JPH08146146A - Position detecting method - Google Patents
Position detecting methodInfo
- Publication number
- JPH08146146A JPH08146146A JP28051694A JP28051694A JPH08146146A JP H08146146 A JPH08146146 A JP H08146146A JP 28051694 A JP28051694 A JP 28051694A JP 28051694 A JP28051694 A JP 28051694A JP H08146146 A JPH08146146 A JP H08146146A
- Authority
- JP
- Japan
- Prior art keywords
- magnetic field
- detected
- magnetic
- receiving coil
- coil
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
- Geophysics And Detection Of Objects (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、土木施工分野において
埋設管などの地中埋設物の位置を地表より検知するな
ど、各種被探知物の位置を検知する位置検知方法に関
し、特に磁界強度計測方式の位置検知方法に関するもの
である。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a position detecting method for detecting the position of various detected objects such as detecting the position of an underground buried object such as a buried pipe from the ground surface in the field of civil engineering, and especially to measure the magnetic field strength. System position detection method.
【0002】[0002]
【従来の技術】埋設管などの地中埋設物の位置を地表よ
り検出する位置検知方法として、地中埋設物などの被探
知物に配置された磁界発生手段が発生する磁界の強度を
地表の観測地点に配置された磁気検出素子により計測
し、この磁界強度計測値より被探知物の位置を検知する
磁界強度計測方式の位置検知方法が既に知られており、
これは特開昭57−133373号公報、特開昭59−
153112号公報に示されている。2. Description of the Related Art As a position detecting method for detecting the position of an underground buried object such as a buried pipe from the ground surface, the strength of a magnetic field generated by a magnetic field generating means arranged on a detected object such as an underground buried object The position detection method of the magnetic field strength measurement method is already known, which is measured by the magnetic detection element arranged at the observation point, and the position of the detected object is detected from this magnetic field strength measurement value.
This is disclosed in JP-A-57-133373 and JP-A-59-59.
It is disclosed in Japanese Patent No. 153112.
【0003】特開昭57−133373号公報に示され
ている位置検知方法は、中心磁力線が鉛直方向になるよ
うに磁界発生手段を被探知物に取り付け、この磁界発生
手段が発生する磁界の垂直成分を水平配置の磁気検出面
を有する磁気検出素子により走査計測し、この計測値が
最小値を示す地点の軌跡が描く円の中心位置より被探知
物の位置を検知する。In the position detecting method disclosed in Japanese Patent Laid-Open No. 57-133373, the magnetic field generating means is attached to the object to be detected so that the central magnetic field lines are in the vertical direction, and the magnetic field generated by the magnetic field generating means is perpendicular to the detected object. The component is scanned and measured by a magnetic detection element having a horizontally arranged magnetic detection surface, and the position of the detected object is detected from the center position of a circle drawn by the locus of the point where the measured value shows the minimum value.
【0004】特開昭59−153112号公報に示され
ている位置検知方法は、中心磁力線が鉛直方向になるよ
うに磁界発生手段を被探知物に取り付け、鎖交面(磁気
検出面)が鉛直な磁気検出素子を、その鎖交面を直角に
貫通かる方向に往復移動させ、この移動過程にて磁気検
出素子により計測される磁界強度が最小値を示す位置よ
り被探知物の位置を検知する。In the position detecting method disclosed in Japanese Patent Laid-Open No. 59-153112, a magnetic field generating means is attached to the object to be detected so that the central magnetic force line is in the vertical direction, and the interlinking surface (magnetic detecting surface) is vertical. The magnetic detection element is reciprocally moved in a direction passing through the interlinking surface at a right angle, and the position of the detected object is detected from the position where the magnetic field strength measured by the magnetic detection element shows the minimum value during this movement process. .
【0005】[0005]
【発明が解決しようとする課題】特開昭57−1333
73号公報に示されている位置検知方法では、計測値が
最小値を示す地点が円形を描くべく、測定位置を変えて
多数回に亙って磁界強度を計測しなければならず、被探
知物の位置検知に多大な時間と労力が必要であり、また
地上に植え込み、樹木、カードレール、電柱などの障害
物が存在すると、被探知物の位置検知が行えない場合が
ある。Problems to be Solved by the Invention JP-A-57-1333
In the position detection method disclosed in Japanese Patent Publication No. 73, the magnetic field strength must be measured many times by changing the measurement position so that the point where the measurement value is the minimum value draws a circle. It takes a lot of time and labor to detect the position of an object, and if an obstacle such as a tree, a card rail, or a power pole exists on the ground, the position of the detected object may not be detected.
【0006】特開昭59−153112号公報に示され
ている位置検知方法では、磁界発生手段が発生する磁界
の中心磁力線の方向に対する磁気検出素子の鎖交面の相
対位置関係、磁気検出素子の移動方向などが正確に設定
されていないと、正確な位置検知が行われず、これら条
件が整わないまま計測が行われて誤検知を生じる可能性
がある。In the position detecting method disclosed in Japanese Patent Laid-Open No. 59-153112, the relative positional relationship of the interlinking surface of the magnetic detecting element with respect to the direction of the central magnetic force line of the magnetic field generated by the magnetic field generating means, the magnetic detecting element If the moving direction and the like are not set accurately, accurate position detection may not be performed, and measurement may be performed without these conditions being met, resulting in erroneous detection.
【0007】また被探知物の真上の地上に障害物が存在
すると、その被探知物の位置検知が行えず、探知物の真
上位置のみ検知可能であり、任意の位置より探知物が位
置する方向を検知することはできない。このため、例え
ば、地下埋設管の埋設施工において、下水本管に枝管を
非開削で接続施工するような場合、施工開始位置よりど
の方向へ堀削さればよいかを判別することができない。If an obstacle exists on the ground directly above the object to be detected, the position of the object to be detected cannot be detected and only the position directly above the object to be detected can be detected. It cannot detect the direction to go. For this reason, for example, in the burial construction of an underground burial pipe, in the case where a branch pipe is connected to the main sewer pipe without digging, it is not possible to determine in which direction the construction start position should be excavated.
【0008】本発明は、上述の如き問題点に着目してな
されたものであり、障害物の影響を受けることなく任意
の位置より探知物が位置する方向を、正確に、しかも多
大な時間や労力を必要とすることなく能率よく、検知す
ることができる磁界強度計測方式の位置検知方法を提供
することを目的としている。The present invention has been made by paying attention to the above-mentioned problems, and the direction in which a detected object is located from an arbitrary position without being affected by an obstacle is accurately, and it takes a long time. It is an object of the present invention to provide a position detection method of a magnetic field strength measurement method that enables efficient and efficient detection without requiring labor.
【0009】[0009]
【課題を解決するための手段】上述の目的を達成するた
めに、請求項1による位置検知方法は、被探知物に配置
された磁界発生手段が発生する磁界の強度を観測地点に
配置された磁気検出素子により計測し、この磁界強度計
測値より前記被探知物の位置を検知する位置検知方法に
おいて、磁気検出面を同一平面上に整列配置された複数
個の磁気検出素子を使用し、複数個の磁気検出素子によ
り検出される磁界強度計測値がともに最小値になるよう
に、前記磁界発生手段および前記磁気検出素子の配置姿
勢を調整し、前記磁気検出素子の整列方向が示す方向よ
り前記被探知物の位置を検知することを特徴としてい
る。In order to achieve the above object, in the position detecting method according to claim 1, the intensity of the magnetic field generated by the magnetic field generating means arranged on the object to be detected is arranged at the observation point. In a position detection method of measuring with a magnetic detection element and detecting the position of the detected object from the magnetic field strength measurement value, a plurality of magnetic detection elements whose magnetic detection surfaces are aligned on the same plane are used. The arrangement postures of the magnetic field generating means and the magnetic detection element are adjusted so that the magnetic field strength measurement values detected by the individual magnetic detection elements are both minimum values, and It is characterized by detecting the position of an object to be detected.
【0010】また上述の目的を達成するために、請求項
2による位置検知方法は、被探知物に配置された磁界発
生手段に電気信号を供給し、前記磁界発生手段が発生す
る磁界を観測地点に配置された磁気検出素子によって検
出し、当該磁気検出素子の出力信号より前記被探知物の
位置を検知する位置検知方法であって、磁気検出面を同
一平面上に整列配置された複数個の磁気検出素子を使用
し、複数個の磁気検出素子が出力する出力信号の位相が
前記磁界発生手段に供給する電気信号の位相に対して同
時に反転するように、前記磁界発生手段および前記磁気
検出素子の配置姿勢を調整し、前記磁気検出素子の整列
方向が示す方向より前記被探知物の位置を検知すること
を特徴としている。In order to achieve the above-mentioned object, the position detecting method according to claim 2 supplies an electric signal to the magnetic field generating means arranged on the object to be detected, and observes the magnetic field generated by the magnetic field generating means. Is a position detection method for detecting the position of the object to be detected from the output signal of the magnetic detection element, which is detected by a magnetic detection element arranged in The magnetic field generation means and the magnetic detection element are used so that the phases of the output signals output from the plurality of magnetic detection elements are inverted at the same time with respect to the phase of the electric signal supplied to the magnetic field generation means. Is adjusted to detect the position of the detected object from the direction indicated by the alignment direction of the magnetic detection elements.
【0011】[0011]
【作 用】請求項1による位置検知方法では、磁界発生
手段および磁気検出素子の配置姿勢を調整することによ
って複数個の磁気検出素子の磁界強度計測値がともに最
小値になると、磁界発生手段が発生する磁界の中心磁力
線を含む平面と同一の平面に磁気検出素子の磁気検出面
が整合することになる。これによりこの時には磁気検出
素子の整列方向が示す方向は被探知物の位置を指すこと
になり、被探知物の位置、特に観測地点より探知物が位
置する方向が検知される。In the position detecting method according to claim 1, when the magnetic field strength measurement values of the plurality of magnetic detection elements are both minimized by adjusting the arrangement postures of the magnetic field generation means and the magnetic detection element, the magnetic field generation means is activated. The magnetic detection surface of the magnetic detection element is aligned with the same plane as the plane including the central magnetic force line of the generated magnetic field. Accordingly, at this time, the direction indicated by the alignment direction of the magnetic detection elements points to the position of the detected object, and the position of the detected object, particularly the direction in which the detected object is located from the observation point, is detected.
【0012】請求項2による位置検知方法では、磁界発
生手段が発生する磁界の中心磁力線を含む平面と同一の
平面に磁気検出素子の磁気検出面が整合すると、磁気検
出素子が出力する出力信号の位相が前記磁界発生手段に
供給する電気信号の位相に対して同時に反転することを
利用しており、磁界発生手段および磁気検出素子の配置
姿勢を調整することによって複数個の磁気検出素子が出
力する出力信号の位相が同時に前記磁界発生手段に供給
する電流の位相に対して同時に反転すると、磁気検出素
子の整列方向が示す方向は被探知物の位置を指すことに
なり、被探知物の位置、特に観測地点より探知物が位置
する方向が検知される。In the position detecting method according to the second aspect, when the magnetic detecting surface of the magnetic detecting element is aligned with the same plane as the plane including the central magnetic force line of the magnetic field generated by the magnetic field generating means, the output signal output from the magnetic detecting element is changed. Utilizing the fact that the phase is inverted at the same time with respect to the phase of the electric signal supplied to the magnetic field generating means, a plurality of magnetic detecting elements output by adjusting the arrangement postures of the magnetic field generating means and the magnetic detecting element. When the phase of the output signal is simultaneously inverted with respect to the phase of the current supplied to the magnetic field generation means, the direction indicated by the alignment direction of the magnetic detection elements indicates the position of the detected object, and the position of the detected object, In particular, the direction in which the detected object is located is detected from the observation point.
【0013】なお、ここで云う位相の反転とは、磁界発
生手段に供給する電気信号の位相に対して磁気検出素子
が出力する出力信号の位相が、同位相である状態から1
80度位相差を生じること、あるいはその逆のことを云
う。The term "inversion of the phase" as used herein means that the phase of the output signal output from the magnetic detection element is the same as the phase of the electric signal supplied to the magnetic field generating means.
It means that an 80 degree phase difference is generated or vice versa.
