JPH0814660A - Hot water feeding device - Google Patents

Hot water feeding device

Info

Publication number
JPH0814660A
JPH0814660A JP14728294A JP14728294A JPH0814660A JP H0814660 A JPH0814660 A JP H0814660A JP 14728294 A JP14728294 A JP 14728294A JP 14728294 A JP14728294 A JP 14728294A JP H0814660 A JPH0814660 A JP H0814660A
Authority
JP
Japan
Prior art keywords
hot water
temperature
water
amount
target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14728294A
Other languages
Japanese (ja)
Other versions
JP2889815B2 (en
Inventor
Kiyonori Kinrei
聖憲 金礪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harman Co Ltd
Original Assignee
Harman Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harman Co Ltd filed Critical Harman Co Ltd
Priority to JP14728294A priority Critical patent/JP2889815B2/en
Publication of JPH0814660A publication Critical patent/JPH0814660A/en
Application granted granted Critical
Publication of JP2889815B2 publication Critical patent/JP2889815B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To provide a hot water feeding device in which a temperature of mixed hot water can be set to a target hot water feeding temperature as fast as possible. CONSTITUTION:In a hot water feeding device in which a gas amount adjusting valve 17 for use in adjusting a fuel supplying amount against a burner 1 is controlled in such a manner that a temperature of mixed hot water after hot water flowed from a hot water feeding passage 4 is mixed with water flowed from a bypassing passage 5 may become a target hot water feeding temperature, there is provided a heated hot water temperature sensor 12 for use in sensing a temperature of the hot water heated by a heat exchanger 2, and a target temperature of the heated hot water set by the heat exchanger 2 corresponding to the target hot water feeding temperature is calculated in reference to the target hot water feeding temperature, a water feeding temperature T0 and a mixing ratio between the hot water flowed from the hot water feeding-out passage 4 and water flowed from the bypassing passage 5. The gas amount adjusting valve 17 is formed to be controlled in its feed-back state in such a way that a difference between the target heated hot water temperature and a detected value T2 sensed by a heated hot water temperature sensor 12 may become low.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、入水路及び出湯路が夫
々接続され、バーナにより加熱される水加熱用の熱交換
器と、前記入水路と前記出湯路と接続するバイパス路
と、前記バーナへの燃料供給量を調節する燃料供給量調
節手段と、前記燃料供給量調節手段を制御する燃焼制御
手段と、前記入水温度を検出する入水温検出手段とが備
えられ、、前記燃焼制御手段は、前記出湯路からの湯
と、前記バイパス路からの水とが混合された後の混合湯
温が目標給湯温度になるように、燃料供給量を制御する
ように構成されている給湯装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat exchanger for heating water which is connected to a water inlet and a hot water outlet and heated by a burner, a bypass passage which connects the water inlet and the hot water outlet, The fuel supply amount adjusting means for adjusting the fuel supply amount to the burner, the combustion control means for controlling the fuel supply amount adjusting means, and the incoming water temperature detecting means for detecting the incoming water temperature are provided. The means is configured to control the fuel supply amount so that the mixed hot water temperature after the hot water from the hot water outlet and the water from the bypass passage are mixed reaches the target hot water supply temperature. Regarding

【0002】[0002]

【従来の技術】上記構成の給湯装置は、熱交換器にて加
熱された高温の湯に対して、バイパス路から供給される
低温の水を混合させて給湯することで、熱交換器が備え
られた出湯路のみから給湯する場合に比較して、比較的
低温の湯を多量に給湯することができるようにしたもの
であるが、このような構成の給湯装置において、従来で
は、前記混合湯温と、前記目標給湯温度との偏差が小さ
くなるように、前記燃料供給量を、例えばPI制御やP
ID制御等によってフィードバック制御する構成となっ
ていた。
2. Description of the Related Art A hot water supply apparatus having the above structure is provided with a heat exchanger by mixing low temperature water supplied from a bypass passage with high temperature hot water heated by a heat exchanger. As compared with the case where hot water is supplied only from the tapped hot water passage, it is possible to supply a large amount of hot water at a relatively low temperature. The fuel supply amount is controlled, for example, by PI control or P control so that the deviation between the temperature and the target hot water supply temperature becomes small.
Feedback control is performed by ID control or the like.

【0003】[0003]

【発明が解決しようとする課題】上記構成の給湯装置に
おいては、熱交換器内においてバーナにより加熱された
湯が、熱交換器の出口から混合湯温が検出される箇所ま
で流動するには、所定の所要時間を要するものであり、
被制御対象であるバーナ(燃料供給量)が加熱作用する
箇所と、フィードバック制御用の検出情報(混合湯温)
が検出される箇所との間には、上述したように時間遅れ
が存在することになる。
In the hot water supply apparatus having the above structure, the hot water heated by the burner in the heat exchanger flows from the outlet of the heat exchanger to the location where the mixed hot water temperature is detected. It takes a certain amount of time,
Where the burner (fuel supply amount) to be controlled heats up, and detection information for feedback control (mixed hot water temperature)
As described above, there will be a time delay between the point at which is detected.

【0004】しかし、上記従来構成のように、混合湯温
と、前記目標給湯温度との偏差に基づいてフィードバッ
ク制御する構成であれば、上述したような時間遅れが存
在することに起因して、制御ゲインを大きくすると、制
御のハンチング等が生じるおそれが大となるので、制御
ゲインを小さくせざるを得ないものとなる。その結果、
上記従来構成においては、制御ゲインが小さく、混合湯
温が目標供給温度に収束するまでの時間が長くなる不利
があった。
However, if the feedback control is performed on the basis of the deviation between the mixed hot water temperature and the target hot water supply temperature as in the above-mentioned conventional configuration, the above-mentioned time delay exists, and When the control gain is increased, hunting of control or the like is more likely to occur, so that the control gain must be reduced. as a result,
In the above-mentioned conventional configuration, the control gain is small, and there is a disadvantage that it takes a long time for the mixed hot water temperature to converge to the target supply temperature.

【0005】本発明は、上述したような不利を解消し、
混合湯温を極力速やかに目標給湯温度にさせることが可
能となる給湯装置を提供することを目的としている。
The present invention eliminates the above-mentioned disadvantages,
An object of the present invention is to provide a hot water supply device that can bring the mixed hot water temperature to the target hot water supply temperature as quickly as possible.

【0006】[0006]

【課題を解決するための手段】第1発明の特徴構成は、
入水路及び出湯路が夫々接続され、バーナにより加熱さ
れる水加熱用の熱交換器と、前記入水路と前記出湯路と
を接続するバイパス路と、前記バーナへの燃料供給量を
調節する燃料供給量調節手段と、前記燃料供給量調節手
段を制御する燃焼制御手段と、前記入水温度を検出する
入水温検出手段とが備えられ、、前記燃焼制御手段は、
前記出湯路からの湯と、前記バイパス路からの水とが混
合された後の混合湯温が目標給湯温度になるように、燃
料供給量を制御するように構成されている給湯装置にお
いて、前記熱交換器により加熱された湯温を検出する加
熱湯温検出手段が備えられ、前記燃焼制御手段は、前記
目標給湯温度、前記入水温度、及び、前記出湯路からの
湯と前記バイパス路からの水との混合比率から、前記目
標給湯温度に対応する、前記熱交換器による目標加熱湯
温を求め、前記目標加熱湯温と、前記加熱湯温検出手段
による検出値との偏差が小さくなるように、前記燃料供
給量調節手段をフィードバック制御するように構成され
ている点にある。
The features of the first invention are as follows:
The water inlet and the hot water outlet are respectively connected, and a heat exchanger for heating water to be heated by the burner, a bypass passage connecting the water inlet passage and the hot water outlet passage, and a fuel for adjusting the fuel supply amount to the burner. A supply amount adjusting means, a combustion control means for controlling the fuel supply amount adjusting means, and an incoming water temperature detecting means for detecting the incoming water temperature are provided, and the combustion control means is
A hot water supply device configured to control a fuel supply amount so that a mixed hot water temperature after mixing hot water from the hot water outlet and water from the bypass passage is a target hot water supply temperature, A heating hot water temperature detecting means for detecting a hot water temperature heated by a heat exchanger is provided, and the combustion control means is configured to change the target hot water supply temperature, the incoming water temperature, and the hot water from the hot water outlet path and the bypass path. The target heating hot water temperature by the heat exchanger corresponding to the target hot water supply temperature is obtained from the mixing ratio with water, and the deviation between the target heating hot water temperature and the detection value by the heating hot water temperature detecting means becomes small. As described above, the fuel supply amount adjusting means is configured to be feedback-controlled.

【0007】第2発明の特徴構成は、第1発明の実施に
好適な構成を特定するものであって、前記入水路への入
水量を検出する入水量検出手段が備えられ、前記燃焼制
御手段は、前記目標加熱湯温と、前記加熱湯温検出手段
による検出値との偏差に基づいて、フィードバック操作
量を求め、且つ、前記目標給湯温度と前記入水温度との
偏差、並びに、前記入水量検出手段により検出される入
水量に基づいて、フィードフォワード操作量を求め、前
記フィードバック操作量と、前記フィードフォワード操
作量とに基づいて、前記燃料供給量調節手段を操作すべ
く制御するように構成されている点にある。
The characteristic configuration of the second aspect of the invention specifies a configuration suitable for carrying out the first aspect of the invention, and is provided with a water amount detecting means for detecting the amount of water entering the water inlet, and the combustion control means. Is based on a deviation between the target heated hot water temperature and a value detected by the heated hot water temperature detecting means, and determines a feedback operation amount, and a deviation between the target hot water supply temperature and the incoming water temperature, and the input water temperature. A feedforward operation amount is obtained based on the amount of water input by the water amount detection means, and based on the feedback operation amount and the feedforward operation amount, control is performed to operate the fuel supply amount adjustment means. It is in the point that is configured.

【0008】第3発明の特徴構成は、第1又は第2発明
の実施に好適な構成を特定するものであって、前記出湯
路における前記バイパス路との接続点の上手側近傍の湯
温を検出する湯温検出手段と、前記出湯路からの湯と、
前記バイパス路からの水とが混合された後の混合湯温を
検出する混合湯温検出手段とが備えられ、前記燃焼制御
手段は、前記湯温検出手段の検出値、前記混合湯温検出
手段の検出値、及び、前記入水温度の夫々に基づいて、
前記混合比率を求めるように構成されている点にある。
A characteristic configuration of the third invention is to specify a configuration suitable for carrying out the first or second invention, in which the hot water temperature near the upper side of the connection point with the bypass passage in the hot water discharge passage is determined. Hot water temperature detecting means for detecting, hot water from the hot water outlet,
A mixed hot water temperature detecting means for detecting a mixed hot water temperature after the water from the bypass passage is mixed, and the combustion control means, the detection value of the hot water temperature detecting means, the mixed hot water temperature detecting means Based on the detected value of, and each of the incoming water temperature,
It is configured to obtain the mixing ratio.

【0009】第4発明の特徴構成は、第1、第2又は第
3発明の実施に好適な構成を特定するものであって、前
記熱交換器の通水量を検出する通水量検出手段が備えら
れ、前記湯温検出手段は、設定時間毎に、前記熱交換器
の出口から前記バイパス路との接続点までの前記出湯路
の通路内容量と、前記通水量検出手段の単位時間毎の検
出値の加算値との比較情報、並びに、前記加熱湯温検出
手段の検出値に基づいて、前記接続点の上手側近傍の湯
温を演算するように構成されている点にある。
The characteristic configuration of the fourth aspect of the invention specifies a configuration suitable for carrying out the first, second or third aspect of the invention and is provided with a water flow rate detecting means for detecting the water flow rate of the heat exchanger. The hot water temperature detecting means detects, for each set time, the passage inner volume of the hot water outlet path from the outlet of the heat exchanger to the connection point with the bypass path, and the water flow rate detecting means for each unit time. The point is that the hot water temperature in the vicinity of the upper side of the connection point is calculated based on the comparison information with the added value of the value and the detection value of the heated hot water temperature detecting means.

【0010】第5発明の特徴構成は、第1、第2、第3
又は第4発明の実施に好適な構成を特定するものであっ
て、前記熱交換器を通して、前記出湯路に供給される湯
と、前記バイパス路を通して供給される水との混合比率
を調節する混合比調節手段と、給湯運転の開始後におけ
る過渡状態が過ぎた後の定常運転状態においては、前記
混合比率が、定常運転用の設定目標比率になるように、
前記混合比調節手段を制御し、前記過渡状態において
は、前記混合比率を変更させて、前記混合湯温検出手段
の検出値が前記目標給湯温度になるように、前記混合比
調節手段を制御する混合比制御手段と、前記熱交換器の
通水量を検出する通水量検出手段とが備えられ、前記燃
焼制御手段は、前記過渡状態において、前記目標給湯温
度、前記入水温度、及び、前記設定目標比率に基づい
て、前記目標給湯温度に対応する、前記熱交換器による
定常時目標加熱湯温を求め、前記定常時目標加熱湯温と
前記入水温度との偏差、及び、前記通水量検出手段の検
出値の夫々の値に基づいて、フィードフォワード操作量
を求め、このフィードフォワード操作量に基づいて、前
記燃料供給量調節手段を操作すべく制御するように構成
されている点にある。
The characteristic features of the fifth invention are: the first, second, and third.
Or, a composition suitable for carrying out the fourth aspect of the invention is specified, in which the mixing ratio of hot water supplied to the hot water outlet passage through the heat exchanger and water supplied through the bypass passage is adjusted. In the steady state after the transient state after the start of the hot water supply operation and the ratio adjusting means, the mixing ratio, so that the set target ratio for steady operation,
The mixing ratio adjusting means is controlled, and in the transient state, the mixing ratio is changed, and the mixing ratio adjusting means is controlled so that the detected value of the mixed hot water temperature detecting means becomes the target hot water supply temperature. Mixing ratio control means and water flow rate detection means for detecting the water flow rate of the heat exchanger are provided, and the combustion control means, in the transient state, the target hot water supply temperature, the incoming water temperature, and the setting. Based on the target ratio, the steady-state target heating hot water temperature by the heat exchanger corresponding to the target hot water supply temperature is obtained, the deviation between the steady-state target heating hot water temperature and the incoming water temperature, and the water flow amount detection The feed-forward operation amount is obtained based on each of the detected values of the means, and the fuel supply amount adjusting means is controlled to operate based on the feed-forward operation amount.

