いることにより、このような保磁力の低下を抑えることができる。   Further, when the hard magnetic thin film is formed on a ferromagnetic thin film having a face-centered cubic structure, a crystal having a face-centered cubic lattice with small crystal magnetic anisotropy is provided in the hard magnetic thin film by providing a base film. Grain growth can be suppressed, and thus a decrease in coercive force can be suppressed. In the material of the hard magnetic thin film, it is known that there is a crystal having a face-centered cubic lattice with small crystal magnetic anisotropy in addition to a close-packed hexagonal lattice with large crystal magnetic anisotropy. When the layer on which the hard magnetic thin film is formed has a face-centered cubic lattice, the crystal structure of the face-centered cubic lattice is easily formed due to the influence of the crystal structure of the hard magnetic thin film. By using the above base film, such a decrease in coercive force can be suppressed.

硬磁性薄膜が、図16のように、異なる結晶構造を有する層の上に形成される場合に、上記の下地膜を設けることによって、下の層の違いに依らず、均一な磁気特性を有する硬磁性薄膜を得ることができる。   When the hard magnetic thin film is formed on a layer having a different crystal structure as shown in FIG. 16, by providing the base film, it has a uniform magnetic characteristic regardless of the difference in the lower layer. A hard magnetic thin film can be obtained.

更に、硬磁性薄膜と、MR素子部を構成する強磁性薄膜との間に、磁気的交換結合を作用させることにより、MR素子部を構成する強磁性薄膜内の磁化の方向を、硬磁性薄膜から発生しMR素子の感磁部に入る縦バイアス磁界の方向と同じ方向に安定化させることができる。   Further, by applying a magnetic exchange coupling between the hard magnetic thin film and the ferromagnetic thin film constituting the MR element portion, the direction of magnetization in the ferromagnetic thin film constituting the MR element portion is changed. Can be stabilized in the same direction as the direction of the longitudinal bias magnetic field generated from the magnetic field and entering the magnetosensitive portion of the MR element.

本発明の下地膜の結晶構造が体心立方格子である強磁性薄膜は、その上部に作製される硬磁性薄膜の結晶配向性を変化させ、膜面内方向の磁化成分を増大させる効果が大きい。結晶構造が体心立方格子である強磁性薄膜の特定の材料であるFe及びCrを主成分とする合金は安定な体心立方構造を有し、公知の一般的な作製法によって体心立方格子を有する強磁性薄膜となる。また、好ましい組成であるCrが5〜45原子%のFe−Cr系合金薄膜は、実用的な耐食性を有するとともに、磁気ディスク装置の動作時の環境温度である約100℃においても強磁性を示し、本発明の好ましい下地膜となる。   The ferromagnetic thin film in which the crystal structure of the underlayer of the present invention is a body-centered cubic lattice has a large effect of changing the crystal orientation of the hard magnetic thin film formed on the upper layer and increasing the magnetization component in the in-plane direction. . An alloy mainly composed of Fe and Cr, which is a specific material of a ferromagnetic thin film whose crystal structure is a body-centered cubic lattice, has a stable body-centered cubic structure and is formed by a known general manufacturing method. A ferromagnetic thin film having In addition, the Fe—Cr alloy thin film having a preferable composition of Cr of 5 to 45 atomic% has practical corrosion resistance and exhibits ferromagnetism even at an environmental temperature of about 100 ° C. during operation of the magnetic disk device. This is a preferable undercoat film of the present invention.

磁気抵抗効果型磁気ヘッドの縦バイアス印加層に硬磁性薄膜を用いる場合、硬磁性薄膜の固有保磁力は外部から作用する磁界に比べて十分大きくなければならない。ところが、一般に、磁気抵抗効果膜或いは横バイアス磁界を印加するために設けられる軟磁性薄膜として用いられているNi−Fe系合金薄膜の上に硬磁性薄膜を成膜すると、その固有保磁力はガラス基板上に作製した場合に比べて著しく小さくなるため、縦バイアス印加層として使用することはできない。固有保磁力を低下させないため、硬磁性薄膜を非磁性層を介して磁気抵抗効果膜或いは軟磁性薄膜の上に積層する手段が用いられるが、この場合にもバルクハウゼンノイズを十分に抑制することができない。これは磁気抵抗効果膜或いは軟磁性薄膜内で硬磁性薄膜の磁化の方向と反対向きに磁化が向いている部分があるため、磁化の方向が不安定であるか、磁壁が生じていることによるため、磁気抵抗効果膜或いは軟磁性薄膜の磁化を硬磁性薄膜の磁化の方向と同じ向きに安定化すれば、バルクハウゼンノイズを抑制することができる。   When a hard magnetic thin film is used for the longitudinal bias application layer of the magnetoresistive head, the intrinsic coercive force of the hard magnetic thin film must be sufficiently larger than the magnetic field acting from the outside. However, in general, when a hard magnetic thin film is formed on a magnetoresistive effect film or a Ni—Fe-based alloy thin film used as a soft magnetic thin film provided for applying a lateral bias magnetic field, the intrinsic coercive force is reduced to glass. Since it is significantly smaller than that produced on a substrate, it cannot be used as a longitudinal bias application layer. In order not to reduce the intrinsic coercive force, a means of laminating a hard magnetic thin film on a magnetoresistive film or soft magnetic thin film through a nonmagnetic layer is used, but in this case as well, Barkhausen noise is sufficiently suppressed. I can't. This is due to the fact that there is a part of the magnetoresistive effect film or soft magnetic thin film in which the magnetization is opposite to the magnetization direction of the hard magnetic thin film, so that the magnetization direction is unstable or a domain wall is generated. Therefore, if the magnetization of the magnetoresistive film or soft magnetic thin film is stabilized in the same direction as the magnetization direction of the hard magnetic thin film, Barkhausen noise can be suppressed.

硬磁性薄膜の固有保磁力の低下を抑えて、磁気抵抗効果膜或いは軟磁性薄膜の磁化を硬磁性薄膜の磁化の方向と同じ向きに安定化するにはこれらの膜の上に、まず、下地膜として結晶構造が体心立方格子である強磁性薄膜を成膜した後、硬磁性薄膜を成膜する手段が最も有効である。これは下地膜として結晶構造が体心立方格子である薄膜を設けることにより、結晶磁気異方性が小さい面心立方格子を持つ結晶粒の成長を抑制し、結晶磁気異方性が大きい最密六方格子の成長を促すためである。また、下地膜に強磁性体を用いることにより、磁気抵抗効果膜或いは軟磁性薄膜と硬磁性薄膜との間に交換結合が生じ、磁化の方向が同じ向きに安定化される。このような構成にすることにより、硬磁性薄膜から発生する縦バイアス磁界の効果と、交換結合による磁化の安定化の効果が作用するため、バルクハウゼンノイズの抑制効果が向上する。逆に言えば、交換結合による磁化の安定化の効果が余分に作用するため、硬磁性薄膜の固有保磁力が従来よりも多少小さくとも従来と同等のノイズ抑制効果が得られるので、硬磁性薄膜の材料及び成膜条件の選択範囲が広くなり、作製が容易になる。   In order to stabilize the magnetization of the magnetoresistive film or soft magnetic thin film in the same direction as the magnetization direction of the hard magnetic thin film while suppressing the decrease in the intrinsic coercivity of the hard magnetic thin film, The most effective means is to form a hard magnetic thin film after forming a ferromagnetic thin film having a body-centered cubic lattice as the base film. This is because a thin film having a body-centered cubic lattice as a base film is provided as a base film, thereby suppressing the growth of crystal grains having a face-centered cubic lattice with a small crystalline magnetic anisotropy and a close-packed structure with a large crystalline magnetic anisotropy. This is to promote the growth of the hexagonal lattice. In addition, by using a ferromagnetic material for the base film, exchange coupling occurs between the magnetoresistive film or the soft magnetic thin film and the hard magnetic thin film, and the magnetization direction is stabilized in the same direction. By adopting such a configuration, the effect of the longitudinal bias magnetic field generated from the hard magnetic thin film and the effect of stabilizing the magnetization due to exchange coupling act, so the Barkhausen noise suppression effect is improved. In other words, since the effect of stabilizing the magnetization by exchange coupling acts excessively, even if the intrinsic coercive force of the hard magnetic thin film is somewhat smaller than the conventional one, the noise suppression effect equivalent to the conventional one can be obtained. The selection range of the material and the film forming conditions is widened, and the production becomes easy.

下地膜として、結晶構造が体心立方格子である反強磁性薄膜、或いは非晶質強磁性薄膜を用いても、上述と同じ効果が得られ、バルクハウゼンノイズを抑制することができる。   Even if an antiferromagnetic thin film or an amorphous ferromagnetic thin film whose crystal structure is a body-centered cubic lattice is used as the base film, the same effect as described above can be obtained and Barkhausen noise can be suppressed.

縦バイアス磁界の大きさは縦バイアス印加層を構成する強磁性膜から発生する磁束の量に依存するため、強磁性膜の残留磁束密度と膜厚を変えることによって調整するのが一般的である。下地膜を有する硬磁性薄膜では硬磁性薄膜の残留磁束密度と膜厚の積と下地膜の残留磁束密度と膜厚の積を加えたものが実効的に作用することになる。縦バイアス磁界の制御の面からは下地膜から磁束が発生しない反強磁性薄膜を用いた場合が最も制御し易いと考えられる。下地膜が強磁性薄膜の場合は結晶構造が体心立方格子であっても非晶質であっても、膜厚のばらつきを考慮すると残留磁束密度が小さい方が制御し易いと考えられる。   Since the magnitude of the longitudinal bias magnetic field depends on the amount of magnetic flux generated from the ferromagnetic film constituting the longitudinal bias application layer, it is generally adjusted by changing the residual magnetic flux density and film thickness of the ferromagnetic film. . In the hard magnetic thin film having the base film, the product of the product of the residual magnetic flux density and the film thickness of the hard magnetic thin film and the product of the residual magnetic flux density and the film thickness of the base film effectively acts. From the standpoint of controlling the longitudinal bias magnetic field, it is considered that the control is most easily performed when an antiferromagnetic thin film that does not generate magnetic flux from the base film is used. When the underlying film is a ferromagnetic thin film, it is considered that the smaller the residual magnetic flux density is easier to control whether the crystal structure is a body-centered cubic lattice or an amorphous structure in consideration of the variation in film thickness.

前述の硬磁性薄膜は特にCo−Pt合金,Co−Cr−Pt合金、又はこれらの合金にTi酸化物,V酸化物,Zr酸化物,Nb酸化物,Mo酸化物,Hf酸化物,Ta酸化物,W酸化物,Al酸化物,Si酸化物,Cr酸化物の内の少なくとも1つを含む合金のいずれかからなるものが好ましい。   In particular, the hard magnetic thin film described above is a Co—Pt alloy, a Co—Cr—Pt alloy, or a Ti oxide, V oxide, Zr oxide, Nb oxide, Mo oxide, Hf oxide, or Ta oxide. Of these, an alloy including at least one of a material, W oxide, Al oxide, Si oxide, and Cr oxide is preferable.

この硬磁性薄膜は(数1)又は(数2)の組成からなることが好ましい。   This hard magnetic thin film is preferably composed of (Equation 1) or (Equation 2).

CoaCrbPtc …(数1) 又は
(CoaCrbPtc)1-x(MOy)x …(数2) (但し、x=0.01〜0.20,y:0.4 〜3,a:0.5〜0.9,b:0〜0.25,C:0.03〜0.30,M:Ti,V,Zr,Mo,Hf,Ta, W,Al,Si及びCrの少なくとも一つ)
磁気抵抗効果膜が異方性磁気抵抗効果を示す場合には、磁気抵抗効果膜に横バイアス磁界を印加することが必要であり、そのための軟磁性膜は、ニッケル−鉄合金,コバルト,ニッケル−鉄−コバルト合金の一種と、酸化ジルコニウム,酸化アルミニウム,酸化ハフニウム,酸化チタン,酸化ベリリウム,酸化マグネシウム,酸化タンタル,希土類酸素化合物,窒化ジルコニウム,窒化ハフニウム,窒化アルミニウム,窒化チタン,窒化ベリリウム,窒化マグネシウム,窒化シリコン、及び希土類窒素化合物の内から選択された一種以上の化合物とからなるのが好ましい。
Co a Cr b Pt c (Equation 1) or (Co a Cr b Pt c ) 1-x (MO y ) x (Equation 2) (where x = 0.01 to 0.20, y: 0.2) 4 to 3, a: 0.5 to 0.9, b: 0 to 0.25, C: 0.03 to 0.30, M: Ti, V, Zr, Mo, Hf, Ta, W, Al, At least one of Si and Cr)
When the magnetoresistive effect film exhibits an anisotropic magnetoresistive effect, it is necessary to apply a lateral bias magnetic field to the magnetoresistive effect film, and the soft magnetic film for that purpose includes nickel-iron alloy, cobalt, nickel- One type of iron-cobalt alloy, zirconium oxide, aluminum oxide, hafnium oxide, titanium oxide, beryllium oxide, magnesium oxide, tantalum oxide, rare earth oxygen compound, zirconium nitride, hafnium nitride, aluminum nitride, titanium nitride, beryllium nitride, magnesium nitride , Silicon nitride, and one or more compounds selected from rare earth nitrogen compounds.

前記磁気抵抗効果膜に横バイアス磁界を印加するための軟磁性薄膜の比抵抗が、70μΩcm以上であるものが好ましい。   The specific resistance of the soft magnetic thin film for applying a lateral bias magnetic field to the magnetoresistive effect film is preferably 70 μΩcm or more.

前記横バイアス膜がニッケルを78〜84原子%を有するニッケル−鉄系合金よりなるものが好ましい。   The lateral bias film is preferably made of a nickel-iron-based alloy containing 78 to 84 atomic% of nickel.

本発明は、基板上に設けられた一対の縦バイアス印加層と、該永久磁石膜上の各々に形成された一対の電極と、前記縦バイアス印加層間に接して設けられた磁気抵抗効果素子膜とを有する磁気抵抗効果型磁気ヘッドであって、前記素子膜は前記基板側より酸化ニッケルよりなる反強磁性膜,2層の強磁性膜,非磁性金属膜及び軟磁性膜が順次形成され、縦バイアス印加層は前述の構成を有することを特徴とする。   The present invention relates to a pair of longitudinal bias application layers provided on a substrate, a pair of electrodes formed on each of the permanent magnet films, and a magnetoresistive effect element film provided in contact with the longitudinal bias application layer. A magnetoresistive effect type magnetic head having an antiferromagnetic film made of nickel oxide, a two-layered ferromagnetic film, a nonmagnetic metal film, and a soft magnetic film sequentially formed from the substrate side; The longitudinal bias application layer has the above-described configuration.

前記2層の強磁性膜は前記基板側からNi70〜95原子%の鉄合金層とCo層又はCo合金層とからなるものが好ましい。   The two ferromagnetic films are preferably composed of a 70 to 95 atomic% Ni alloy layer and a Co layer or a Co alloy layer from the substrate side.

前記2層の強磁性膜は前記反強磁性側から軟磁性膜及び該軟磁性膜よりスピン依存散乱の大きい軟磁性膜からなるものが好ましい。   The two-layered ferromagnetic film is preferably composed of a soft magnetic film from the antiferromagnetic side and a soft magnetic film having a larger spin-dependent scattering than the soft magnetic film.

本発明は、基板上に設けられた一対の縦バイアス印加層と、その印加層上の各々に形成された一対の電極と、前記縦バイアス層に接して設けられた磁気抵抗効果素子膜とを有する磁気抵抗効果型磁気ヘッドであって、前記素子は前記基板側より反強磁性膜,強磁性膜,非磁性膜,軟磁性膜,非磁性膜,強磁性膜、及び反強磁性膜が順次積層され、縦バイアス印加層は前述の構成を有することを特徴とする。   The present invention includes a pair of longitudinal bias application layers provided on a substrate, a pair of electrodes formed on each of the application layers, and a magnetoresistive element film provided in contact with the longitudinal bias layer. The magnetoresistive effect type magnetic head has an antiferromagnetic film, a ferromagnetic film, a nonmagnetic film, a soft magnetic film, a nonmagnetic film, a ferromagnetic film, and an antiferromagnetic film in order from the substrate side. The vertical bias application layer is laminated and has the above-described configuration.

前述の横バイアスを印加するための軟磁性薄膜に添加する化合物の量は化合物の酸素あるいは窒素を除いた原子の割合が、酸素及び窒素を除いた全原子に対して3から20%であることが好ましい。これは、化合物の量が3%以下では電気抵抗の増加が小さく、また、20%以上では飽和磁束密度が低下し、横バイアス膜として十分な値でなくなるためである。本発明の横バイアス膜の比抵抗は、ほぼ化合物の添加量に比例して増大するが、磁気抵抗効果型磁気ヘッドでは、70μΩcm以上の比抵抗を有することが好ましい。これは横バイアス膜の比抵抗が、磁気抵抗効果膜の比抵抗に比べて十分大きくなければ磁気抵抗効果型磁気ヘッドの出力が低下するためである。磁気抵抗効果膜の比抵抗は20〜30μΩcmであり、横バイアス膜の比抵抗は少なくともこの2倍が目安となるためである。   The amount of the compound added to the soft magnetic thin film for applying the above-mentioned lateral bias is such that the ratio of atoms excluding oxygen or nitrogen in the compound is 3 to 20% with respect to all atoms excluding oxygen and nitrogen. Is preferred. This is because when the amount of the compound is 3% or less, the increase in electric resistance is small, and when it is 20% or more, the saturation magnetic flux density is lowered and the value is not sufficient as a lateral bias film. Although the specific resistance of the lateral bias film of the present invention increases substantially in proportion to the amount of compound added, the magnetoresistive head preferably has a specific resistance of 70 μΩcm or more. This is because the output of the magnetoresistive effect type magnetic head is lowered unless the specific resistance of the lateral bias film is sufficiently larger than the specific resistance of the magnetoresistive effect film. This is because the specific resistance of the magnetoresistive effect film is 20 to 30 μΩcm, and the specific resistance of the lateral bias film is at least twice this.

前記磁性膜には、Ni70〜95原子%及びFe5〜30原子%の合金、又はこれにCo1〜5原子%を含む合金、又はCo30〜85原子%,Ni2〜30原子%及びFe2〜50原子%の面心立方構造の合金を用いることが好ましく、この他、パーマロイ,パーメンダー合金等を用いても良い。つまり、強磁性で良好な軟磁気特性を有するものを用いることが好ましい。これらは良好な積層構造の形成を可能にし、軟磁気特性に優れ、さらに大きな磁気抵抗効果を生じるからである。   The magnetic film includes an alloy of Ni 70 to 95 atomic% and Fe 5 to 30 atomic%, or an alloy containing Co 1 to 5 atomic%, or Co 30 to 85 atomic%, Ni 2 to 30 atomic%, and Fe 2 to 50 atomic%. It is preferable to use an alloy having a face-centered cubic structure. Permalloy, permender alloy, or the like may also be used. That is, it is preferable to use a ferromagnetic material having good soft magnetic properties. This is because a good laminated structure can be formed, the soft magnetic characteristics are excellent, and a larger magnetoresistance effect is produced.

前記非磁性導電膜には、Au,Ag,Cuを用いることが好ましく、この他、Cr,Pt,Pd,Ru,Rh等またはこれらの合金を用いても良い。つまり、室温で自発磁化を持たず、電子の良好な透過性を有するものを用いることが好ましい。   It is preferable to use Au, Ag, or Cu for the nonmagnetic conductive film. In addition, Cr, Pt, Pd, Ru, Rh, or an alloy thereof may be used. That is, it is preferable to use a material that does not have spontaneous magnetization at room temperature and has good electron permeability.

更に、前記基板は、これらの膜を形成するための下地であって、磁気ディスク装置のスライダーとしての機能を有するものでも良く、この材料としては5%以下のTiCを含むアルミナ,安定化ジルコニア等のセラミックス焼結体が好ましい。   Further, the substrate may be a base for forming these films, and may have a function as a slider of a magnetic disk device. Examples of this material include alumina containing 5% or less of TiC, stabilized zirconia, and the like. The ceramic sintered body is preferable.

こうした膜構成を有することにより、磁気抵抗効果素子はその電気抵抗が微弱な外部磁界に対して変化する機能を有し、しかもその電気抵抗の変化の割合が5%から10%と大きい効果を有する。このため、本発明の磁気記録再生装置は、アナログ状態で記録された信号を再生時には直接デジタル化する機能をも有し、さらにディスク面積あたりの記録容量、即ち記録密度が高くせしめる効果を有する。   By having such a film structure, the magnetoresistive effect element has a function of changing its electric resistance against a weak external magnetic field, and has a large effect of changing the electric resistance from 5% to 10%. . For this reason, the magnetic recording / reproducing apparatus of the present invention has a function of directly digitizing a signal recorded in an analog state at the time of reproduction, and further has an effect of increasing the recording capacity per disk area, that is, the recording density.

また、膜構成としては、基板上に酸化アルミニウム,酸化ニッケルなどの平坦な膜を形成してなるもの、又は基板上に、鉄,チタン,タンタル,ジルコニウム,ハフニウム,ニオブ,コバルト鉄合金などの膜を下地としてさらに形成してなるものであっても良い。基体上の膜は、その表面上に多層膜を平坦に形成する効果を有し、基体表面上に均質かつ平坦な膜構造を有することが好ましく、それぞれの膜の厚みは金属の膜では20から200Å、金属以外の膜では5から1000Å程度であることが好ましい。   In addition, as a film configuration, a flat film such as aluminum oxide or nickel oxide is formed on the substrate, or a film such as iron, titanium, tantalum, zirconium, hafnium, niobium, cobalt iron alloy or the like is formed on the substrate. May be further formed as a base. The film on the substrate has an effect of flatly forming a multilayer film on the surface thereof, and preferably has a uniform and flat film structure on the surface of the substrate, and the thickness of each film is 20 to 20 for a metal film. It is preferably about 5 to 1000 mm for a film other than 200 mm or a metal.

本発明の薄膜磁気ヘッドは、信号を記録媒体に記録するインダクティブ型記録ヘッドと、その信号を再生する磁気抵抗効果型再生ヘッドとを組合せてなるものであって、前記再生ヘッドが、非磁性導電膜を間に挟んだ磁性膜のサンドウイッチ構造を有し、前記記録ヘッドが前記基板と前記再生ヘッドとの間に形成される。   The thin film magnetic head of the present invention comprises a combination of an inductive recording head for recording a signal on a recording medium and a magnetoresistive effect reproducing head for reproducing the signal. A magnetic film sandwich structure having a film sandwiched therebetween, and the recording head is formed between the substrate and the reproducing head.

本発明は、磁気抵抗効果素子での磁性膜の形状異方性の増大による感度の低下を低減させることが可能である。これは磁性膜を薄くすることで低減できる。磁性膜の形状異方性の大きさはおおよそその厚さに比例するからである。一方、本発明の磁気抵抗効果膜の合計の厚さは、やはり表面散乱による出力の低下を防ぐために100〜300Å程度とする必要があるが、非磁性膜で分離された個々の磁性膜、特に膜中央の軟磁性膜の厚さは100Å以下、特に10から20Å以下にしても出力の低下を全く生じないからである。この作用は磁気抵抗効果の発現機構が、その磁性膜/非磁性膜/磁性膜の界面に起因することにより生じる。   The present invention can reduce a decrease in sensitivity due to an increase in shape anisotropy of a magnetic film in a magnetoresistive element. This can be reduced by making the magnetic film thinner. This is because the shape anisotropy of the magnetic film is roughly proportional to its thickness. On the other hand, the total thickness of the magnetoresistive film of the present invention needs to be about 100 to 300 mm in order to prevent a decrease in output due to surface scattering, but individual magnetic films separated by a nonmagnetic film, particularly This is because even if the thickness of the soft magnetic film at the center of the film is 100 mm or less, particularly 10 to 20 mm or less, no decrease in output occurs. This action occurs because the mechanism of the magnetoresistive effect is caused by the magnetic film / nonmagnetic film / magnetic film interface.

また、本発明に搭載される磁気抵抗効果素子の磁性膜の厚さは、5〜1000Å、特に10〜100Åであることが好ましい。磁性膜が室温で十分な磁化を有し、かつ、電流を有効に磁気抵抗効果に活用するためである。   Further, the thickness of the magnetic film of the magnetoresistive effect element mounted in the present invention is preferably 5 to 1000 mm, particularly 10 to 100 mm. This is because the magnetic film has sufficient magnetization at room temperature and the current is effectively utilized for the magnetoresistance effect.

各磁性膜を隔離する非磁性導電膜の厚さは、2〜1000Åであることが好ましい。この非磁性導電膜の厚さは、電子の伝導を妨げず、特に磁性膜間の反強磁性的或いは強磁性的な結合を十分に小さく保つ必要があるからであり、特定の厚さ、例えばCuであれば10Åから30Å程度であることが望ましい。   The thickness of the nonmagnetic conductive film that separates the magnetic films is preferably 2 to 1000 mm. This is because the non-magnetic conductive film does not hinder the conduction of electrons, and it is particularly necessary to keep the antiferromagnetic or ferromagnetic coupling between the magnetic films sufficiently small. In the case of Cu, it is preferably about 10 to 30 mm.

本発明の磁気抵抗効果素子の構成の一例は、基板上に、NiO,NiFe, Cu,NiFe,Cu,NiFe,NiOを順次積層した膜に一対の電極を配してなる。または、基板上に、NiO,Co/NiFe,Cu,Co/NiFe,Cu,Co/NiFe,NiOを順次積層した膜に一対の電極を配してなる。   An example of the configuration of the magnetoresistive element of the present invention is formed by arranging a pair of electrodes on a film in which NiO, NiFe, Cu, NiFe, Cu, NiFe, and NiO are sequentially laminated on a substrate. Alternatively, a pair of electrodes is arranged on a film in which NiO, Co / NiFe, Cu, Co / NiFe, Cu, Co / NiFe, and NiO are sequentially stacked on a substrate.

或いは、本発明の磁気抵抗効果素子は、基板上に、NiO,CoNiFe, Cu,NiFe,Cu,Co/NiFe,NiOを順次積層した膜に一対の電極を配してなる。これはこれらの構成が表面散乱による出力の低下を極めて効率的に防止し、実効上出力を向上させる効果があるとともに中央の膜を薄くすることを可能にして磁性膜の形状異方性による素子の感度の劣化を、出力の低下なしに防止することができるからである。   Alternatively, the magnetoresistive element of the present invention is formed by arranging a pair of electrodes on a film in which NiO, CoNiFe, Cu, NiFe, Cu, Co / NiFe, and NiO are sequentially laminated on a substrate. This is because these structures effectively prevent the output from being reduced by surface scattering, effectively improve the output, and make the central film thinner, making it possible to reduce the thickness of the magnetic film. This is because deterioration of the sensitivity can be prevented without lowering the output.

本発明の磁気記録再生装置は、このように磁気抵抗効果素子を再生部とし、高い記録密度、すなわち記録媒体上に記録される記録波長を短くすることができる。また、記録トラックの幅が狭い記録を実現でき、十分な再生出力を得、記録を良好に保つことができる。   The magnetic recording / reproducing apparatus of the present invention can use the magnetoresistive element as a reproducing unit in this way, and can shorten the recording wavelength recorded on the recording medium, that is, the high recording density. In addition, recording with a narrow recording track can be realized, sufficient reproduction output can be obtained, and good recording can be maintained.

本発明によれば、異方性磁気抵抗効果及び巨大磁気抵抗効果を利用した磁気抵抗効果型磁気ヘッドのバルクハウゼンノイズを抑制するために設けられる縦バイアス印加層を、強磁性薄膜,非晶質強磁性薄膜又は反強磁性薄膜からなる下地膜と、その上に形成された硬磁性薄膜とによって構成することにより、磁気抵抗効果膜やバイアス膜等の、結晶構造が面心立方格子である磁性薄膜の上に縦バイアス印加層を形成しても、保磁力の低下を抑えることができる。しかも、磁気抵抗効果膜やバイアス膜と硬磁性薄膜との間に交換結合が生じるため、これらの薄膜の磁化が安定になり、バルクハウゼンノイズがない磁気抵抗効果型ヘッドを提供することができる。   According to the present invention, the longitudinal bias application layer provided to suppress Barkhausen noise of the magnetoresistive effect type magnetic head using the anisotropic magnetoresistive effect and the giant magnetoresistive effect is provided with the ferromagnetic thin film, the amorphous By comprising a base film made of a ferromagnetic thin film or an antiferromagnetic thin film and a hard magnetic thin film formed thereon, a magnetic structure such as a magnetoresistive film or a bias film having a face-centered cubic lattice. Even if the longitudinal bias application layer is formed on the thin film, the decrease in coercive force can be suppressed. In addition, since exchange coupling occurs between the magnetoresistive film or the bias film and the hard magnetic thin film, the magnetization of these thin films becomes stable and a magnetoresistive head free from Barkhausen noise can be provided.

また、本発明によれば、永久磁石膜を磁気抵抗効果素子の両端部に形成することにより電気磁気変換特性が安定し、波形変動が小さくできるものである。また、本発明によれば再生出力が大きく、高記録密度の磁気記録再生装置が達成できる。   In addition, according to the present invention, the permanent magnet film is formed at both ends of the magnetoresistive effect element, so that the electromagnetism conversion characteristics are stabilized and the waveform fluctuation can be reduced. Further, according to the present invention, a magnetic recording / reproducing apparatus having a large reproduction output and a high recording density can be achieved.

(実施例1)
本発明の下地膜の上の硬磁性薄膜の磁気特性の改善について、下地膜として、結晶構造が体心立方格子であるFe−Cr系合金薄膜を用いた場合について述べる。図2(a)は、従来技術のCo−Cr−Pt系硬磁性薄膜の単層膜の膜面内方向の磁気特性と、図2(b)は本発明のFe−Cr系合金薄膜の上に作製したCo−Cr−Pt系硬磁性薄膜(以下、Fe−Cr/Co−Cr−Ptと記す)の膜面内方向の磁気特性を比較したものである。薄膜の作製はスパッタリング法により行い、Co−Cr−Pt系硬磁性薄膜の膜厚は下地膜の有無に依らず40nmであり、Fe−Cr系合金薄膜の膜厚は10nmである。なお、Co−Cr−Pt系硬磁性薄膜の組成は69at.%Co−14at.%Cr−17at.%Pt であり、Fe−Cr系合金薄膜の組成は90at.%Fe−10at.%Crである。単層膜では、保磁力が610Oe,残留磁束密度と膜厚の積(以下、磁化量と呼ぶ)の値が200G・μmで、残留磁束密度と飽和磁束密度の比(以下、角型比と呼ぶ)は0.73 である。一方、Fe−Cr/Co−Cr−Ptでは、保磁力が 1035Oe,磁化量の値が430G・μmで、角型比は0.90 である。ここで、磁化量は、磁性膜から発生する磁界の大きさを表わし、磁気抵抗効果膜に印加される縦バイアス磁界に相当する。MRヘッドを安定かつ高感度に動作させるためには、縦バイアス印加層の磁化量としては、磁気抵抗効果膜の磁化量の1〜2.5 倍の磁化量が適当であることから、Fe−Cr/Co−Cr−Ptでは、縦バイアス磁界を印加するために十分な大きさが得られている。
(Example 1)
Regarding the improvement of the magnetic properties of the hard magnetic thin film on the base film of the present invention, the case where an Fe—Cr alloy thin film having a crystal structure of a body-centered cubic lattice is used as the base film will be described. FIG. 2A shows the magnetic properties in the in-plane direction of the single layer film of the prior art Co—Cr—Pt hard magnetic thin film, and FIG. 2B shows the top of the Fe—Cr alloy thin film of the present invention. The magnetic characteristics in the in-plane direction of the Co—Cr—Pt-based hard magnetic thin film (hereinafter referred to as Fe—Cr / Co—Cr—Pt) produced in the above are compared. The thin film is prepared by sputtering, and the thickness of the Co—Cr—Pt hard magnetic thin film is 40 nm regardless of the presence or absence of the underlying film, and the thickness of the Fe—Cr alloy thin film is 10 nm. The composition of the Co—Cr—Pt hard magnetic thin film is 69 at.% Co-14 at.% Cr-17 at.% Pt, and the composition of the Fe—Cr alloy thin film is 90 at.% Fe-10 at.% Cr. is there. In the single layer film, the coercive force is 610 Oe, the product of the residual magnetic flux density and the film thickness (hereinafter referred to as the amount of magnetization) is 200 G · μm, and the ratio of the residual magnetic flux density to the saturation magnetic flux density (hereinafter referred to as the squareness ratio). Called) is 0.73. On the other hand, in Fe—Cr / Co—Cr—Pt, the coercive force is 1035 Oe, the value of magnetization is 430 G · μm, and the squareness ratio is 0.90. Here, the magnetization amount represents the magnitude of the magnetic field generated from the magnetic film, and corresponds to a longitudinal bias magnetic field applied to the magnetoresistive effect film. In order to operate the MR head stably and with high sensitivity, the magnetization amount of the longitudinal bias application layer is suitably 1 to 2.5 times the magnetization amount of the magnetoresistive effect film. In Cr / Co—Cr—Pt, a size sufficient to apply a longitudinal bias magnetic field is obtained.

MRヘッドの最適な磁化量の大きさは、磁気抵抗効果膜の膜厚等によって変わるので、その場合には硬磁性薄膜の膜厚をその大きさに併せて変化させればよい。また、Fe−Cr系合金薄膜を下地膜として設けた場合、保磁力も,角形比も大きく改善されている。保磁力は、縦バイアス磁界の安定性等から大きい方がよく、角形比も大きい方が、硬磁性薄膜の膜厚を減少できる効果がある。   Since the optimum amount of magnetization of the MR head varies depending on the film thickness of the magnetoresistive film, the film thickness of the hard magnetic thin film may be changed in accordance with the film thickness. In addition, when the Fe—Cr alloy thin film is provided as the base film, both the coercive force and the squareness ratio are greatly improved. The coercive force is preferably large in view of the stability of the longitudinal bias magnetic field and the like, and the one having a large squareness ratio has the effect of reducing the thickness of the hard magnetic thin film.

単層膜の場合に、保磁力及び磁化量が小さいのは、硬磁性薄膜の結晶が膜面に垂直に〈001〉方向が配向しているためである。図3は、Co−Cr−Pt単層膜、及びFe−Cr/Co−Cr−Ptの積層膜のX線回折プロファイルである。いずれの膜も〈001〉結晶軸が膜面に垂直に配向しており、(002)面からの回折線が観察される。しかしながら、回折線の強度は、単層膜の方が約6倍程度大きく、〈001〉の配向度がより高いことを示している。Co−Cr−Pt膜は六方晶であり、〈001〉方向に強い磁気異方性を有している。従って、単層膜のような強い〈001〉配向は垂直異方性を発生させ、磁化の膜面内成分を減少させる。Fe−Cr系合金薄膜を下地膜として設けた場合には、この膜の結晶構造が体心立方格子であり、膜面に垂直に〈001〉結晶軸が配向しており、この膜の上部でCo−Cr−Pt膜の結晶配向性が変化し、〈001〉配向が変化したものと考えられる。
(実施例2)
下地膜の厚さが5〜20nmと薄い場合には図4のように、軟磁性薄膜13/非磁性導電性薄膜14/磁気抵抗効果膜15を信号検出領域だけ残るように両脇を切り落し、縦バイアス印加層24及び電極膜17を配置すると、縦バイアス印加層24から発生する磁界により磁気抵抗効果膜15だけではなく軟磁性薄膜 13にも縦バイアス磁界を印加することができるため、軟磁性薄膜13に起因するバルクハウゼンノイズを抑制することが可能となる。また、信号検出領域だけに磁気抵抗効果膜15が存在しているため、オフトラック特性の優れたヘッドが得られる。軟磁性薄膜13/非磁性導電性薄膜14/磁気抵抗効果膜15の両脇を切り落す際、基板側に位置する軟磁性薄膜13の幅が他の膜よりも広くなる。
一般に軟磁性薄膜13として結晶構造が面心立方格子であるNi−Fe系薄膜が用いられるため、下地膜を用いない場合には硬磁性薄膜の再生トラック側は面心立方格子上に成膜され、この部分で保磁力の低下が起こりバルクハウゼンノイズが発生する。また、下地膜として非磁性薄膜を用いると、軟磁性薄膜の磁気抵抗効果膜よりも幅が広くなっている部分の磁化の方向が不安定になり、これがバルクハウゼンノイズとなって現われる。結晶構造が体心立方格子である強磁性薄膜や反強磁性薄膜、あるいは非晶質強磁性薄膜を下地膜として用いると、硬磁性薄膜の保磁力が低下せず、さらに硬磁性薄膜と軟磁性薄膜の間に交換結合が生じるため軟磁性薄膜の磁化が安定し、バルクハウゼンノイズを抑制することができる。
In the case of a single layer film, the coercive force and the magnetization amount are small because the <001> direction is oriented perpendicularly to the film surface of the hard magnetic thin film crystal. FIG. 3 is an X-ray diffraction profile of a Co—Cr—Pt single layer film and a laminated film of Fe—Cr / Co—Cr—Pt. In any film, the <001> crystal axis is oriented perpendicular to the film surface, and diffraction lines from the (002) plane are observed. However, the intensity of the diffraction line is about 6 times greater in the single layer film, indicating that the degree of orientation of <001> is higher. The Co—Cr—Pt film is hexagonal and has strong magnetic anisotropy in the <001> direction. Therefore, a strong <001> orientation like a single layer film generates perpendicular anisotropy and reduces the in-plane component of magnetization. When an Fe—Cr alloy thin film is provided as a base film, the crystal structure of this film is a body-centered cubic lattice, and the <001> crystal axis is oriented perpendicular to the film surface. It is considered that the crystal orientation of the Co—Cr—Pt film changed and the <001> orientation changed.
(Example 2)
When the thickness of the base film is as thin as 5 to 20 nm, as shown in FIG. 4, both sides of the soft magnetic thin film 13 / nonmagnetic conductive thin film 14 / magnetoresistance effect film 15 are cut off so that only the signal detection region remains. When the longitudinal bias application layer 24 and the electrode film 17 are disposed, the longitudinal bias magnetic field can be applied not only to the magnetoresistive effect film 15 but also to the soft magnetic thin film 13 by the magnetic field generated from the longitudinal bias application layer 24. Barkhausen noise caused by the thin film 13 can be suppressed. In addition, since the magnetoresistive film 15 exists only in the signal detection region, a head having excellent off-track characteristics can be obtained. When the both sides of the soft magnetic thin film 13 / the nonmagnetic conductive thin film 14 / the magnetoresistive effect film 15 are cut off, the width of the soft magnetic thin film 13 located on the substrate side becomes wider than the other films.
In general, since a Ni—Fe thin film having a crystal structure of a face-centered cubic lattice is used as the soft magnetic thin film 13, the reproducing track side of the hard magnetic thin film is formed on the face-centered cubic lattice when no base film is used. In this portion, the coercive force is lowered and Barkhausen noise is generated. In addition, when a nonmagnetic thin film is used as the base film, the magnetization direction becomes unstable in a portion that is wider than the magnetoresistive film of the soft magnetic thin film, and this appears as Barkhausen noise. When a ferromagnetic thin film, an antiferromagnetic thin film, or an amorphous ferromagnetic thin film whose crystal structure is a body-centered cubic lattice is used as an underlayer, the coercive force of the hard magnetic thin film is not lowered, and the hard magnetic thin film and the soft magnetic thin film are not reduced. Since exchange coupling occurs between the thin films, the magnetization of the soft magnetic thin film is stabilized, and Barkhausen noise can be suppressed.

なお、出力を低下させずにバルクハウゼンノイズを抑制するには縦バイアス磁界の大きさを適切な値に調整することが重要である。膜厚のばらつきによる縦バイアス磁界の変動を考えると、強磁性を示す下地膜252は飽和磁束密度の高いFe薄膜よりはFeにNi,Co,Si,V,Cr,Nb等を添加して飽和磁束密度を下げたFe系合金薄膜或いは非晶質強磁性薄膜の方が変動を小さく抑えることができる。さらに、反強磁性薄膜は反強磁性を示す膜厚以上であれば膜厚によらずそれ自身からは磁界が発生しないため、縦バイアス磁界の制御に関して最も好ましいと言える。   In order to suppress Barkhausen noise without reducing the output, it is important to adjust the magnitude of the longitudinal bias magnetic field to an appropriate value. Considering the fluctuation of the longitudinal bias magnetic field due to the variation in film thickness, the base film 252 showing ferromagnetism is saturated by adding Ni, Co, Si, V, Cr, Nb, etc. to Fe rather than Fe thin film having a high saturation magnetic flux density. The Fe-based alloy thin film or amorphous ferromagnetic thin film with a reduced magnetic flux density can suppress fluctuations to a smaller extent. Furthermore, if the antiferromagnetic thin film has a film thickness that exhibits antiferromagnetism, a magnetic field is not generated from itself regardless of the film thickness.

ここで述べた実施例では基板側から順に、軟磁性薄膜13,磁気抵抗効果膜 15,電極膜17を配置した磁気抵抗効果型ヘッドを示したが、必ずしもこの順に配置しなくてもよい。   In the embodiment described here, the magnetoresistive head in which the soft magnetic thin film 13, the magnetoresistive film 15, and the electrode film 17 are arranged in order from the substrate side is shown, but it is not always necessary to arrange them in this order.

本実施の形態は、磁気抵抗効果膜として、異方性磁気抵抗効果を示す材料を用いたものである。また、以下で述べる薄膜の成膜には、スパッタリング法を用いている。   In this embodiment, a material exhibiting an anisotropic magnetoresistance effect is used as the magnetoresistance effect film. In addition, sputtering is used to form a thin film described below.

セラミックスからなる非磁性基板10の上に、絶縁膜20としてアルミナ膜を約10μm形成し、表面に精密研磨を施す。下部シールド層111としてCo−Hf−Ta系合金非晶質薄膜を約2μm形成し、イオンミリング法を用いて所定の形状に加工する。下部ギャップ層121としてアルミナ膜を0.3μm 成膜した後、横バイアス磁界を印加するための軟磁性薄膜13としてNi−Fe−Cr系合金薄膜40nm,非磁性導電性薄膜14としてTa薄膜20nm,磁気抵抗効果膜15としてNi−Fe系合金薄膜30nmを順次成膜し、軟磁性薄膜と非磁性導電性薄膜と磁気抵抗効果膜との積層膜(以下、軟磁性薄膜/非磁性導電性薄膜/磁気抵抗効果膜と記す)を所定の形状に加工する。信号検出領域とする位置にリフトオフマスク材を形成し、イオンミリング法により、軟磁性薄膜/非磁性導電性薄膜/磁気抵抗効果膜の端部に緩やかな傾斜が形成される条件で、これらの積層膜を感磁部のみ残るようにエッチングする。縦バイアス印加層24として、結晶構造が体心立方格子で強磁性を示す下地膜252であるFe−Cr系合金薄膜10nm,硬磁性薄膜26であるCo−Pt−Cr系硬磁性薄膜40nmを順次形成し、これに続いて、磁気抵抗効果膜15の電気抵抗の変化を読み出すための電極膜17となるAu薄膜を0.2μm 成膜した後、リフトオフマスク材を除去することにより、信号検出領域が形成される。この上に、厚さ0.3μm のアルミナからなる上部ギャップ層122と、厚さ約2μmのNi−Fe系合金からなる上部シールド層112を順次形成する。さらに上部に絶縁膜18を形成後、記録用の誘導型磁気ヘッドを作製するが詳細は省略する。   About 10 μm of an alumina film is formed as an insulating film 20 on the nonmagnetic substrate 10 made of ceramics, and the surface is precisely polished. About 2 μm of a Co—Hf—Ta alloy amorphous thin film is formed as the lower shield layer 111 and processed into a predetermined shape using an ion milling method. After forming an alumina film of 0.3 μm as the lower gap layer 121, the soft magnetic thin film 13 for applying a lateral bias magnetic field 13 is a Ni—Fe—Cr alloy thin film 40 nm, the nonmagnetic conductive thin film 14 is a Ta thin film 20 nm, A 30 nm thick Ni—Fe alloy thin film is sequentially formed as the magnetoresistive effect film 15, and a laminated film of a soft magnetic thin film, a nonmagnetic conductive thin film, and a magnetoresistive effect film (hereinafter referred to as soft magnetic thin film / nonmagnetic conductive thin film / (Referred to as a magnetoresistive film) into a predetermined shape. A lift-off mask material is formed at a position to be a signal detection region, and these layers are laminated under the condition that a gentle slope is formed at the end of the soft magnetic thin film / nonmagnetic conductive thin film / magnetoresistance effect film by an ion milling method. The film is etched so that only the magnetosensitive part remains. As the longitudinal bias applying layer 24, an Fe—Cr alloy thin film 10 nm which is a base film 252 whose crystal structure is ferromagnetic with a body-centered cubic lattice and a Co—Pt—Cr hard magnetic thin film 40 nm which is a hard magnetic thin film 26 are sequentially formed. Subsequently, after forming a 0.2 μm thick Au thin film to be an electrode film 17 for reading out the change in the electric resistance of the magnetoresistive effect film 15, the lift-off mask material is removed to obtain a signal detection region. Is formed. On top of this, an upper gap layer 122 made of alumina having a thickness of 0.3 μm and an upper shield layer 112 made of Ni—Fe alloy having a thickness of about 2 μm are sequentially formed. Further, after forming the insulating film 18 on the upper part, an induction type magnetic head for recording is manufactured, but the details are omitted.

素子形成終了後、磁気抵抗効果膜の長さ方向(図の水平方向)に、5kOeの直流磁界を印加して、縦バイアス印加層24の着磁を行う。この後、基板を切断し、スライダーに加工してMRヘッドの作製を完了する。   After the element formation is completed, the longitudinal bias application layer 24 is magnetized by applying a DC magnetic field of 5 kOe in the length direction (horizontal direction in the figure) of the magnetoresistive film. Thereafter, the substrate is cut and processed into a slider to complete the production of the MR head.

本実施の形態では、横バイアス磁界を印加する手段として、磁気抵抗効果膜 15と非磁性導電性薄膜14を介して隣接して設けられた軟磁性薄膜13により印加する方法を用いているが、これは横バイアス磁界の印加手段の一方法であり、他の方法を用いることもできる。   In the present embodiment, as a means for applying a lateral bias magnetic field, a method of applying by a soft magnetic thin film 13 provided adjacently via a magnetoresistive effect film 15 and a nonmagnetic conductive thin film 14 is used. This is one method for applying a lateral bias magnetic field, and other methods can be used.

また、縦バイアス印加層24としてFe−Cr10nm/Co−Cr−Pt 40nmの積層膜を用いているが、これは実施形態の一例であり、縦バイアス印加層の磁化量が、磁気抵抗効果膜の磁化量の1〜2.5 倍程度であれば、この膜厚構成、或いはこれらの材料でなくてもよい。磁化量の調整は、強磁性を示す下地膜252と硬磁性薄膜26が強磁性的に結合していることから、これらそれぞれの膜厚を変えることにより行うことができる。さらに、縦バイアス印加層の磁化量が十分大きければ、着磁の方向を磁気抵抗効果膜の長さ方向から高さ方向 (紙面に対して垂直方向)に傾けることにより、調整することも可能である。   Further, although a laminated film of Fe—Cr 10 nm / Co—Cr—Pt 40 nm is used as the longitudinal bias application layer 24, this is an example of the embodiment, and the magnetization amount of the longitudinal bias application layer is the magnetoresistive effect film. As long as the amount of magnetization is about 1 to 2.5 times, this film thickness structure or these materials may not be used. The amount of magnetization can be adjusted by changing the film thickness of each of the base film 252 exhibiting ferromagnetism and the hard magnetic thin film 26 because they are ferromagnetically coupled. Furthermore, if the amount of magnetization of the longitudinal bias application layer is sufficiently large, it can be adjusted by tilting the magnetization direction from the length direction of the magnetoresistive film to the height direction (perpendicular to the paper surface). is there.

図5〜図8は硬磁性薄膜と磁気抵抗効果膜との間に作用する磁気的交換結合の効果について調べるために、本発明のMRヘッド(図5及び図6)と、下地膜として非磁性のCrを用いた比較のMRヘッド(図7及び図8)のトラック方向の感度の分布を及び磁化分布モデルを比較したものである。まず、このトラックプロファイルの測定法について説明する。このトラックプロファイルは、ディスク上の約0.4μm の非常に狭いトラック上に信号を書き込み、この信号をMRヘッドをディスクの半径方向に移動させながら読み出し、MRヘッドの各々の部分の再生出力を求めたものである。従って、図の横軸は移動距離であり、縦軸はその位置での再生出力である。このような測定によって、MRヘッドの感度のトラック方向の分布を調べると、MRヘッドの再生感度はトラック中央部で大きく、端部で低い、山型の分布をしていることが分かる。実際の再生電圧は、これらの信号のトラック方向の積分値に相当すると考えられる。図7,図8の非磁性下地膜のMRヘッドでは、幾何学的なトラック幅(電極の間隔)が2.8μmのヘッドで、磁気的トラック幅(TWM)は2.4μmであり、0.4μm減少している。ここで、磁気的トラック幅とは、図の各点での出力をトラック方向に積分し、その積分カーブの値が全体の5%から全体の95%となる幅と定義する。従って、磁気的トラック幅はMRヘッドの実効的なトラック幅に相当する。非磁性下地膜のMRヘッドで、磁気的トラック幅が減少する原因は、図8の磁化モデルで示すように、磁気抵抗効果膜の端部の磁化が、ディスクの法線方向を向いているためと考えられる。このように磁化が法線方向を向くと、媒体からの信号磁界に応じて磁気抵抗効果膜の磁化が回転できず、結果的に、この部分で感度が低下する。このヘッドでは、信号検出領域の端部にこのような不感帯があるので、再生電圧は低い。一方、強磁性薄膜を下地膜に用いた本発明のMRヘッド(図5,図6)では、2.25μm の幾何学的トラック幅に対して、磁気的トラック幅(TWM)は2.25μm であり、幾何学的トラック幅と実効的トラック幅はほぼ同一である。これは、本発明のMRヘッドでは、磁気抵抗効果膜の端部において、磁化がディスクの法線方向を向くことはなく、従って、非磁性下地膜を用いたMRヘッドのような不感帯は存在せず、結果として高い出力を有する。なお、図6の磁化分布の図において、信号検出領域の磁化が斜めに傾いているのは、磁気抵抗効果膜に横バイアス磁界が印加されているためである。 5 to 8 show the MR head (FIGS. 5 and 6) of the present invention and a non-magnetic underlayer for examining the effect of magnetic exchange coupling acting between the hard magnetic thin film and the magnetoresistive film. 8 is a comparison of the sensitivity distribution in the track direction and the magnetization distribution model of a comparative MR head (FIGS. 7 and 8) using Cr. First, the track profile measurement method will be described. In this track profile, a signal is written on a very narrow track of about 0.4 μm on the disk, and this signal is read while moving the MR head in the radial direction of the disk to obtain the reproduction output of each part of the MR head. It is a thing. Therefore, the horizontal axis in the figure is the moving distance, and the vertical axis is the reproduction output at that position. When the distribution of the MR head sensitivity in the track direction is examined by such measurement, it can be seen that the MR head reproduction sensitivity has a mountain-shaped distribution that is large at the center of the track and low at the end. The actual reproduction voltage is considered to correspond to the integration value of these signals in the track direction. In the MR head of the nonmagnetic underlayer shown in FIGS. 7 and 8, the geometrical track width (electrode spacing) is 2.8 μm, and the magnetic track width (T WM ) is 2.4 μm. It has decreased by 4 μm. Here, the magnetic track width is defined as a width in which the output at each point in the figure is integrated in the track direction and the value of the integration curve is from 5% of the whole to 95% of the whole. Therefore, the magnetic track width corresponds to the effective track width of the MR head. The reason why the magnetic track width decreases in the MR head of the nonmagnetic underlayer is that the magnetization of the end of the magnetoresistive film is oriented in the normal direction of the disk as shown by the magnetization model in FIG. it is conceivable that. When the magnetization is directed in the normal direction as described above, the magnetization of the magnetoresistive effect film cannot be rotated according to the signal magnetic field from the medium, and as a result, the sensitivity is lowered at this portion. In this head, since there is such a dead zone at the end of the signal detection region, the reproduction voltage is low. On the other hand, in the MR head of the present invention using a ferromagnetic thin film as an underlayer (FIGS. 5 and 6), the magnetic track width (T WM ) is 2.25 μm with respect to the geometric track width of 2.25 μm. The geometric track width and the effective track width are almost the same. This is because in the MR head of the present invention, the magnetization does not face the normal direction of the disk at the end of the magnetoresistive film, and therefore there is no dead zone as in the MR head using the nonmagnetic underlayer. As a result, it has a high output. In the magnetization distribution diagram of FIG. 6, the magnetization of the signal detection region is inclined obliquely because a lateral bias magnetic field is applied to the magnetoresistive film.

以上の結果から、非磁性の下地膜を用いたMRヘッドと、本発明のMRヘッドでは、信号検出領域端部の磁化の状態に違いがあることが判明した。この違いは、硬磁性薄膜と、磁気抵抗効果膜及び軟磁性薄膜との間の磁気的交換結合の有無によるものである。本発明のMRヘッドでは、硬磁性薄膜と磁気抵抗効果膜の磁化は、磁性下地膜を介して磁気的交換結合しているので、磁気抵抗効果膜及び軟磁性薄膜の端部の磁化は、硬磁性薄膜の磁化の方向と同じ方向を向く。この場合、硬磁性薄膜の磁化はMRヘッドのトラック方向に着磁されているので、磁気抵抗効果膜及び軟磁性薄膜の磁化も同様にトラック方向を向く。一方、非磁性の下地膜を用いたMRヘッドの場合には、硬磁性薄膜と、磁気抵抗効果膜及び軟磁性薄膜の間には磁気的交換結合はない。MRヘッドは、セラミックスからなる絶縁膜や金属膜の複雑な積層構造体であり、複雑な構造から極度に大きな応力集中が生じ易いことは良く知られている。従って、信号検出領域の端部のように、エッチングされた端部では、応力が集中し易い。磁気抵抗効果膜は応力を受けると、その磁歪に応じて磁化が応力の方向に向き易く(磁歪によっては向きにくく)なる。非磁性下地膜を用いたMRヘッドの信号検出領域端部の磁化の回転は、このような応力に起因するものと考えられる。本発明のように、硬磁性薄膜が端部領域において磁気的交換結合をする場合には、信号検出領域端部に発生し易い、このような磁化の不安定を防止することが可能である。
(実施例3)
図1は本発明の異方性磁気抵抗効果を利用した磁気抵抗効果型磁気ヘッドの構造を示す斜視図であり、図9は感磁部近くの断面図である。セラミックスからなる非磁性基板10の上に、絶縁膜20としてアルミナ膜を約10μm形成し、表面に精密研磨を施す。下部シールド層111としてスパッタリング法によりCo−Hf−Ta系合金非晶質薄膜を約2μm形成し、イオンミリングを用いて所定の形状に加工する。下部ギャップ層121としてアルミナ膜を0.3μm 成膜した後、横バイアス磁界を印加するための軟磁性薄膜13としてNi−Fe−Cr系合金薄膜40nm,非磁性導電性薄膜14としてTa薄膜20nm,磁気抵抗効果膜15としてNi−Fe系合金薄膜30nmを順次成膜し、軟磁性薄膜/非磁性導電性薄膜/磁気抵抗効果膜を所定の形状に加工する。信号検出領域とする位置にリフトオフマスク材を形成する。スパッタエッチングにより磁気抵抗効果膜表面をクリーニングした後、縦バイアス印加層24として、結晶構造が体心立方格子で強磁性を示す下地膜252であるFe薄膜10nm,硬磁性薄膜26であるCo−Pt−Cr系硬磁性薄膜32nmを順次形成し、これに続いて、磁気抵抗効果膜15の電気抵抗の変化を読み出すための電極膜17となるAu薄膜を0.2μm 成膜する。成膜にはスパッタリング法を用い、Arガス圧は5mTorr、基板温度は室温で行った。なお、ガラス基板上に作製したFe薄膜10nmとCo−Pt−Cr系硬磁性薄膜32nmからなる積層膜の保磁力は1200Oe、残留磁束密度Brと飽和磁束密度Bsの比Br/Bs(以下、角型比と呼ぶ)は0.80、残留磁束密度は0.93Tであった。本実施例では縦バイアス印加層としてFe/Co−Cr−Pt積層膜を用いたが、これは縦バイアス印加層24の代表的なものであり、特にこの積層膜に限定されるものでない。次に、縦バイアス印加層24であるFe/Co−Cr−Pt積層膜及び電極膜17であるAu薄膜が付着しているリフトオフマスク材を除去することにより、信号検出領域が形成される。この上に、厚さ0.3μm のアルミナからなる上部ギャップ層122と、厚さ約2μmのNi−Fe系合金からなる上部シールド層112を順次形成する。さらに上部に絶縁膜18を形成後、記録用の誘導型磁気ヘッドを作製するが詳細は省略する。この後、基板を切断し、スライダーに加工して磁気抵抗効果型ヘッドの作製を完了する。
From the above results, it was found that there is a difference in the state of magnetization at the end of the signal detection region between the MR head using a nonmagnetic underlayer and the MR head of the present invention. This difference is due to the presence or absence of magnetic exchange coupling between the hard magnetic thin film and the magnetoresistive effect film and soft magnetic thin film. In the MR head of the present invention, the magnetization of the hard magnetic thin film and the magnetoresistive film is magnetically exchange-coupled via the magnetic underlayer, so that the magnetization of the ends of the magnetoresistive film and the soft magnetic thin film is hard. The direction is the same as the direction of magnetization of the magnetic thin film. In this case, since the magnetization of the hard magnetic thin film is magnetized in the track direction of the MR head, the magnetization of the magnetoresistive effect film and the soft magnetic thin film are also oriented in the track direction. On the other hand, in the case of an MR head using a nonmagnetic underlayer, there is no magnetic exchange coupling between the hard magnetic thin film, the magnetoresistive film, and the soft magnetic thin film. It is well known that an MR head is a complex laminated structure of insulating films and metal films made of ceramics, and an extremely large stress concentration tends to occur from the complex structure. Therefore, stress is likely to concentrate at the etched end, such as the end of the signal detection region. When the magnetoresistive film is subjected to stress, the magnetization is likely to be directed in the direction of the stress according to the magnetostriction (it is difficult to be directed depending on the magnetostriction). It is considered that the rotation of magnetization at the end of the signal detection region of the MR head using the nonmagnetic underlayer is caused by such stress. When the hard magnetic thin film is magnetically exchange-coupled in the end region as in the present invention, it is possible to prevent such magnetization instability that is likely to occur at the end of the signal detection region.
(Example 3)
FIG. 1 is a perspective view showing the structure of a magnetoresistive head using the anisotropic magnetoresistive effect of the present invention, and FIG. About 10 μm of an alumina film is formed as an insulating film 20 on the nonmagnetic substrate 10 made of ceramics, and the surface is precisely polished. A Co—Hf—Ta alloy amorphous thin film is formed to a thickness of about 2 μm by sputtering as the lower shield layer 111 and processed into a predetermined shape using ion milling. After forming an alumina film of 0.3 μm as the lower gap layer 121, the soft magnetic thin film 13 for applying a lateral bias magnetic field 13 is a Ni—Fe—Cr alloy thin film 40 nm, the nonmagnetic conductive thin film 14 is a Ta thin film 20 nm, A 30 nm thick Ni—Fe alloy thin film is sequentially formed as the magnetoresistive effect film 15, and the soft magnetic thin film / nonmagnetic conductive thin film / magnetoresistance effect film is processed into a predetermined shape. A lift-off mask material is formed at a position to be a signal detection region. After cleaning the surface of the magnetoresistive film by sputter etching, as the longitudinal bias applying layer 24, the Fe thin film 10nm as the underlayer film 252 showing the ferromagnetism in the body-centered cubic lattice and the Co-Pt as the hard magnetic thin film 26 are used. A Cr-based hard magnetic thin film of 32 nm is sequentially formed, and subsequently, an Au thin film serving as an electrode film 17 for reading out a change in electric resistance of the magnetoresistive effect film 15 is formed to a thickness of 0.2 μm. A sputtering method was used for film formation, and the Ar gas pressure was 5 mTorr and the substrate temperature was room temperature. Note that the coercive force of a laminated film made of a Fe thin film 10 nm and a Co—Pt—Cr hard magnetic thin film 32 nm fabricated on a glass substrate is 1200 Oe, and the ratio Br / Bs (hereinafter referred to as an angle) of the residual magnetic flux density Br and the saturated magnetic flux density Bs. The mold ratio was 0.80, and the residual magnetic flux density was 0.93T. In this embodiment, the Fe / Co—Cr—Pt laminated film is used as the longitudinal bias application layer, but this is a representative example of the longitudinal bias application layer 24 and is not particularly limited to this laminated film. Next, the signal detection region is formed by removing the lift-off mask material to which the Fe / Co—Cr—Pt laminated film as the vertical bias application layer 24 and the Au thin film as the electrode film 17 are attached. On this, an upper gap layer 122 made of alumina having a thickness of 0.3 μm and an upper shield layer 112 made of a Ni—Fe alloy having a thickness of about 2 μm are sequentially formed. Further, after forming the insulating film 18 on the upper part, an induction type magnetic head for recording is manufactured, but the details are omitted. Thereafter, the substrate is cut and processed into a slider to complete the production of the magnetoresistive head.

以上のように作製した磁気抵抗効果型磁気ヘッドについて、バルクハウゼンノイズの有無を調べた。比較のため、縦バイアス印加層をCo−Pt−Cr系硬磁性薄膜80nm(下地膜なし)、及び下地膜が非磁性のCr薄膜10nmで硬磁性薄膜がCo−Pt−Cr系硬磁性薄膜52nmとした磁気抵抗効果型ヘッドについても評価を行った。なお、ガラス基板上に作製した厚さ80nmのCo− Pt−Cr系硬磁性薄膜の磁気特性は保磁力が450Oe,角型比が0.55 ,残留磁束密度が0.49T であり、10nmのCr薄膜を介してガラス基板上に作製した厚さ52nmのCo−Pt−Cr系硬磁性薄膜の磁気特性は保磁力が 1500Oe,角型比が0.85,残留磁束密度が0.75Tであり、Fe薄膜 10nm/Co−Pt−Cr系硬磁性薄膜32nmの積層膜の磁気特性とは異なっているが、残留磁束密度と膜厚の積が同等であるので、縦バイアス印加層から発生する磁束の量はほぼ等しいと考えられる。バルクハウゼンノイズの評価は残留磁束密度と磁性体膜厚の積が150G・μmの薄膜媒体に5kFCIで記録した記録パターンを、浮上量0.12μm ,センス電流10mAで再生したときの再生波形を観測し、バルクハウゼンノイズの抑制率として、観測したヘッド数に対しバルクハウゼンノイズの現われないヘッドの数を求めて比較した。縦バイアス印加層としてFe薄膜10nm/Co−Pt−Cr系硬磁性薄膜32nmを用いたヘッドのバルクハウゼンノイズの抑制率は100%であるのに対し、Co−Pt−Cr系硬磁性薄膜80nmのヘッドでは10%、Cr薄膜10nm/Co−Pt−Cr系硬磁性薄膜52nmのヘッドでは65%であった。下地膜のないCo−Pt−Cr系硬磁性薄膜80nmのヘッドでバルクハウゼンノイズの抑制率が低いのはCo−Pt−Cr系硬磁性薄膜が結晶構造が面心立方格子である磁気抵抗効果膜の上に直接成膜されているため保磁力が小さくなっており、外部磁界が作用すると縦バイアス印加層の磁化も動いてしまい、縦バイアス磁界が有効に働いていないためである。また、下地膜として非磁性のCr薄膜を用いたCr薄膜10nm/Co−Pt−Cr系硬磁性薄膜52nmのヘッドでは図7のように、信号検出領域では磁化の方向が縦バイアス印加層からの磁界によって縦バイアス印加層と同じ方向を向く。しかし、縦バイアス印加層の下では磁気抵抗効果膜の磁化の方向は素子端部の静磁的な作用により縦バイアス印加層の磁化の方向と逆向きになる。従って、磁気抵抗効果膜内で磁化の方向が反対向きになる部分に磁壁が生じ、バルクハウゼンノイズが発生するものと考えられる。   The presence or absence of Barkhausen noise was examined for the magnetoresistive head manufactured as described above. For comparison, the longitudinal bias application layer is a Co—Pt—Cr hard magnetic thin film of 80 nm (no base film), the base film is a nonmagnetic Cr thin film of 10 nm, and the hard magnetic thin film is a Co—Pt—Cr hard magnetic thin film of 52 nm. The magnetoresistive head was also evaluated. The magnetic characteristics of a Co—Pt—Cr hard magnetic thin film with a thickness of 80 nm fabricated on a glass substrate are a coercive force of 450 Oe, a squareness ratio of 0.55, a residual magnetic flux density of 0.49 T, and a 10 nm The magnetic properties of a Co-Pt-Cr hard magnetic thin film with a thickness of 52 nm fabricated on a glass substrate via a Cr thin film are coercive force of 1500 Oe, squareness ratio of 0.85, and residual magnetic flux density of 0.75 T. Although the magnetic characteristics of the Fe thin film 10 nm / Co—Pt—Cr based hard magnetic thin film 32 nm are different from those of the laminated film, the product of the residual magnetic flux density and the film thickness are the same. Are considered to be approximately equal. Barkhausen noise was evaluated by observing the reproduction waveform when a recording pattern recorded at 5 kFCI on a thin film medium with a residual magnetic flux density and a magnetic film thickness of 150 G · μm was reproduced with a flying height of 0.12 μm and a sense current of 10 mA. Then, as the Barkhausen noise suppression rate, the number of heads where Barkhausen noise did not appear was compared with the observed number of heads. The barbhausen noise suppression rate of the head using the Fe thin film 10 nm / Co—Pt—Cr hard magnetic thin film 32 nm as the longitudinal bias application layer is 100%, whereas the Co—Pt—Cr hard magnetic thin film 80 nm The head was 10%, and the Cr thin film 10 nm / Co—Pt—Cr hard magnetic thin film 52 nm head was 65%. Co-Pt-Cr hard magnetic thin film 80 nm head with no underlying film has a low Barkhausen noise suppression rate because the Co-Pt-Cr hard magnetic thin film has a face-centered cubic lattice crystal structure. This is because the coercive force is small because the film is formed directly on the surface, and when an external magnetic field acts, the magnetization of the longitudinal bias application layer also moves, and the longitudinal bias magnetic field does not work effectively. In the case of a Cr thin film 10 nm / Co—Pt—Cr hard magnetic thin film 52 nm head using a non-magnetic Cr thin film as a base film, the direction of magnetization in the signal detection region is different from that of the longitudinal bias application layer as shown in FIG. The magnetic field is directed in the same direction as the longitudinal bias application layer. However, under the longitudinal bias application layer, the magnetization direction of the magnetoresistive film is opposite to the magnetization direction of the longitudinal bias application layer due to the magnetostatic action of the element end. Therefore, it is considered that a domain wall is generated in a portion where the magnetization direction is opposite in the magnetoresistive effect film, and Barkhausen noise is generated.

本実施例では縦バイアス印加層24として、Fe薄膜10nm/Co−Pt−Cr系硬磁性薄膜32nmの積層膜を用いたが、下地膜はFe薄膜以外の結晶構造が体心立方格子である強磁性薄膜や非晶質強磁性薄膜、或いは結晶構造が体心立方格子である反強磁性薄膜を用いてもよい。   In this embodiment, a laminated film of Fe thin film 10 nm / Co—Pt—Cr hard magnetic thin film 32 nm is used as the longitudinal bias applying layer 24. However, the underlying film is a strong structure in which the crystal structure other than the Fe thin film is a body-centered cubic lattice. A magnetic thin film, an amorphous ferromagnetic thin film, or an antiferromagnetic thin film having a body-centered cubic lattice may be used.

結晶構造が体心立方格子である強磁性薄膜はFe−Ni系合金,Fe−Co系合金,Fe−Ni−Co系合金、さらにFe及びこれらの合金に添加元素としてSi,V,Cr,Nb,Mo,Ta,Wを1種類以上添加した合金を用いることができる。これらを下地膜として用いる場合、硬磁性薄膜の結晶成長を促し、さらに粒子間の磁気的な相互作用を小さくして大きな保磁力を得るためには下地膜の厚さは厚い方が良いが、一方磁気抵抗効果膜と硬磁性薄膜の間の交換結合は下地膜が厚い程減少してしまう。従って、下地膜の膜厚は硬磁性薄膜の成長が結晶構造が面心立方格子である磁気抵抗効果膜の影響を受けなくなる膜厚である5〜20nm程度が好ましい。   Ferromagnetic thin films whose crystal structure is a body-centered cubic lattice are Fe—Ni alloys, Fe—Co alloys, Fe—Ni—Co alloys, Fe, and Si, V, Cr, Nb as additive elements to these alloys. An alloy to which one or more of Mo, Ta, and W are added can be used. When these are used as the underlayer, the thickness of the underlayer is better in order to promote crystal growth of the hard magnetic thin film and further reduce the magnetic interaction between the particles to obtain a large coercive force. On the other hand, the exchange coupling between the magnetoresistive film and the hard magnetic thin film decreases as the base film becomes thicker. Therefore, the film thickness of the base film is preferably about 5 to 20 nm, which is a film thickness at which the growth of the hard magnetic thin film is not affected by the magnetoresistive film whose crystal structure is a face-centered cubic lattice.

非晶質強磁性薄膜はCoと、Ti,V,Cr,Zr,Nb,Mo,Hf,Ta,Y,Ru,Rh,Pd,Cu,Ag,Au,Ptのなかから選ばれる1種類以上の元素を主成分とする非晶質合金を用いることができ、代表的なものとして Co−Zr−Nb系薄膜,Co−Zr−Ta系薄膜,Co−Hf−Nb系薄膜,Co−Hf−Ta系薄膜などが挙げられる。非晶質強磁性薄膜/硬磁性薄膜と体心立方格子強磁性薄膜/硬磁性薄膜の保磁力を比較すると、下地膜の膜厚が30nm以上と厚い場合には体心立方格子強磁性薄膜を用いた方が大きな値が得られるが、5〜20nm程度では非晶質強磁性薄膜を用いた場合でも体心立方格子強磁性薄膜を用いた場合と同程度か、やや小さな値であった。これは5〜20nm程度の膜厚では膜厚が厚い場合と比べて体心立方格子強磁性薄膜の結晶性が劣り結晶粒の成長も十分でないため、非晶質強磁性薄膜を用いた場合とあまり違いが生じないものと考えられる。なお、縦バイアス印加層から発生する磁束の量が Fe薄膜10nm/Co−Pt−Cr系硬磁性薄膜32nmと等しいCo−Hf−Ta系非晶質強磁性薄膜16nm/Co−Pt−Cr系硬磁性薄膜32nmを適用した磁気抵抗効果型磁気ヘッドのバルクハウゼンノイズの抑制率はFe薄膜10nm/Co−Pt−Cr系硬磁性薄膜32nmを用いた場合と同様に100%であった。   The amorphous ferromagnetic thin film is one or more selected from Co, Ti, V, Cr, Zr, Nb, Mo, Hf, Ta, Y, Ru, Rh, Pd, Cu, Ag, Au, and Pt. An amorphous alloy containing an element as a main component can be used. Typical examples include a Co—Zr—Nb thin film, a Co—Zr—Ta thin film, a Co—Hf—Nb thin film, and a Co—Hf—Ta. System thin film. Comparing the coercive force of the amorphous ferromagnetic thin film / hard magnetic thin film and the body-centered cubic ferromagnetic thin film / hard magnetic thin film, when the thickness of the underlying film is 30 nm or more, the body-centered cubic ferromagnetic thin film A larger value can be obtained by using this film. However, when the amorphous ferromagnetic thin film is used, the value is about the same as or slightly smaller than the case of using the body-centered cubic lattice ferromagnetic thin film. This is because when the film thickness is about 5 to 20 nm, the crystallinity of the body-centered cubic lattice ferromagnetic thin film is inferior compared to the case where the film thickness is large, and the growth of crystal grains is not sufficient. It seems that there is not much difference. It should be noted that the amount of magnetic flux generated from the longitudinal bias application layer is equal to the Fe thin film 10 nm / Co—Pt—Cr hard magnetic thin film 32 nm, Co—Hf—Ta amorphous ferromagnetic thin film 16 nm / Co—Pt—Cr hard The Barkhausen noise suppression rate of the magnetoresistive head using the magnetic thin film of 32 nm was 100% as in the case of using the Fe thin film of 10 nm / Co—Pt—Cr hard magnetic thin film of 32 nm.

結晶構造が体心立方格子である反強磁性薄膜はCrと、Mnと、Cu,Au,Ag,Co,Ni及び白金族元素から選ばれる1種類以上の元素を主成分とする合金を用いることができる。これらの反強磁性薄膜の場合、約20nmよりも薄くなると反強磁性を示さなくなるため、膜厚は20nm以上必要である。   The antiferromagnetic thin film whose crystal structure is a body-centered cubic lattice uses an alloy containing as a main component one or more elements selected from Cr, Mn, Cu, Au, Ag, Co, Ni, and platinum group elements. Can do. In the case of these antiferromagnetic thin films, antiferromagnetism is not exhibited when the thickness is thinner than about 20 nm.

硬磁性薄膜はCoと、Cr,Ta,Ni,Pt,Reから選ばれる1種類以上の元素を主成分とする合金を用いることができ、Co−Pt−Cr系硬磁性薄膜の他の代表的なものとして、Co−Re系硬磁性薄膜,Co−Cr系硬磁性薄膜,Co−Ta−Cr系硬磁性薄膜,Co−Ni−Pt系硬磁性薄膜等がある。また、これらの硬磁性合金薄膜に酸化シリコン,酸化ジルコニウム,酸化アルミニウム,酸化タンタルを1種類以上添加した酸化物添加合金薄膜も用いることができる。   The hard magnetic thin film can be made of an alloy mainly composed of Co and one or more elements selected from Cr, Ta, Ni, Pt, and Re. Other typical Co—Pt—Cr hard magnetic thin films Among them, there are a Co—Re hard magnetic thin film, a Co—Cr hard magnetic thin film, a Co—Ta—Cr hard magnetic thin film, a Co—Ni—Pt hard magnetic thin film, and the like. An oxide-added alloy thin film obtained by adding one or more kinds of silicon oxide, zirconium oxide, aluminum oxide, and tantalum oxide to these hard magnetic alloy thin films can also be used.

本発明の異方性磁気抵抗効果を利用したMRヘッドは、軟磁性薄膜/非磁性導電性薄膜/磁気抵抗効果膜の成膜までは、前述の実施形態と同様に行った後、軟磁性薄膜/非磁性導電性薄膜/磁気抵抗効果膜を所定の形状に加工する。信号検出領域とする位置にリフトオフマスク材を形成し、縦バイアス印加層24として、体心立方構造を有する強磁性を示す下地膜252であるFe−Cr系合金薄膜,硬磁性薄膜26であるCo−Cr−Pt系硬磁性薄膜を順次成膜する。続いて、電極膜17となるAu薄膜を形成した後、リフトオフマスク材を除去することにより、信号検出領域が形成される。この後の工程は、前述の実施形態と同じである。   In the MR head using the anisotropic magnetoresistance effect of the present invention, the soft magnetic thin film / nonmagnetic conductive thin film / magnetoresistance effect film are formed in the same manner as in the previous embodiment, and then the soft magnetic thin film is formed. / Nonmagnetic conductive thin film / Magnetoresistance effect film is processed into a predetermined shape. A lift-off mask material is formed at a position to be a signal detection region, and an Fe—Cr alloy thin film, which is a base film 252 showing ferromagnetism having a body-centered cubic structure, and Co, which is a hard magnetic thin film 26, are formed as a longitudinal bias application layer 24. -Cr-Pt hard magnetic thin films are sequentially formed. Subsequently, after forming an Au thin film to be the electrode film 17, the signal detection region is formed by removing the lift-off mask material. The subsequent steps are the same as those in the above-described embodiment.

下地膜として、Cr等の非磁性膜を用いた場合には、図15のように、硬磁性薄膜から発生する磁界が、硬磁性薄膜の下のMR素子部を構成する強磁性薄膜を還流するため、感磁部と感磁部以外の部分とで磁気抵抗効果膜の磁化が互いに逆方向を向いてしまう。一方、強磁性下地膜を用いた場合には、感磁部の磁化は、縦バイアス印加層から発生する磁界によって、感磁部以外の磁化は、縦バイアス印加層と磁気抵抗効果膜の磁気的交換結合により、縦バイアス印加層の着磁方向と同じ方向を向く。従って、磁気抵抗効果膜には磁壁が存在しないので、バルクハウゼンノイズのないMRヘッドが得られる。
(実施例4)
本発明は、巨大磁気抵抗効果を利用したMRヘッドにも適用することができる。巨大磁気抵抗効果を示す積層膜の構成のなかで、最も単純であり基本となるものが、図10に示すような反強磁性層31/磁性薄膜32/非磁性導電性薄膜 33/磁性薄膜34という構成である。磁性薄膜32の磁化の方向は、反強磁性層31との交換相互作用によりトラック方向と垂直な方向(紙面と垂直な方向)に固定されている。磁性薄膜34にはトラック方向に磁気異方性が誘導されており、外部磁界を印加しない状態では、磁性薄膜32と磁性薄膜34の磁化の方向は垂直になっている。外部磁界が印加されると、磁性薄膜34の磁化が回転し、磁性薄膜32の磁化とのなす角度が変わり、これにより電気抵抗が変化する。一般に、反強磁性層31にはFe−Mn系反強磁性膜,Ni−Mn系反強磁性膜,NiO反強磁性膜などが用いられ、磁性薄膜32及び34にはNi−Fe系薄膜が、非磁性導電性薄膜33にはCu薄膜が用いられる。また、縦バイアス磁界は、磁化が回転する磁性薄膜34に印加する。
(実施例5)
図11は、このような膜構成からなる磁気抵抗効果積層膜を有するMRヘッドの一実施形態の感磁部近傍の断面図である。下部ギャップ層121までは異方性磁気抵抗効果を利用したMRヘッドの実施形態と同様の方法により作製する。下部ギャップ層121の上に、反強磁性層31としてNiO反強磁性薄膜100 nm,磁性薄膜32としてNi−Fe系合金薄膜5nm,非磁性導電性薄膜33としてCu薄膜3nm,磁性薄膜34としてNi−Fe系合金薄膜12nmを成膜した後、保護膜35としてTa薄膜を3nm成膜する。この積層膜を所定の形状に加工し、信号検出領域とする位置にリフトオフマスク材を形成する。イオンミリング法により、磁気抵抗効果積層膜の端部に緩やかな傾斜が形成される条件で、感磁部のみ残るようにエッチングした後、本発明の縦バイアス印加層24、例えば体心立方構造を有する強磁性を示す下地膜252であるFe−10at.%Cr合金薄膜5nm及び硬磁性薄膜26であるCo−Pt−Cr系硬磁性薄膜 14nmを形成し、これに続いて電極膜17となるAu薄膜を0.2μm 成膜する。ここで、ガラス基板上に作製したFe−10at.%Cr 合金薄膜5nm/ Co−Pt−Cr系硬磁性薄膜14nmの保磁力は1500Oe、角型比は0.85、残留磁束密度は0.87T であった。次にリフトオフマスク材を除去し信号検出領域を形成するが、これ以降の工程は前述の実施例と同様であるため省略する。
When a nonmagnetic film such as Cr is used as the base film, the magnetic field generated from the hard magnetic thin film circulates through the ferromagnetic thin film constituting the MR element portion under the hard magnetic thin film as shown in FIG. For this reason, the magnetization of the magnetoresistive film is opposite to each other in the magnetic sensitive part and the part other than the magnetic sensitive part. On the other hand, when a ferromagnetic underlayer is used, the magnetization of the magnetosensitive part is caused by the magnetic field generated from the longitudinal bias application layer, and the magnetization of the part other than the magnetosensitive part is caused by the magnetic field between the longitudinal bias application layer and the magnetoresistive film. Due to exchange coupling, the direction is the same as the magnetization direction of the longitudinal bias application layer. Therefore, since there is no domain wall in the magnetoresistive film, an MR head free from Barkhausen noise can be obtained.
Example 4
The present invention can also be applied to MR heads utilizing the giant magnetoresistance effect. Among the laminated film structures showing the giant magnetoresistive effect, the simplest and basic one is an antiferromagnetic layer 31 / magnetic thin film 32 / nonmagnetic conductive thin film 33 / magnetic thin film 34 as shown in FIG. This is the configuration. The direction of magnetization of the magnetic thin film 32 is fixed in a direction perpendicular to the track direction (direction perpendicular to the paper surface) by exchange interaction with the antiferromagnetic layer 31. Magnetic anisotropy is induced in the track direction in the magnetic thin film 34, and the magnetization directions of the magnetic thin film 32 and the magnetic thin film 34 are perpendicular to each other when no external magnetic field is applied. When an external magnetic field is applied, the magnetization of the magnetic thin film 34 rotates and the angle formed with the magnetization of the magnetic thin film 32 changes, thereby changing the electrical resistance. In general, an Fe—Mn antiferromagnetic film, a Ni—Mn antiferromagnetic film, a NiO antiferromagnetic film, or the like is used for the antiferromagnetic layer 31, and a Ni—Fe thin film is used for the magnetic thin films 32 and 34. As the nonmagnetic conductive thin film 33, a Cu thin film is used. The longitudinal bias magnetic field is applied to the magnetic thin film 34 whose magnetization rotates.
(Example 5)
FIG. 11 is a cross-sectional view of the vicinity of the magnetic sensing portion of an embodiment of an MR head having a magnetoresistive effect laminated film having such a film configuration. The layers up to the lower gap layer 121 are manufactured by the same method as that of the MR head using the anisotropic magnetoresistive effect. On the lower gap layer 121, the NiO antiferromagnetic thin film 100 nm as the antiferromagnetic layer 31, the Ni—Fe alloy thin film 5 nm as the magnetic thin film 32, the Cu thin film 3 nm as the nonmagnetic conductive thin film 33, and the Ni as magnetic thin film 34. After forming the Fe-based alloy thin film 12 nm, a Ta thin film 3 nm is formed as the protective film 35. The laminated film is processed into a predetermined shape, and a lift-off mask material is formed at a position to be a signal detection region. The longitudinal bias application layer 24 of the present invention, for example, the body-centered cubic structure is formed after etching so that only the magnetosensitive portion remains under the condition that a gentle slope is formed at the end of the magnetoresistive effect laminated film by ion milling. An Fe-10 at.% Cr alloy thin film 5 nm which is a base film 252 exhibiting ferromagnetism and a Co—Pt—Cr hard magnetic thin film 14 nm which is a hard magnetic thin film 26 are formed, followed by Au forming an electrode film 17. A thin film of 0.2 μm is formed. Here, the coercivity of the Fe-10 at.% Cr alloy thin film 5 nm / Co-Pt-Cr hard magnetic thin film 14 nm fabricated on the glass substrate was 1500 Oe, the squareness ratio was 0.85, and the residual magnetic flux density was 0.87 T. It was. Next, the lift-off mask material is removed to form a signal detection region, but the subsequent steps are the same as those in the above-described embodiment, and will be omitted.

薄膜形成工程が全て完了した後で、反強磁性層31と磁性薄膜32との間に磁気的交換結合を生じさせて、磁性薄膜32の磁化の方向をトラック方向と垂直な方向(紙面と垂直な方向)に固定するために、反強磁性層のネール点以上の温度から、直流磁界を印加しながら温度を下げる熱処理工程が必要となる。縦バイアス印加層を、磁気抵抗効果積層膜の長さ方向(図の水平方向)に着磁した後、基板の切断,スライダー加工を行い、MRヘッドの作製が完了する。   After all the thin film forming steps are completed, a magnetic exchange coupling is generated between the antiferromagnetic layer 31 and the magnetic thin film 32, and the magnetization direction of the magnetic thin film 32 is perpendicular to the track direction (perpendicular to the paper surface). Therefore, a heat treatment step for lowering the temperature while applying a DC magnetic field from a temperature higher than the Neel point of the antiferromagnetic layer is required. After the longitudinal bias application layer is magnetized in the length direction (horizontal direction in the figure) of the magnetoresistive effect laminated film, the substrate is cut and the slider is processed to complete the production of the MR head.

比較のため、縦バイアス印加層としてCr薄膜5nm/Co−Pt−Cr系硬磁性薄膜27nmを用いた、同様の構成を有する磁気抵抗効果型磁気ヘッドも作製し、バルクハウゼンノイズの抑制率を比較したが、Fe−10at.%Cr 合金薄膜5nm/Co−Pt−Cr系硬磁性薄膜14nmを用いたヘッドでは100%であったのに対し、Cr薄膜5nm/Co−Pt−Cr系硬磁性薄膜27nmを用いたヘッドでは70%であった。なお、ガラス基板上に作製したCr薄膜5nm/Co−Pt−Cr系硬磁性薄膜27nmの磁気特性は保磁力が1700 Oe,角型比が0.90,残留磁束密度が0.59Tであった。   For comparison, a magnetoresistive head having the same structure using a Cr thin film 5 nm / Co—Pt—Cr hard magnetic thin film 27 nm as a longitudinal bias application layer was also produced, and the Barkhausen noise suppression rate was compared. However, the head using the Fe-10 at.% Cr alloy thin film 5 nm / Co-Pt-Cr hard magnetic thin film 14 nm was 100%, whereas the Cr thin film 5 nm / Co-Pt-Cr hard magnetic thin film was used. The head using 27 nm was 70%. The magnetic properties of the Cr thin film 5 nm / Co—Pt—Cr hard magnetic thin film 27 nm prepared on the glass substrate were 1700 Oe in coercive force, 0.90 in squareness, and 0.59 T in residual magnetic flux density. .

本実施形態では、基板側から順に、反強磁性層31/磁性薄膜32/非磁性導電性薄膜33/磁性薄膜34,電極膜17を配置したMRヘッドを示したが、必ずしもこの順に配置しなくてもよい。但し、磁性薄膜34/非磁性導電性薄膜 33/磁性薄膜32/反強磁性層31とする場合には、反強磁性層31は、Fe−Mn系反強磁性膜,Ni−Mn系反強磁性膜などの導電性反強磁性膜が好ましい。
(実施例6)
反強磁性層/磁性薄膜/非磁性導電性薄膜/磁性薄膜からなる磁気抵抗効果積層膜を有するMRヘッドにおいても、図12に示すように磁気抵抗効果積層膜上の両端に、縦バイアス印加層24及び電極17を配置した構造にすることができる。
In the present embodiment, the MR head in which the antiferromagnetic layer 31, the magnetic thin film 32, the nonmagnetic conductive thin film 33, the magnetic thin film 34, and the electrode film 17 are arranged in order from the substrate side is shown, but not necessarily arranged in this order. May be. However, when the magnetic thin film 34 / nonmagnetic conductive thin film 33 / magnetic thin film 32 / antiferromagnetic layer 31 are used, the antiferromagnetic layer 31 includes an Fe—Mn antiferromagnetic film and an Ni—Mn antiferromagnetic layer. A conductive antiferromagnetic film such as a magnetic film is preferred.
(Example 6)
Even in an MR head having a magnetoresistive layered film composed of an antiferromagnetic layer / magnetic thin film / nonmagnetic conductive thin film / magnetic thin film, as shown in FIG. 24 and the electrode 17 can be arranged.

巨大磁気抵抗効果を利用したMRヘッドにおいても、縦バイアス印加層の磁化量が、ヘッドの安定性及び再生出力に大きな影響を及ぼす。縦バイアス印加層の最適な磁化量は、磁性薄膜34あるいは22の磁化量の1〜3倍程度である。   Also in an MR head using the giant magnetoresistive effect, the magnetization amount of the longitudinal bias application layer has a great influence on the head stability and the reproduction output. The optimum magnetization amount of the longitudinal bias application layer is about 1 to 3 times the magnetization amount of the magnetic thin film 34 or 22.

以上では、本発明の縦バイアス印加層として、主に、結晶構造が体心立方格子である強磁性薄膜について述べたが、非晶質強磁性薄膜、或いは結晶構造が体心立方格子である反強磁性薄膜を用いた場合にも、同様の効果が得られる。   In the above description, the ferromagnetic thin film whose crystal structure is a body-centered cubic lattice has been mainly described as the longitudinal bias application layer of the present invention. The same effect can be obtained when a ferromagnetic thin film is used.

非晶質強磁性薄膜の材料としては、Coと、Ti,V,Cr,Zr,Nb, Mo,Hf,Ta,Y,Ru,Rh,Pd,Cu,Ag,Au,Ptのなかから選ばれる少なくとも1種類以上の元素を主成分とする非晶質合金を用いることができ、代表的なものとしてCo−Zr−Nb系薄膜,Co−Zr−Ta系薄膜,Co−Hf−Nb系薄膜,Co−Hf−Ta系薄膜などが挙げられる。これらの材料の場合、スパッタリング法で作製するが、Coが90at.% よりも多いと非晶質にならず、また、70at.% よりも少ないと磁性を失ってしまうので、Co含有量の上限は90at.%であり、下限は70at.%である。   The material of the amorphous ferromagnetic thin film is selected from Co, Ti, V, Cr, Zr, Nb, Mo, Hf, Ta, Y, Ru, Rh, Pd, Cu, Ag, Au, and Pt. An amorphous alloy containing at least one element as a main component can be used, and representative examples include a Co—Zr—Nb thin film, a Co—Zr—Ta thin film, a Co—Hf—Nb thin film, Examples thereof include a Co—Hf—Ta-based thin film. In the case of these materials, it is produced by sputtering. However, if Co is more than 90 at.%, It will not be amorphous, and if it is less than 70 at.%, The magnetism will be lost. Is 90 at.%, And the lower limit is 70 at.%.

図13は、Co−Cr−Pt単層膜、及び非晶質強磁性薄膜の特定の例であるCo−Zr−Nb系薄膜20nmを下地膜とし、その上にCo−Cr−Pt系硬磁性薄膜を積層したCo−Zr−Nb/Co−Cr−PtのX線回折プロファイルである。Co−Zr−Nb/Co−Cr−Ptのプロファイルを見ると、Co−Zr−Nb系薄膜によるブロードな回折線とCo−Cr−Ptの(002)面からの回折線が観察され、Co−Cr−Pt薄膜は〈001〉結晶軸が膜面に垂直に配向していることが分かる。Co−Zr−Nb/Co−Cr−PtのCo−Cr−Pt(002)回折線の強度を、Co−Cr−Pt単層膜、及び図3に示したFe−Cr/Co−Cr−Ptと比較してみると、Co−Cr−Pt単層膜に対しては約1/3と小さくなっているが、Fe−Cr/Co−Cr−Ptに対しては約2倍と大きくなっており、これらのことは、Co−Zr−Nb/Co−Cr−Ptにおける〈001〉の配向度は、単層膜よりは低く、Fe−Cr/ Co−Cr−Ptよりは高いことを示している。Co−Cr−Ptは〈001〉方向に強い磁気異方性を有することから、Co−Cr−Pt(002)回折線の強度が小さい方が磁化の膜面内成分が多いことを示すので、Co−Zr−Nb系非晶質強磁性薄膜を下地膜として用いることにより、Fe−Cr系強磁性薄膜を用いた場合ほどではないが、硬磁性薄膜の磁気特性を改善することができる。   FIG. 13 shows a Co—Cr—Pt single layer film and a Co—Zr—Nb thin film 20 nm, which is a specific example of an amorphous ferromagnetic thin film, as a base film, and a Co—Cr—Pt hard magnetism thereon. 2 is an X-ray diffraction profile of Co—Zr—Nb / Co—Cr—Pt in which thin films are stacked. Looking at the profile of Co—Zr—Nb / Co—Cr—Pt, a broad diffraction line due to the Co—Zr—Nb thin film and a diffraction line from the (002) plane of Co—Cr—Pt are observed. It can be seen that the Cr-Pt thin film has the <001> crystal axis oriented perpendicular to the film surface. The intensity of the Co—Cr—Pt (002) diffraction line of Co—Zr—Nb / Co—Cr—Pt was measured using the Co—Cr—Pt monolayer film and the Fe—Cr / Co—Cr—Pt shown in FIG. Compared to the Co-Cr-Pt single layer film, it is about 1/3 smaller than that for Fe-Cr / Co-Cr-Pt, but about twice as large. These indicate that the orientation degree of <001> in Co—Zr—Nb / Co—Cr—Pt is lower than that of a single layer film and higher than that of Fe—Cr / Co—Cr—Pt. Yes. Since Co—Cr—Pt has strong magnetic anisotropy in the <001> direction, the smaller the intensity of the Co—Cr—Pt (002) diffraction line, the greater the in-film magnetization component. By using a Co—Zr—Nb-based amorphous ferromagnetic thin film as a base film, the magnetic properties of the hard magnetic thin film can be improved, although not as much as when using an Fe—Cr-based ferromagnetic thin film.

結晶構造が体心立方格子である反強磁性薄膜の材料としては、Crと、Mnと、Cu,Au,Ag,Co,Ni及び白金族元素から選ばれる少なくとも1種類以上の元素を主成分とする合金を用いることができる。この反強磁性材料における好ましい組成範囲は、添加元素をXとして(Cr100-cMnc)100-dd で表わしたとき、30≦c≦70,0≦d≦30であり、これは交換結合作用が最大になる組成である。また、膜厚については、20nmよりも薄くなると反強磁性を示さなくなるため、これ以上の膜厚が必要である。硬磁性薄膜の磁気特性の改善の効果は、結晶構造が体心立方格子である強磁性薄膜を用いた場合とほぼ同等である。 The material of the antiferromagnetic thin film whose crystal structure is a body-centered cubic lattice is mainly composed of Cr, Mn, and at least one element selected from Cu, Au, Ag, Co, Ni and platinum group elements. Alloys can be used. A preferable composition range in the antiferromagnetic material is 30 ≦ c ≦ 70, 0 ≦ d ≦ 30, where X is (Cr 100-c Mn c ) 100-d X d where the additive element is X. The composition has the maximum exchange coupling action. As for the film thickness, anti-ferromagnetism is not exhibited when the film thickness is thinner than 20 nm. Therefore, a film thickness larger than this is necessary. The effect of improving the magnetic properties of the hard magnetic thin film is almost the same as the case of using a ferromagnetic thin film whose crystal structure is a body-centered cubic lattice.

この反強磁性薄膜を下地膜として用いる際には、反強磁性薄膜の磁化の方向を磁気抵抗効果膜の長さ方向に揃えるために、直流磁界中で熱処理を施すことが望ましい。ここで、磁気抵抗効果膜が巨大磁気抵抗効果を利用したMRヘッドの場合には、図10に示したように磁性薄膜32の磁化の方向を固定するために反強磁性層31が設けられており、反強磁性層31の着磁方向と縦バイアス印加層の下地膜である反強性薄膜の着磁方向が異なるため、それぞれブロッキング温度の異なる材料を用いるか、又は縦バイアス印加層の下地膜である反強性薄膜として、熱処理を施さなくとも交換結合が生じる組成を選ぶことが必要となる。
(実施例7)
図14は、本発明のMRヘッドを適用した磁気ディスク装置の一実施形態の概略構造を示す図である。ここでは、磁気記録再生装置としての磁気ディスク装置に本発明のMRヘッドを適用した実施形態を示すが、本発明のMRヘッドは、例えば、磁気テープ装置等のような磁気記録再生装置にも適用可能なことは明らかである。
When this antiferromagnetic thin film is used as a base film, it is desirable to perform heat treatment in a DC magnetic field in order to align the magnetization direction of the antiferromagnetic thin film with the length direction of the magnetoresistive effect film. Here, when the magnetoresistive film is an MR head using the giant magnetoresistive effect, an antiferromagnetic layer 31 is provided to fix the direction of magnetization of the magnetic thin film 32 as shown in FIG. In addition, since the magnetization direction of the antiferromagnetic layer 31 and the magnetization direction of the antiferromagnetic thin film that is the base film of the longitudinal bias application layer are different, materials having different blocking temperatures are used, respectively, or under the longitudinal bias application layer. It is necessary to select a composition in which exchange coupling occurs without applying heat treatment as the anti-strength thin film that is the base film.
(Example 7)
FIG. 14 is a diagram showing a schematic structure of an embodiment of a magnetic disk device to which the MR head of the present invention is applied. Here, an embodiment in which the MR head of the present invention is applied to a magnetic disk device as a magnetic recording / reproducing device is shown, but the MR head of the present invention is also applied to a magnetic recording / reproducing device such as a magnetic tape device, for example. Clearly it is possible.

この磁気ディスク装置の概略構造を説明する。図9に示すように、磁気ディスク装置は、スピンドル202と、スピンドル202を軸として、等間隔に積層された複数の磁気ディスク204a,204b,204c,204d,204eと、スピンドル202を駆動するモータ203とを備えている。さらに、移動可能なキャリッジ206と、キャリッジ206に保持された磁気ヘッド205a, 205b,205c,205d,205eの群と、このキャリッジ206を駆動するボイスコイルモータ213を構成するマグネット208及びボイスコイル 207と、これを支持するベース201とを備えて構成させる。また、磁気ディスク制御装置等の上位装置212から送出される信号に従って、ボイスコイルモータ213を制御するボイスコイルモータ制御回路209を備えている。また、上位装置212から送られてきたデータを、磁気ディスク204a等の書き込み方式に対応し、磁気ヘッドに流すべき電流に変換する機能と、磁気ディスク204a等から送られてきたデータを増幅し、ディジタル信号に変換する機能とを持つライト/リード回路210を備え、このライト/リード回路210は、インターフェイス211を介して、上位装置212と接続されている。   The schematic structure of this magnetic disk device will be described. As shown in FIG. 9, the magnetic disk device includes a spindle 202, a plurality of magnetic disks 204 a, 204 b, 204 c, 204 d, and 204 e stacked at equal intervals around the spindle 202, and a motor 203 that drives the spindle 202. And. Furthermore, a movable carriage 206, a group of magnetic heads 205a, 205b, 205c, 205d, and 205e held by the carriage 206, a magnet 208 and a voice coil 207 that constitute a voice coil motor 213 that drives the carriage 206, and And a base 201 for supporting the same. In addition, a voice coil motor control circuit 209 that controls the voice coil motor 213 according to a signal sent from a host device 212 such as a magnetic disk control device is provided. Also, the data sent from the host device 212 corresponds to the writing method of the magnetic disk 204a, etc., and a function to convert the data to be passed through the magnetic head, and the data sent from the magnetic disk 204a, etc. are amplified, A write / read circuit 210 having a function of converting into a digital signal is provided, and the write / read circuit 210 is connected to a host device 212 via an interface 211.

次に、この磁気ディスク装置において、磁気ディスク204dのデータを読み出す場合の動作を説明する。上位装置212から、インターフェイス211を介して、ボイスコイルモータ制御回路209に、読み出すべきデータの指示を与える。ボイスコイルモータ制御回路209からの制御電流によって、ボイスコイルモータ213がキャリッジ206を駆動させ、磁気ディスク204d上の指示されたデータが記憶されているトラックの位置に、磁気ヘッド205a,205b ,205c,205d,205eの群を高速で移動させ、正確に位置付けする。
この位置付けは、磁気ディスク204d上にデータとともに書き込まれているサーボ情報を磁気ヘッド205dが読み取り、位置に関する信号をボイスコイルモータ制御回路209に提供することにより行われる。また、ベース201に支持されたモータ203は、スピンドル202に取り付けた複数の磁気ディスク204a,204b,204c,204d,204eを回転させる。次に、ライト/リード回路210からの信号に従って、指示された所定の磁気ディスク204dを選択し、指示された領域の先頭位置を検出後、磁気ヘッド205dのデータ信号を読み出す。この読み出しは、ライト/リード回路210に接続されている磁気ヘッド205dが、磁気ディスク204dとの間で信号の授受を行うことにより行われる。読み出されたデータは、所定の信号に変換され、上位装置212に送出される。
Next, the operation when reading data from the magnetic disk 204d in this magnetic disk device will be described. An instruction of data to be read is given from the host device 212 to the voice coil motor control circuit 209 via the interface 211. With the control current from the voice coil motor control circuit 209, the voice coil motor 213 drives the carriage 206, and the magnetic heads 205a, 205b, 205c, The groups 205d and 205e are moved at high speed and accurately positioned.
This positioning is performed by the servo information read together with the data on the magnetic disk 204d read by the magnetic head 205d and a signal related to the position provided to the voice coil motor control circuit 209. The motor 203 supported by the base 201 rotates a plurality of magnetic disks 204a, 204b, 204c, 204d, and 204e attached to the spindle 202. Next, the designated predetermined magnetic disk 204d is selected in accordance with the signal from the write / read circuit 210, the head position of the designated area is detected, and then the data signal of the magnetic head 205d is read. This reading is performed when the magnetic head 205d connected to the write / read circuit 210 exchanges signals with the magnetic disk 204d. The read data is converted into a predetermined signal and sent to the host device 212.

ここでは、磁気ディスク204dのデータを読み出す場合の動作を説明したが、他の磁気ディスクの場合も同様である。また、図14においては、5枚の磁気ディスクからなる磁気ディスク装置を示してあるが、必ずしも5枚である必要はない。
(実施例8)
反強磁性層/磁性薄膜/非磁性導電性薄膜/磁性薄膜からなる磁気抵抗効果積層膜を有する磁気抵抗効果型ヘッドでも、図17に示すように磁気抵抗効果積層膜の両脇を切り落し、縦バイアス印加層24及び電極膜17を配置する構造にすることができる。この場合にも、縦バイアス印加層に磁性を有する下地膜252を用いることにより、基板側の磁性薄膜32の磁化を安定にし、バルクハウゼンノイズを抑制することができる。
Here, the operation when reading data from the magnetic disk 204d has been described, but the same applies to other magnetic disks. FIG. 14 shows a magnetic disk device including five magnetic disks, but the number is not necessarily five.
(Example 8)
Even in a magnetoresistive head having a magnetoresistive laminated film composed of an antiferromagnetic layer / magnetic thin film / nonmagnetic conductive thin film / magnetic thin film, both sides of the magnetoresistive laminated film are cut off as shown in FIG. A structure in which the bias application layer 24 and the electrode film 17 are disposed can be employed. Also in this case, by using the magnetic underlayer 252 for the longitudinal bias application layer, the magnetization of the magnetic thin film 32 on the substrate side can be stabilized and Barkhausen noise can be suppressed.

上述の実施例では基板側から順に、反強磁性層31/磁性薄膜32/非磁性導電性薄膜33/磁性薄膜34,電極膜17を配置した磁気抵抗効果型ヘッドを示したが、必ずしもこの順に配置しなくてもよい。但し、磁性薄膜34/非磁性導電性薄膜33/磁性薄膜32/反強磁性層31とする場合には反強磁性層31は導電性の反強磁性膜が好ましい。
(実施例9)
図18は本実施例の磁気抵抗効果型ヘッドの構造である。まず軟磁性薄膜13,非磁性導電性薄膜14および磁気抵抗効果膜15を順次成膜した。磁気抵抗効果膜15として80at.%NiFe を用いた。その後、中央能動領域上にステンシル状のホトレジストを形成した。続いてこのレジスト材によってマスクされていない領域の上記軟磁性薄膜13,上記非磁性導電性薄膜14および上記磁気抵抗効果膜15をイオンミリングにより除去した。このとき基板をイオンビームに対し適切な角度を維持したまま回転させることにより末広がりのテーパ45を形成した。次に端部受動領域を形成する硬磁性薄膜26と体心立方格子の強磁性を示す下地膜252からなる縦バイアス印加層24および電極膜17を付着した。硬磁性薄膜26としてCo0.82Cr0.09Pt0.09膜又はCo0.80Cr0.08Pt0.09(ZrO2)0.03膜、強磁性を示す下地膜252として実施例2のFe−Cr合金を用いた。今回の硬磁性薄膜26と強磁性を示す下地膜252はRFスパッタ法により形成し、ターゲット上にZrO2チップを配置することによりCoCrPt膜中のZrO2濃度を調節した。硬磁性薄膜26の膜厚は中央能動領域に与えるバイアス磁界が Co0.82Cr0.09Pt0.09膜とCo0.80Cr0.08Pt0.09(ZrO2)0.03 膜で同じになるようそれぞれ50nm,52nmに選んだ。ステンシル上に付着した永久磁石膜および電極膜は、リフトオフによりステンシルと共に除去した。軟磁性薄膜13は磁気抵抗効果膜15に横バイアス磁界44を印加するものであり、縦バイアス印加層24は磁気抵抗効果膜15に縦バイアス磁界46を印加するものである。縦バイアス印加層は磁気抵抗効果膜15を所定の形状に作成した後軟磁性薄膜13,非磁性導電性薄膜14及び磁気抵抗効果膜15の合計の厚さより薄く積層され、磁気抵抗効果膜15の部分に残らないように除去され、磁気抵抗効果膜15との端部で残るようにテーパが形成される。更に、その後電極膜8が形成され、磁気抵抗効果膜15との接触部でテーパが形成される。121は0.4μmの厚さのアルミナの下部ギャップ層、111は約2μmのNiFe合金からなる下部シールド層、20は基板12の表面にアルミナの絶縁膜を10μmの厚さで形成し研摩して非磁性基板10の表面を平滑にするためのものである。非磁性基板10はTiC含有アルミナ焼結体が用いられる。非磁性導電性薄膜14は200ÅのTa膜が用いられる。磁気抵抗効果膜15は厚さ400Åの80at.%Ni−Fe合金が用いられる。
In the above embodiment, the magnetoresistive head is shown in which the antiferromagnetic layer 31 / magnetic thin film 32 / nonmagnetic conductive thin film 33 / magnetic thin film 34 and electrode film 17 are arranged in this order from the substrate side. It is not necessary to arrange. However, when the magnetic thin film 34 / nonmagnetic conductive thin film 33 / magnetic thin film 32 / antiferromagnetic layer 31 are used, the antiferromagnetic layer 31 is preferably a conductive antiferromagnetic film.
Example 9
FIG. 18 shows the structure of the magnetoresistive head of this embodiment. First, a soft magnetic thin film 13, a nonmagnetic conductive thin film 14, and a magnetoresistive effect film 15 were sequentially formed. As the magnetoresistive effect film 15, 80 at.% NiFe was used. Thereafter, a stencil-like photoresist was formed on the central active region. Subsequently, the soft magnetic thin film 13, the nonmagnetic conductive thin film 14, and the magnetoresistive film 15 in the region not masked by the resist material were removed by ion milling. At this time, the substrate 45 was rotated while maintaining an appropriate angle with respect to the ion beam, thereby forming a taper 45 having a widening end. Next, a longitudinal bias application layer 24 and an electrode film 17 comprising a hard magnetic thin film 26 forming an end passive region and a base film 252 showing ferromagnetism of a body-centered cubic lattice were attached. The Co 0.82 Cr 0.09 Pt 0.09 film or Co 0.80 Cr 0.08 Pt 0.09 (ZrO 2 ) 0.03 film was used as the hard magnetic thin film 26, and the Fe—Cr alloy of Example 2 was used as the base film 252 exhibiting ferromagnetism. The hard magnetic thin film 26 and the underlayer 252 exhibiting ferromagnetism were formed by RF sputtering, and the ZrO 2 concentration in the CoCrPt film was adjusted by disposing a ZrO 2 chip on the target. The film thickness of the hard magnetic film 26 is chosen bias field Co 0.82 Cr 0.09 Pt 0.09 membrane and Co 0.80 Cr 0 to give the central active region. 08 Pt 0.09 (ZrO 2), respectively 50nm to be the same at 0.03 membrane, the 52nm . The permanent magnet film and the electrode film adhered on the stencil were removed together with the stencil by lift-off. The soft magnetic thin film 13 applies a lateral bias magnetic field 44 to the magnetoresistive effect film 15, and the longitudinal bias application layer 24 applies a longitudinal bias magnetic field 46 to the magnetoresistive effect film 15. The longitudinal bias application layer is formed thinner than the total thickness of the soft magnetic thin film 13, the nonmagnetic conductive thin film 14 and the magnetoresistive effect film 15 after the magnetoresistive effect film 15 is formed in a predetermined shape. The taper is formed so as not to remain in the portion and to remain at the end of the magnetoresistive film 15. Further, the electrode film 8 is then formed, and a taper is formed at the contact portion with the magnetoresistive film 15. 121 is an alumina lower gap layer having a thickness of 0.4 μm, 111 is a lower shield layer made of a NiFe alloy of about 2 μm, and 20 is an alumina insulating film formed on the surface of the substrate 12 to a thickness of 10 μm and polished. This is for smoothing the surface of the nonmagnetic substrate 10. The nonmagnetic substrate 10 is a TiC-containing alumina sintered body. The nonmagnetic conductive thin film 14 is a 200 mm Ta film. The magnetoresistive effect film 15 is made of an 80 at.% Ni—Fe alloy having a thickness of 400 mm.

これらのヘッドの電気磁気変換特性を測定した結果、出力変動20%,波形変動10%であったCo0.82Cr0.09Pt0.09膜を用いたヘッドに対し、 Co0.80Cr0.08Pt0.09(ZrO2)0.03 膜を用いたヘッドでは出力変動5%以内、波形変動5%以内に低減することができた。よって、 Co0.80Cr0.08Pt0.09(ZrO2)0.03 膜を硬磁性薄膜26に用いることによりBHN及び波形変動抑制効果が高くなることを確認した。 As a result of measuring the electro-magnetic conversion characteristics of these heads, Co 0.80 Cr 0.08 Pt 0.09 (ZrO 2 ) 0.03 was compared with the head using the Co 0.82 Cr 0.09 Pt 0.09 film that had an output fluctuation of 20% and a waveform fluctuation of 10%. In the head using the film, the output fluctuation could be reduced within 5% and the waveform fluctuation within 5%. Therefore, it was confirmed that the effect of suppressing BHN and waveform fluctuation is enhanced by using the Co 0.80 Cr 0.08 Pt 0.09 (ZrO 2 ) 0.03 film for the hard magnetic thin film 26.

中央能動領域はMR膜,横バイアスを印加するソフトバイアス膜である軟磁性薄膜13と前記2磁性膜を分離する非磁性導電性薄膜14を有する。端部受動領域は中央能動領域に縦バイアスを印加する縦バイアス印加層24より構成される。端部接合領域は中央能動領域に二つのテーパを有している。   The central active region has an MR film, a soft magnetic thin film 13 that is a soft bias film for applying a lateral bias, and a nonmagnetic conductive thin film 14 that separates the two magnetic films. The end passive region is composed of a longitudinal bias applying layer 24 that applies a longitudinal bias to the central active region. The end junction region has two tapers in the central active region.

この硬磁性膜7は、永久磁石膜からの漏洩磁界と、永久磁石膜と中央能動領域との接合領域での結合磁界により中央能動領域に縦バイアスを与える。永久磁石膜はBHN抑制のために磁気媒体からの磁界に対して安定に中央能動領域に磁界を印加する必要がある。このためには永久磁石膜の保磁力として1000Oe以上が必要である。
(実施例10)
図19は本実施例の磁気抵抗効果ヘッドの斜視図である。
The hard magnetic film 7 applies a longitudinal bias to the central active region by a leakage magnetic field from the permanent magnet film and a coupling magnetic field in a junction region between the permanent magnet film and the central active region. The permanent magnet film needs to apply a magnetic field to the central active region stably with respect to the magnetic field from the magnetic medium in order to suppress BHN. For this purpose, a coercive force of the permanent magnet film is required to be 1000 Oe or more.
(Example 10)
FIG. 19 is a perspective view of the magnetoresistive head of this embodiment.

本実施例は実施例9と同じ構造で、磁気抵抗効果型ヘッドの膜の積層構造が異なるものである。アルミナからなる下部ギャップ層121の上に順次厚さ50 nmのNiOからなる反強磁性層31,磁性薄膜32として厚さ1nmの80 at.%Ni−Fe 合金膜54と厚さ1nmのCo膜45,厚さ2nmのCuから非磁性導電性薄膜56及び厚さ5nmのNiFe合金からなる横バイアス印加用の軟磁性薄膜13が形成されたものである。   The present embodiment has the same structure as that of the ninth embodiment, but differs in the laminated structure of the magnetoresistive head film. On the lower gap layer 121 made of alumina, an antiferromagnetic layer 31 made of NiO having a thickness of 50 nm, an 80 at.% Ni—Fe alloy film 54 having a thickness of 1 nm and a Co film having a thickness of 1 nm as the magnetic thin film 32. 45, a nonmagnetic conductive thin film 56 and a soft magnetic thin film 13 for applying a lateral bias made of a NiFe alloy having a thickness of 5 nm are formed from Cu having a thickness of 2 nm.

また、反強磁性膜としては、従来材料のFeMnに比べ、製造工程での腐食がない酸化物NiOを用い、これにより量産工程での高信頼化を図った。また、ヘッドの出力は、ヘッドに流す電流とスピンバルブ膜の抵抗変化量の積によって決まり、反強磁性膜自身は抵抗変化には寄与しない。従って、反強磁性膜として絶縁物質であるNiOを用いることで、入力した電流を効率良く抵抗変化に寄与させ、高い磁界感度を得ることができるようになった。以上のように、本実施例においては約5Gb/in2 の記録密度を実現できる。 Further, as the antiferromagnetic film, an oxide NiO that does not corrode in the manufacturing process as compared with the conventional material FeMn was used, thereby achieving high reliability in the mass production process. The output of the head is determined by the product of the current flowing through the head and the resistance change amount of the spin valve film, and the antiferromagnetic film itself does not contribute to the resistance change. Therefore, by using NiO, which is an insulating material, as the antiferromagnetic film, the input current can efficiently contribute to the resistance change, and high magnetic field sensitivity can be obtained. As described above, in this embodiment, a recording density of about 5 Gb / in 2 can be realized.

さらに、本実施例における軟磁性薄膜13に実施例9と同様にNiFe合金に酸化物を分散させた膜を形成させることにより高い再生出力が得られる。
(実施例11)
図20は本実施例の磁気抵抗効果型ヘッドの斜視図である。
Further, a high reproduction output can be obtained by forming a film in which an oxide is dispersed in a NiFe alloy in the same manner as in the ninth embodiment on the soft magnetic thin film 13 in the present embodiment.
(Example 11)
FIG. 20 is a perspective view of the magnetoresistive head of this embodiment.

反強磁性材からなるバイアス膜27及び28は、交換結合によって磁性膜21に異方性を印加する。縦バイアス印加層は実施例4と同様の構成を有する。非磁性導電膜14に挟まれた磁性膜22の容易磁化方向は一軸異方性の誘導によって印加する。これは磁性膜の成長中に所定の方向に磁界を印加することで達成される。本図の実施例は異方性の印加を交換結合と誘導磁気異方性で実現した例であり、膜面内で、互いに直交する。感知すべき磁界の大きさに比較して、磁性膜 21の異方性を大きく、磁性膜22の異方性を小さくすることで、磁性膜21の磁化を外部磁界に対してほぼ固定し、磁性膜22の磁化のみが外部磁界に対して大きく反応するようになる。さらに矢印60の方向にかかる感知すべき磁界に対して、磁性膜21の磁化は異方性61によって磁化と外部磁界が平行な容易軸励磁の状態に、逆に磁性膜22の異方性に依って磁化と外部磁界が垂直な困難軸励磁の状態になっている。この効果によって上記の応答をさらに顕著なものにできるとともに、外部磁界に対して磁性膜22の磁化が、回転による困難軸励磁で素子が駆動される状態が実現し、磁壁移動による励磁に伴うノイズを防止し、高周波での動作を可能にすることができる。   The bias films 27 and 28 made of an antiferromagnetic material apply anisotropy to the magnetic film 21 by exchange coupling. The longitudinal bias application layer has the same configuration as that of the fourth embodiment. The easy magnetization direction of the magnetic film 22 sandwiched between the nonmagnetic conductive films 14 is applied by induction of uniaxial anisotropy. This is achieved by applying a magnetic field in a predetermined direction during the growth of the magnetic film. The embodiment in this figure is an example in which the application of anisotropy is realized by exchange coupling and induced magnetic anisotropy, and they are orthogonal to each other in the film plane. By increasing the anisotropy of the magnetic film 21 and decreasing the anisotropy of the magnetic film 22 compared to the magnitude of the magnetic field to be sensed, the magnetization of the magnetic film 21 is substantially fixed with respect to the external magnetic field, Only the magnetization of the magnetic film 22 reacts greatly to the external magnetic field. Further, with respect to the magnetic field to be sensed in the direction of the arrow 60, the magnetization of the magnetic film 21 changes to an easy axis excitation state in which the magnetization and the external magnetic field are parallel due to the anisotropy 61, and conversely to the anisotropy of the magnetic film 22. Therefore, it is in the state of difficult axis excitation in which the magnetization and the external magnetic field are perpendicular. This effect makes the above response even more remarkable, and realizes a state in which the element is driven by hard axis excitation by rotation with respect to the external magnetic field, and noise accompanying excitation by domain wall motion. And can be operated at high frequency.

本実施例の磁気抵抗効果素子を構成する膜は高周波マグネトロンスパッタリング装置により作製した。膜形成時には基板面内で直交する二対の電磁石を用いて基板に平行におよそ50エルステッドの磁界を印加して、一軸異方性を持たせると共に、酸化ニッケル膜の交換結合バイアスの方向をそれぞれの方向に誘導した。   The film constituting the magnetoresistive effect element of this example was produced by a high frequency magnetron sputtering apparatus. At the time of film formation, a magnetic field of approximately 50 oersted is applied in parallel to the substrate using two pairs of electromagnets orthogonal to each other in the substrate surface to provide uniaxial anisotropy and to change the direction of the exchange coupling bias of the nickel oxide film. Induced in the direction of

異方性の誘導は、基板近傍に取り付けた二対の電磁石によって、各磁性膜の形成時に誘導すべき方向に磁界を加えて行った。或いは、多層膜形成後に反強磁性膜のネール温度近傍で磁界中熱処理を行い、反強磁性バイアスの方向を磁界の方向に誘導した。   The induction of anisotropy was performed by applying a magnetic field in the direction to be induced when each magnetic film was formed by two pairs of electromagnets attached in the vicinity of the substrate. Alternatively, heat treatment in a magnetic field was performed near the Neel temperature of the antiferromagnetic film after the multilayer film was formed, and the direction of the antiferromagnetic bias was induced in the direction of the magnetic field.

磁気抵抗効果素子の性能の評価は膜を短冊形状にパターニングし、電極を形成して行った。この時、磁性膜の一軸異方性の方向と素子の電流方向が平行となるようにした。電気抵抗は電極端子間に一定の電流を通じ、素子の面内に電流方向に垂直な方向に磁界を印加して、素子の電気抵抗を電極端子間の電圧として測定し、磁気抵抗変化率として感知した。   The performance of the magnetoresistive effect element was evaluated by patterning the film into a strip shape and forming an electrode. At this time, the direction of uniaxial anisotropy of the magnetic film and the current direction of the element were made parallel. The electrical resistance is measured as the rate of change in magnetoresistance by passing a constant current between the electrode terminals, applying a magnetic field in the direction perpendicular to the current direction in the plane of the element, and measuring the electrical resistance of the element as the voltage between the electrode terminals. did.

表1の試料No.1で表わした、上下にNiO膜を有する構成の素子の、磁界に対する抵抗変化率を表わした図である。バイアス膜27,28にNiO膜を、磁性膜21,22にNi80Fe20合金薄膜を、非磁性導電膜にCu膜を用いたことに対応している。即ち、磁界の方向に強く誘導された磁性膜の効果は曲線の左半分のループとして検出される。他の、強く誘導されていない磁性膜の効果は中央付近の急峻な抵抗変化として現われている。本発明の磁気抵抗効果素子の再生出力はこの抵抗変化率の大きさに、また感度は飽和磁界の小ささに、それぞれ対応することから、本発明の素子出力が大きく、感度が高いことが分かる。 It is the figure showing the resistance change rate with respect to the magnetic field of the element of the structure which has a NiO film | membrane upper and lower expressed with sample No. 1 of Table 1. FIG. This corresponds to the use of NiO films for the bias films 27 and 28, Ni 80 Fe 20 alloy thin films for the magnetic films 21 and 22, and Cu films for the nonmagnetic conductive films. That is, the effect of the magnetic film strongly induced in the direction of the magnetic field is detected as a loop on the left half of the curve. The other effect of the magnetic film that is not strongly induced appears as a steep resistance change near the center. Since the reproduction output of the magnetoresistive effect element according to the present invention corresponds to the resistance change rate and the sensitivity corresponds to the small saturation magnetic field, it can be seen that the element output of the present invention is large and the sensitivity is high. .

また、非磁性導電膜としてCuに、Ag,Auを添加したとき及びAg,Auにて多層膜を形成した試料においても同様の効果が得られた。   Similar effects were also obtained in the case where Ag and Au were added to Cu as the nonmagnetic conductive film and in the case where a multilayer film was formed with Ag and Au.

Cu膜の厚さを変えたNiO/NiFe/Cu/NiFe膜において磁気的結合の強さはCuの厚さと共におよそ10Å周期で反強磁性/強磁性間で振動する。磁界に対する感度の高い磁気抵抗効果素子を得るにはこの磁気的結合をおよそゼロにすることが必須である。非磁性導電膜としてCuを用いた場合には、その厚さを11Å〜22Åの範囲にすることで磁性膜間の磁気的結合をゼロにすることができる。これによって初めて数エルステッドの弱い外部磁界に応答して電気抵抗が大きく変化する、すなわち感度の高い磁気抵抗効果素子を得ることができるのである。   In the NiO / NiFe / Cu / NiFe film in which the thickness of the Cu film is changed, the strength of the magnetic coupling oscillates between the antiferromagnetism and the ferromagnetism with a period of about 10Å along with the thickness of Cu. In order to obtain a magnetoresistive element having high sensitivity to a magnetic field, it is essential to make this magnetic coupling approximately zero. When Cu is used as the nonmagnetic conductive film, the magnetic coupling between the magnetic films can be made zero by setting the thickness in the range of 11 to 22 mm. In this way, for the first time, it is possible to obtain a magnetoresistive effect element having a large sensitivity, that is, a highly sensitive magnetoresistive element in response to a weak external magnetic field of several Oersteds.

NiFe磁性膜にCoを添加すると抵抗変化率はNiFeのみのおよそ4%から5.5% まで向上する。これはNiFeに加えてCoを添加することが積層膜の磁気抵抗効果を改善することを示している。   When Co is added to the NiFe magnetic film, the rate of change in resistance is improved from about 4% to 5.5% of NiFe alone. This indicates that the addition of Co in addition to NiFe improves the magnetoresistance effect of the laminated film.

表1は磁抵抗効果膜の構成を変えて作製した磁気抵抗効果素子の特性例を示す。膜構成は紙面左側が基体側で順次右側に積層したものである。   Table 1 shows an example of characteristics of magnetoresistive elements produced by changing the configuration of the magnetoresistive film. The film structure is such that the left side of the paper is sequentially laminated on the base side on the right side.

Figure 2005063643
Figure 2005063643


表1では素子の特性を抵抗変化率と飽和磁界で表わした。素子としての再生出力はこの抵抗変化率の大きさに、感度は飽和磁界の小ささに、それぞれ対応する。表1の結果から明らかなように本発明の磁気抵抗素子(No.1〜5)は4%以上の抵抗変化率と良好な磁気特性を有するものであり、従来の積層膜(No.6,7)に比べ、抵抗変化率において優れている。特に、試料No.1,2,4は飽和磁界10エルステッド程度の良好な磁界感度と抵抗変化率6から7%の高い出力を示している。
(実施例12)
図21は実施例1〜11に記載の磁気抵抗効果型磁気ヘッド素子に加えて記録用ヘッドを形成した記録再生分離型ヘッドの概念図である。記録再生分離型ヘッドは、本発明の素子を用いた再生ヘッドと、インダクティブ型の記録ヘッド、及び、漏れ磁界による再生ヘッドの混乱を防止するためのシールド部からなる。ここでは水平磁気記録用の記録ヘッドとの搭載を示したが、本発明の磁気抵抗効果素子を垂直磁気記録用のヘッドと組合せ、垂直記録に用いても良い。ヘッドは、基体50上に下部シールド層111,磁気抵抗効果素子60及び電極40,上部シールド層112からなる再生ヘッドと、下部磁性膜84,コイル41,上部磁性膜83からなる記録ヘッドとを形成してなる。このヘッドによって、記録媒体上に信号を書き込み、また記録媒体から信号を読み取るのである。再生ヘッドの感知部分と、記録ヘッドの磁気ギャップはこのように同一スライダー上に重ねた位置に形成することで、同一トラックに同時に位置決めができる。このヘッドをスライダーに加工し、磁気記録再生装置に搭載した。

In Table 1, the characteristics of the element are represented by the resistance change rate and the saturation magnetic field. The reproduction output as an element corresponds to the magnitude of the resistance change rate, and the sensitivity corresponds to the magnitude of the saturation magnetic field. As is apparent from the results in Table 1, the magnetoresistive elements (No. 1 to 5) of the present invention have a resistance change rate of 4% or more and good magnetic characteristics, and the conventional laminated film (No. 6, Compared to 7), the resistance change rate is excellent. In particular, Sample Nos. 1, 2, and 4 show a good magnetic field sensitivity of about 10 oersted saturation field and a high output of 6 to 7% resistance change rate.
(Example 12)
FIG. 21 is a conceptual view of a recording / reproducing separated type head in which a recording head is formed in addition to the magnetoresistive effect type magnetic head element described in the first to eleventh embodiments. The recording / reproducing separation type head includes a reproducing head using the element of the present invention, an inductive recording head, and a shield portion for preventing the reproducing head from being confused by a leakage magnetic field. Although mounting with a recording head for horizontal magnetic recording is shown here, the magnetoresistive element of the present invention may be combined with a head for vertical magnetic recording and used for vertical recording. The head is formed with a reproducing head composed of the lower shield layer 111, the magnetoresistive element 60 and the electrode 40, and the upper shield layer 112 on the substrate 50, and a recording head composed of the lower magnetic film 84, the coil 41, and the upper magnetic film 83. Do it. The head writes a signal on the recording medium and reads the signal from the recording medium. By forming the sensing portion of the reproducing head and the magnetic gap of the recording head in such a manner that they overlap each other on the same slider, positioning can be performed simultaneously on the same track. This head was processed into a slider and mounted on a magnetic recording / reproducing apparatus.

ヘッドスライダー90を兼ねる基体50上に磁気抵抗効果素子60および電極40を形成し、これを記録媒体91上に位置決めして再生を行う。記録媒体91は回転し、ヘッドスライダー90は記録媒体91の上を、0.2μm 以下の高さ、或いは接触状態で対向して相対運動する。この機構により、磁気抵抗効果素子60は記録媒体91に記録された磁気的信号を、その漏れ磁界から読み取ることのできる位置に設定されるのである。磁気抵抗効果素子60は複数の磁性膜と非磁性導電膜を交互に積層した膜とバイアス膜、特に反強磁性膜からなる。本発明の特徴はこの積層膜の一部の磁性膜、望ましくは積層した磁性膜のうち一層おきの膜に、記録媒体に対向する面63に対して垂直な矢印61の方向に強い異方性を誘導し、その磁化を、この方向におおよそ固定することにある。また磁性膜の他の膜は、磁気抵抗効果膜の膜面内で矢印61と垂直な方向、つまり矢印62の方向に比較的弱く異方性を印加して、その磁化をこの方向に誘導する。このような構成により、記録媒体上に磁気的に記録された信号は、媒体上に漏れ磁界64として磁気抵抗効果素子60に達し、その成分、特に磁気抵抗効果膜の膜面内の成分に従って矢印62の方向から矢印65のように磁化が回転し、非磁性導電膜を介して隣合った二つの磁性膜の互いの磁化の方向のなす角度が変化して磁気抵抗効果が生じ、再生出力を得る。磁気抵抗効果素子の信号を感知する部分は、磁気抵抗効果素子60の電流の流れる部分、即ち電極40で挟まれる部分であるが、この部分の記録媒体91表面に平行な方向の幅42は記録トラックの幅44より狭く、特にその比が0.8 以下になして互いの位置のずれによる隣接するトラックの混信を防止する。
(実施例13)
図21は実施例12の磁気記録再生装置において、記録用ヘッドと再生ヘッドの構成を逆にした別の実施例である。基体50上に下部及び上部磁性膜83, 84とこれらに起磁力を印加するコイル41からなる記録ヘッドと、下部シールド層111を形成し、その後に磁気抵抗効果素子60及び電極40,上部シールド層112の間に形成する。すなわち比較的構造に敏感な磁気抵抗効果膜を、記録ヘッドの上に、後に形成して記録ヘッド作製に伴う応力や熱影響をなくし、さらに記録ヘッドとの位置合わせを容易にして、磁気記録再生装置のトラック幅方向の制度を向上し、生産性を向上するものである。
The magnetoresistive effect element 60 and the electrode 40 are formed on the substrate 50 that also serves as the head slider 90, and these are positioned on the recording medium 91 for reproduction. The recording medium 91 rotates, and the head slider 90 moves relative to the recording medium 91 in opposition with a height of 0.2 μm or less or in contact. By this mechanism, the magnetoresistive element 60 is set at a position where the magnetic signal recorded on the recording medium 91 can be read from the leakage magnetic field. The magnetoresistive effect element 60 is composed of a film in which a plurality of magnetic films and nonmagnetic conductive films are alternately stacked, and a bias film, particularly an antiferromagnetic film. The present invention is characterized by strong anisotropy in the direction of the arrow 61 perpendicular to the surface 63 facing the recording medium, in a part of the laminated film, desirably every other of the laminated magnetic films. Is to fix the magnetization approximately in this direction. Further, the other magnetic film applies a relatively weak anisotropy in the direction perpendicular to the arrow 61 in the film surface of the magnetoresistive effect film, that is, in the direction of the arrow 62, and induces its magnetization in this direction. . With such a configuration, a signal magnetically recorded on the recording medium reaches the magnetoresistive effect element 60 as a leakage magnetic field 64 on the medium, and an arrow according to its component, particularly a component in the film surface of the magnetoresistive effect film. Magnetization rotates from the direction of 62 as indicated by an arrow 65, and the angle formed by the magnetization directions of the two adjacent magnetic films via the nonmagnetic conductive film changes to produce a magnetoresistive effect. obtain. The part of the magnetoresistive effect element that senses the signal is the part of the magnetoresistive effect element 60 through which the current flows, that is, the part sandwiched between the electrodes 40. The width 42 in the direction parallel to the surface of the recording medium 91 is recorded. It is narrower than the track width 44, and in particular, the ratio thereof is 0.8 or less to prevent cross-talk between adjacent tracks due to displacement of each other.
(Example 13)
FIG. 21 shows another embodiment in which the configuration of the recording head and the reproducing head is reversed in the magnetic recording / reproducing apparatus of the twelfth embodiment. A recording head composed of lower and upper magnetic films 83 and 84 and a coil 41 for applying magnetomotive force to these and a lower shield layer 111 are formed on the substrate 50, and then the magnetoresistive effect element 60, the electrode 40, and the upper shield layer are formed. 112. In other words, a magnetoresistive film that is relatively sensitive to the structure is formed on the recording head later to eliminate the stress and thermal effects associated with the recording head fabrication, and to facilitate alignment with the recording head, thereby reproducing the magnetic recording This will improve the system in the track width direction of the equipment and improve productivity.

本発明の磁気抵抗効果型磁気ヘッドの部分断面図。FIG. 3 is a partial cross-sectional view of the magnetoresistive head of the present invention. 単層の硬磁性薄膜と、本発明の体心立方構造を有する強磁性薄膜を下地膜に用いた硬磁性薄膜の磁気特性を比較する図。The figure which compares the magnetic characteristic of the hard magnetic thin film which used the single layer hard magnetic thin film and the ferromagnetic thin film which has the body centered cubic structure of this invention for the base film. 単層の硬磁性薄膜と、本発明の体心立方構造を有する強磁性薄膜を下地膜に用いた硬磁性薄膜のX線プロファイルを比較する図。The figure which compares the X-ray profile of the hard magnetic thin film which used the single layer hard magnetic thin film and the ferromagnetic thin film which has the body centered cubic structure of this invention for the base film. 本発明の異方性磁気抵抗効果を利用したMRヘッドの一実施形態の感磁部近傍の断面図。FIG. 4 is a cross-sectional view of the vicinity of a magnetic sensing portion of an embodiment of an MR head using the anisotropic magnetoresistance effect of the present invention. 本発明の体心立方構造を有する強磁性薄膜を下地膜に用いたMRヘッドのトラック方向の感度の分布を示す図。The figure which shows the sensitivity distribution of the track direction of MR head which used the ferromagnetic thin film which has a body centered cubic structure of this invention for the base film. 本発明の磁化モデルを示す図。The figure which shows the magnetization model of this invention. Cr下地を用いた従来のMRヘッドのトラック方向の感度の分布を示す図。The figure which shows the distribution of the sensitivity of the track direction of the conventional MR head using Cr foundation | substrate. Cr下地を用いた従来の磁化モデルを示す図。The figure which shows the conventional magnetization model using Cr base | substrate. 本発明の異方性磁気抵抗効果を利用したMRヘッドの他の実施形態の感磁部近傍の断面図。Sectional drawing of the magnetosensitive part vicinity of other embodiment of MR head using the anisotropic magnetoresistive effect of this invention. 磁気抵抗効果積層膜の膜構成を示す図。The figure which shows the film | membrane structure of a magnetoresistive effect laminated film. 本発明の異方性磁気抵抗効果を利用したMRヘッド感磁部近傍の断面図。FIG. 3 is a cross-sectional view of the vicinity of an MR head magnetic sensing portion using the anisotropic magnetoresistance effect of the present invention. 本発明の磁気抵抗効果積層膜を利用したMRヘッドの他の実施形態の感磁部近傍の断面図。Sectional drawing of the magnetosensitive part vicinity of other embodiment of MR head using the magnetoresistive effect laminated film of this invention. 単層の硬磁性薄膜と、本発明の非晶質強磁性薄膜を下地膜に用いた硬磁性薄膜のX線プロファイルを比較する図。The figure which compares the X-ray profile of the hard-magnetic thin film of a single layer, and the hard-magnetic thin film which used the amorphous ferromagnetic thin film of this invention for the base film. 本発明のMRヘッドを用いた一実施形態の磁気ディスク装置を示す図。1 is a diagram showing a magnetic disk device of an embodiment using an MR head of the present invention. 従来技術のMRヘッドの膜構成を示す図。The figure which shows the film | membrane structure of MR head of a prior art. 他の別の従来技術のMRヘッドの膜構成を示す図。The figure which shows the film | membrane structure of another another prior art MR head. 本発明の磁気抵抗効果積層膜を利用したMRヘッドの一実施形態の感磁部近傍の断面図。FIG. 3 is a cross-sectional view of the vicinity of a magnetic sensing portion of an embodiment of an MR head using the magnetoresistive effect laminated film of the present invention. 本発明の磁気抵抗効果型磁気ヘッドの感磁部の斜視図。The perspective view of the magnetic sensing part of the magnetoresistive effect type magnetic head of this invention. 本発明の磁気抵抗効果型磁気ヘッドの感磁部の斜視図。The perspective view of the magnetic sensing part of the magnetoresistive effect type magnetic head of this invention. 本発明の磁気抵抗効果型磁気ヘッドの感磁部の斜視図。The perspective view of the magnetic sensing part of the magnetoresistive effect type magnetic head of this invention. 本発明の再生用磁気抵抗効果型磁気ヘッドと記録用誘導型磁気ヘッドを有する薄膜磁気ヘッドの斜視図。1 is a perspective view of a thin film magnetic head having a reproducing magnetoresistive magnetic head and a recording induction magnetic head of the present invention. FIG. 本発明の再生用磁気抵抗効果型磁気ヘッドと記録用誘導型磁気ヘッドを有する薄膜磁気ヘッドの斜視図。1 is a perspective view of a thin film magnetic head having a reproducing magnetoresistive magnetic head and a recording induction magnetic head of the present invention. FIG.

符号の説明Explanation of symbols

10…非磁性基板、13…軟磁性薄膜、14,33,56…非磁性導電性薄膜、15…磁気抵抗効果膜、17…電極膜、18,20…絶縁膜、24…縦バイアス印加層、26…硬磁性薄膜、31…反強磁性層、32,34…磁性薄膜、35…保護膜、36…トラック幅方向、45…Co膜、51…軟磁性薄膜の磁化、 52…磁気抵抗効果膜の磁化、53…硬磁性薄膜の磁化、54…80at.%Ni−Fe合金膜、60…磁気抵抗効果素子、83…上部磁性膜、84…下部磁性膜、111…下部シールド層、112…上部シールド層、121…下部ギャップ層、122…上部ギャップ層、201…ベース、202…スピンドル、203…モータ、204a,204b,204c,204d,204e…磁気ディスク、 205a,205b,205c,205d,205e…磁気ヘッド、206…キャリッジ、207…ボイスコイル、208…マグネット、209…ボイスコイルモータ制御回路、210…ライト/リード回路、211…インターフェイス、 212…上位装置、213…ボイスコイルモータ、251…非磁性下地膜、252…強磁性を示す下地膜。   DESCRIPTION OF SYMBOLS 10 ... Nonmagnetic board | substrate, 13 ... Soft magnetic thin film, 14, 33, 56 ... Nonmagnetic conductive thin film, 15 ... Magnetoresistance effect film, 17 ... Electrode film, 18, 20 ... Insulating film, 24 ... Longitudinal bias application layer, 26 ... Hard magnetic thin film, 31 ... Antiferromagnetic layer, 32, 34 ... Magnetic thin film, 35 ... Protective film, 36 ... Track width direction, 45 ... Co film, 51 ... Magnetization of soft magnetic thin film, 52 ... Magnetoresistive film 53 ... Magnetization of hard magnetic thin film, 54 ... 80 at.% Ni-Fe alloy film, 60 ... Magnetoresistive element, 83 ... Upper magnetic film, 84 ... Lower magnetic film, 111 ... Lower shield layer, 112 ... Upper part Shield layer, 121 ... lower gap layer, 122 ... upper gap layer, 201 ... base, 202 ... spindle, 203 ... motor, 204a, 204b, 204c, 204d, 204e ... magnetic disk, 205a, 205b, 20 5c, 205d, 205e ... magnetic head, 206 ... carriage, 207 ... voice coil, 208 ... magnet, 209 ... voice coil motor control circuit, 210 ... write / read circuit, 211 ... interface, 212 ... host device, 213 ... voice coil Motor, 251... Nonmagnetic underlayer, 252.

Claims (28)

磁気抵抗効果を用いて磁気的信号を電気的信号に変換する磁気抵抗効果膜と、前記磁気抵抗効果膜に信号検出電流を流す一対の電極と、前記磁気抵抗効果膜に縦バイアス磁界を印加する縦バイアス印加層とを有する磁気抵抗効果型磁気ヘッドにおいて、前記縦バイアス印加層が、強磁性薄膜からなる下地膜と、前記強磁性薄膜からなる下地膜の上に形成された硬磁性薄膜とを有することを特徴とする磁気抵抗効果型磁気ヘッド。   A magnetoresistive film that converts a magnetic signal into an electrical signal using the magnetoresistive effect, a pair of electrodes that cause a signal detection current to flow through the magnetoresistive film, and a longitudinal bias magnetic field that is applied to the magnetoresistive film In a magnetoresistive effect type magnetic head having a longitudinal bias application layer, the longitudinal bias application layer comprises: a base film made of a ferromagnetic thin film; and a hard magnetic thin film formed on the base film made of the ferromagnetic thin film. A magnetoresistive head having a magnetoresistance effect. 前記強磁性薄膜からなる下地膜が、結晶構造が体心立方格子である強磁性薄膜である請求項1記載の磁気抵抗効果型磁気ヘッド。   2. The magnetoresistive head according to claim 1, wherein the base film made of the ferromagnetic thin film is a ferromagnetic thin film having a crystal structure of a body-centered cubic lattice. 前記強磁性薄膜からなる下地膜が、非晶質強磁性薄膜である請求項1記載の磁気抵抗効果型磁気ヘッド。   2. A magnetoresistive head according to claim 1, wherein the base film made of the ferromagnetic thin film is an amorphous ferromagnetic thin film. 磁気抵抗効果を用いて磁気的信号を電気的信号に変換する磁気抵抗効果膜と、前記磁気抵抗効果膜に信号検出電流を流す一対の電極と、前記磁気抵抗効果膜に縦バイアス磁界を印加する縦バイアス印加層とを有する磁気抵抗効果型磁気ヘッドにおいて、前記縦バイアス印加層が、反強磁性薄膜からなる下地膜と、前記反強磁性薄膜からなる下地膜の上に形成された硬磁性薄膜とを有することを特徴とする磁気抵抗効果型磁気ヘッド。   A magnetoresistive film that converts a magnetic signal into an electrical signal using the magnetoresistive effect, a pair of electrodes that cause a signal detection current to flow through the magnetoresistive film, and a longitudinal bias magnetic field that is applied to the magnetoresistive film In the magnetoresistive effect type magnetic head having a longitudinal bias application layer, the longitudinal bias application layer is formed on an underlayer made of an antiferromagnetic thin film and a hard magnetic thin film formed on the underlayer made of the antiferromagnetic thin film And a magnetoresistive effect type magnetic head. 前記反強磁性薄膜からなる下地膜が、結晶構造が体心立方格子である反強磁性薄膜である請求項4記載の磁気抵抗効果型磁気ヘッド。   5. The magnetoresistive head according to claim 4, wherein the base film made of the antiferromagnetic thin film is an antiferromagnetic thin film having a crystal structure of a body-centered cubic lattice. 前記磁気抵抗効果膜が異方性磁気抵抗効果を示す強磁性層からなり、前記磁気抵抗効果膜に横バイアス磁界を印加する手段を具備している請求項1〜5のいずれかに記載の磁気抵抗効果型磁気ヘッド。   6. The magnetism according to claim 1, wherein the magnetoresistive film is made of a ferromagnetic layer exhibiting an anisotropic magnetoresistive effect, and includes means for applying a lateral bias magnetic field to the magnetoresistive film. Resistance effect type magnetic head. 前記横バイアス磁界が、前記磁気抵抗効果膜と非磁性導電性薄膜を介して隣接して設けられた軟磁性薄膜によって印加される請求項6記載の磁気抵抗効果型磁気ヘッド。   7. The magnetoresistive effect type magnetic head according to claim 6, wherein the transverse bias magnetic field is applied by a soft magnetic thin film provided adjacent to the magnetoresistive effect film via a nonmagnetic conductive thin film. 前記磁気抵抗効果膜が、非磁性導電性薄膜を中間層として第1の磁性薄膜と第2の磁性薄膜が積層されており、前記第1の磁性薄膜の磁化方向が隣接して設けられた反強磁性層によって固定されており、外部磁界を印加しない状態で前記第2の磁性薄膜の磁化方向が前記第1の磁性薄膜の磁化方向に対し略垂直であり、前記第1の磁性薄膜の磁化の方向と前記第2の磁性薄膜の磁化の方向の相対的な角度によって電気抵抗が変化する磁気抵抗効果積層膜である請求項1〜5のいずれかに記載の磁気抵抗効果型磁気ヘッド。   The magnetoresistive film is formed by laminating a first magnetic thin film and a second magnetic thin film with a nonmagnetic conductive thin film as an intermediate layer, and the magnetization direction of the first magnetic thin film is provided adjacently. The magnetization direction of the second magnetic thin film is fixed by the ferromagnetic layer, and the magnetization direction of the first magnetic thin film is substantially perpendicular to the magnetization direction of the first magnetic thin film without applying an external magnetic field. 6. A magnetoresistive effect magnetic head according to claim 1, wherein the magnetoresistive effect is a magnetoresistive effect laminated film in which the electric resistance varies depending on the relative angle between the direction of the magnetic field and the direction of magnetization of the second magnetic thin film. 前記硬磁性薄膜がCoとM1(M1はCr,Ta,Ni,Pt及びReの群から選択される少なくとも1種類以上の元素)を主成分とした合金、或いはCoと M1からなる合金にM2(M2 は酸化シリコン,酸化ジルコニウム,酸化アルミニウム及び酸化タンタルの群から選択される少なくとも1種類以上の酸化物)を添加した酸化物添加合金である請求項1〜8のいずれかに記載の磁気抵抗効果型磁気ヘッド。 The hard magnetic thin film is an alloy whose main component is Co and M 1 (M 1 is at least one element selected from the group consisting of Cr, Ta, Ni, Pt and Re), or an alloy composed of Co and M 1 9. An oxide-added alloy to which M 2 (M 2 is at least one oxide selected from the group consisting of silicon oxide, zirconium oxide, aluminum oxide and tantalum oxide) is added. The magnetoresistive effect type magnetic head described. 前記結晶構造が体心立方格子である強磁性薄膜がFe,Fe−Ni系合金, Fe−Co系合金、或いはFe−Ni−Co系合金である請求項2,6,7,8,9のいずれかに記載の磁気抵抗効果型磁気ヘッド。   The ferromagnetic thin film whose crystal structure is a body-centered cubic lattice is an Fe, Fe-Ni alloy, an Fe-Co alloy, or an Fe-Ni-Co alloy. The magnetoresistive effect type magnetic head according to any one of the above. 前記結晶構造が体心立方格子である強磁性薄膜がFe,Fe−Ni系合金, Fe−Co系合金、或いはFe−Ni−Co系合金に、M3(M3はSi,V, Cr,Nb,Mo,Ta及びWの群から選択される少なくとも1種類以上の元素)を添加した合金である請求項2,6,7,8,9のいずれかに記載の磁気抵抗効果型磁気ヘッド。 The ferromagnetic thin film whose crystal structure is a body-centered cubic lattice is Fe, Fe-Ni alloy, Fe-Co alloy, or Fe-Ni-Co alloy, and M 3 (M 3 is Si, V, Cr, 10. The magnetoresistive head according to claim 2, wherein the magnetoresistive head is an alloy to which at least one element selected from the group of Nb, Mo, Ta and W is added. 前記結晶構造が体心立方格子である強磁性薄膜が、Fe及びCrを主成分とする合金である請求項11記載の磁気抵抗効果型磁気ヘッド。   12. The magnetoresistive head according to claim 11, wherein the ferromagnetic thin film whose crystal structure is a body-centered cubic lattice is an alloy mainly composed of Fe and Cr. 前記Fe及びCrを主成分とする合金が、Cr5〜45原子%である請求項 12記載の磁気抵抗効果型磁気ヘッド。   The magnetoresistive head according to claim 12, wherein the alloy mainly composed of Fe and Cr is Cr 5 to 45 atomic%. 前記反強磁性薄膜からなる下地膜が、CrとMnとM4(M4はCu,Au, Ag,Co,Ni及び白金族元素の群から選択される少なくとも1種類以上の元素)を主成分とした合金である請求項4〜9のいずれかに記載の磁気抵抗効果型磁気ヘッド。 The base film made of the antiferromagnetic thin film is mainly composed of Cr, Mn, and M 4 (M 4 is at least one element selected from the group consisting of Cu, Au, Ag, Co, Ni, and platinum group elements). The magnetoresistive head according to any one of claims 4 to 9, wherein the magnetoresistive head is an alloy. 磁気抵抗効果を用いて磁気的信号を電気的信号に変換する磁気抵抗効果膜と、前記磁気抵抗効果膜に信号検出電流を流す一対の電極と、前記磁気抵抗効果膜に縦バイアス磁界を印加する縦バイアス印加層とを有する磁気抵抗効果型磁気ヘッドにおいて、前記縦バイアス印加層が、非晶質強磁性薄膜と硬磁性薄膜とを有する積層膜であることを特徴とする磁気抵抗効果型磁気ヘッド。   A magnetoresistive film that converts a magnetic signal into an electrical signal using the magnetoresistive effect, a pair of electrodes that cause a signal detection current to flow through the magnetoresistive film, and a longitudinal bias magnetic field that is applied to the magnetoresistive film A magnetoresistive head having a longitudinal bias application layer, wherein the longitudinal bias application layer is a laminated film having an amorphous ferromagnetic thin film and a hard magnetic thin film. . 前記非晶質強磁性薄膜がCoとM5(M5はTi,V,Cr,Zr,Nb,Mo,Hf,Ta,Y,Ru,Rh,Pd,Cu,Ag,Au及びPtの群から選択される少なくとも1種類以上の元素)を主成分とした非晶質合金である請求項 15記載の磁気抵抗効果型磁気ヘッド。 The amorphous ferromagnetic thin film is made of Co and M 5 (M 5 is a group consisting of Ti, V, Cr, Zr, Nb, Mo, Hf, Ta, Y, Ru, Rh, Pd, Cu, Ag, Au, and Pt. 16. The magnetoresistive head according to claim 15, wherein the magnetoresistive head is an amorphous alloy mainly composed of at least one selected element. 磁界によって電気抵抗が変化する磁気抵抗効果膜と、前記磁気抵抗効果膜に横バイアス磁界を印加する軟磁性膜からなる横バイアス膜と、該横バイアス膜と磁気抵抗効果膜を磁気的に分離する非磁性膜からなる分離膜と、前記磁気抵抗効果膜,横バイアス膜及び分離膜の両端部に接して設けられた前記磁気抵抗効果膜に縦バイアス磁界を印加する縦バイアス印加層と、前記磁気抵抗効果膜に電流を流す一対の電極とを備えた磁気抵抗効果型磁気ヘッドにおいて、前記縦バイアス印加層が、強磁性薄膜,反強磁性薄膜及び非晶質強磁性薄膜のいずれかからなる下地膜と、前記下地膜の上に形成された硬磁性薄膜とを有し、
前記磁気抵抗効果膜に横バイアス磁界を印加するための軟磁性膜が、ニッケル−鉄合金,コバルト,ニッケル−鉄−コバルト合金の一種と、酸化ジルコニウム,酸化アルミニウム,酸化ハフニウム,酸化チタン,酸化ベリリウム,酸化マグネシウム,酸化タンタル,希土類酸素化合物,窒化ジルコニウム,窒化ハフニウム,窒化アルミニウム,窒化チタン,窒化ベリリウム,窒化マグネシウム,窒化シリコン、及び希土類窒素化合物の内から選択された一種以上の化合物とからなることを特徴とする磁気抵抗効果型磁気ヘッド。
A magnetoresistive film whose electrical resistance changes with a magnetic field, a lateral bias film made of a soft magnetic film that applies a lateral bias magnetic field to the magnetoresistive film, and the lateral bias film and the magnetoresistive film are magnetically separated. A separation film made of a non-magnetic film; a longitudinal bias application layer that applies a longitudinal bias magnetic field to the magnetoresistive film provided in contact with both ends of the magnetoresistive film, the lateral bias film, and the separation film; In a magnetoresistive effect type magnetic head having a pair of electrodes for passing a current through a resistance effect film, the longitudinal bias application layer is formed of a ferromagnetic thin film, an antiferromagnetic thin film, or an amorphous ferromagnetic thin film. A base film and a hard magnetic thin film formed on the base film,
The soft magnetic film for applying a lateral bias magnetic field to the magnetoresistive effect film is one of nickel-iron alloy, cobalt, nickel-iron-cobalt alloy, zirconium oxide, aluminum oxide, hafnium oxide, titanium oxide, and beryllium oxide. , Magnesium oxide, tantalum oxide, rare earth oxygen compound, zirconium nitride, hafnium nitride, aluminum nitride, titanium nitride, beryllium nitride, magnesium nitride, silicon nitride, and one or more compounds selected from rare earth nitrogen compounds A magnetoresistive effect type magnetic head.
請求項17において、前記磁気抵抗効果膜に横バイアス磁界を印加するための軟磁性膜の比抵抗が、70μΩcm以上である磁気抵抗効果型磁気ヘッド。   18. The magnetoresistive head according to claim 17, wherein a specific resistance of the soft magnetic film for applying a lateral bias magnetic field to the magnetoresistive film is 70 μΩcm or more. 請求項18において、前記横バイアス膜がニッケルを78〜84原子%を有するニッケル−鉄系合金よりなる磁気抵抗効果型磁気ヘッド。   19. The magnetoresistive head according to claim 18, wherein the lateral bias film is made of a nickel-iron alloy having 78 to 84 atomic% of nickel. 基板上に設けられた一対の縦バイアス印加層と、一対の電極と、前記縦バイアス印加層に接して設けられた磁気抵抗効果素子膜とを有する磁気抵抗効果型磁気ヘッドであって、前記素子膜は前記基板側より酸化ニッケルよりなる反強磁性膜,2層の強磁性膜,非磁性金属膜及び軟磁性膜が順次形成され、前記縦バイアス印加層が、強磁性薄膜,反強磁性薄膜及び非晶質強磁性薄膜のいずれかからなる下地膜と、前記下地膜の上に形成された硬磁性薄膜とを有することを特徴とする磁気抵抗効果型磁気ヘッド。   A magnetoresistive effect type magnetic head having a pair of longitudinal bias application layers provided on a substrate, a pair of electrodes, and a magnetoresistive effect element film provided in contact with the longitudinal bias application layer. An antiferromagnetic film made of nickel oxide, two layers of a ferromagnetic film, a nonmagnetic metal film, and a soft magnetic film are sequentially formed from the substrate side, and the longitudinal bias application layer is formed of a ferromagnetic thin film and an antiferromagnetic thin film. And a hard magnetic thin film formed on the base film, and a magnetoresistive effect type magnetic head. 請求項20において、前記2層の強磁性膜は前記基板側からNi70〜95原子%を含む鉄合金層とCo層又はCo合金層及び、前記軟磁性膜が前記鉄合金層又は前記基板側からCo層又はCo合金層と前記鉄合金層とからなる磁気抵抗効果型磁気ヘッド。   21. The two-layered ferromagnetic film according to claim 20, wherein the iron alloy layer and Co layer or Co alloy layer containing Ni 70 to 95 atomic% from the substrate side, and the soft magnetic film from the iron alloy layer or the substrate side. A magnetoresistive head comprising a Co layer or Co alloy layer and the iron alloy layer. 請求項20又は21において、前記2層の強磁性膜は、前記反強磁性膜側から軟磁性膜及び該軟磁性膜よりスピン依存散乱の大きい磁性膜からなる磁気抵抗効果型磁気ヘッド。   23. The magnetoresistive head according to claim 20, wherein the two ferromagnetic films are composed of a soft magnetic film from the antiferromagnetic film side and a magnetic film having a spin-dependent scattering larger than that of the soft magnetic film. 基板上に設けられた一対の縦バイアス印加層と、一対の電極と、前記縦バイアス印加層に接して設けられた磁気抵抗効果素子膜とを有する磁気抵抗効果型磁気ヘッドであって、前記素子は前記基板側より反強磁性膜,強磁性膜,非磁性膜,軟磁性膜,非磁性膜,強磁性膜、及び反強磁性膜が順次積層され、前記縦バイアス印加層が、強磁性薄膜,反強磁性薄膜及び非晶質強磁性薄膜のいずれかからなる下地膜と、前記下地膜の上に形成された硬磁性薄膜とを有することを特徴とする磁気抵抗効果型磁気ヘッド。   A magnetoresistive effect type magnetic head having a pair of longitudinal bias application layers provided on a substrate, a pair of electrodes, and a magnetoresistive effect element film provided in contact with the longitudinal bias application layer. Is an antiferromagnetic film, a ferromagnetic film, a nonmagnetic film, a soft magnetic film, a nonmagnetic film, a ferromagnetic film, and an antiferromagnetic film sequentially stacked from the substrate side, and the longitudinal bias application layer is a ferromagnetic thin film. A magnetoresistive head having a base film made of any one of an antiferromagnetic thin film and an amorphous ferromagnetic thin film, and a hard magnetic thin film formed on the base film. 前記反強磁性膜が酸化ニッケルであり、前記基板側の強磁性膜がNi70〜 95原子%を含む鉄合金層とCo層、前記軟磁性膜が前記鉄合金層、及び後者の強磁性膜が前記基板側よりCo層と前記鉄合金層とからなる請求項23記載の磁気抵抗効果型磁気ヘッド。   The antiferromagnetic film is nickel oxide, the substrate-side ferromagnetic film includes an iron alloy layer and a Co layer containing 70 to 95 atomic% of Ni, the soft magnetic film is the iron alloy layer, and the latter ferromagnetic film is 24. The magnetoresistive head according to claim 23, comprising a Co layer and the iron alloy layer from the substrate side. 前記強磁性膜が、Ni70〜95原子%,Fe5〜30原子%及びCo1〜5原子%の合金、又は、Co30〜85原子%,Ni2〜30原子%及びFe2〜50原子%の合金である請求項24記載の磁気抵抗効果型磁気ヘッド。   The ferromagnetic film is an alloy of 70 to 95 atomic percent of Ni, 5 to 30 atomic percent of Fe and 1 to 5 atomic percent of Co, or an alloy of 30 to 85 atomic percent of Co, 2 to 30 atomic percent of Ni and 2 to 50 atomic percent of Fe. Item 25. The magnetoresistive head of item 24. 前記非磁性膜が、Au,Ag,Cuのいずれか一つである請求項24記載の磁気抵抗効果型ヘッド。   25. The magnetoresistive head according to claim 24, wherein the nonmagnetic film is one of Au, Ag, and Cu. 情報を記録する磁気記録媒体と、強磁性薄膜からなる下地膜及び前記強磁性薄膜からなる下地膜の上に形成された硬磁性薄膜とを有する縦バイアス印加層を有する磁気抵抗効果型素子を備え、前記情報の読み取り又は書き込みを行う磁気ヘッドと、前記磁気ヘッドを前記磁気記録媒体上の所定位置に移動させるアクチュエータ手段と、前記磁気ヘッドの読み取り又は書き込みによる前記情報の送受信と前記アクチュエータ手段の移動を制御する制御手段とを含むことを特徴とする磁気記録再生装置。   A magnetoresistive element having a longitudinal bias application layer having a magnetic recording medium for recording information, a base film made of a ferromagnetic thin film, and a hard magnetic thin film formed on the base film made of the ferromagnetic thin film A magnetic head for reading or writing the information, actuator means for moving the magnetic head to a predetermined position on the magnetic recording medium, transmission / reception of the information by reading or writing of the magnetic head, and movement of the actuator means And a control means for controlling the magnetic recording / reproducing apparatus. 情報を記録する磁気記録媒体と、反強磁性薄膜からなる下地膜及び前記反強磁性薄膜からなる下地膜の上に形成された硬磁性薄膜とを有する縦バイアス印加層を有する磁気抵抗効果型素子を備え、前記情報の読み取り又は書き込みを行う磁気ヘッドと、前記磁気ヘッドを前記磁気記録媒体上の所定位置に移動させるアクチュエータ手段と、前記磁気ヘッドの読み取り又は書き込みによる前記情報の送受信と前記アクチュエータ手段の移動を制御する制御手段とを含むことを特徴とする磁気記録再生装置。
A magnetoresistive element having a longitudinal bias application layer having a magnetic recording medium for recording information, a base film made of an antiferromagnetic thin film, and a hard magnetic thin film formed on the base film made of the antiferromagnetic thin film A magnetic head for reading or writing the information, actuator means for moving the magnetic head to a predetermined position on the magnetic recording medium, transmission / reception of the information by reading or writing the magnetic head, and the actuator means And a control means for controlling the movement of the magnetic recording / reproducing apparatus.
JP2004234018A 1995-07-25 2004-08-11 Magnetoresistance effect type magnetic head, and magnetic recording and reproducing device Pending JP2005063643A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004234018A JP2005063643A (en) 1995-07-25 2004-08-11 Magnetoresistance effect type magnetic head, and magnetic recording and reproducing device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP18881295 1995-07-25
JP2004234018A JP2005063643A (en) 1995-07-25 2004-08-11 Magnetoresistance effect type magnetic head, and magnetic recording and reproducing device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP13796396A Division JP3990751B2 (en) 1995-07-25 1996-05-31 Magnetoresistive magnetic head and magnetic recording / reproducing apparatus

Publications (1)

Publication Number Publication Date
JP2005063643A true JP2005063643A (en) 2005-03-10

Family

ID=34379570

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004234018A Pending JP2005063643A (en) 1995-07-25 2004-08-11 Magnetoresistance effect type magnetic head, and magnetic recording and reproducing device

Country Status (1)

Country Link
JP (1) JP2005063643A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113228208A (en) * 2018-10-30 2021-08-06 田中贵金属工业株式会社 In-plane magnetization film, in-plane magnetization film multilayer structure, hard bias layer, magnetoresistance effect element, and sputtering target

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113228208A (en) * 2018-10-30 2021-08-06 田中贵金属工业株式会社 In-plane magnetization film, in-plane magnetization film multilayer structure, hard bias layer, magnetoresistance effect element, and sputtering target

Similar Documents

Publication Publication Date Title
JP3990751B2 (en) Magnetoresistive magnetic head and magnetic recording / reproducing apparatus
EP0851411B1 (en) Thin film magnetic head and magnetic recording/reproducing apparatus
JP3890893B2 (en) Spin tunnel magnetoresistive film and element, magnetoresistive sensor using the same, magnetic device, and manufacturing method thereof
US7072155B2 (en) Magnetoresistive sensor including magnetic domain control layers having high electric resistivity, magnetic head and magnetic disk apparatus
KR100261385B1 (en) Spin valve magnetoresistive sensor with antiparallel pinned layer and improved bias layer, and magnetic recording system using the sensor
JP3947727B2 (en) A vertical writer with a main pole of magnetically soft and stable high magnetic moment
US6023395A (en) Magnetic tunnel junction magnetoresistive sensor with in-stack biasing
JP3520170B2 (en) Composite type thin film magnetic head
KR100269820B1 (en) Magneto-resistance effect head
US6741431B2 (en) Magnetic head and magnetic recording/reproduction device
JP2817501B2 (en) Magnetic disk drive and magnetic head used therefor
JPH04285713A (en) Magneto-resistance effect type head and production thereof
JP2008124288A (en) Magnetoresistive element, its manufacturing method, as well as thin film magnetic head, head gimbal assembly, head arm assembly, and magnetic disk device
JPH10241125A (en) Thin film magnetic head and recording/reproducing separation type magnetic head and magnetic recording/ reproducing apparatus using the same
KR0123448B1 (en) Magnetoresistive sensor
US7372675B2 (en) Magnetoresistive element, thin-film magnetic head, head gimbal assembly, head arm assembly and magnetic disk drive
JP2005063643A (en) Magnetoresistance effect type magnetic head, and magnetic recording and reproducing device
JPH117609A (en) Thin film magnetic head, and recording and reproducing separation type head, and magnetic storing and reproducing device using it
JPH09138919A (en) Magnetoresistance effect magnetic head and magnetic recording reproducing device
JP3096589B2 (en) Magnetoresistive head
JP2821586B2 (en) Thin film magnetic head
JPH09251619A (en) Magnetiresistive magnetic head and magnetic recording and reproducing device
WO1997011458A1 (en) Magnetoresistive head
JPH09245318A (en) Magnetoresistive head
JP2009259355A (en) Cpp magnetic read head

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060511

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060511

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070508

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070807

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071106