【0014】[0014]
【実施例】以下に添付の図を参照して本発明を実施例に
ついて詳細に説明する。図1は請求項1による位置検知
方法の実施例に使用する位置検知装置の一実施例を示し
ている。図1にて符号1は地中に埋設された被探知埋設
管を示しており、被探知埋設管1内には移動台車2が挿
入されている。移動台車2の車輪3にはロータリエンコ
ーダのような車輪回転量センサ(図示省略)が接続さ
れ、この車輪回転量センサが出力する信号は信号線4に
よって制御装置5へ送信される。Embodiments of the present invention will now be described in detail with reference to the accompanying drawings. FIG. 1 shows an embodiment of a position detecting device used in an embodiment of the position detecting method according to claim 1. In FIG. 1, reference numeral 1 indicates a detected buried pipe buried in the ground, and a movable carriage 2 is inserted into the detected buried pipe 1. A wheel rotation amount sensor (not shown) such as a rotary encoder is connected to the wheels 3 of the movable carriage 2, and a signal output from this wheel rotation amount sensor is transmitted to the control device 5 through a signal line 4.
【0015】制御装置5は、上述の車輪回転量センサよ
り信号により被探知埋設管1内における移動台車2の移
動距離を測定する。移動台車2には、磁気発生手段とし
て送信コイル6が、姿勢制御手段7によって被探知埋設
管1の中心軸線Xと同一軸線周りに回転変位可能に可能
に装着されている。送信コイル6は、発振器など信号供
給装置8より交流電圧を電力線9によって与えられ、何
れの回転変位位置においても中心磁力線Mcが中心軸線
Xと直交する方向に延在する磁界を発生する。The control device 5 measures the moving distance of the moving carriage 2 in the detected buried pipe 1 by a signal from the wheel rotation amount sensor. A transmission coil 6 as a magnetism generating means is attached to the movable carriage 2 by a posture control means 7 so as to be rotationally displaceable around the same axis as the central axis X of the detected buried pipe 1. The transmission coil 6 receives an AC voltage from the signal supply device 8 such as an oscillator through the power line 9, and generates a magnetic field in which the central magnetic force line Mc extends in the direction orthogonal to the central axis X at any rotational displacement position.
【0016】地上の観測地点には、磁気検出装置10が
移動可能に配置されている。磁気検出装置10は、基台
11と、基台11に移動手段12によって被探知埋設管
1の中心軸線Xと平行な軸線周りに回転変位可能に、且
つ自身の板面を直角に貫通する方向に平行移動可能に設
けられた基板13とを有している。基板13には磁気検
知素子として、下側受信コイル14と上側受信コイル1
5とが各々の磁気検出面14a、15aを同一平面上、
この場合、基板13の板面と平行な一つの平面上に配置
された態様にて上下に整列固定配置されている。The magnetic detection device 10 is movably arranged at an observation point on the ground. The magnetic detection device 10 is capable of being rotationally displaced about an axis parallel to the central axis X of the buried pipe 1 to be detected by the base 11 and the moving means 12 on the base 11, and in a direction that penetrates the plate surface thereof at a right angle. And a substrate 13 movably provided in parallel therewith. The substrate 13 has a lower receiving coil 14 and an upper receiving coil 1 as magnetic detection elements.
5 and each magnetic detection surface 14a, 15a on the same plane,
In this case, they are vertically aligned and fixed in a mode in which they are arranged on one plane parallel to the plate surface of the substrate 13.
【0017】下側受信コイル14と上側受信コイル15
は各々磁界強度を計測し、その計測信号は信号線16、
17によって測定器18、19へ伝送される。測定器1
8、19は、各々磁界強度メータ20、21を有してお
り、下側受信コイル14、上側受信コイル15の各々よ
り入力する計測信号によって下側受信コイル14、上側
受信コイル15が計測した磁界強度を磁界強度メータ2
0、21によって表示する。位置検知に際しては、下側
受信コイル14、上側受信コイル15の磁気検出面14
a、15aの各々の中心を通って磁気検出面14a、1
5aと直交する平面と被探知埋設管1の中心軸線Xとの
交点に、送信コイル6の中心が位置するように移動台車
2を移動させる。Lower receiving coil 14 and upper receiving coil 15
Respectively measure the magnetic field strength, and the measurement signal is the signal line 16,
It is transmitted by 17 to measuring instruments 18, 19. Measuring instrument 1
Reference numerals 8 and 19 respectively have magnetic field strength meters 20 and 21, and the magnetic fields measured by the lower receiving coil 14 and the upper receiving coil 15 by the measurement signals input from the lower receiving coil 14 and the upper receiving coil 15, respectively. Magnetic field strength meter 2
Displayed by 0 and 21. When detecting the position, the magnetic detection surfaces 14 of the lower receiving coil 14 and the upper receiving coil 15 are detected.
a, 15a through the center of each of the magnetic detection surfaces 14a, 1a
The movable carriage 2 is moved so that the center of the transmission coil 6 is located at the intersection of the plane orthogonal to 5a and the central axis X of the detected buried pipe 1.
【0018】この状態にて、図2に示されているよう
に、送信コイル6の中心磁力線Mcの方向と下側受信コ
イル14、上側受信コイル15の磁気検出面14a、1
5aの延在方向とが一致、換言すれば、送信コイル6の
磁力線放射面6aと磁気検出面14a、15aとが直交
していない状態のまま、下側受信コイル14、上側受信
コイル15を基板13によって、その板面を直角に貫通
する方向、即ち図2にてA矢印により示すに平行移動さ
せると、図3に示されているように、送信コイル6の中
心磁力線Mcと下側受信コイル14、上側受信コイル1
5の磁気検出面14a、15aとがなす角度に応じて下
側受信コイル14、上側受信コイル15により計測され
る磁界強度の最小値が実際の送信コイル6の中心位置
(中心磁力線Mcの位置)よりずれた位置にて現れ、そ
の最小値の計測位置は下側受信コイル14と上側受信コ
イル15とで異なった位置に現れることになる。In this state, as shown in FIG. 2, the direction of the central magnetic force line Mc of the transmission coil 6 and the magnetic detection surfaces 14a, 1a of the lower receiving coil 14 and the upper receiving coil 15, respectively.
The extension direction of 5a is the same, in other words, the magnetic field emission surface 6a of the transmission coil 6 and the magnetic detection surfaces 14a and 15a are not orthogonal to each other, and the lower receiving coil 14 and the upper receiving coil 15 are mounted on the substrate. When the plate surface is perpendicularly penetrated by 13, ie, translated in a direction indicated by an arrow A in FIG. 2, the central magnetic field line Mc of the transmitter coil 6 and the lower receiving coil 6 as shown in FIG. 14, upper receiving coil 1
The minimum value of the magnetic field strength measured by the lower receiving coil 14 and the upper receiving coil 15 according to the angle formed by the magnetic detection surfaces 14a and 15a of 5 is the actual central position of the transmitting coil 6 (the position of the central magnetic force line Mc). It appears at a position further deviated, and the measurement position of the minimum value appears at different positions in the lower receiving coil 14 and the upper receiving coil 15.
【0019】ここで、下側受信コイル14と上側受信コ
イル15との計測値が同時に最小値を取り得るのは、送
信コイル6の中心磁力線Mc上に下側受信コイル14、
上側受信コイル15の磁気検出面14a、15aが位置
した場合であり、この時には送信コイル6の磁力線放射
面6aと磁気検出面14a、15aとが直交することに
なる。Here, the measured values of the lower side receiving coil 14 and the upper side receiving coil 15 can take the minimum value at the same time because the lower side receiving coil 14 on the central magnetic force line Mc of the transmitting coil 6,
This is a case where the magnetic detection surfaces 14a and 15a of the upper receiving coil 15 are located, and at this time, the magnetic field line emission surface 6a of the transmission coil 6 and the magnetic detection surfaces 14a and 15a are orthogonal to each other.
【0020】次に本発明による位置検知方法の実施手順
を図4、図5を参照して説明する。図4は本発明による
位置検知方法の実施手順を示しており、先ず送信コイル
6を姿勢制御手段7によって被探知埋設管1の中心軸線
X周りに回転変位させ(ステップ10)、下側受信コイ
ル14により計測される磁界強度が最小値になる回転変
位位置を見つけ出し(ステップ20)、その回転変位位
置にて送信コイル6の回転変位を停止する(ステップ3
0)。Next, a procedure for implementing the position detecting method according to the present invention will be described with reference to FIGS. FIG. 4 shows an implementation procedure of the position detecting method according to the present invention. First, the transmitting coil 6 is rotationally displaced around the central axis X of the detected buried pipe 1 by the attitude control means 7 (step 10), and the lower receiving coil is obtained. The rotational displacement position where the magnetic field strength measured by 14 is minimized is found (step 20), and the rotational displacement of the transmission coil 6 is stopped at that rotational displacement position (step 3).
0).
【0021】これにより、図5(a)に示されているよ
うに、送信コイル6が発生する磁界の中心磁力線Mcを
含む平面と平行な平面に下側受信コイル14、上側受信
コイル15の磁気検出面14a、15aが整合し、送信
コイル6の磁力線放射面6aと磁気検出面14a、15
aとが直交する。なお、この送信コイル6と下側受信コ
イル14、上側受信コイル15との相互の姿勢調整は、
移動手段12によって基板14と共に下側受信コイル1
4、上側受信コイル15を回転変位させてもよい。As a result, as shown in FIG. 5A, the magnetic fields of the lower receiving coil 14 and the upper receiving coil 15 are arranged in a plane parallel to the plane containing the central magnetic force line Mc of the magnetic field generated by the transmitting coil 6. The detection surfaces 14a and 15a are aligned, and the magnetic field line emission surface 6a of the transmission coil 6 and the magnetic detection surfaces 14a and 15
It is orthogonal to a. In addition, the mutual attitude adjustment of the transmission coil 6, the lower receiving coil 14, and the upper receiving coil 15 is performed by
The lower receiving coil 1 together with the substrate 14 by the moving means 12
4. The upper receiving coil 15 may be rotationally displaced.
【0022】次に上側受信コイル15による磁界強度計
測値が最小値であるかを判別し(ステップ40)、最小
値でない場合には移動手段12によって基板14と共に
下側受信コイル14、上側受信コイル15を平行移動さ
せ(ステップ50)、上側受信コイル15による磁界強
度計測値の挙動よりずれ方向を判断して平行移動方向を
選択設定し(ステップ60)、上側受信コイル15によ
る磁界強度計測値が最小値になる位置を見つけ出し、そ
の平行移動位置にて下側受信コイル14と上側受信コイ
ル15の平行移動を停止する(ステップ70)。Next, it is judged whether the measured value of the magnetic field strength by the upper receiving coil 15 is the minimum value (step 40). If it is not the minimum value, the moving means 12 moves the substrate 14 together with the lower receiving coil 14 and the upper receiving coil. 15 is translated (step 50), the displacement direction is determined based on the behavior of the magnetic field strength measurement value by the upper receiving coil 15, and the parallel movement direction is selected and set (step 60). The position where the minimum value is obtained is found, and the parallel movement of the lower receiving coil 14 and the upper receiving coil 15 is stopped at that parallel moving position (step 70).
【0023】つぎに下側受信コイル14と上側受信コイ
ル15の磁界強度計測値がともに最小値であるか否かを
確認し(ステップ80)、下側受信コイル14と上側受
信コイル15の磁界強度計測値がともに最小値でない場
合には、ステップ10に戻って送信コイル6と下側受信
コイル14、上側受信コイル15との相互の姿勢調整を
再度行う。Next, it is confirmed whether or not the measured values of the magnetic field strengths of the lower receiving coil 14 and the upper receiving coil 15 are both minimum values (step 80), and the magnetic field strengths of the lower receiving coil 14 and the upper receiving coil 15 are checked. If neither of the measured values is the minimum value, the process returns to step 10 and the attitudes of the transmitting coil 6, the lower receiving coil 14, and the upper receiving coil 15 are adjusted again.
【0024】下側受信コイル14と上側受信コイル15
の磁界強度計測値がともに最小値になると、図5(b)
に示されているように、送信コイル6の中心磁力線Mc
上に下側受信コイル14、上側受信コイル15の磁気検
出面14a、15aが位置したことになる。この状態に
おいては、下側受信コイル14と上側受信コイル15と
の整列方向は被探知埋設管1の管中心を指すことにな
り、これにより地上の任意の観測地点より被探知埋設管
1が位置する方向が検知される。Lower receiving coil 14 and upper receiving coil 15
When the measured values of the magnetic field strength of both become the minimum values, FIG.
, The central magnetic field line Mc of the transmission coil 6 is
The magnetic detection surfaces 14a and 15a of the lower receiving coil 14 and the upper receiving coil 15 are located above. In this state, the alignment direction of the lower receiving coil 14 and the upper receiving coil 15 indicates the pipe center of the detected buried pipe 1, which allows the detected buried pipe 1 to be positioned from any observation point on the ground. The direction to do is detected.
【0025】図6は請求項2による位置検知方法の実施
例に使用する位置検知装置の一実施例を示している。
尚、図6に於いて、図1に対応する部分は図1に付した
符号と同一の符号を付けて説明を省略する。この実施例
は、送信コイル6が発生する磁力線が、下側および上側
受信コイル14、15の磁気検出面の表側から入る場合
と、その磁気検出面に直交方向する方向から入る場合
と、磁気検出面の裏側から入る場合とで、下側および上
側受信コイル14、15が出力する出力信号の、送信コ
イル6に供給する電気信号に対する位相が変化し、送信
コイル6が発生する磁力線が下側および上側受信コイル
14、15の磁気検出面の表側から入る場合と、送信コ
イル6が発生する磁力線が下側および上側受信コイル1
4、15の磁気検出面の裏側から入る場合とで、下側お
よび上側受信コイル14、15の出力信号の前記電気信
号に対する位相が反転することを利用している。FIG. 6 shows an embodiment of the position detecting device used in the embodiment of the position detecting method according to claim 2.
Incidentally, in FIG. 6, the portions corresponding to those in FIG. 1 are designated by the same reference numerals as those in FIG. In this embodiment, the magnetic lines of force generated by the transmission coil 6 enter from the front side of the magnetic detection surfaces of the lower and upper reception coils 14 and 15, and enter the magnetic detection surface from a direction orthogonal to the magnetic detection surfaces. When entering from the back side of the surface, the phase of the output signals output from the lower and upper receiving coils 14 and 15 with respect to the electric signal supplied to the transmitting coil 6 changes, and the magnetic lines of force generated by the transmitting coil 6 become lower and When entering from the front side of the magnetic detection surface of the upper receiving coils 14 and 15, the magnetic lines of force generated by the transmitting coil 6 are lower and upper receiving coils 1.
The fact that the phases of the output signals of the lower and upper receiving coils 14 and 15 with respect to the electric signals are inverted when the case is entered from the back side of the magnetic detection surfaces of 4 and 15 is used.
【0026】従って、この実施例では、測定器18、1
9は各々、送信コイル6に供給する交流電圧と同位相の
基準信号を信号供給装置8より信号伝送ケーブル20に
よって入力し、下側受信コイル14、上側受信コイル1
5の各々の出力電圧と基準信号との同期検波により、送
信コイル6に供給する交流電圧に対する出力電圧の位相
のずれ方向を検出し、これらを画面表示部21、22に
画面表示する。Therefore, in this embodiment, the measuring devices 18, 1
Reference numerals 9 each have a reference signal of the same phase as the AC voltage supplied to the transmission coil 6 input from the signal supply device 8 through the signal transmission cable 20, and the lower reception coil 14 and the upper reception coil 1
By the synchronous detection of each output voltage of 5 and the reference signal, the phase shift direction of the output voltage with respect to the AC voltage supplied to the transmission coil 6 is detected, and these are displayed on the screen display units 21 and 22.
【0027】この場合、同期検波により、下側受信コイ
ル14、上側受信コイル15が出力する出力電圧の位相
が送信コイル6に供給する交流電圧の位相と同位相であ
る場合にはプラス方向の半波が得られ、これに対し下側
受信コイル14、上側受信コイル15が出力する出力電
圧の位相が送信コイル6に供給する交流電圧の位相と対
して180度の位相差を有している場合にはマイナス方
向の半波が得られ、この半波の極性判別により、下側受
信コイル14、上側受信コイル15の出力電圧の位相が
送信コイル6に供給する交流電圧の位相に対し反転する
ことを検知できる。位置検知に際しては、下側受信コイ
ル14、上側受信コイル15の磁気検出面14a、15
aの各々の中心を通って磁気検出面14a、15aと直
交する平面と被探知埋設管1の中心軸線Xとの交点に、
送信コイル6の中心が位置するように移動台車2を移動
させる。In this case, if the phase of the output voltage output from the lower receiving coil 14 and the upper receiving coil 15 is the same as the phase of the AC voltage supplied to the transmitting coil 6 due to the synchronous detection, the half in the plus direction. When a wave is obtained, the phase of the output voltage output from the lower receiving coil 14 and the upper receiving coil 15 has a phase difference of 180 degrees with respect to the phase of the AC voltage supplied to the transmitting coil 6. A half-wave in the negative direction is obtained in the negative direction, and the phase of the output voltage of the lower receiving coil 14 and the upper receiving coil 15 is inverted with respect to the phase of the AC voltage supplied to the transmitting coil 6 by determining the polarity of this half-wave. Can be detected. When detecting the position, the magnetic detection surfaces 14a, 15 of the lower receiving coil 14 and the upper receiving coil 15 are detected.
At the intersection of the plane perpendicular to the magnetic detection surfaces 14a and 15a passing through the centers of a and the central axis X of the detected buried pipe 1,
The moving carriage 2 is moved so that the center of the transmitting coil 6 is located.
【0028】この状態にて、図2に示されているよう
に、送信コイル6の中心磁力線Mcの方向と下側受信コ
イル14、上側受信コイル15の磁気検出面14a、1
5aの延在方向とが一致、換言すれば、送信コイル6の
磁力線放射面6aと磁気検出面14a、15aとが直交
していない状態のまま、下側受信コイル14、上側受信
コイル15を基板13によって、その板面を直角に貫通
する方向、即ち図2にてA矢印により示すに平行移動さ
せると、送信コイル6の中心磁力線Mcと下側受信コイ
ル14、上側受信コイル15の磁気検出面14a、15
aとがなす角度に応じて図7(a)、図7(b)に示さ
れているように、下側受信コイル14、上側受信コイル
15の出力電圧の位相が送信コイル6に供給する交流電
圧の位相に対して位置が、実際の送信コイル6の中心位
置(中心磁力線Mcの位置)よりずれた位置にて現れ、
その位置も下側受信コイル14と上側受信コイル15と
の離間距離に応じて下側受信コイル14と上側受信コイ
ル15とで異なった位置に現れることになる。In this state, as shown in FIG. 2, the direction of the central magnetic force line Mc of the transmitting coil 6 and the magnetic detection surfaces 14a, 1a of the lower receiving coil 14 and the upper receiving coil 15 are shown.
The extension direction of 5a is the same, in other words, the magnetic field emission surface 6a of the transmission coil 6 and the magnetic detection surfaces 14a and 15a are not orthogonal to each other, and the lower receiving coil 14 and the upper receiving coil 15 are mounted on the substrate. When the plate surface is perpendicularly penetrated by 13, ie, translated in a direction indicated by an arrow A in FIG. 2, the central magnetic force line Mc of the transmission coil 6 and the magnetic detection surfaces of the lower receiving coil 14 and the upper receiving coil 15 are moved. 14a, 15
As shown in FIGS. 7 (a) and 7 (b), the phase of the output voltage of the lower receiving coil 14 and the upper receiving coil 15 is an alternating current supplied to the transmitting coil 6 in accordance with the angle formed by a. The position appears with respect to the voltage phase at a position deviated from the actual center position of the transmission coil 6 (position of the center magnetic force line Mc),
This position also appears at different positions in the lower receiving coil 14 and the upper receiving coil 15 depending on the distance between the lower receiving coil 14 and the upper receiving coil 15.
【0029】ここで、下側受信コイル14と上側受信コ
イル15との出力電圧の位相が送信コイル6に供給する
交流電圧の位相に対して同時に反転するのは、送信コイ
ル6の中心磁力線Mc上に下側受信コイル14、上側受
信コイル15の磁気検出面14a、15aが位置した場
合であり、この時には送信コイル6の磁力線放射面6a
と磁気検出面14a、15aとが直交することになる。Here, the fact that the phases of the output voltages of the lower receiving coil 14 and the upper receiving coil 15 are inverted at the same time with respect to the phase of the AC voltage supplied to the transmitting coil 6 is on the central magnetic field line Mc of the transmitting coil 6. This is the case where the magnetic detection surfaces 14a and 15a of the lower receiving coil 14 and the upper receiving coil 15 are located at the position of the magnetic field line emitting surface 6a of the transmitting coil 6, respectively.
And the magnetic detection surfaces 14a and 15a are orthogonal to each other.
【0030】次に本発明による位置検知方法の実施手順
を図8および図5を参照して説明する。図8は本発明に
よる位置検知方法の実施手順を示しており、先ず、測定
器18、19の画面表示部21、22に画面表示されて
いる出力電圧の位相のずれ方向より送信コイル6と下側
および上側受信コイル14、15とのずれ方向を判別し
(ステップ10)、送信コイル6を姿勢制御手段7によ
って被探知埋設管1の中心軸線X周りに回転変位させる
(ステップ20)。Next, a procedure for implementing the position detecting method according to the present invention will be described with reference to FIGS. 8 and 5. FIG. 8 shows an implementation procedure of the position detecting method according to the present invention. First, the transmitter coil 6 and the lower part are arranged below the phase shift direction of the output voltage displayed on the screen display portions 21 and 22 of the measuring instruments 18 and 19. The direction of deviation from the side and upper receiving coils 14 and 15 is determined (step 10), and the transmitting coil 6 is rotationally displaced about the central axis X of the detected buried pipe 1 by the attitude control means 7 (step 20).
【0031】この回転変位下で、下側受信コイル14が
出力する出力電圧の位相が送信コイル6に供給する交流
電圧の位相に対して反転する回転変位位置を見つけ出し
(ステップ20)、その回転変位位置にて送信コイル6
の回転変位を停止する(ステップ40)。これにより、
図5(a)に示されているように、送信コイル6が発生
する磁界の中心磁力線Mcを含む平面と平行な平面に下
側受信コイル14、上側受信コイル15の磁気検出面1
4a、15aが整合し、送信コイル6の磁力線放射面6
aと磁気検出面14a、15aとが直交する。Under this rotational displacement, a rotational displacement position where the phase of the output voltage output from the lower receiving coil 14 is inverted with respect to the phase of the AC voltage supplied to the transmitting coil 6 is found (step 20), and the rotational displacement is determined. Transmit coil 6 at position
The rotational displacement of is stopped (step 40). This allows
As shown in FIG. 5A, the magnetic detection surfaces 1 of the lower receiving coil 14 and the upper receiving coil 15 are arranged on a plane parallel to the plane including the central magnetic force line Mc of the magnetic field generated by the transmitting coil 6.
4a and 15a are aligned and the magnetic field line emitting surface 6 of the transmitting coil 6
a and the magnetic detection surfaces 14a and 15a are orthogonal to each other.
【0032】なお、この送信コイル6と下側受信コイル
14、上側受信コイル15との相互の姿勢調整は、移動
手段12によって基板14と共に下側受信コイル14、
上側受信コイル15を回転変位させてもよい。次に上側
受信コイル15の出力電圧の位相が送信コイル6に供給
する交流電圧の位相に対して反転しているか否かを判別
し(ステップ50)、反転していない場合には、測定器
18、19の画面表示部21、22に画面表示されてい
る出力電圧の位相のずれ方向より送信コイル6と下側お
よび上側受信コイル14、15とのずれ方向を判別し
(ステップ60)、これに従って移動手段12によって
基板14と共に下側受信コイル14、上側受信コイル1
5を平行移動させ(ステップ70)、上側受信コイル1
5の出力電圧の位相が送信コイル6に供給する交流電圧
の位相に対して反転する位置を見つけ出し、その平行移
動位置にて下側受信コイル14と上側受信コイル15の
平行移動を停止する(ステップ80)。The mutual attitude adjustment of the transmitting coil 6, the lower receiving coil 14 and the upper receiving coil 15 is carried out by the moving means 12 together with the substrate 14 together with the lower receiving coil 14.
The upper receiving coil 15 may be rotationally displaced. Next, it is judged whether or not the phase of the output voltage of the upper receiving coil 15 is inverted with respect to the phase of the AC voltage supplied to the transmitting coil 6 (step 50). , 19 of the screen display units 21 and 22 are discriminated from the phase shift direction of the output voltage on the screen, the shift directions of the transmission coil 6 and the lower and upper reception coils 14 and 15 are determined (step 60). The lower receiving coil 14 and the upper receiving coil 1 are moved together with the substrate 14 by the moving means 12.
5 is translated (step 70), and the upper receiving coil 1
A position where the phase of the output voltage of 5 is inverted with respect to the phase of the AC voltage supplied to the transmitting coil 6 is found, and the parallel movement of the lower receiving coil 14 and the upper receiving coil 15 is stopped at the parallel movement position (step 80).
【0033】つぎに下側受信コイル14と上側受信コイ
ル15の出力電圧の位相が送信コイル6に供給する交流
電圧の位相に対してともに反転としているを確認し(ス
テップ90)、下側受信コイル14と上側受信コイル1
5の出力電圧の位相が送信コイル6に供給する交流電圧
の位相に対してともに反転していない場合には、ステッ
プ10に戻って送信コイル6と下側受信コイル14、上
側受信コイル15との相互の姿勢調整を再度行う。下側
受信コイル14と上側受信コイル15の出力電圧の位相
がともに送信コイル6に供給する交流電圧の位相に対し
て反転すると、図5(b)に示されているように、送信
コイル6の中心磁力線Mc上に下側受信コイル14、上
側受信コイル15の磁気検出面14a、15aが位置し
たことになる。Next, it is confirmed that the phases of the output voltages of the lower receiving coil 14 and the upper receiving coil 15 are both inverted with respect to the phase of the AC voltage supplied to the transmitting coil 6 (step 90). 14 and upper receiving coil 1
If the phase of the output voltage of 5 is not inverted with respect to the phase of the AC voltage supplied to the transmitting coil 6, the process returns to step 10 and the transmitting coil 6 and the lower receiving coil 14 and the upper receiving coil 15 are separated. Repeat the mutual posture adjustment. When the phases of the output voltages of the lower receiving coil 14 and the upper receiving coil 15 are both inverted with respect to the phase of the AC voltage supplied to the transmitting coil 6, as shown in FIG. The magnetic detection surfaces 14a and 15a of the lower receiving coil 14 and the upper receiving coil 15 are located on the central magnetic force line Mc.
【0034】この状態においては、下側受信コイル14
と上側受信コイル15との整列方向は被探知埋設管1の
管中心を指すことになり、これにより地上の任意の観測
地点より被探知埋設管1が位置する方向が検知される。
上述の実施例では、下側受信コイル14と上側受信コイ
ル15の出力電圧の位相と送信コイル6に供給する交流
電圧の位相とで、位相反転を判別してが、これは電圧と
位相が90度ずれた電流で行ってもよい。なお、本発明
による位置検知方法は、地中埋設管の位置探知に限られ
ることはなく、その他各種の被探知物の位置検知に用い
られてよい。In this state, the lower receiving coil 14
The direction in which the upper receiving coil 15 and the upper receiving coil 15 are aligned indicates the pipe center of the detected buried pipe 1, and the direction in which the detected buried pipe 1 is located is detected from an arbitrary observation point on the ground.
In the above-described embodiment, the phase inversion is determined by the phase of the output voltage of the lower receiving coil 14 and the upper receiving coil 15 and the phase of the AC voltage supplied to the transmitting coil 6. You may perform with the electric current which deviated. The position detection method according to the present invention is not limited to the position detection of the underground buried pipe, and may be used for position detection of various other objects to be detected.
【0035】[0035]
【発明の効果】以上の説明から理解される如く、本発明
による位置検知方法によれば、任意の観測地点より探知
物が位置する方向を、障害物の有無などに関係なく、作
業能率よく多大な時間や労力を必要とすることなく、精
度よく検知することができる。したがって例えば、地下
埋設管の埋設施工において、下水本管に枝管を非開削で
接続施工するような場合、施工開始位置よりどの方向へ
堀削さればよいかを的確に判別でき、堀削方向を簡単、
迅速かつ正確に決定することができる。As can be understood from the above description, according to the position detecting method of the present invention, the direction in which a detected object is located from an arbitrary observation point can be greatly improved with good work efficiency regardless of the presence or absence of obstacles. It is possible to detect accurately without requiring a lot of time and labor. Therefore, for example, when burying an underground buried pipe, when connecting a branch pipe to the sewer main without digging, it is possible to accurately determine which direction to excavate from the construction start position. Easy,
Can be determined quickly and accurately.
【図1】本発明による位置検知方法の実施に使用する位
置検知装置の一実施例を示すシステム構成図。FIG. 1 is a system configuration diagram showing an embodiment of a position detection device used for carrying out a position detection method according to the present invention.
【図2】送信コイルの磁力線放射面と受信コイルの磁気
検出面とが直交していない状態を示す説明図。FIG. 2 is an explanatory view showing a state in which a magnetic field line emitting surface of a transmitting coil and a magnetic detecting surface of a receiving coil are not orthogonal to each other.
【図3】送信コイルの磁力線放射面と受信コイルの磁気
検出面とが直交していない状態における下側受信コイル
および上側受信コイルの磁界強度計測値と受信コイルの
位置との関係を示すグラフ。FIG. 3 is a graph showing the relationship between the magnetic field intensity measurement values of the lower receiving coil and the upper receiving coil and the position of the receiving coil when the magnetic field radiation surface of the transmitting coil and the magnetic detecting surface of the receiving coil are not orthogonal to each other.
【図4】本発明による位置検知方法の実施手順を示すフ
ローチャート。FIG. 4 is a flowchart showing a procedure for implementing a position detection method according to the present invention.
【図5】(a)、(b)は各々送信コイルの磁力線放射
面と受信コイルの磁気検出面とが直交している状態を示
す説明図。5 (a) and 5 (b) are explanatory views showing a state in which the magnetic field line emission surface of the transmission coil and the magnetic detection surface of the reception coil are orthogonal to each other.
【図6】本発明による位置検知方法の実施に使用する位
置検知装置の一実施例を示すシステム構成図。FIG. 6 is a system configuration diagram showing an embodiment of a position detection device used for implementing the position detection method according to the present invention.
【図7】(a)、(b)は各々送信コイルの磁力線放射
面と受信コイルの磁気検出面とが直交していない状態に
おける下側受信コイルおよび上側受信コイルの出力電圧
の位相反転位置と受信コイルの位置との関係を示すグラ
フ。7 (a) and 7 (b) are phase inversion positions of output voltages of the lower receiving coil and the upper receiving coil, respectively, in a state in which the magnetic field line emitting surface of the transmitting coil and the magnetic detecting surface of the receiving coil are not orthogonal to each other. The graph which shows the relationship with the position of a receiving coil.
【図8】本発明による位置検知方法の実施手順を示すフ
ローチャート。FIG. 8 is a flowchart showing a procedure for carrying out the position detection method according to the present invention.
1…被探知埋設管 2…移動台車 3…車輪 4…信号線 5…制御装置 6…送信コイル 7…姿勢制御手段 8…信号供給装置 9…電力線 10…磁気検出装置 11…基台 12…移動手段 13…基板 14…下側受信コイル 15…上側受信コイル 16、17…信号線 18、19…測定器 20、21…磁界強度メータ 1 ... Detecting buried pipe 2 ... Mobile trolley 3 ... Wheel 4 ... Signal line 5 ... Control device 6 ... Transmitting coil 7 ... Posture control means 8 ... Signal supply device 9 ... Power line 10 ... Magnetic detection device 11 ... Base 12 ... Moving Means 13 ... Substrate 14 ... Lower receiving coil 15 ... Upper receiving coil 16, 17 ... Signal line 18, 19 ... Measuring instrument 20, 21 ... Magnetic field strength meter
Claims (2)
生する磁界の強度を観測地点に配置された磁気検出素子
により計測し、この磁界強度計測値より前記被探知物の
位置を検知する位置検知方法において、 磁気検出面を同一平面上に整列配置された複数個の磁気
検出素子を使用し、複数個の磁気検出素子により検出さ
れる磁界強度計測値がともに最小値になるように、前記
磁界発生手段および前記磁気検出素子の配置姿勢を調整
し、前記磁気検出素子の整列方向が示す方向より前記被
探知物の位置を検知することを特徴とする位置検知方
法。1. The strength of a magnetic field generated by a magnetic field generating means arranged on an object to be detected is measured by a magnetic detection element arranged at an observation point, and the position of the object to be detected is detected from the measured value of the magnetic field strength. In the position detection method, a plurality of magnetic detection elements whose magnetic detection surfaces are aligned on the same plane are used, and the magnetic field strength measurement values detected by the plurality of magnetic detection elements are both minimized. A position detecting method characterized in that the positions of the magnetic field generating means and the magnetic detection elements are adjusted and the position of the detected object is detected from the direction indicated by the alignment direction of the magnetic detection elements.
気信号を供給し、前記磁界発生手段が発生する磁界を観
測地点に配置された磁気検出素子によって検出し、当該
磁気検出素子の出力信号より前記被探知物の位置を検知
する位置検知方法であって、 磁気検出面を同一平面上に整列配置された複数個の磁気
検出素子を使用し、複数個の磁気検出素子が出力する出
力信号の位相が前記磁界発生手段に供給する電気信号に
対して同時に反転するように、前記磁界発生手段および
前記磁気検出素子の配置姿勢を調整し、前記磁気検出素
子の整列方向が示す方向より前記被探知物の位置を検知
することを特徴とする位置検知方法。2. An electric signal is supplied to a magnetic field generating means arranged on an object to be detected, a magnetic field generated by the magnetic field generating means is detected by a magnetic detecting element arranged at an observation point, and an output of the magnetic detecting element. A position detection method for detecting the position of the object to be detected from a signal, wherein a plurality of magnetic detection elements having magnetic detection surfaces aligned on the same plane are used, and an output output from the plurality of magnetic detection elements. The arrangement postures of the magnetic field generation means and the magnetic detection element are adjusted so that the phase of the signal is inverted at the same time with respect to the electric signal supplied to the magnetic field generation means, A position detection method characterized by detecting the position of an object to be detected.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28051694A JP3352547B2 (en) | 1994-09-19 | 1994-11-15 | Position detection method |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6-223095 | 1994-09-19 | ||
JP22309594 | 1994-09-19 | ||
JP28051694A JP3352547B2 (en) | 1994-09-19 | 1994-11-15 | Position detection method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH08146146A true JPH08146146A (en) | 1996-06-07 |
JP3352547B2 JP3352547B2 (en) | 2002-12-03 |
Family
ID=26525273
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP28051694A Expired - Fee Related JP3352547B2 (en) | 1994-09-19 | 1994-11-15 | Position detection method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3352547B2 (en) |
-
1994
- 1994-11-15 JP JP28051694A patent/JP3352547B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP3352547B2 (en) | 2002-12-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5920194A (en) | Device for locating objects that emit electromagnetic signals | |
JP3352550B2 (en) | Position detection method | |
JP2001116850A (en) | Method and device for detecting underground pipe | |
JPH08146146A (en) | Position detecting method | |
JP3063027B2 (en) | Position detection method | |
US5208538A (en) | Apparatus having a pair of magnetic field generating cables for measuring position of an underground excavator | |
JP3224004B2 (en) | Drilling tube tip location method | |
JP3352549B2 (en) | Position detection method | |
JP3035724B2 (en) | Metal detection method | |
JPH0735971B2 (en) | Position detection device for excavator | |
JP2608618B2 (en) | Metal long object buried position measuring device | |
JPH0921637A (en) | Position detection method | |
JPS625121A (en) | Position detector of excavating machine | |
JPH0914959A (en) | Method for detecting position | |
JPS625116A (en) | Position detector of moving body | |
JP3068866B2 (en) | Buried cable position measurement method | |
JPH0914958A (en) | Method for detecting position | |
JPH0226194B2 (en) | ||
JP2006145302A (en) | Method and system for measuring underground position | |
JPH0735972B2 (en) | Position detection device for excavator | |
JP2002048875A (en) | Burying position detection system and reception device for the same | |
JP2001141408A (en) | Position measuring method, position indicating method and position measuring apparatus | |
JPS62132111A (en) | Apparatus for measureing horizontal displacement of underground excavator | |
JPS625118A (en) | Position detector of excavating machine | |
JPS625115A (en) | Position detector of excavating machine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |