JP2006145302A - Method and system for measuring underground position - Google Patents

Method and system for measuring underground position Download PDF

Info

Publication number
JP2006145302A
JP2006145302A JP2004333794A JP2004333794A JP2006145302A JP 2006145302 A JP2006145302 A JP 2006145302A JP 2004333794 A JP2004333794 A JP 2004333794A JP 2004333794 A JP2004333794 A JP 2004333794A JP 2006145302 A JP2006145302 A JP 2006145302A
Authority
JP
Japan
Prior art keywords
measurement
ground
signal
magnetic field
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004333794A
Other languages
Japanese (ja)
Inventor
Yutaka Uchimura
裕 内村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP2004333794A priority Critical patent/JP2006145302A/en
Publication of JP2006145302A publication Critical patent/JP2006145302A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Excavating Of Shafts Or Tunnels (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and system for measuring an underground position for simultaneously measuring ground three-dimensional coordinates at a plurality of underground positions. <P>SOLUTION: From a plurality of reference positions R on known three-dimensional coordinates above the ground or in the ground, cyclic reference signals fr modulated by identification code strings P of strong autocorrelation but of weak cross correlation are transmitted on a rotating magnetic field 3 of a prescribed carrier frequency fc into the ground 2. A magnetic field measuring instrument 20 is disposed in a prescribed posture S at a measurement position Q in the ground 2, with three or more reception coil element groups 21 being mounted in a prescribed interrelation on the measuring instrument 20, to measure signals fq induced in the respective coil elements 21 by the magnetic field 3. Phases τ of the respective reference signals fr at the measurement position Q are detected based on a correlation between the signals fq in the respective coil elements 21 and the respective code strings P while detecting the directions θ<SB>R</SB>of the respective reference positions R from phase differences Δτ between coil elements of the phases τ of the respective reference signals fr, the prescribed interrelation of the element groups 21, and their postures S. The ground three-dimensional coordinates of the measurement position Q are calculated from the known three-dimensional coordinates and the directions θ<SB>R</SB>of the respective reference positions R. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は地中位置計測方法及びシステムに関し、とくに電磁誘導の原理を利用して地中の対地三次元座標を計測する方法及びシステムに関する。
本発明は、土木・建築の分野において、地中の計画位置に構造物を構築する場合の位置計測に利用可能である。また、電力・通信分野において地中ケーブル等を計画位置に敷設する場合、及びガス・上下水道分野において地中管渠を計画位置に敷設する場合等にも利用可能である。
The present invention relates to an underground position measuring method and system, and more particularly to a method and system for measuring ground three-dimensional coordinates using the principle of electromagnetic induction.
INDUSTRIAL APPLICABILITY The present invention can be used for position measurement when a structure is constructed at a planned position in the ground in the field of civil engineering and architecture. It can also be used when laying underground cables etc. at the planned position in the power / communication field and when laying underground pipes at the planned position in the gas / water supply / sewerage field.

シールド掘削機による地下トンネル工事、通信ケーブルや上下水管渠等の地中敷設工事、地下構造物構築の際の土質調査、地震等による構造物の地中基礎部の状況調査等において、地球座標系における地中の精確な絶対位置(以下、対地三次元座標ということがある)の測量が求められる。従来、地中の対地三次元座標を測量する方法として、例えば特許文献1が開示するように、角速度センサ及び加速度センサを収納したセンサプローブを通信ケーブル等に接続して地下埋設配管内で移動させ、両センサの出力と通信ケーブルの送出量とからセンサプローブの移動方向及び移動距離を計算し、センサプローブの移動軌跡を求めて埋設配管の地中三次元座標を計測する方法が知られている。また特許文献2が開示するように、シールド掘削機の発信立坑に設置した光源からの光を中継手段(反射鏡等)により地下トンネルに沿って切羽まで到達させ、光波測量の原理により切羽のシールド掘削機の地中位置を計測する方法も知られている。   The earth coordinate system for underground tunnel construction with shield excavators, underground laying work such as communication cables and water pipes, soil surveys during construction of underground structures, and surveys of underground foundations of structures due to earthquakes, etc. Surveying the absolute position of the earth in the ground (hereinafter sometimes referred to as ground three-dimensional coordinates). Conventionally, as a method of surveying the ground three-dimensional coordinates in the ground, for example, as disclosed in Patent Document 1, a sensor probe containing an angular velocity sensor and an acceleration sensor is connected to a communication cable or the like and moved in an underground pipe. A method for measuring the movement direction and distance of the sensor probe from the outputs of both sensors and the transmission amount of the communication cable to obtain the movement locus of the sensor probe and measuring the underground three-dimensional coordinates of the buried piping is known. . Further, as disclosed in Patent Document 2, light from a light source installed in a transmission shaft of a shield excavator is made to reach the face along the underground tunnel by a relay means (reflecting mirror, etc.), and the face is shielded according to the principle of optical wave surveying. A method for measuring the underground position of an excavator is also known.

しかし、特許文献1のように角速度及び加速度センサを用いる方法は、積分誤差やドリフト等により計測誤差が累積しやすいので、埋設配管が長い場合(センサプローブの移動距離が大きい場合)は精確な測量が難しくなる。また特許文献2のように光波測量による方法も、隣接する中継手段を直線的見通し可能であるように配置する必要があるので、曲線部において中継手段の配置が複雑となり、やはり地下トンネルが長くなると精確な測量が難しくなる。   However, the method using the angular velocity and acceleration sensor as in Patent Document 1 is likely to accumulate measurement errors due to integration errors, drifts, etc., so accurate surveying is possible when the buried piping is long (the movement distance of the sensor probe is large). Becomes difficult. In addition, the method based on optical wave surveying as in Patent Document 2 also requires that the adjacent relay means be arranged so that the line can be seen in a straight line. Therefore, the arrangement of the relay means becomes complicated in the curved portion, and the underground tunnel becomes long again. Accurate surveying becomes difficult.

他方、特許文献3及び4が開示するように、電磁誘導の原理を利用して地下埋設物や掘削機の位置や変位を計測する方法がある。例えば特許文献3では、地下埋設配管又はシールド掘削機等に探知磁界発生装置(ソレノイドコイル)を垂直姿勢で挿入又は搭載し、その上方の地表面上で磁界測定器を移動させながら磁界発生装置の発生磁界の垂直成分が最小となる地点を測定し、その垂直成分が最小となる地点を結ぶ円の中心位置と直径とから、地中の磁界発生装置の水平位置と深さとを測定している。この方法によれば、埋設配管やトンネルの長さに拘わらず、測量対象の地中位置へ磁界発生装置を移動させることにより、その地中位置の対地三次元座標の精確な測量が可能となる。ただし特許文献3、4の方法は、地上で磁界測定器を移動させる必要があるので、磁界測定器を移動させることができない場合、例えば地上に構造物等の障害物があるような場合の地中位置の測量には適用できない問題点がある。   On the other hand, as disclosed in Patent Documents 3 and 4, there is a method of measuring the position and displacement of underground buried objects and excavators using the principle of electromagnetic induction. For example, in Patent Document 3, a detection magnetic field generation device (solenoid coil) is inserted or mounted in a vertical posture in an underground underground pipe or shield excavator, and the magnetic field measurement device is moved while moving the magnetic field measuring device on the ground surface above it. The point where the vertical component of the generated magnetic field is minimized is measured, and the horizontal position and depth of the underground magnetic field generator are measured from the center position and diameter of the circle connecting the points where the vertical component is minimized. . According to this method, it is possible to accurately measure the three-dimensional coordinates of the ground position by moving the magnetic field generator to the ground position to be surveyed regardless of the length of the buried pipe or tunnel. . However, since the methods of Patent Documents 3 and 4 require that the magnetic field measuring device be moved on the ground, for example, when there is an obstacle such as a structure on the ground, the magnetic field measuring device cannot be moved. There is a problem that cannot be applied to mid-position surveying.

これに対し特許文献5及び6は、電磁誘導を利用しつつ、磁界測定器を移動させずに地中の磁界発生装置の位置を検出する方法を提案している。特許文献6による地中の位置検出方法を、図11を参照して本発明の理解に必要な限度において説明する。同図(A)に示すように、地下埋設配管51へ挿入する移動台車52上に、中心点が共通であり且つ相互に直交する第1送信コイル56及び第2送信コイル57を搭載し、各送信コイル56、57を信号線58、59経由で信号供給装置60に接続する。同図(B)に示すように信号供給装置60は、信号発生器60aの発生する例えば200kHzの搬送波を、スペクトル拡散変調器60cにより拡散符号発生器60bの符号系列でスペクトル拡散変調したのち、AM変調器10dにより例えば400Hzの正弦波でAM変調し、cos変調した交流電流を第1送信コイル56に印加すると共に、sin変調した交流電流を第2送信コイル57に印加する。90度位相の異なる交流電流(二相交流)を直交する送信コイル56、57へ印加することにより、送信コイル56、57から円形の回転磁界を発生させる。   On the other hand, Patent Documents 5 and 6 propose a method of detecting the position of the magnetic field generator in the ground without moving the magnetic field measuring device while using electromagnetic induction. The underground position detection method according to Patent Document 6 will be described with reference to FIG. 11 to the extent necessary for understanding the present invention. As shown in FIG. 5A, a first transmission coil 56 and a second transmission coil 57 having a common center point and orthogonal to each other are mounted on a moving carriage 52 to be inserted into an underground buried pipe 51. The transmission coils 56 and 57 are connected to the signal supply device 60 via signal lines 58 and 59. As shown in FIG. 6B, the signal supply device 60 performs spread spectrum modulation on the carrier wave of, for example, 200 kHz generated by the signal generator 60a with the code sequence of the spread code generator 60b by the spread spectrum modulator 60c, and then AM. The modulator 10d applies AM modulation with a sinusoidal wave of 400 Hz, for example, and applies a cos-modulated alternating current to the first transmission coil 56, and applies a sin-modulated alternating current to the second transmission coil 57. A circular rotating magnetic field is generated from the transmission coils 56 and 57 by applying alternating currents (two-phase alternating current) having a phase difference of 90 degrees to the transmission coils 56 and 57 orthogonal to each other.

他方、図11(A)に示すように地上の観測地点に磁気検出コイルとして、両端部に第1受信コイル66及び第2受信コイル67が巻回された回転式変位棒64を平行移動可能に配置し、各受信コイル66、67を信号線68、69経由で信号測定器70、71に接続する。すなわち、一対の受信コイル66、67を同一中心軸線上に配置し、両者の磁気検出面66a、67aを相互に平行とする。信号測定器70、71は、各受信コイル66、67で計測した磁界強度の計測信号を入力し、信号供給装置60からの基準信号(搬送波の周波数)で同期検波すると共にスペクトル拡散変調の符号系列で復調し、送信コイル56、57と受信コイル66、67との相対位置及び信号波の位相に応じた受信レベル(例えば400Hzの正弦波信号)を信号表示器74に出力する。   On the other hand, as shown in FIG. 11 (A), a rotary displacement rod 64 having a first receiving coil 66 and a second receiving coil 67 wound around both ends as a magnetic detection coil at an observation point on the ground can be translated. The receiving coils 66 and 67 are connected to the signal measuring devices 70 and 71 via the signal lines 68 and 69, respectively. That is, the pair of receiving coils 66 and 67 are arranged on the same central axis, and the magnetic detection surfaces 66a and 67a of both are made parallel to each other. The signal measuring devices 70 and 71 receive the measurement signals of the magnetic field strength measured by the receiving coils 66 and 67, perform synchronous detection with the reference signal (carrier frequency) from the signal supply device 60, and code sequence of spread spectrum modulation The reception level (for example, a 400 Hz sine wave signal) corresponding to the relative position between the transmission coils 56 and 57 and the reception coils 66 and 67 and the phase of the signal wave is output to the signal display 74.

図11において、受信コイル66、67の受信レベルは送信コイル56、57との相対位置関係を位相差として表し、両者の位相が一致した場合は受信コイル66、67の中心軸線方向が送信コイル56、57の中心位置を示し、両者の位相が一致していない場合は位相が一致するように変位棒64を回転又は平行移動する。受信コイル66、67の受信レベルの位相が一致するような中心軸線方向から地下埋設配管1の方向を求めることにより、地下埋設管1の対地三次元座標を検出する。この地中の位置検出方法によれば、地上で磁気検出コイルを移動させる必要がなくなり、構造物等の下方の地中位置の測量も可能である。   In FIG. 11, the reception levels of the reception coils 66 and 67 represent the relative positional relationship with the transmission coils 56 and 57 as a phase difference, and when the two phases coincide with each other, the central axis direction of the reception coils 66 and 67 is the transmission coil 56. , 57 is shown, and when the two phases do not match, the displacement rod 64 is rotated or translated so that the phases match. By obtaining the direction of the underground buried pipe 1 from the central axis direction in which the reception levels of the receiving coils 66 and 67 coincide with each other, the ground three-dimensional coordinates of the underground buried pipe 1 are detected. According to this underground position detection method, it is not necessary to move the magnetic detection coil on the ground, and the underground position below the structure or the like can be measured.

特開平8−178653号公報JP-A-8-178653 特開2001−021356号公報JP 2001-021356 A 特開昭57−133373号公報JP 57-133373 A 特開昭59−153112号公報JP 59-153112 A 特開平9−014958号公報JP-A-9-014958 特開平9−325003号公報JP-A-9-32503 米国特許第5337002号明細書US Pat. No. 5,337,002 米国特許第6250402号明細書US Pat. No. 6,250,402

しかし、特許文献5及び6の位置検出方法は、複数の地中位置を同時に測量できない問題点がある。例えばシールドトンネル工事において、2台のシールド掘削機を異なる向きから同一の地中位置に向けて掘進させてトンネルを接合する場合に、接合位置近傍で2台のシールド掘進機の地中位置を同時に測量することが求められる。また、構造物の基礎部下方に構造物を構築するアンダーピニング工事等においても、複数の地中位置の同時測量が必要とされる。図11の位置検出方法では、地中に複数の送信コイル56、57を設けて回転磁界を発生させると、地上の観測地点でそれらの送信コイル66、67の合成磁場が受信されることとなるが、受信コイル66、67の合成磁場の位相を一致させたとしても送信コイル56、57の地中位置を検出することは困難である。複数の地中位置を同時に測量できる技術の開発が求められている。   However, the position detection methods of Patent Documents 5 and 6 have a problem that a plurality of underground positions cannot be measured simultaneously. For example, in shield tunnel construction, when tunnels are joined by excavating two shield excavators from different directions toward the same underground position, the underground positions of the two shield excavators are simultaneously set near the joint position. Surveying is required. Further, in underpinning work for constructing a structure below the foundation of the structure, simultaneous surveying of a plurality of underground positions is required. In the position detection method of FIG. 11, when a plurality of transmission coils 56 and 57 are provided in the ground to generate a rotating magnetic field, the combined magnetic fields of the transmission coils 66 and 67 are received at the observation point on the ground. However, it is difficult to detect the underground position of the transmission coils 56 and 57 even if the phases of the combined magnetic fields of the reception coils 66 and 67 are matched. Development of technology that can survey multiple underground positions simultaneously is required.

また、特許文献5及び6の位置検出方法は、地中位置の対地三次元座標を地上の観測地点で計測するものであり、例えば地中のシールド掘削機等の運転に計測結果を反映するためには電気ケーブル等の信号伝送手段を介して地上の計測結果を地中のシールド掘削機へ伝送しなければならず、地中を移動するシールド掘削機において自己の対地三次元座標を直接把握できない問題点もある。地上では移動体が任意地点に移動しながら自己の対地三次元座標を直接計測できる全地球測位システム(Global Positioning System:以下、GPSという)が開発されており、地中においても同様に、地中の任意地点に移動しながらその対地三次元座標を直接計測できる技術の開発が望まれている。   In addition, the position detection methods of Patent Documents 5 and 6 measure the three-dimensional coordinates of the ground position at an observation point on the ground, for example, to reflect the measurement result in the operation of an underground shield excavator or the like. Must transmit the ground measurement results to the underground shield excavator via a signal transmission means such as an electric cable, etc., and the shield excavator moving in the ground cannot directly grasp its own three-dimensional coordinates to the ground. There are also problems. On the ground, a global positioning system (hereinafter referred to as GPS) has been developed that can directly measure the three-dimensional coordinates of the ground while moving to any point. Development of a technology that can directly measure the three-dimensional coordinates of the ground while moving to any point is desired.

そこで本発明の目的は、複数の地中位置において同時に対地三次元座標を計測できる地中位置計測方法及びシステムを提供することにある。   Therefore, an object of the present invention is to provide an underground position measuring method and system capable of measuring ground three-dimensional coordinates at a plurality of underground positions simultaneously.

本発明者は、対地三次元座標が既知の複数の基準位置から地中に向けて電磁波信号を送信し、それらの電磁波信号を地中の計測位置で受信して自己の対地三次元座標を計測することにより、地中位置を測量することに注目した。ただしこの場合は、上述したように、地中の計測位置において各基準位置からの合成電磁場の信号が受信されるので、合成信号を各基準位置の信号に分離する必要がある。信号の分離方法として、地上放送電波のように、各基準位置からの発信電磁波信号の搬送周波数を相違させて多チャンネル化し、地中の計測位置において基準位置毎に同期検波して信号を分離することが考えられる。しかし、地上に比して地中における伝播特性の良好な周波数帯は極めて狭いため、同期回路の分離特性(バンドパス特性)を考慮すると、周波数による多チャンネル化では十分なチャンネル数を確保することが難しい。本発明者は、各基準位置からの信号を符号化して分離する方法が地中位置の測量に有