【0011】第6発明の特徴構成は、第4又は第5発明
の実施に好適な構成を特定するものであって、前記通水
量検出手段が、前記混合比制御手段により変更調節され
る混合比率と、前記入水路に供給される入水量に基づい
て、前記熱交換器の通水量を検出するように構成されて
いる点にある。
A characteristic configuration of the sixth invention is to specify a configuration suitable for carrying out the fourth or fifth invention, wherein the water flow amount detecting means is changed and adjusted by the mixing ratio control means. Then, the amount of water passing through the heat exchanger is detected based on the amount of water supplied to the water inlet.

【0012】[0012]

【作用】第1発明の特徴構成によれば、入水温度と同じ
温度でバイパス路から供給される水と、熱交換器により
加熱され出湯路から供給される湯とが混合されたものが
混合湯温となるから、前記水と湯との混合比率、入水温
度、及び、混合湯温の目標値である目標給湯温度の夫々
の情報から、混合湯温が目標給湯温度になるために必要
となる、熱交換器によって加熱すべき目標加熱湯温を求
め、加熱湯温検出手段の検出値、つまり、実際の熱交換
器による加熱湯温が前記目標加熱湯温になるように、バ
ーナへの燃料供給量がフィードバック制御されること
で、混合湯温が目標給湯温度に維持されることにな
る。。
According to the characterizing feature of the first aspect of the invention, the mixture of the water supplied from the bypass passage at the same temperature as the incoming water and the hot water heated by the heat exchanger and supplied from the outlet passage is the mixed hot water. Since the temperature becomes high, it is necessary for the mixed hot water temperature to reach the target hot water supply temperature from the information of the mixing ratio of the water and hot water, the incoming water temperature, and the target hot water supply temperature which is the target value of the mixed hot water temperature. The target heating water temperature to be heated by the heat exchanger is obtained, and the fuel to the burner is adjusted so that the detection value of the heating water temperature detecting means, that is, the actual heating water temperature by the heat exchanger becomes the target heating water temperature. By feedback controlling the supply amount, the mixed hot water temperature is maintained at the target hot water supply temperature. .

【0013】従って、被制御対象であるバーナが作用す
る箇所と、フィードバック情報の対象となる箇所とが、
共に熱交換器の加熱部位あるいはその近傍であることか
ら、時間遅れの少ない状態でフィードバック制御が実行
されることになり、制御ゲインを大きくさせてもハンチ
ング等の生じ難い安定した制御が行われることになる。
Therefore, the location where the burner which is the controlled object acts and the location where the feedback information is targeted are
Since both of them are located at or near the heating part of the heat exchanger, feedback control will be executed with a small time delay, and stable control will be performed in which hunting does not easily occur even if the control gain is increased. become.

【0014】第2発明の特徴構成によれば、第1発明の
特徴構成による作用に加えて、次の作用がある。
According to the characterizing structure of the second invention, in addition to the function of the characterizing structure of the first invention, there are the following functions.

【0015】目標給湯温度と入水温度との偏差、並び
に、入水路への入水量に基づいて、フィードフォワード
操作量を求めるので、例えば、入水量の変動等に起因し
て前記水と湯との混合比率が変動した場合であっても、
このような混合比率の変動にかかわらず、適切なフィー
ドフォワード操作量を得ることができ、混合比率の変動
に起因したオフセット(残留偏差)が少ない状態で適切
に制御が実行される。
Since the feedforward manipulated variable is obtained based on the deviation between the target hot water supply temperature and the incoming water temperature, and the amount of water entering the water entrance, for example, due to fluctuations in the amount of incoming water, etc. Even if the mixing ratio changes,
Regardless of such a change in the mixing ratio, an appropriate feedforward manipulated variable can be obtained, and the control is appropriately executed in a state where the offset (residual deviation) due to the change in the mixing ratio is small.

【0016】第3発明の特徴構成によれば、第1又は第
2発明の特徴構成による作用に加えて、次の作用があ
る。
According to the characterizing structure of the third invention, in addition to the function of the characterizing structure of the first or second invention, there is the following function.

【0017】混合湯の温度は、出湯路からの湯とバイパ
ス路からの水とが混合されたものであるから、出湯路か
らの湯の温度と、バイパス路からの水の温度、及び、混
合湯温とが正確に求められると、前記湯と水との実際の
混合比率を正確に求めることができる。そこで、湯温検
出手段によって、出湯路におけるバイパス路との接続点
の上手側近傍の湯温を検出することで、混合直前の湯の
正確な温度が検出でき、混合比率の正確な値が求められ
ることになる。
Since the temperature of the mixed hot water is a mixture of hot water from the hot water outlet and water from the bypass, the temperature of hot water from the hot water outlet, the temperature of water from the bypass hot water, and the mixing. When the hot water temperature is accurately obtained, the actual mixing ratio of the hot water and the water can be accurately obtained. Therefore, the hot water temperature detection means detects the hot water temperature near the upper side of the connection point with the bypass passage in the hot water discharge passage, so that the accurate temperature of the hot water immediately before mixing can be detected, and the accurate value of the mixing ratio can be obtained. Will be done.

【0018】第4発明の特徴構成によれば、第1、第2
又は第3発明の特徴構成による作用に加えて、次の作用
がある。
According to the characteristic configuration of the fourth invention, the first and second aspects are provided.
Alternatively, the following operation is provided in addition to the operation according to the characteristic configuration of the third invention.

【0019】熱交換器での加熱湯温を求める加熱湯温検
出手段の検出情報を、有効利用して、出湯路におけるバ
イパス路との接続点の上手側近傍における温度を、演算
にて求めるのである。つまり、熱交換器への通水量と加
熱湯温検出手段の検出値とを設定時間毎に記憶してお
き、通水量の加算値と、熱交換器の出口から前記接続点
までの出湯路の通路内容量とに基づいて、熱交換器によ
り加熱される湯が、熱交換器の出口から接続点まで流動
する時間情報が得られるので、その時間情報と、加熱湯
温検出手段の検出値の記憶情報とから、出湯路における
バイパス路との接続点の上手側近傍における温度を求め
ることができるのである。
Since the detected information of the heated hot water temperature detecting means for obtaining the heated hot water temperature in the heat exchanger is effectively used, the temperature in the vicinity of the upper side of the connection point with the bypass passage in the hot water outlet is calculated. is there. That is, the water flow rate to the heat exchanger and the detection value of the heated hot water temperature detection means are stored for each set time, and the added value of the water flow rate and the hot water passage from the outlet of the heat exchanger to the connection point are stored. Based on the passage volume, the time information that the hot water heated by the heat exchanger flows from the outlet of the heat exchanger to the connection point is obtained. From the stored information, it is possible to obtain the temperature in the vicinity of the upper side of the connection point with the bypass passage in the hot water passage.

【0020】第5発明の特徴構成によれば、第1、第
2、第3又は第4発明の特徴構成による作用に加えて、
次の作用がある。
According to the characterizing feature of the fifth invention, in addition to the action of the characterizing feature of the first, second, third or fourth invention,
It has the following effects.

【0021】給湯運転の開始後における過渡状態におい
ては、例えば、熱交換器での後沸きが生じている場合に
は、出湯路に供給される湯の温度が定常運転時よりも高
くなるから、バイパス路から供給される水の比率を、定
常運転用の設定目標比率よりも大にさせ、混合湯温を目
標給湯温度に維持させ、湯温上昇の立上がり遅れに起因
した温度低下(前冷え)等が生じる場合には、前記水の
比率を設定目標比率よりも小にさせ、混合湯温を極力、
目標給湯温度にさせることができる。
In the transient state after the start of the hot water supply operation, for example, when post-boiling occurs in the heat exchanger, the temperature of the hot water supplied to the hot water outlet becomes higher than that in the steady operation. The ratio of water supplied from the bypass path is set higher than the set target ratio for steady operation, the mixed hot water temperature is maintained at the target hot water supply temperature, and the temperature decreases due to the rising delay of the hot water temperature rise (pre-cooling). If the above occurs, the ratio of the water is made smaller than the set target ratio, and the temperature of the mixed hot water is adjusted to the maximum.
The target hot water supply temperature can be set.

【0022】そして、前記過渡状態においては、混合比
率の変更制御にかかわらず、燃料供給量のフィードフォ
ワード操作量は、定常時目標加熱湯温、即ち、定常運転
用の設定目標比率で湯及び水が混合する状態で、混合湯
温が目標給湯温度になるに必要な熱交換器での目標加熱
湯温に基づいて求められるのである。
In the transient state, the feedforward manipulated variable of the fuel supply amount is the steady-state target heating hot water temperature, that is, the hot water and water at the set target ratio for steady operation, regardless of the change control of the mixing ratio. Is obtained based on the target hot water temperature in the heat exchanger required for the mixed hot water temperature to reach the target hot water supply temperature in the mixed state.

【0023】その結果、例えば、後沸き時に水の比率が
大になった場合には、燃料供給量、即ち、バーナ加熱量
が定常運転時の量よりも少なめに制御されることにな
る。又、前冷え時に水の比率が小になった場合には、燃
料供給量、即ち、バーナ加熱量が定常運転時の量よりも
多めに制御されることになる。
As a result, for example, when the ratio of water becomes large at the time of post-boiling, the fuel supply amount, that is, the burner heating amount is controlled to be smaller than the amount at the time of steady operation. Further, when the ratio of water becomes small during precooling, the fuel supply amount, that is, the burner heating amount is controlled to be larger than the amount during steady operation.

【0024】第6発明の特徴構成によれば、第4又は第
5発明の特徴構成による作用に加えて、次の作用があ
る。
According to the characterizing feature of the sixth invention, in addition to the effect of the characterizing feature of the fourth or fifth invention, there is the following effect.

【0025】変更調節される混合比率と、入水路に供給
される入水量とに基づいて、熱交換器の通水量が検出さ
れる構成であるから、入水量検出手段の検出情報を有効
利用することで、熱交換器への通水量を検出する為の専
用の検出手段を設ける必要がなく、しかも、前記混合比
率は、混合比率制御手段によって制御されるので、その
制御情報を利用することで、混合比率を実際に検出する
検出手段を設けることなく、正確な混合比率を得ること
ができ、結果として正確な通水量を求めることが可能と
なる。
Since the amount of water passing through the heat exchanger is detected based on the mixing ratio that is changed and adjusted and the amount of water that is supplied to the water inlet channel, the detection information of the water input amount detecting means is effectively used. Therefore, it is not necessary to provide a dedicated detection means for detecting the amount of water passing through the heat exchanger, and since the mixing ratio is controlled by the mixing ratio control means, it is possible to use the control information. An accurate mixing ratio can be obtained without providing a detecting means for actually detecting the mixing ratio, and as a result, an accurate water flow rate can be obtained.

【0026】[0026]

【発明の効果】第1発明の特徴構成によれば、制御のむ
だ時間が少なくなり、制御ゲインを大きくしてもハンチ
ング等の生じにくい安定した状態で、バーナの燃料供給
量のフィードバック制御を実行することが可能となっ
て、混合湯温が目標給湯温度になるまでの収束時間を極
力短くさせることができる給湯装置を提供できるに至っ
た。
According to the characterizing feature of the first invention, the feedback control of the fuel supply amount of the burner is executed in a stable state in which the control dead time is reduced and hunting or the like is unlikely to occur even if the control gain is increased. As a result, it has become possible to provide a hot water supply apparatus that can shorten the convergence time until the mixed hot water temperature reaches the target hot water supply temperature as much as possible.

【0027】第2発明の特徴構成によれば、第1発明の
特徴構成による効果に加えて、次の効果がある。
According to the characterizing structure of the second invention, in addition to the effect of the characterizing structure of the first invention, there are the following effects.

【0028】混合比率の変動に起因して生じるオフセッ
ト(残留偏差)が少ない状態で、燃料供給量のフィード
フォワード操作量を求めることができ、例えば、入水量
が変化したような場合であっても、混合湯温を極力、目
標給湯温度に近づけることが可能となった。
The feedforward manipulated variable of the fuel supply amount can be obtained in a state where the offset (residual deviation) caused by the variation of the mixing ratio is small. For example, even when the water input amount changes. It became possible to bring the mixed hot water temperature close to the target hot water supply temperature as much as possible.

【0029】第3発明の特徴構成によれば、第1又は第
2発明の特徴構成による効果に加えて、次の効果があ
る。
According to the characterizing structure of the third invention, in addition to the effects of the characterizing structure of the first or second invention, there are the following effects.

【0030】混合部位の直前における、出湯路から供給
される湯とバイパス路から供給される水との夫々の温度
に基づいて、前記湯と水との混合比率を正確に検出する
ことができる。
The mixing ratio of the hot water and the water can be accurately detected based on the temperatures of the hot water supplied from the hot water outlet and the water supplied from the bypass passage immediately before the mixing portion.

【0031】第4発明の特徴構成によれば、第1、第2
又は第3発明の特徴構成による効果に加えて、次の効果
がある。
According to the characteristic constitution of the fourth invention, the first and second
Alternatively, in addition to the effects of the characteristic configuration of the third invention, there are the following effects.

【0032】フィードバック制御に用いられる加熱湯温
検出手段の検出情報を利用して、前記接続点の上手側近
傍における温度を求める構成であるから、出湯路におけ
るバイパス路との接続点の上手側近傍に、前記加熱湯温
検出手段とは別に専用の温度検出手段を設ける場合に比
較して、簡単な構成で済ませられるものでありながら、
正確に、出湯路におけるバイパス路との接続点の上手側
近傍における温度を求めることができる。
Since the temperature in the vicinity of the upper side of the connection point is obtained by using the detection information of the heated hot water temperature detecting means used for the feedback control, the vicinity of the upper side of the connection point with the bypass path in the hot water outlet path is obtained. In comparison with the case where a dedicated temperature detecting means is provided separately from the heated hot water temperature detecting means, the structure can be simplified,
It is possible to accurately determine the temperature in the vicinity of the upper side of the connection point of the hot water passage with the bypass passage.

【0033】第5発明の特徴構成によれば、第1、第
2、第3又は第4発明の特徴構成による効果に加えて、
次の効果がある。
According to the characterizing feature of the fifth invention, in addition to the effects of the characterizing feature of the first, second, third or fourth invention,
It has the following effects.

【0034】前記混合比率を変更制御することで、給湯
開始時での過渡状態において生じる後沸きや前冷えによ
る混合湯温の目標給湯温度からの温度変動を抑制して、
混合湯温を、極力速やかに目標給湯温度にさせることが
できる。しかも、後沸き時には、バーナへの燃料供給量
が定常運転時における供給量より少なめに制御され、バ
ーナの加熱により更に混合湯温が上昇するのを抑制で
き、前冷え時には、燃料供給量が定常運転時における供
給量より多めに制御され、バーナの加熱による湯温上昇
が早くなり、混合湯温を、更に、速やかに目標給湯温度
にさせることができる。
By changing and controlling the mixing ratio, the temperature fluctuation of the mixed hot water temperature from the target hot water temperature due to post-boiling or pre-cooling which occurs in a transient state at the start of hot water supply is suppressed,
It is possible to bring the mixed hot water temperature to the target hot water supply temperature as quickly as possible. Moreover, the amount of fuel supplied to the burner during post-boiling is controlled to be smaller than the amount of fuel supplied during steady operation, and it is possible to suppress further increases in the temperature of the mixed hot water due to heating of the burner. It is controlled to be larger than the supply amount during operation, the hot water temperature rises faster by heating the burner, and the mixed hot water temperature can be made to reach the target hot water supply temperature more quickly.

【0035】第6発明の特徴構成によれば、第4又は第
5発明の特徴構成による効果に加えて、次の効果があ
る。
According to the characterizing feature of the sixth invention, the following effect is obtained in addition to the effect of the characterizing feature of the fourth or fifth invention.

【0036】熱交換器への通水量を検出する為の専用の
検出手段や、混合比率を実際に検出する検出手段等を設
ける場合のように、構造を複雑化させることなく、熱交
換器の通水量を精度よく検出することができる。
As in the case where a dedicated detecting means for detecting the amount of water passing through the heat exchanger, a detecting means for actually detecting the mixing ratio, etc. are provided, the structure of the heat exchanger is not complicated. It is possible to accurately detect the water flow rate.

【0037】[0037]

【実施例】以下、実施例を図面に基いて説明する。図1
に本発明に係る給湯装置を示している。この給湯装置
は、給湯部Kと、給湯部Kの給湯動作を制御する制御手
段としての制御部H、及び、制御部Hとの間で情報が伝
達される操作部Rで構成されている。前記給湯部Kは、
バーナ1により加熱される水加熱用の熱交換器2が備え
られ、この熱交換器2に入水路3及び出湯路4が夫々接
続されると共に、入水路3と出湯路4とがバイパス路5
で接続され、入水路3から供給される供給水が、入水路
3とバイパス路5とに分流され、熱交換器2にて加熱さ
れた湯とバイパス路5から供給される水とが合流して、
出湯路4を通して図示しない給湯栓に給湯されるように
構成されている。又、前記バーナ1に燃焼用空気を供給
する通風手段としてのファン6が備えられ、バーナ1の
近傍には、点火用のイグナイタ7及びバーナ1に着火し
たか否かを検出するフレームロッド8が備えられてい
る。
Embodiments will be described below with reference to the drawings. FIG.
1 shows a hot water supply device according to the present invention. This hot water supply device includes a hot water supply unit K, a control unit H as a control unit for controlling the hot water supply operation of the hot water supply unit K, and an operation unit R for transmitting information between the control unit H. The hot water supply unit K is
A heat exchanger 2 for heating water to be heated by the burner 1 is provided, and a water inlet 3 and a hot water outlet 4 are connected to the heat exchanger 2, and the water inlet 3 and the hot water outlet 4 are connected to a bypass passage 5.
The water supplied by the water inlet 3 is divided into the water inlet 3 and the bypass 5, and the hot water heated by the heat exchanger 2 and the water supplied from the bypass 5 join together. hand,
The hot water is supplied to the hot water tap (not shown) through the hot water passage 4. Further, a fan 6 as a ventilation means for supplying combustion air to the burner 1 is provided, and an igniter 7 for ignition and a frame rod 8 for detecting whether or not the burner 1 is ignited are provided in the vicinity of the burner 1. It is equipped.

【0038】前記入水路3におけるバイパス路5との接
続点の上流側に、入水量を検出する水量検出手段として
の水量センサ9と、入水温度を検出する入水温検出手段
としての入水温センサ10が備えられ、出湯路4におけ
るバイパス路5との接続点の下流側には、湯水混合され
た後の混合湯温(給湯温度)を検出する混合湯温検出手
段としての出湯温センサ11が備えられている。又、熱
交換器2の出口部には熱交換器2により加熱された加熱
湯温を検出する加熱湯温センサ12が備えられている。
On the upstream side of the connection point with the bypass 5 in the water inlet 3, a water amount sensor 9 as a water amount detecting means for detecting the water inlet and a water temperature sensor 10 as a water inlet temperature detecting means for detecting the water inlet temperature. The outlet hot water temperature sensor 11 as a mixed hot water temperature detecting means for detecting the mixed hot water temperature (hot water supply temperature) after hot water mixing is provided at the downstream side of the connection point with the bypass passage 5 in the hot water discharge passage 4. Has been. Further, the outlet of the heat exchanger 2 is provided with a heated hot water temperature sensor 12 for detecting the heated hot water temperature heated by the heat exchanger 2.

【0039】前記熱交換器2を通して出湯路4に供給さ
れる湯と、バイパス路5を通して供給される水との混合
比率を調節する混合比調節手段Aが備えられている。詳
述すると、前記バイパス路5は、並列配置された第1経
路5aと第2経路5bの2本の経路で構成され、第1経
路5aには、所定通路径に設定されたオリフィス13a
が備えられ、第2経路5bには、前記所定径よりも小径
に設定されたオリフィス13bが備えられている。又、
各経路5a,5bには、夫々電磁式の第1、第2水開閉
弁14a,14bが備えられている。
A mixing ratio adjusting means A for adjusting the mixing ratio of the hot water supplied to the hot water outlet 4 through the heat exchanger 2 and the water supplied through the bypass passage 5 is provided. More specifically, the bypass passage 5 is composed of two passages, a first passage 5a and a second passage 5b, which are arranged in parallel, and the first passage 5a has an orifice 13a set to a predetermined passage diameter.
The second path 5b is provided with an orifice 13b having a diameter smaller than the predetermined diameter. or,
Each of the paths 5a and 5b is provided with electromagnetic first and second water on-off valves 14a and 14b, respectively.

【0040】図2に示すように、前記各水開閉弁14
a,14bを共に閉状態にすると、熱交換器2と出湯路
4を通して供給される湯と、バイパス路5を通して供給
される水との混合比率が、前記水の比率(以下、水混合
比率という)が「0」になるように設定され、第1水開
閉弁14aを閉状態に、第2水開閉弁14bを開状態に
設定すると、水混合比率が「小」(具体的には、0.2
5〜0.35程度)に設定され、第1水開閉弁14aを
開状態に、第2水開閉弁14bを閉状態に設定すると、
水混合比率が「中」(具体的には、0.35〜0.45
程度)に設定され、第1水開閉弁14a及び第2水開閉
弁14bを共に開状態に設定すると、水混合比率が
「大」(具体的には、0.45〜0.55程度)に設定
される。従って、前記第1水開閉弁14a及び第2水開
閉弁14bにより前記混合比調節手段Aが構成される。
As shown in FIG. 2, each water opening / closing valve 14
When both a and 14b are closed, the mixing ratio of the hot water supplied through the heat exchanger 2 and the hot water outlet passage 4 to the water supplied through the bypass passage 5 is the water ratio (hereinafter referred to as the water mixing ratio). ) Is set to "0", the first water on-off valve 14a is closed and the second water on-off valve 14b is opened, the water mixing ratio is "small" (specifically, 0). .2
5 to 0.35) and the first water on-off valve 14a is set to the open state and the second water on-off valve 14b is set to the closed state,
The water mixing ratio is "medium" (specifically, 0.35 to 0.45).
When the first water opening / closing valve 14a and the second water opening / closing valve 14b are both set to the open state, the water mixing ratio becomes “large” (specifically, about 0.45 to 0.55). Is set. Therefore, the first water on-off valve 14a and the second water on-off valve 14b constitute the mixing ratio adjusting means A.

【0041】前記バーナ1に対して燃料を供給する燃料
供給路15には、電磁式ガス開閉弁16と燃料供給量調
節手段としての電磁式ガス量調節弁17が備えられてい
る。
The fuel supply passage 15 for supplying fuel to the burner 1 is provided with an electromagnetic gas on-off valve 16 and an electromagnetic gas amount control valve 17 as fuel supply amount control means.

【0042】前記操作部Rは、有線又は無線にて制御部
Hと通信可能に設けられ、この操作部Rには、給湯装置
の運転開始/停止を指示する運転スイッチ18、目標給
湯温度を設定する給湯温度設定スイッチ19、給湯温度
を表示する給湯温度表示部20等が備えられている。
The operation unit R is provided so as to be capable of communicating with the control unit H by wire or wirelessly. The operation unit R sets an operation switch 18 for instructing start / stop of operation of the hot water supply device and a target hot water supply temperature. A hot water supply temperature setting switch 19, a hot water supply temperature display section 20 for displaying the hot water supply temperature, and the like are provided.

【0043】前記制御部Hは、前記各センサ9〜12、
フレームロッド8等の検出情報に基づいて、前記ガス開
閉弁16、ガス量調節弁17を制御して、給湯温度が設
定目標温度になるようにバーナ1に対する燃料供給量を
制御する燃焼制御手段100、給湯運転の開始時におい
て、後述するように、各水開閉弁14a,14bを制御
して、熱交換器2と出湯路4を通して供給される湯に対
する、バイパス路5を通して供給される水の混合比率を
変更制御する混合比制御手段101、出湯路4における
バイパス路5との接続点の上手側近傍における湯温を検
出する湯温検出手段102、水量センサ9の検出値と、
前記混合比率とに基づいて、熱交換器2への通水量を検
出する通水量検出手段103の夫々が備えられている。
The control unit H includes the sensors 9-12,
Combustion control means 100 that controls the gas on-off valve 16 and the gas amount adjusting valve 17 based on the detection information of the frame rod 8 and the like to control the fuel supply amount to the burner 1 so that the hot water supply temperature becomes the set target temperature. At the start of the hot water supply operation, as will be described later, the water opening / closing valves 14a and 14b are controlled to mix the hot water supplied through the heat exchanger 2 and the hot water outlet passage 4 with the water supplied through the bypass passage 5. Mixing ratio control means 101 for changing and controlling the ratio, hot water temperature detecting means 102 for detecting the hot water temperature in the vicinity of the upper side of the connection point with the bypass path 5 in the hot water discharge path 4, and the detected values of the water amount sensor 9,
Each of the water flow rate detection means 103 for detecting the water flow rate to the heat exchanger 2 based on the mixing ratio is provided.

【0044】前記混合比制御手段101は、給湯運転の
開始後、初期運転時間として設定された設定時間t1
経過するまでの間は、例えば、断続運転時において、熱
交換器2での後沸きによる温度上昇(オーバーシュー
ト)や、放熱による温度下降(アンダーシュート)等を
極力抑制するように、又、長時間の運転停止後に運転を
開始する際には、給湯温度が、極力早く目標給湯温度T
1Sになるように、前記水混合比率を適切な状態に切り換
えるように制御する。
The mixing ratio control means 101 operates after the start of the hot water supply operation until the set time t 1 set as the initial operation time elapses, for example, in the heat exchanger 2 during the intermittent operation. In order to suppress temperature rise (overshoot) due to boiling and temperature drop (undershoot) due to heat dissipation as much as possible, and when starting operation after long-term operation suspension, the hot water supply temperature should be as fast as possible. Temperature T
Control is performed so that the water mixing ratio is switched to an appropriate state so that it becomes 1S .

【0045】前記初期運転時間t1 は、入水量の積算値
が所定値、例えば4リットルを越えるまでの所要時間に
相当し、数十秒間、具体的には20秒〜40秒間程度に
設定される。
The initial operation time t 1 corresponds to the time required until the integrated value of the amount of water input exceeds a predetermined value, for example, 4 liters, and is set to several tens of seconds, specifically about 20 to 40 seconds. It

【0046】又、前記初期運転時間t1 が経過した後に
おける通常運転状態においては、給湯温度設定スイッチ
19によって設定される目標給湯温度T1Sが45°C未
満のときは、定常運転状態における前記水混合比率を前
記「中」に設定し、その状態が維持されるように制御す
る。又、目標給湯温度T1Sが45°C以上で且つ60°
C未満のときは、定常運転状態における前記水混合比率
を前記「小」に設定し、その状態が維持されるように制
御する。そして、目標給湯温度T1Sが60°C以上のと
きは、定常運転状態における前記水混合比率を前記
「0」に設定し、その状態が維持されるように制御す
る。
In the normal operation state after the initial operation time t 1 has elapsed, when the target hot water supply temperature T 1S set by the hot water supply temperature setting switch 19 is less than 45 ° C. The water mixing ratio is set to "medium", and the state is controlled so as to be maintained. Further, the target hot water supply temperature T 1S is 45 ° C or higher and 60 °
When it is less than C, the water mixing ratio in the steady operation state is set to the “small”, and the state is controlled so as to be maintained. When the target hot water supply temperature T 1S is 60 ° C. or higher, the water mixing ratio in the steady operation state is set to “0”, and the state is controlled to be maintained.

【0047】前記燃焼制御手段100は、給湯運転の開
始後、前記初期運転時間t1 が経過するまでの間は、定
常運転状態における熱交換器2の目標加熱温度T2Sを求
め、且つ、そのときに設定された水混合比率と水量セン
サ9の検出値から熱交換器2側への通水量を求め、前記
目標加熱温度T2Sと入水温度T0 との偏差、並びに、前
記通水量Qxから、燃料供給量のフィードフォワード操
作量を求めると共に、前記目標加熱温度T2Sと加熱湯温
センサ12の検出値T2 との偏差が、小さくなるように
燃料供給量のフィードバック操作量を求め、これらのフ
ィードフォワード操作量とフィードバック操作量との加
算値により、ガス量調節弁17を操作制御する。従っ
て、例えば、断続運転時において、熱交換器2での後沸
きによる温度上昇や、熱交換器2による加熱に伴って混
合湯温が目標給湯温度T1Sまで上昇する前に、バイパス
路5からの水との混合により、混合湯温が一時的に下降
すること等を極力抑制するように、且つ、長時間の運転
停止後に運転を開始する際には、給湯温度が、極力早く
目標給湯温度T1Sになるように、燃料供給量を制御す
る。
The combustion control means 100 obtains the target heating temperature T 2S of the heat exchanger 2 in the steady operation state from the start of the hot water supply operation until the initial operation time t 1 elapses, and The amount of water passing to the heat exchanger 2 side is obtained from the water mixing ratio and the detection value of the water amount sensor 9 which are set at this time, and the deviation between the target heating temperature T 2S and the incoming water temperature T 0 and the amount of water passing Qx are obtained. , The feedforward operation amount of the fuel supply amount is obtained, and the feedback operation amount of the fuel supply amount is obtained so that the deviation between the target heating temperature T 2S and the detected value T 2 of the hot water temperature sensor 12 becomes small. The gas amount control valve 17 is operated and controlled by the addition value of the feedforward operation amount and the feedback operation amount. Therefore, for example, during intermittent operation, the temperature rises due to post-boiling in the heat exchanger 2, and before the mixed hot water temperature rises to the target hot water supply temperature T 1S due to heating by the heat exchanger 2, the bypass passage 5 To prevent the temperature of the mixed hot water from temporarily lowering due to mixing with water, and when starting the operation after a long period of non-operation, the hot water supply temperature should be as fast as possible. The fuel supply amount is controlled so as to become T 1S .

【0048】又、前記燃焼制御手段100は、前記初期
運転時間t1 が経過した後における通常運転状態におい
ては、出湯温センサ11の検出値T1 と入水温センサ1
0の検出値T0 とに基づいて、フィードフォワード操作
量を求めると共に、前記目標加熱温度T2Sと加熱湯温セ
ンサ12の検出値T2 との偏差に基づいてフィードバッ
ク操作量を求め、これらのフィードフォワード操作量と
フィードバック操作量との加算値に基づいて、ガス量調
節弁17を制御する。
In the normal operation state after the initial operation time t 1 , the combustion control means 100 detects the detected value T 1 of the hot water temperature sensor 11 and the incoming water temperature sensor 1.
The feedforward manipulated variable is determined based on the detected value T 0 of 0, and the feedback manipulated variable is determined based on the deviation between the target heating temperature T 2S and the detected value T 2 of the hot water temperature sensor 12, and these values are calculated. The gas amount control valve 17 is controlled based on the added value of the feedforward operation amount and the feedback operation amount.

【0049】前記湯温検出手段102は、熱交換器2の
出口からバイパス路5との接続点までの出湯路4の通路
内容量Qa(予め、実測にて求められ、記憶されてい
る)と、水量センサ9の検出情報、及び、加熱湯温12
の検出情報に基づいて、出湯路4の前記接続点の上手側
近傍の湯温を演算するように構成されている。
The hot water temperature detecting means 102 stores the passage internal capacity Qa of the hot water outlet passage 4 from the outlet of the heat exchanger 2 to the connection point with the bypass passage 5 (preliminarily obtained by actual measurement and stored). , Detection information of the water amount sensor 9 and heating hot water temperature 12
The hot water temperature near the upper side of the connection point of the hot water discharge path 4 is calculated based on the detection information.

【0050】以下、制御部Hにおける混合比制御の制御
動作について図3〜図6に示す制御フローチャートに基
づいて説明する。運転スイッチ18のON操作に伴って
電源が投入されると、初期設定動作が実行される。つま
り、前記各水開閉弁14a,14bを共に開状態に制御
して(ステップ1)、出湯路4中に高温の湯が残ってい
る場合であっても、電源投入と同時に高温の湯が給湯さ
れるおそれを回避するようにしている。
The control operation of the mixing ratio control in the control unit H will be described below with reference to the control flowcharts shown in FIGS. When the power is turned on with the ON operation of the operation switch 18, the initial setting operation is executed. That is, both the water opening / closing valves 14a and 14b are controlled to be in the open state (step 1), and even if high-temperature hot water remains in the hot water outlet 4, the high-temperature hot water is supplied at the same time when the power is turned on. I try to avoid the fear of being.

【0051】そして、目標給湯温度T1Sが45°C未満
であれば、目標給湯温度T1Sと、出湯温センサ11の検
出値との差(温度偏差e)を演算する(ステップ3)。
そして、運転スイッチ18がOFFされず、水量センサ
9により通水が検出され、通水量Qxが点火用の設定水
量Qs(約2リットル/分)を越えると、ガス開閉弁1
6、ガス量調節弁17を開作動し、ファン6の通風を開
始し、バーナ1の燃焼を開始する(ステップ4〜7)。
通水量Qxが点火用設定水量Qsを越えていなければ、
ガス開閉弁16、ガス量調節弁17を閉作動し、ファン
6の通風を停止する(ステップ8)。又、運転スイッチ
18がOFFするか、又は、水量センサ9により通水が
検出されなければ、ガス開閉弁16、ガス量調節弁17
を閉作動し、ファン6の通風を停止する(ステップ9)
と共に、前記温度偏差eが10°C以上であれば、初点
火立上がり時での待機状態(設定出湯状態の一例)と判
断して、第1水開閉弁14a、第2水開閉弁14bを共
に閉状態(水混合比率を「0」)に設定し、前記温度偏
差eが10°C未満であれば、断続使用時での待機状態
と判断して、第1水開閉弁14aを閉状態、第2水開閉
弁14bを開状態(水混合比率を「小」)に設定する
(ステップ10〜12)。
[0051] Then, if the target hot-water supply temperature T 1S is less than 45 ° C, calculates a target hot-water supply temperature T 1S, a difference between the detection value of the hot water temperature sensor 11 (temperature deviation e) (Step 3).
When the operation switch 18 is not turned off and the water flow sensor 9 detects water flow, and the water flow rate Qx exceeds the set water flow rate Qs for ignition (about 2 liters / minute), the gas opening / closing valve 1
6. The gas amount control valve 17 is opened, the ventilation of the fan 6 is started, and the combustion of the burner 1 is started (steps 4 to 7).
If the water flow rate Qx does not exceed the set water quantity for ignition Qs,
The gas on-off valve 16 and the gas amount control valve 17 are closed to stop the ventilation of the fan 6 (step 8). Further, if the operation switch 18 is turned off or if water flow is not detected by the water amount sensor 9, the gas opening / closing valve 16 and the gas amount adjusting valve 17
To stop the ventilation of the fan 6 (step 9)
At the same time, if the temperature deviation e is 10 ° C. or more, it is determined that the standby state is an initial ignition start-up state (an example of the set hot water discharge state), and both the first water opening / closing valve 14a and the second water opening / closing valve 14b are set. When the closed state (water mixing ratio is “0”) is set and the temperature deviation e is less than 10 ° C., it is determined to be the standby state during intermittent use, and the first water opening / closing valve 14a is closed. The second water opening / closing valve 14b is set to the open state (the water mixing ratio is "small") (steps 10 to 12).

【0052】バーナ1の燃焼の開始後、初期運転時間t
1 が経過していなければ、初点火立上がり時での待機状
態であるか否かが判断され、当該待機状態であると判断
すると、出湯温センサ11の検出値T1 が目標給湯温度
1Sを越えるまで、前記待機状態(水混合比率が「0」
の状態)を維持し、出湯温センサ11の検出値T1 が目
標給湯温度T1Sを越えると、第2水開閉弁14bが
「開」でなければ(初回、制御時には「閉」である)、
第1水開閉弁14aを閉状態、第2水開閉弁14bを開
状態(水混合比率を「小」)に設定して、ステップ2に
戻る(ステップ13〜17)。
After the start of combustion of the burner 1, the initial operation time t
If 1 has not elapsed, it is determined whether or not it is in the standby state at the start of the first ignition, and when it is determined that the standby state is the standby state, the detection value T 1 of the hot water temperature sensor 11 determines the target hot water supply temperature T 1S . Until it exceeds the standby state (water mixing ratio is "0")
2) is maintained and the detected value T 1 of the hot water temperature sensor 11 exceeds the target hot water supply temperature T 1S , the second water opening / closing valve 14b is not "open" (it is "closed" for the first time and during control). ,
The first water on-off valve 14a is closed and the second water on-off valve 14b is opened (the water mixing ratio is "small"), and the process returns to step 2 (steps 13 to 17).

【0053】水混合比率が「小」に切り換えられると、
水混合比率が増加することによって、図7に示すよう
に、出湯温センサ11の検出値T1 が低下するが、その
後、水混合比率が「小」に設定された状態で、出湯温セ
ンサ11の検出値T1 が目標給湯温度T1Sを越えると、
ステップ16において第2水開閉弁14bが「開」であ
ると判断され、第1水開閉弁14aを開状態、第2水開
閉弁14bを閉状態(水混合比率を「中」)に設定し
(ステップ18)、前記初期運転時間t1 が経過したも
のとして(ステップ19)、ステップ7に戻り、その
後、ステップ2〜7,13,20を繰り返して、定常運
転状態が維持される。
When the water mixing ratio is switched to "small",
As shown in FIG. 7, the detection value T 1 of the hot water temperature sensor 11 decreases due to the increase of the water mixing ratio, but thereafter, the hot water temperature sensor 11 is set in the state where the water mixing ratio is set to “small”. When the detected value T 1 of exceeds the target hot water supply temperature T 1S ,
In step 16, it is determined that the second water opening / closing valve 14b is "open", the first water opening / closing valve 14a is set to the open state, and the second water opening / closing valve 14b is set to the closed state (water mixing ratio is "medium"). (Step 18), assuming that the initial operation time t 1 has elapsed (Step 19), the process returns to Step 7, and then Steps 2 to 7, 13, and 20 are repeated to maintain the steady operation state.

【0054】従って、ステップ14〜17、ステップ2
〜7,13,14〜16,18,19の各制御により、
混合比率漸増制御が実行されることになる。
Therefore, steps 14 to 17 and step 2
By each control of ~ 7,13,14 ~ 16,18,19,
The mixture ratio gradual increase control is executed.

【0055】その結果、初点火立上がり時には、図7に
示すように、少ない水混合比率で給湯が開始されるか
ら、水混合比率が定常運転時の値に固定される場合(図
7中、破線で示す)に比較して、目標給湯温度T1Sに至
る時間が短いものになる。
As a result, when the initial ignition is started, as shown in FIG. 7, hot water supply is started with a small water mixing ratio, so that the water mixing ratio is fixed to the value during steady operation (broken line in FIG. 7). The time required to reach the target hot water supply temperature T 1S is shorter than that shown in FIG.

【0056】そして、ステップ13において、前記初期
運転時間t1 が経過して、定常運転状態であると判断す
ると、第1水開閉弁14aを開状態、第2水開閉弁14
bを閉状態(水混合比率を「中」)に設定し、ステップ
2に戻る(ステップ20)。定常運転(給湯)が継続さ
れる間は、水混合比率が「中」の状態が維持される。給
湯栓の閉操作によって、通水が無くなると、ガス開閉弁
16、ガス量調節弁17を閉作動し、ファン6の通風を
停止する(ステップ9)と共に、前記温度偏差eが10
°C未満であれば、断続使用時での待機状態と判断し
て、第1水開閉弁14aを閉状態、第2水開閉弁14b
を開状態(水混合比率を「小」)に設定する(ステップ
9,10,12)。
Then, in step 13, when it is determined that the initial operation time t 1 has passed and it is in a steady operation state, the first water opening / closing valve 14a is opened and the second water opening / closing valve 14 is opened.
b is set to the closed state (water mixing ratio is "medium"), and the process returns to step 2 (step 20). While the steady operation (hot water supply) is continued, the state of the water mixing ratio is "medium" is maintained. When the water supply is stopped by closing the hot water tap, the gas on-off valve 16 and the gas amount adjusting valve 17 are closed to stop the ventilation of the fan 6 (step 9), and the temperature deviation e becomes 10
If it is less than ° C, it is judged that the standby state is in the intermittent use, and the first water opening / closing valve 14a is closed and the second water opening / closing valve 14b is closed.
Is set to an open state (water mixing ratio is "small") (steps 9, 10, 12).

【0057】次回の給湯再開時に、給湯停止時から給湯
再開までの経過時間が短いときは、出湯路4内の湯温は
あまり低下せず、前記温度偏差eは10°C以内である
から、断続運転状態であると判断され、ステップ14か
らステップ21に移行する。通水の開始が検出された時
点から設定時間t2 (例えば0.2秒)が経過するまで
の間は、水混合比率が「小」の状態を維持しながら、再
出湯制御モードを「0」に設定する(ステップ22)。
When the hot water supply is restarted next time and the elapsed time from the hot water supply stop to the hot water supply restart is short, the hot water temperature in the hot water outlet 4 does not decrease so much and the temperature deviation e is within 10 ° C. It is determined that the operation is in the intermittent operation state, and the process proceeds from step 14 to step 21. From the time when the start of water flow is detected until the set time t 2 (for example, 0.2 seconds) elapses, the re-melting water control mode is set to “0” while the water mixing ratio remains “small”. Is set to "" (step 22).

【0058】このように、設定時間t2 が経過するまで
の間は水の比率が「小」の状態に維持されるから、出湯
路におけるバイパス路との接続点に近い箇所において比
較的低い温度(例えば、混合湯温に近い温度)の湯が存
在する場合や過渡的にバイパス路側の水量が多くなる場
合に、水の比率が「中」に設定されていれば、図8及び
図9に破線で示すような一時的な温度低下が生じるが、
この場合、図8及び図9に実線で示すように、このよう
な温度低下を抑制できることになる。
In this way, since the water ratio is maintained in the "small" state until the set time t 2 elapses, a relatively low temperature is maintained in the hot water discharge passage near the connection point with the bypass passage. When there is hot water (for example, a temperature close to the mixed hot water temperature) or when the amount of water on the bypass road side transiently increases, if the water ratio is set to “medium”, the results shown in FIGS. Although a temporary temperature drop occurs as shown by the broken line,
In this case, such a temperature decrease can be suppressed as shown by the solid lines in FIGS. 8 and 9.

【0059】前記設定時間t2 が経過すると、再出湯制
御モードを判別する(ステップ23)が、最初はモード
「0」に設定されているから、ステップ24に進み、第
1水開閉弁14aを開状態、第2水開閉弁14bを閉状
態(水混合比率を「中」)に設定し、水混合比率を少し
増加させる。そして、前記温度偏差eが−3°C以下、
つまり、出湯温センサ11の検出値T1 が目標給湯温度
1Sよりも3°C以上高温になると、運転停止時間が短
かく熱交換器2において後沸きが発生している状態(設
定出湯状態の一例)と判断し、後沸き制御モードに設定
され、第1水開閉弁14a、第2水開閉弁14bを共に
開状態(水混合比率を「大」)に設定して、再出湯制御
モードを「1」に設定する(ステップ25〜27)。こ
のようにして、水混合比率を増加させて、給湯温度が上
昇するのを防止する。
When the set time t 2 has elapsed, the re-hot water control mode is determined (step 23), but since the mode is initially set to "0", the process proceeds to step 24 and the first water opening / closing valve 14a is turned on. The second water on-off valve 14b is set to the open state and the second water on-off valve 14b is closed (the water mixing ratio is "medium") to slightly increase the water mixing ratio. And, the temperature deviation e is −3 ° C. or less,
That is, when the detected value T 1 of the hot water temperature sensor 11 becomes higher than the target hot water supply temperature T 1S by 3 ° C. or more, the operation stop time is short and the post-boiling occurs in the heat exchanger 2 (set hot water state). Example), the post-boiling control mode is set, both the first water opening / closing valve 14a and the second water opening / closing valve 14b are set to the open state (the water mixing ratio is “large”), and the re-hot water control mode is set. Is set to "1" (steps 25-27). In this way, the water mixing ratio is increased to prevent the hot water supply temperature from rising.

【0060】そして、再出湯制御モード「1」に移行
し、前記温度偏差eが3°C以上、つまり、出湯温セン
サ11の検出値T1 が目標給湯温度T1Sよりも低く、そ
の差が3°C以上あれば、後沸きによる高温湯が少なく
なったものと判断し、第1水開閉弁14aを開状態、第
2水開閉弁14bを閉状態(水混合比率を「中」)に設
定すると共に、再出湯制御モードを「2」に設定し、水
混合比率を減少させて(ステップ31〜33)、それ以
上の出湯温度の低下を防止する。その後、再出湯制御モ
ード「2」において、出湯温センサ11の検出値T1
目標給湯温度T1Sよりも低く、その差が3°C以上にな
れば、出湯路4内の湯温が低下していると判断し、第1
水開閉弁14aを閉状態、第2水開閉弁14bを開状態
(水混合比率を「小」)に設定すると共に、再出湯制御
モードを「3」に設定し、水混合比率を更に減少させて
(ステップ34〜36)、それ以上の出湯温度の低下を
防止する。又、再出湯制御モード「3」において、出湯
温センサ11の検出値T1 が目標給湯温度T1Sよりも3
°C以上高温になると、出湯路4内の湯温が定常運転時
の温度になったものと判断し、第1水開閉弁14aを開
状態、第2水開閉弁14bを閉状態(水混合比率を
「中」)、即ち、定常運転状態に設定して、前記初期運
転時間t1 が経過したものとする(ステップ37〜3
9)。
Then, the re-hot water control mode "1" is entered, and the temperature deviation e is 3 ° C or more, that is, the detected value T 1 of the hot water temperature sensor 11 is lower than the target hot water supply temperature T 1S , and the difference is If it is 3 ° C or higher, it is determined that the amount of high-temperature hot water due to post-boiling has decreased, and the first water opening / closing valve 14a is opened and the second water opening / closing valve 14b is closed (water mixing ratio is "medium"). In addition to the setting, the re-hot water control mode is set to "2" and the water mixing ratio is reduced (steps 31 to 33) to prevent further lowering of the hot water temperature. After that, in the re-hot water control mode “2”, if the detected value T 1 of the hot water temperature sensor 11 is lower than the target hot water supply temperature T 1S and the difference is 3 ° C. or more, the hot water temperature in the hot water discharge passage 4 decreases. First,
The water opening / closing valve 14a is closed, the second water opening / closing valve 14b is opened (water mixing ratio is "small"), and the re-hot water control mode is set to "3" to further reduce the water mixing ratio. (Steps 34 to 36) to prevent further lowering of the hot water discharge temperature. Further, in the re-hot water supply control mode “3”, the detected value T 1 of the hot water temperature sensor 11 is 3 than the target hot water supply temperature T 1S.
When the temperature rises above ° C, it is determined that the temperature of the hot water in the hot water discharge passage 4 has reached the temperature during steady operation, and the first water opening / closing valve 14a is opened and the second water opening / closing valve 14b is closed (water mixing). ratio "medium" a), i.e., set to steady operating condition, it is assumed that the initial operation time t 1 has elapsed (step 37-3
9).

【0061】上記ステップ21〜39により混合比率切
換制御が実行されることになる。尚、前記温度偏差eが
3°Cより少ない状態が継続されるときには、初期運転
時間t1 が経過するまで再出湯制御モードは「0」に維
持され、水混合比率は「中」に維持されることになる。
By the steps 21 to 39, the mixing ratio switching control is executed. Note that the when the temperature deviation e is continued is less than that 3 ° C, the re-pouring control mode until the initial operation time t 1 has elapsed is maintained at "0", the water mixing ratio is maintained at "medium" Will be.

【0062】上述したような混合比率切換制御が実行さ
れることで、図8に実線にて示すように、熱交換器2に
おける後沸きによる温度上昇、又は、温度低下を極力、
少ないものに抑制して、給湯温度の変化を、目標給湯温
度T1Sに対して3°C以内の範囲に抑えることができ
る。尚、図中、破線は上述したような水開閉弁制御を実
行せず、水混合比率を常に定常運転状態(「中」の状
態)に維持した場合の温度変化を示している。
By executing the mixing ratio switching control as described above, as shown by the solid line in FIG. 8, the temperature increase or the temperature decrease due to the post-boiling in the heat exchanger 2 is minimized.
It is possible to suppress the change to a small amount and to suppress the change in the hot water supply temperature within the range of 3 ° C. with respect to the target hot water supply temperature T 1S . In the figure, the broken line indicates the temperature change when the water on-off valve control as described above is not executed and the water mixing ratio is always maintained in the steady operation state (the "medium" state).

【0063】その後、ステップ2に戻り、ステップ2〜
7,13,20を繰り返して、定常運転状態が維持され
る。
After that, the procedure returns to step 2, and steps 2 to
By repeating steps 7, 13, and 20, the steady operation state is maintained.

【0064】上述したように、再出湯制御モードによる
順次制御を実行することによって、チャタリングを生じ
るおそれが少ないものになる。しかも、前記初期給湯時
間t 1 が経過した後は、確実に、定常運転用の混合比率
に設定されるものとなり、安定した給湯性能が得られる
ものとなる。
As described above, depending on the re-hot water control mode
Chattering is caused by executing sequential control.
It is less likely to occur. Moreover, during the initial hot water supply
Interval t 1After the lapse of time, be sure to check the mixing ratio for steady operation.
The stable hot water supply performance is obtained.
Will be things.

【0065】尚、前記ステップ24,25において、水
混合比率を「中」に変更した後に、出湯温センサ11の
検出値T1 が目標給湯温度T1Sよりも低く、その差が3
°C以上あれば、運転停止時間が長く、熱交換器2内の
湯が定常運転時よりも温度が低下している状態(設定出
湯状態の一例)と判断し、前冷え制御モードに設定し
て、水混合比率を「小」に切り換えて、再出湯制御モー
ドを「3」に設定し(ステップ28〜30)、ステップ
37に移行する。そして、出湯温センサ11の検出値T
1 が目標給湯温度T1Sよりも3°C以上高温になると、
出湯路4内の湯温が定常運転時の温度になったものと判
断し、第1水開閉弁14aを開状態、第2水開閉弁14
bを閉状態(水混合比率を「中」)、即ち、定常運転状
態に設定して、前記初期運転時間t1 が経過したものと
する(ステップ37〜39)。
In steps 24 and 25, after the water mixing ratio is changed to "medium", the detected value T 1 of the hot water temperature sensor 11 is lower than the target hot water supply temperature T 1S , and the difference is 3
If the temperature is above ° C, it is determined that the operation is stopped for a long time and the temperature of the hot water in the heat exchanger 2 is lower than that in the steady operation (an example of the set hot water state), and the pre-cooling control mode is set. Then, the water mixing ratio is switched to "small", the re-hot water control mode is set to "3" (steps 28 to 30), and the process proceeds to step 37. Then, the detection value T of the hot water temperature sensor 11
When 1 becomes higher than the target hot water supply temperature T 1S by 3 ° C or more,
It is judged that the temperature of the hot water in the hot water outlet 4 has reached the temperature during the steady operation, and the first water opening / closing valve 14a is opened and the second water opening / closing valve 14 is opened.
It is assumed that b is set to a closed state (water mixing ratio is “medium”), that is, a steady operation state is set, and the initial operation time t 1 has elapsed (steps 37 to 39).

【0066】この場合においても、給湯温度の変化は、
図9に示すように、水混合比率を常に定常運転状態
(「中」の状態)に維持した場合の温度変化(破線)に
比較して少ないものに抑制され、目標給湯温度T1Sに対
して3°C以内の範囲に抑えることができる。
Even in this case, the change in hot water supply temperature is
As shown in FIG. 9, compared to the temperature change (broken line) when the water mixing ratio is constantly maintained in the steady operation state (state of “medium”), it is suppressed to a small amount, and the target hot water supply temperature T 1S is reduced. It can be suppressed within the range of 3 ° C.

【0067】次に、前記目標給湯温度T1Sが45°C以
上で、且つ、60°C未満の場合について説明する。目
標給湯温度T1Sが45°C以上で、且つ、60°C未満
であれば(ステップ2,40)、温度偏差eを求め(ス
テップ41)、運転スイッチ18がOFFされるか、又
は、通水が停止すると、バーナ1の燃焼を停止し、温度
偏差eが10°C以上であれば、初点火立上がりでの待
機状態である判断して、第1水開閉弁14a、第2水開
閉弁14bを共に閉状態(水混合比率が「0」)に設定
し、温度偏差eが10°C未満であれば、第1水開閉弁
14aを閉状態、第2水開閉弁14bを開状態(水混合
比率を「小」)に設定する(ステップ42,43、47
〜50)。
Next, the case where the target hot water supply temperature T 1S is 45 ° C. or more and less than 60 ° C. will be described. If the target hot water supply temperature T 1S is 45 ° C. or higher and lower than 60 ° C. (steps 2 and 40), the temperature deviation e is calculated (step 41), and the operation switch 18 is turned off, or When the water stops, the combustion of the burner 1 is stopped, and if the temperature deviation e is 10 ° C or more, it is determined that the first ignition start-up is in the standby state, and the first water opening / closing valve 14a and the second water opening / closing valve If both 14b are set to the closed state (water mixing ratio is "0") and the temperature deviation e is less than 10 ° C, the first water opening / closing valve 14a is closed and the second water opening / closing valve 14b is opened ( Set the water mixing ratio to "small" (steps 42, 43, 47).
~ 50).

【0068】通水が開始され、バーナ1の燃焼が開始さ
れると、初点火立上がり時の待機状態であれば、出湯温
センサ11の検出値T1 が目標給湯温度T1Sを越えるま
で、前記待機状態(水混合比率が「0」の状態)を維持
し、出湯温センサ11の検出値T1 が目標給湯温度T1S
を越えると、第1水開閉弁14aを閉状態、第2水開閉
弁14bを開状態(水混合比率を「小」)に設定して、
前記初期運転時間t1が経過したものとして、ステップ
2に戻る(ステップ44,45,51〜55)。その後
は、ステップ51からステップ56へ進み、定常運転状
態が維持される。このようにして、図10に示すよう
に、水混合比率が定常運転時の値に固定される場合(図
10中、破線で示す)に比較して、目標給湯温度T1S
至る時間が短いものになる。
When the passage of water is started and the combustion of the burner 1 is started, in the standby state at the start of the initial ignition, the above-mentioned value until the detected value T 1 of the hot water temperature sensor 11 exceeds the target hot water supply temperature T 1S. The standby state (the state where the water mixing ratio is “0”) is maintained, and the detected value T 1 of the hot water temperature sensor 11 is the target hot water supply temperature T 1S.
When it exceeds, the first water opening / closing valve 14a is closed and the second water opening / closing valve 14b is opened (water mixing ratio is "small"),
Assuming that the initial operation time t 1 has elapsed, the process returns to step 2 (steps 44, 45, 51-55). After that, the routine proceeds from step 51 to step 56, and the steady operation state is maintained. In this way, as shown in FIG. 10, the time to reach the target hot water supply temperature T 1S is shorter than that in the case where the water mixing ratio is fixed to the value during steady operation (shown by the broken line in FIG. 10). It becomes a thing.

【0069】ステップ52において、初点火立上がり時
の待機状態でなく、断続使用状態であれば、通水の開始
が検出されてから所定時間t2 (0.2秒)が経過する
までに、再出湯制御モードを「4」に設定し、出湯温セ
ンサ11の検出値T1 が目標給湯温度T1Sよりも3°C
以上高くなれば、水混合比率を「中」に切り換え、再出
湯制御モードを「5」に設定する(ステップ52,5
7,59〜62)。出湯温センサ11の検出値T1 が目
標給湯温度T1Sよりも低く、その差が3°C以上であれ
ば、前記初期運転時間t1 が経過したものとする(ステ
ップ60,63,64)。再出湯制御モードが「5」に
設定されると、出湯温センサ11の検出値T1 が目標給
湯温度T1Sよりも低く、その差が3°C以上であれば、
第1水開閉弁14aを閉状態、第2水開閉弁14bを開
状態(水混合比率を「小」)に設定して、前記初期運転
時間t1 が経過したものとする(ステップ65〜6
7)。
In step 52, if the system is not in the standby state at the start of initial ignition but in the intermittent use state, it is restarted by the predetermined time t 2 (0.2 seconds) after the start of water flow is detected. The hot water outlet control mode is set to "4", and the detected value T 1 of the hot water outlet temperature sensor 11 is 3 ° C higher than the target hot water supply temperature T 1S .
If it becomes higher than the above, the water mixing ratio is switched to "medium" and the re-hot water control mode is set to "5" (steps 52, 5).
7, 59-62). If the detected value T 1 of the hot water temperature sensor 11 is lower than the target hot water supply temperature T 1S and the difference is 3 ° C. or more, it is assumed that the initial operation time t 1 has elapsed (steps 60, 63, 64). . When the re-hot water control mode is set to "5", the detected value T 1 of the hot water temperature sensor 11 is lower than the target hot water supply temperature T 1S , and if the difference is 3 ° C or more,
The first water-off valve 14a closed, to set (the water mixing ratio "small") a second water-off valve 14b open state, it is assumed that the initial operation time t 1 has elapsed (step 65-6
7).

【0070】このように、目標給湯温度T1Sが45°C
以上で、且つ、60°C未満であれば、目標給湯温度T
1Sが45°C未満の場合に実行したような、通水の開始
直後において、水混合比率を、定常運転時における水混
合比率よりも低下させるという制御が実行されず、給湯
温度が一時的に高くなるのを防止するようにしている。
又、通水の開始が検出されてから所定時間t2 (0.2
秒)が経過するまでは、水開閉弁14a,14bの開閉
制御を実行しないようにして、過渡的な給湯温度の変化
に起因して、すぐに定常運転状態へ移行するのを防止す
るようにしている。(図11参照)。
In this way, the target hot water supply temperature T 1S is 45 ° C.
Above, and if less than 60 ° C, the target hot water supply temperature T
Immediately after the start of water flow, as in the case where 1S is less than 45 ° C, control for lowering the water mixing ratio below the water mixing ratio during steady operation is not executed, and the hot water supply temperature is temporarily increased. I try to prevent it from getting higher.
Also, a predetermined time t 2 (0.2
The open / close control of the water opening / closing valves 14a and 14b is not executed until (second) has elapsed to prevent a transition to a steady operation state immediately due to a transient change in the hot water supply temperature. ing. (See Figure 11).

【0071】目標給湯温度T1Sが60°C以上に設定さ
れていれば、上述したような水混合比率の変更制御は実
行されず、第1水開閉弁14a及び第2水開閉弁14b
を共に閉状態(水混合比率を「0」)に設定して、常に
その状態が維持されるように制御する(ステップ2,4
0,68〜73)。
If the target hot water supply temperature T 1S is set to 60 ° C. or higher, the water mixing ratio changing control as described above is not executed and the first water opening / closing valve 14a and the second water opening / closing valve 14b are not operated.
Are both set to a closed state (water mixing ratio is "0"), and control is performed so that this state is always maintained (steps 2 and 4).
0,68-73).

【0072】次に、図12に示す制御フローチャートに
基づいて、燃料供給量制御の制御動作について詳述す
る。バーナ1の燃焼が開始され、前記初期運転時間t1
が経過するまでの間は、次のようにして燃料供給量が制
御される(ステップ80〜83,85,86)。(数
1)により、定常運転時における熱交換器2による目標
加熱温度T2Sを演算し、(数2)により、フィードフォ
ワード操作量FFを求める。
Next, the control operation of the fuel supply amount control will be described in detail with reference to the control flow chart shown in FIG. The combustion of the burner 1 is started, and the initial operation time t 1
Until the time elapses, the fuel supply amount is controlled as follows (steps 80 to 83, 85, 86). The target heating temperature T 2S by the heat exchanger 2 during steady operation is calculated from (Equation 1), and the feedforward manipulated variable FF is obtained from (Equation 2).

【0073】[0073]

【数1】T2S=(T1S−T0 )/MXS+T0 ## EQU1 ## T 2S = (T 1S -T 0 ) / M XS + T 0

【0074】但し、T1Sは給湯温度設定スイッチ19に
より設定された目標給湯温度T1Sであり、T0 は入水温
センサ10の検出値(入水温度)であり、MXSは、定常
運転時における入水量に対する熱交換器2側水量の比率
データであって、予め実測され、メモリに記憶されてい
る。つまり、前記MXSは、目標給湯温度T1Sが45°C
未満のときは、水混合比率が「中」に設定されている状
態、目標給湯温度T1Sが45°C以上、60°C未満の
ときは、水混合比率が「小」に設定されている状態の夫
々において、実測された熱交換器2側水量の比率データ
であり、目標給湯温度T1Sが60°C以上のときは、M
XS=1となる。
However, T 1S is the target hot water supply temperature T 1S set by the hot water supply temperature setting switch 19, T 0 is the value detected by the water temperature sensor 10 (water temperature), and M XS is the value during steady operation. It is ratio data of the amount of water on the heat exchanger 2 side with respect to the amount of water input, and is actually measured in advance and stored in the memory. That is, the target hot water supply temperature T 1S of the M XS is 45 ° C.
When it is less than, the water mixing ratio is set to "medium". When the target hot water supply temperature T 1S is 45 ° C or more and less than 60 ° C, the water mixing ratio is set to "small". In each of the states, it is the ratio data of the actually measured heat exchanger 2 side water amount, and when the target hot water supply temperature T 1S is 60 ° C or higher, M
XS = 1.

【0075】[0075]

【数2】FF=(T2S−T0 )×MX0×Qx÷C[Number 2] FF = (T 2S -T 0) × M X0 × Qx ÷ C

【0076】但し、Qxは水量センサ9により検出され
る入水量であり、Cは熱交換器2の熱効率に関する定数
であり、MX0は、上述した各水混合比率「小」、
「中」、「大」の夫々における、入水量に対する熱交換
器2側水量の比率データであって、予め実測され、メモ
リに記憶されているデータのうち、混合比制御により設
定されている状態での値である。目標給湯温度T1Sが6
0°C以上のときは、MX0=1となる。
Here, Qx is the amount of water input detected by the water amount sensor 9, C is a constant relating to the thermal efficiency of the heat exchanger 2, M X0 is the above-mentioned water mixing ratio "small",
The state data, which is the ratio data of the amount of water on the heat exchanger 2 side to the amount of input water in each of “medium” and “large”, which is set in advance by the mixing ratio control, among the data that has been actually measured in advance and stored in the memory. Is the value at. Target hot water temperature T 1S is 6
At 0 ° C. or higher, M X0 = 1.

【0077】又、前記目標加熱温度T2Sと、加熱湯温セ
ンサ12により検出される熱交換器2により加熱された
加熱湯温の実測値T2 との偏差に基づいて、この偏差が
小さくなるように、PI制御に基づいて、フィードバッ
ク操作量FBを求める。
Further, this deviation becomes small based on the deviation between the target heating temperature T 2S and the actual measurement value T 2 of the heated hot water heated by the heat exchanger 2 detected by the heated hot water temperature sensor 12. Thus, the feedback control input FB is obtained based on the PI control.

【0078】そして、前記各制御目標FF,FBを加算
してガス量調節弁17の操作量を求め、ガス量調節弁1
7を操作制御する。
Then, the respective control targets FF and FB are added to obtain the operation amount of the gas amount adjusting valve 17, and the gas amount adjusting valve 1
7 is controlled.

【0079】そして、所定単位時間(1秒)をカウント
するタイマーがカウントアップする毎に、即ち、1秒お
きに、加熱湯温センサ12の検出値T2 と、熱交換器2
側の通水量Q2 をメモリに記憶させる(ステップ87〜
89,94,95)。尚、前記熱交換器2側の通水量Q
2 は、そのときの入水量センサ9の検出値Qxと、その
ときに制御されている各水開閉弁14a,14bの開閉
状態に対応する前記M X0との積により求められる。又、
加熱湯温センサ12の検出値T2 と、熱交換器2側の通
水量Q2 との記憶は、8回分が記憶され、その後は、順
次、1個づつ新しいデータに書き換えられていく。
Then, the predetermined unit time (1 second) is counted.
Every time the timer that counts up counts up, that is, one second
The detection value T of the hot water temperature sensor 122And heat exchanger 2
Side water flow Q2Is stored in the memory (step 87-
89, 94, 95). It should be noted that the water flow rate Q on the heat exchanger 2 side
2Is the detected value Qx of the water amount sensor 9 at that time, and
Opening / closing of each water opening / closing valve 14a, 14b controlled at time
The M corresponding to the state X0It is calculated by the product of and. or,
Detection value T of heating water temperature sensor 122And the heat exchanger 2 side
Water quantity Q2As for the memory of 8 times,
Next, new data is rewritten one by one.

【0080】次に、前記初期運転時間t1 が経過した後
は、次のように燃料供給量が制御される。(数3)によ
り、燃料供給量のフィードフォワード操作量FFを求め
る(ステップ84)。
Next, after the initial operating time t 1 has elapsed, the fuel supply amount is controlled as follows. The feedforward manipulated variable FF of the fuel supply amount is obtained from (Equation 3) (step 84).

【0081】[0081]

【数3】FF=(T1S−T0 )×Qx÷C 但し、T1Sは給湯温度設定スイッチ19により設定され
た目標給湯温度T1Sであり、T0 は入水温センサ10の
検出値(入水温度)であり、Qxは水量センサ9により
検出される入水量である。
FF = (T 1S −T 0 ) × Qx ÷ C However, T 1S is the target hot water supply temperature T 1S set by the hot water supply temperature setting switch 19, and T 0 is the detected value of the incoming water temperature sensor 10 ( Water input temperature), and Qx is the water input detected by the water amount sensor 9.

【0082】又、熱交換器2による目標加熱温度T2S
加熱湯温センサ12による加熱湯温の実測値T2 との温
度偏差を求め、この温度偏差が小さくなるように、PI
制御に基づいて、フィードバック操作量FBを求める
(ステップ86)。尚、ここで、前記目標加熱温度T2S
は、(数4)によって求められる。
Further, the temperature deviation between the target heating temperature T 2S by the heat exchanger 2 and the actual measured value T 2 of the heating water temperature by the heating water temperature sensor 12 is calculated, and PI is set so that this temperature deviation becomes small.
Based on the control, the feedback control input FB is obtained (step 86). Incidentally, here, the target heating temperature T 2S
Is calculated by (Equation 4).

【0083】[0083]

【数4】T2S=(T1S−T0 )/Mx+T0 ## EQU4 ## T 2S = (T 1S -T 0 ) / Mx + T 0

【0084】尚、前記MX は、入水量に対する熱交換器
2側水量の比率であるが、この比率Mxは、例えば、入
水量が大きく変化した場合や上述したような水開閉弁の
開閉制御が実行された際には、予め設定された値から変
化するおそれがあるから、加熱湯温センサ12による加
熱湯温の実測値T2 と、熱交換器2側への通水量Q2
から、正確な値を学習するようにしている。即ち、熱交
換器2の出口から、バイパス路5との接続点(ミキシン
グ部)までの出湯路4の通路内容量Qaを、実測にて予
め求めておき、そして、(数5)に示すように、熱交換
器2側への通水量Q2 の所定単位時間Δt(この実施例
では1秒)毎の記憶値を順次積算して、その積算値S
が、前記出湯路4の通路内容量Qaを越える最小の加算
回数k、つまり、熱交換器2の出口からミキシング部ま
で湯が流動するまでの加算回数kを求め、k回前の加熱
湯温センサ12の検出値を、ミキシング部の直前での出
湯路4内の湯温T2kとして求める(ステップ88〜9
2)。尚、熱交換器2側への通水量Q2 は、(数6)に
基づいて算出する。
The M X is the ratio of the amount of water on the heat exchanger 2 side to the amount of water input, and this ratio Mx is, for example, when the amount of water input greatly changes or when the opening / closing control of the water opening / closing valve is performed as described above. When it is executed, there is a possibility that the value may change from the preset value. Therefore, from the measured value T 2 of the heated hot water temperature by the heated hot water temperature sensor 12 and the water flow amount Q 2 to the heat exchanger 2 side. , Trying to learn the exact value. That is, the passage internal volume Qa of the hot water outlet passage 4 from the outlet of the heat exchanger 2 to the connection point (mixing portion) with the bypass passage 5 is obtained in advance by actual measurement, and as shown in (Equation 5). In addition, the stored value of the water flow rate Q 2 to the heat exchanger 2 side for each predetermined unit time Δt (1 second in this embodiment) is sequentially integrated, and the integrated value S
Is the minimum number of additions k that exceeds the internal capacity Qa of the hot water outlet passage 4, that is, the number of additions k until the hot water flows from the outlet of the heat exchanger 2 to the mixing section, and the heating water temperature before k times The value detected by the sensor 12 is obtained as the hot water temperature T 2k in the hot water outlet 4 immediately before the mixing section (steps 88 to 9).
2). The water flow rate Q 2 to the heat exchanger 2 side is calculated based on (Equation 6).

【0085】そして、(数7)により正確な前記比率M
X を求め(ステップ93)、上記(数4)におけるMx
を、このようにして求められた新たな値に更新すること
によって、正確な目標加熱温度T2Sを求め、より誤差
(定常偏差)の少ない燃料供給量制御を行うことができ
るのである。
Then, the ratio M which is more accurate according to (Equation 7)
X is calculated (step 93), and Mx in the above (Equation 4) is calculated.
Is updated to the new value obtained in this way, so that an accurate target heating temperature T 2S can be obtained and the fuel supply amount control with a smaller error (steady deviation) can be performed.

【0086】[0086]

【数5】S=Q2 ×Δt+Q21×Δt+Q22×Δt+…
…+Q2kΔt
## EQU5 ## S = Q 2 × Δt + Q 21 × Δt + Q 22 × Δt + ...
… + Q 2k Δt

【0087】[0087]

【数6】Q2 =MX0×Qx[Equation 6] Q 2 = M X0 × Qx

【0088】[0088]

【数7】Mx=(T1 −T0 )/(T2k−T0 ## EQU7 ## Mx = (T 1 −T 0 ) / (T 2k −T 0 ).

【0089】このように燃料供給量を制御することで、
図13に示すように、初点火立上がり時においては、目
標燃料供給量(フィードフォワード操作量)が、目標給
湯温度T1Sと入水温度との偏差に基づいて求められる場
合の目標燃料供給量(図13において破線で示す)より
も大になり、図14に示すように、給湯温度の立ち上が
りが、、目標給湯温度T1Sと入水温度との偏差に基づい
て求められる場合に比較して早くなる。
By controlling the fuel supply amount in this way,
As shown in FIG. 13, at the time of initial ignition rise, the target fuel supply amount (feedforward operation amount) is calculated based on the deviation between the target hot water supply temperature T 1S and the incoming water temperature (see FIG. 13) (shown by the broken line in FIG. 13), and as shown in FIG. 14, the rising of the hot water supply temperature is faster than when it is obtained based on the deviation between the target hot water supply temperature T 1S and the incoming water temperature.

【0090】又、断続使用時においては、図15に示す
ように、水混合比率の切り換え制御に対応して、温度が
高いとき(後沸き時)は燃料供給量が少なくなり、温度
が低いとき(前冷え時)は燃料供給量が大になるので、
図16に示すように、切り換え制御を行わない場合(図
16で破線で示す)に比較して、給湯温度の変化がより
少ないものになるように抑制され、目標給湯温度への収
束が早くなる。
Further, during intermittent use, as shown in FIG. 15, when the temperature is high (after boiling), the fuel supply amount is small and the temperature is low, corresponding to the switching control of the water mixing ratio. Since the fuel supply amount is large (when it is pre-cooled),
As shown in FIG. 16, as compared with the case where the switching control is not performed (shown by the broken line in FIG. 16), the change in the hot water supply temperature is suppressed to be smaller, and the convergence to the target hot water supply temperature is accelerated. .

【0091】更に、定常運転時には、フィードフォワー
ド操作量FFが、熱交換器2側水量比率に関係なく算出
され、例えば、図17に破線で示すように、入水量Qx
が急激に変化したような場合であっても、正確な制御目
標が得られると共に、熱交換器2側水量比率を正確に求
めることによって、前記混合比率切換制御時に行われよ
うに、目標加熱湯温T2Sと、混合比率MXS等とに基づい
て、(数1)により、フィードフォワード操作量を求め
る場合(図中、実線で示す)に比較して、混合比率MXS
の誤差に起因して残留偏差ΔTが生じるのを防止でき
る。
Further, during steady operation, the feedforward manipulated variable FF is calculated regardless of the heat exchanger 2 side water amount ratio. For example, as shown by the broken line in FIG.
Even if the temperature suddenly changes, an accurate control target can be obtained, and by accurately obtaining the heat exchanger 2 side water amount ratio, the target heating water can be controlled as in the mixing ratio switching control. and temperature T 2S, based on the mixture ratio M XS like, compared to the (number 1), (in the figure, indicated by a solid line) when obtaining the feed-forward operation amount, mixing ratio M XS
It is possible to prevent the residual deviation ΔT from occurring due to the error of.

【0092】〔別実施例〕 (1)上記実施例では、バーナの燃料供給量制御におい
て、定常燃焼時における熱交換器での目標加熱温度T2S
を求めるための、熱交換器側水量の比率Mxを学習する
際において、熱交換器側の水量Q2 を、入水量センサ9
の検出値Qxと、そのときに制御されている各水開閉弁
14a,14bの開閉状態に対応する前記MX0との積に
より求めるようにしたが、次のようにして求めてもよ
い。図19に示すように、前記初期運転時間t1 の経過
するまでの間は、入水量センサ9の検出値Qxと、その
ときに制御されている各水開閉弁14a,14bの開閉
状態に対応する前記MX0との積により求め(ステップ8
8a)、且つ、前記初期運転時間t1 が経過した後は、
上述したようにして求められる比率(学習値)Mxと入
水量センサ9の検出値Qxとの積により求める(ステッ
プ88b)ようにしてもよい。このように構成すると、
所定単位時間毎に順次、記憶される熱交換器側の水量Q
2 の精度が向上して、更に、精度よく前記比率Mxの学
習値の精度が向上することになる。 (2)上記実施例では、前記比率Mxを、バーナ1の燃
焼が開始されると、その都度、所定単位時間Δt毎に演
算して、新たな値に更新させる構成としたが、このよう
な構成に代えて、上記実施例における制御手順に基づい
て前記比率Mxの学習値が求められた後において、この
学習された比率Mxをメモリに記憶させておき、以降の
給湯時においては、上述したような比率Mxの学習を実
行せずに、この記憶されている比率Mxを用いて燃料供
給量制御を実行するように構成してもよい。つまり、上
記実施例における(数2)における混合比率MX0に代え
て、記憶されている比率Mx(学習値)を用いて、初期
運転期間t1 が経過する前におけるフィードフォワード
操作量FFの演算を実行し、上記実施例における(数
4)における比率Mxに、記憶されている比率Mx(学
習値)を用いて,目標加熱温度T2Sの演算を実行し、
(数3)による初期運転期間t1 が経過した後のフィー
ドフォワード操作量FFの演算を実行するように構成し
てもよい。 (3)上記実施例では、前記初期運転時間t1 が経過す
るまでの間(過渡状態において)は、定常運転時目標加
熱湯温T2Sと入水温度T0 との偏差、及び、熱交換器2
への通水量Q2 に基づいて、フィードフォワード操作量
FFを求めるように構成したが、これに代えて、目標給
湯温度T1Sと入水温度T0 との偏差、及び、入水量Qx
に基づいてフィードフォワード操作量FFを求めるよう
に構成してもよい。 (4)上記実施例では、定常運転時において、目標給湯
温度T1Sと入水温度T0との偏差、及び、入水量Qxに
基づいてフィードフォワード操作量を求めるようにした
が、目標加熱湯温T2Sと入水温度T0 との偏差、及び、
熱交換器2への通水量Q2 に基づいて、フィードフォワ
ード操作量FFを求めるように構成してもよい。 (5)上記実施例では、定常運転時における前記混合比
率Mxを求める構成として、出湯路4から供給される
湯、バイパス路5から供給される水及び、これらの混合
湯の夫々の温度の情報に基づいて、混合比率Mxを求め
るようにしたが、出湯路4及びバイパス路5の夫々に、
各別に、通水量検出手段を設け、各通水量検出手段の検
出値に基づいて混合比率を求めるように構成してもよ
い。 (6)上記実施例では、出湯路4におけるバイパス路5
との接続点より上手側近傍の湯温を検出する構成とし
て、熱交換器2への通水量の検出情報、出湯路4の通路
内容量Qa、及び、加熱湯温センサ12の検出値に基づ
いて、前記湯温を演算にて求めるようにしたが、出湯路
4におけるバイパス路5との接続点より上手側近傍に湯
温検出センサを設け、直接、湯温を検出するように構成
してもよい。 (7)上記実施例では、熱交換器2の通水量検出手段と
して、水量センサ9により検出される入水量Qxと、予
め実測され記憶されている混合比率MXSに基づいて、前
記通水量Q2 を演算にて求めるようにしたが、出湯路4
に、熱交換器2への通水量を直接検出する水量センサを
設ける構成としてもよい。 (8)上記実施例では、給湯開始時の過渡状態において
は、混合比率を変更させて、混合湯温が目標給湯温度に
なるように混合比調節手段を制御する構成としたが、こ
のような構成に限定されず、混合比率を常に一定に維持
させる構成としてもよい。 (9)前記混合比調節手段Aは、上記したような2個の
経路に夫々開閉弁を備えて構成されるものに代えて、互
いに流路径が異なる3個以上の並列経路に夫々開閉弁を
備えて構成してもよく、又、例えば電動モータ等のアク
チュエータにより前記混合比率を可変調節自在な混合比
率可変弁を用い、実混合比率をセンサ等により検出して
フィードバックしながら、実混合比率が目標値になるよ
うに、アクチュエータを駆動制御させる構成としてもよ
い。但し、上記実施例のように、開閉弁にて制御する構
成とすることで、混合比率の切り換え制御の応答速度が
速くなると共に、構成が簡素化できるものとなる。 (10)前記混合湯温検出手段としては、前記出湯路4
と前記バイパス路5との接続点よりも下流側に設ける構
成に代えて、前記出湯路4における接続点よりも上流側
箇所に出湯温センサと、バイパス路内の水温を検出する
水温センサと、出湯路及びバイパス路夫々に通水量の比
率を検出する混合比率検出手段とで構成し、これらの検
出情報から、混合湯温を演算にて求めるようにしてもよ
い。 (11)前記水量検出手段として、上記実施例では、前
記入水路3における前記バイパス路5との分岐点より上
手側に、1個だけの水量センサ9にて構成されるものと
したが、前記入水路3における前記バイパス路5との分
岐点より下手側に熱交換器側水量センサを設けると共
に、バイパス路に途中にバイパス路側水量センサを設
け、これらの水量センサの検出値の加算値に基づいて、
バーナの燃焼制御を行うようにしてもよい。
[Other Embodiment] (1) In the above embodiment, in the fuel supply amount control of the burner, the target heating temperature T 2S in the heat exchanger during steady combustion.
In learning the ratio Mx of the water amount on the heat exchanger side to obtain the water amount Q 2 on the heat exchanger side,
Although it is determined by the product of the detected value Qx of the above and the M X0 corresponding to the open / closed state of each water on-off valve 14a, 14b being controlled at that time, it may be obtained as follows. As shown in FIG. 19, until the initial operation time t 1 elapses, it corresponds to the detected value Qx of the water input sensor 9 and the open / closed states of the water opening / closing valves 14a and 14b controlled at that time. And the product of M X0
8a), and after the initial operation time t 1 has elapsed,
It may be determined by the product of the ratio (learning value) Mx obtained as described above and the detection value Qx of the water amount sensor 9 (step 88b). With this configuration,
Water quantity Q on the heat exchanger side that is stored in sequence for each predetermined unit time
The precision of 2 is improved, and the precision of the learning value of the ratio Mx is further improved with high precision. (2) In the above-described embodiment, the ratio Mx is calculated every predetermined unit time Δt and updated to a new value each time combustion of the burner 1 is started. Instead of the configuration, after the learned value of the ratio Mx is obtained based on the control procedure in the above-described embodiment, the learned ratio Mx is stored in the memory, and when the hot water is supplied thereafter, the above-mentioned is performed. The fuel supply amount control may be executed using the stored ratio Mx without executing such learning of the ratio Mx. That is, instead of the mixing ratio M X0 in (Equation 2) in the above embodiment, the stored ratio Mx (learning value) is used to calculate the feedforward manipulated variable FF before the initial operation period t 1 elapses. Then, the target heating temperature T 2S is calculated by using the stored ratio Mx (learning value) for the ratio Mx in (Equation 4) in the above embodiment.
The calculation of the feedforward manipulated variable FF after the initial operation period t 1 according to (Equation 3) may be executed. (3) In the above embodiment, the deviation between the target hot water temperature T 2S during steady operation and the incoming water temperature T 0 , and the heat exchanger until the initial operation time t 1 elapses (in a transient state). Two
Although the feedforward operation amount FF is configured to be calculated based on the water flow amount Q 2 to the water, the deviation between the target hot water supply temperature T 1S and the water input temperature T 0 and the water input amount Qx are used instead.
The feedforward manipulated variable FF may be obtained based on (4) In the above embodiment, the feedforward operation amount is calculated based on the deviation between the target hot water supply temperature T 1S and the incoming water temperature T 0 and the incoming water amount Qx in the steady operation. Deviation between T 2S and incoming water temperature T 0 , and
Based on the passing water amount Q 2 of the heat exchanger 2, it may be configured to determine the feedforward manipulated variable FF. (5) In the above embodiment, as a configuration for obtaining the mixing ratio Mx during steady operation, hot water supplied from the hot water outlet passage 4, water supplied from the bypass passage 5, and temperature information of each of these mixed hot waters. Although the mixing ratio Mx is calculated based on the above, each of the hot water discharge path 4 and the bypass path 5 is
It is also possible to separately provide water flow rate detecting means and obtain the mixing ratio based on the detection value of each water flow rate detecting means. (6) In the above embodiment, the bypass passage 5 in the tap passage 4
As a configuration for detecting the hot water temperature in the vicinity of the upper side from the connection point with, it is based on the detection information of the water flow rate to the heat exchanger 2, the passage inner volume Qa of the hot water discharge passage 4, and the detection value of the hot water temperature sensor 12. Although the hot water temperature is calculated by calculation, a hot water temperature detection sensor is provided in the hot water discharge path 4 near the connection point with the bypass path 5 to detect the hot water temperature directly. Good. (7) In the above embodiment, as the water flow rate detecting means of the heat exchanger 2, the water flow rate Qx is detected based on the water flow rate Qx detected by the water flow rate sensor 9 and the mixing ratio M XS which is actually measured and stored in advance. 2 was calculated, but it was 4
In addition, a water amount sensor that directly detects the amount of water passing through the heat exchanger 2 may be provided. (8) In the above embodiment, in the transient state at the start of hot water supply, the mixing ratio is changed and the mixing ratio adjusting means is controlled so that the mixed hot water temperature becomes the target hot water supply temperature. The configuration is not limited, and the configuration may be such that the mixing ratio is always kept constant. (9) The mixing ratio adjusting means A may be replaced with an open / close valve provided in each of the two paths as described above, and an open / close valve may be provided in each of three or more parallel paths having different flow path diameters. Alternatively, the actual mixing ratio may be detected by a sensor or the like and fed back while using a mixing ratio variable valve capable of variably adjusting the mixing ratio by an actuator such as an electric motor. The actuator may be driven and controlled so that the target value is achieved. However, as in the above-described embodiment, by adopting a configuration in which the control is performed by the opening / closing valve, the response speed of the switching control of the mixing ratio becomes fast and the configuration can be simplified. (10) As the mixed hot water temperature detecting means, the hot water outlet 4
Instead of the configuration provided on the downstream side of the connection point between the bypass passage 5 and the bypass passage 5, a hot water temperature sensor at a location upstream of the connection point on the hot water passage 4, and a water temperature sensor for detecting the water temperature in the bypass passage, It may be configured by a mixing ratio detecting means for detecting the ratio of the amount of water passing through each of the hot water passage and the bypass passage, and the mixed hot water temperature may be calculated from the detected information. (11) As the water amount detecting means, in the above embodiment, only one water amount sensor 9 is provided on the upstream side of the branch point of the water inlet passage 3 with the bypass passage 5. The heat exchanger side water amount sensor is provided on the lower side of the branch point with the bypass passage 5 in the entry water passage 3, and the bypass passage side water amount sensor is provided in the middle of the bypass passage, and based on the added value of the detected values of these water amount sensors. hand,
Burner combustion control may be performed.

【0093】尚、特許請求の範囲の項に図面との対照を
容易にするために符号を記すが、該記入により本発明は
添付図面の構成に限定されるものではない。
Incidentally, although reference numerals are given in the claims for facilitating the comparison with the drawings, the present invention is not limited to the constitution of the accompanying drawings by the entry.

【図面の簡単な説明】[Brief description of drawings]

【図1】給湯装置の概略構成図FIG. 1 is a schematic configuration diagram of a hot water supply device.

【図2】水混合比率の変化を示す図FIG. 2 is a diagram showing changes in water mixing ratio.

【図3】混合比制御のフローチャートFIG. 3 is a flowchart of a mixture ratio control

【図4】混合比制御のフローチャートFIG. 4 is a flowchart of a mixture ratio control

【図5】混合比制御のフローチャートFIG. 5 is a flowchart of a mixture ratio control

【図6】混合比制御のフローチャートFIG. 6 is a flowchart of a mixture ratio control

【図7】初点火立上がり時の温度変化を示す図FIG. 7 is a diagram showing a temperature change at the time of starting the first ignition.

【図8】断続使用時における温度変化を示す図FIG. 8 is a diagram showing temperature changes during intermittent use.

【図9】断続使用時における温度変化を示す図FIG. 9 is a diagram showing temperature changes during intermittent use.

【図10】初点火立上がり時の温度変化を示す図FIG. 10 is a diagram showing a temperature change at the time of starting the first ignition.

【図11】断続使用時における温度変化を示す図FIG. 11 is a diagram showing a temperature change during intermittent use.

【図12】燃料供給量制御のフローチャートFIG. 12 is a flowchart of fuel supply amount control.

【図13】初点火立上がり時における燃料制御状態を示
す図
FIG. 13 is a diagram showing a fuel control state at the start of initial ignition.

【図14】初点火立上がり時における温度変化を示す図FIG. 14 is a diagram showing a temperature change at the time of starting the first ignition.

【図15】断続使用時における燃料制御状態を示す図FIG. 15 is a diagram showing a fuel control state during intermittent use.

【図16】断続使用時における温度変化を示す図FIG. 16 is a diagram showing temperature changes during intermittent use.

【図17】水量変化時における燃料制御状態を示す図FIG. 17 is a diagram showing a fuel control state when the water amount changes.

【図18】水量変化時における温度変化を示す図FIG. 18 is a diagram showing a temperature change when the amount of water changes.

【図19】別実施例の燃料供給量制御のフローチャートFIG. 19 is a flowchart of fuel supply amount control according to another embodiment.

【符号の説明】[Explanation of symbols]

1 バーナ 2 熱交換器 3 入水路 4 出湯路 5 バイパス路 9 入水量検出手段 10 入水温検出手段 11 混合湯温検出手段 17 燃料供給量調節手段 100 燃焼制御手段 101 混合比制御手段 102 湯温検出手段 103 通水量検出手段 A 混合比調節手段 T0 入水温度 1 給湯温度の検出値 T1S 目標給湯温度 T2 加熱湯温の検出値 T2S 目標加熱湯温 Qa 通路内容量 Mx 混合比率 MXS 設定目標比率 DESCRIPTION OF SYMBOLS 1 burner 2 heat exchanger 3 water inlet 4 hot water outlet 5 bypass passage 9 water amount detection means 10 water temperature detection means 11 mixed water temperature detection means 17 fuel supply amount adjustment means 100 combustion control means 101 mixing ratio control means 102 hot water temperature detection Means 103 Water flow rate detecting means A Mixing ratio adjusting means T0 Water temperature  T1 Detection value of hot water supply temperature T1S Target hot water temperature T2 Detection value of hot water temperature T2S Target heating water temperature Qa Passage volume Mx Mixing ratio MXS Set target ratio

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 入水路(3)及び出湯路(4)が夫々接
続され、バーナ(1)により加熱される水加熱用の熱交
換器(2)と、 前記入水路(3)と前記出湯路(4)とを接続するバイ
パス路(5)と、 前記バーナ(1)への燃料供給量を調節する燃料供給量
調節手段(17)と、 前記燃料供給量調節手段(17)を制御する燃焼制御手
段(100)と、 前記入水温度(T0 )を検出する入水温検出手段(1
0)とが備えられ、 前記燃焼制御手段(100)は、 前記出湯路(4)からの湯と、前記バイパス路(5)か
らの水とが混合された後の混合湯温が目標給湯温度(T
1S)になるように、燃料供給量を制御するように構成さ
れている給湯装置であって、 前記熱交換器(2)により加熱された湯温を検出する加
熱湯温検出手段(12)が備えられ、 前記燃焼制御手段(100)は、 前記目標給湯温度(T1S)、前記入水温度(T0 )、及
び、前記出湯路(4)からの湯と前記バイパス路(5)
からの水との混合比率(Mx)から、前記目標給湯温度
に対応する、前記熱交換器(2)による目標加熱湯温
(T2S)を求め、 前記目標加熱湯温(T2S)と、前記加熱湯温検出手段
(12)による検出値(T2 )との偏差が小さくなるよ
うに、前記燃料供給量調節手段(17)をフィードバッ
ク制御するように構成されている給湯装置。
1. A heat exchanger (2) for water heating, wherein a water inlet (3) and a hot water outlet (4) are connected to each other and heated by a burner (1); the water inlet (3) and the hot water. The bypass passage (5) connecting the passage (4), the fuel supply amount adjusting means (17) for adjusting the fuel supply amount to the burner (1), and the fuel supply amount adjusting means (17) are controlled. Combustion control means (100) and incoming water temperature detecting means (1) for detecting the incoming water temperature (T 0 ).
0) is provided, and the combustion control means (100) is configured so that the mixed hot water temperature after the hot water from the hot water discharge passage (4) and the water from the bypass hot water passage (5) are mixed is the target hot water supply temperature. (T
1S ) is a hot water supply device configured to control the amount of fuel supply, the heating hot water temperature detecting means (12) for detecting the hot water temperature heated by the heat exchanger (2). The combustion control means (100) is provided with the target hot water supply temperature (T 1S ), the incoming water temperature (T 0 ), hot water from the hot water discharge passage (4) and the bypass passage (5).
From the mixing ratio (Mx) with water from the target hot water temperature (T 2S ) by the heat exchanger (2) corresponding to the target hot water supply temperature, the target hot water temperature (T 2S ) and A hot water supply apparatus configured to perform feedback control of the fuel supply amount adjusting means (17) so that a deviation from a detected value (T 2 ) by the heated hot water temperature detecting means (12) becomes small.
【請求項2】 前記入水路(3)への入水量を検出する
入水量検出手段(9)が備えられ、 前記燃焼制御手段(100)は、 前記目標加熱湯温(T2S)と、前記加熱湯温検出手段
(12)による検出値(T2 )との偏差に基づいて、フ
ィードバック操作量を求め、且つ、 前記目標給湯温度(T2S)と前記入水温度(T0 )との
偏差、並びに、前記入水量検出手段(9)により検出さ
れる入水量に基づいて、フィードフォワード操作量を求
め、 前記フィードバック操作量と、前記フィードフォワード
操作量とに基づいて、前記燃料供給量調節手段(17)
を操作すべく制御するように構成されている請求項1記
載の給湯装置。
2. An inflow amount detecting means (9) for detecting an inflow amount into the inflow channel (3) is provided, and the combustion control means (100) includes the target heating hot water temperature (T 2S ), Based on the deviation from the detected value (T 2 ) by the heated hot water temperature detection means (12), the feedback operation amount is obtained, and the deviation between the target hot water supply temperature (T 2S ) and the incoming water temperature (T 0 ). And a feedforward operation amount based on the water input amount detected by the water input amount detection means (9), and the fuel supply amount adjustment means based on the feedback operation amount and the feedforward operation amount. (17)
The hot water supply apparatus according to claim 1, wherein the hot water supply apparatus is configured to be controlled to operate.
【請求項3】 前記出湯路(4)における前記バイパス
路(5)との接続点の上手側近傍の湯温を検出する湯温
検出手段(102)と、 前記出湯路(4)からの湯と、前記バイパス路(5)か
らの水とが混合された後の混合湯温を検出する混合湯温
検出手段(11)とが備えられ、 前記燃焼制御手段(100)は、 前記湯温検出手段(102)の検出値、前記混合湯温検
出手段(11)の検出値(T1 )、及び、前記入水温度
(T0 )の夫々に基づいて、前記混合比率(Mx)を求
めるように構成されている請求項1又は2記載の給湯装
置。
3. Hot water temperature detecting means (102) for detecting a hot water temperature near the upper side of a connection point of the hot water discharge passage (4) with the bypass road (5), and hot water from the hot water discharge passage (4). And a mixed hot water temperature detection means (11) for detecting the mixed hot water temperature after the water from the bypass passage (5) is mixed, and the combustion control means (100) is configured to detect the hot water temperature. The mixing ratio (Mx) is calculated based on the detection value of the means (102), the detection value (T 1 ) of the mixed hot water temperature detection means (11), and the incoming water temperature (T 0 ). The hot water supply apparatus according to claim 1 or 2, wherein the hot water supply apparatus is configured as.
【請求項4】 前記熱交換器(2)の通水量を検出する
通水量検出手段(103)が備えられ、 前記湯温検出手段(102)は、 設定時間毎に、前記熱交換器(2)の出口から前記バイ
パス路(5)との接続点までの前記出湯路(4)の通路
内容量(Qa)と、前記通水量検出手段(103)の単
位時間毎の検出値の加算値との比較情報、並びに、前記
加熱湯温検出手段(12)の検出値に基づいて、前記接
続点の上手側近傍の湯温を演算するように構成されてい
る請求項1、2又は3記載の給湯装置。
4. A water flow rate detection means (103) for detecting the water flow rate of the heat exchanger (2) is provided, and the hot water temperature detection means (102) is provided with the heat exchanger (2) every set time. ) From the outlet to the connection point with the bypass passage (5), the passage capacity (Qa) of the hot water passage (4), and the added value of the detection values for each unit time of the water flow amount detecting means (103). 4. The hot water temperature in the vicinity of the upper side of the connection point is calculated based on the comparison information of 1. and the detection value of the heated hot water temperature detecting means (12). Water heater.
【請求項5】 前記熱交換器(2)を通して、前記出湯
路(4)に供給される湯と、前記バイパス路(5)を通
して供給される水との混合比率を調節する混合比調節手
段(A)と、 給湯運転の開始後における過渡状態が過ぎた後の定常運
転状態においては、前記混合比率(Mx)が、定常運転
用の設定目標比率(MXS)になるように、前記混合比調
節手段(A)を制御し、 前記過渡状態においては、前記混合比率を変更させて、
前記混合湯温検出手段(11)の検出値が前記目標給湯
温度になるように、前記混合比調節手段(A)を制御す
る混合比制御手段(101)と、 前記熱交換器(2)の通水量を検出する通水量検出手段
(103)とが備えられ、 前記燃焼制御手段(100)は、 前記過渡状態において、 前記目標給湯温度(T1S)、前記入水温度(T0 )、及
び、前記設定目標比率(MXS)に基づいて、前記目標給
湯温度に対応する、前記熱交換器(2)による定常時目
標加熱湯温(T2S)を求め、 前記定常時目標加熱湯温(T2S)と前記入水温度
(T0 )との偏差、及び、前記通水量検出手段(10
3)の検出値の夫々の値に基づいて、フィードフォワー
ド操作量を求め、このフィードフォワード操作量に基づ
いて、前記燃料供給量調節手段(A)を操作すべく制御
するように構成されている請求項1、2、3又は4記載
の給湯装置。
5. A mixing ratio adjusting means for adjusting a mixing ratio of hot water supplied to the hot water outlet (4) through the heat exchanger (2) and water supplied through the bypass passage (5). A) and in the steady operation state after the transient state after the start of the hot water supply operation has passed, the mixture ratio (Mx) is set to the set target ratio (M XS ) for steady operation. Controlling the adjusting means (A), changing the mixing ratio in the transient state,
A mixing ratio control means (101) for controlling the mixing ratio adjusting means (A) so that the detected value of the mixed hot water temperature detecting means (11) reaches the target hot water supply temperature; and the heat exchanger (2). A water flow rate detection means (103) for detecting the water flow rate is provided, and the combustion control means (100), in the transient state, the target hot water supply temperature (T 1S ), the water input temperature (T 0 ), and , A steady-state target heating hot water temperature (T 2S ) by the heat exchanger (2) corresponding to the target hot water supply temperature is obtained based on the set target ratio (M XS ), and the steady-state target heating hot water temperature (T 2S ) is obtained. Deviation between T 2S ) and the incoming water temperature (T 0 ) and the water flow rate detecting means (10
The feedforward operation amount is obtained based on each of the detected values of 3), and the fuel supply amount adjusting means (A) is controlled to be operated based on the feedforward operation amount. The hot water supply device according to claim 1, 2, 3, or 4.
【請求項6】 前記通水量検出手段(103)が、 前記混合比制御手段(101)により変更調節される混
合比率(Mx)と、前記入水路(3)に供給される入水
量(Qx)に基づいて、前記熱交換器(2)の通水量を
検出するように構成されている請求項4又は5記載の給
湯装置。
6. The mixing ratio (Mx), which is changed and adjusted by the mixing ratio control unit (101), and the amount of water supplied (Qx) to the water inlet (3) by the water flow amount detecting unit (103). The water heater according to claim 4 or 5, which is configured to detect the amount of water passing through the heat exchanger (2) based on the above.
JP14728294A 1994-06-29 1994-06-29 Water heater Expired - Fee Related JP2889815B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14728294A JP2889815B2 (en) 1994-06-29 1994-06-29 Water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14728294A JP2889815B2 (en) 1994-06-29 1994-06-29 Water heater

Publications (2)

Publication Number Publication Date
JPH0814660A true JPH0814660A (en) 1996-01-19
JP2889815B2 JP2889815B2 (en) 1999-05-10

Family

ID=15426687

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14728294A Expired - Fee Related JP2889815B2 (en) 1994-06-29 1994-06-29 Water heater

Country Status (1)

Country Link
JP (1) JP2889815B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020141712A1 (en) * 2018-12-31 2020-07-09 주식회사 경동나비엔 Apparatus and method for supplying hot water

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020141712A1 (en) * 2018-12-31 2020-07-09 주식회사 경동나비엔 Apparatus and method for supplying hot water
CN113260820A (en) * 2018-12-31 2021-08-13 庆东纳碧安株式会社 Apparatus and method for supplying hot water
CN113260820B (en) * 2018-12-31 2023-03-07 庆东纳碧安株式会社 Apparatus and method for supplying hot water

Also Published As

Publication number Publication date
JP2889815B2 (en) 1999-05-10

Similar Documents

Publication Publication Date Title
JPH0814660A (en) Hot water feeding device
JP2814460B2 (en) Water heater
JPH09318153A (en) Hot-water supplier
JPH06257852A (en) Hot-water supplier
KR930010393B1 (en) Flow control method of hot-water supply apparatus
JP3226842B2 (en) Water heater
JP3177203B2 (en) Water heater
JP3517287B2 (en) Water heater
JP2513092B2 (en) Bypass mixing control method
KR930010392B1 (en) Flow control method of hot-water supply apparatus
JPH0480551A (en) Temperature controlling device for output of hot water feeder
JPH07190483A (en) Hot water supply controller
JPH01118061A (en) Hot water supplying device
JP2023000718A (en) Gas combustion apparatus
JPH09244752A (en) Hot water/water mix type hot water supply device
JPH10332197A (en) Hot water supplying device with solar hot water supplying function
CN116263246A (en) Gas combustion device
JPH1026412A (en) Hot water feeding device
JP2009174787A (en) Hot water supply system
JPH0650533A (en) Combustion control device
JPH07174409A (en) Method for controlling stabilization of re-supplied hot water temperature in hot water supplier
JPH07190395A (en) Hot water supply heater
JPH0713546B2 (en) Estimated water temperature detector and temperature controller for water heater
JPH10300223A (en) Water heater with hot water mixture controller
JPH1114143A (en) Hot-water supply

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees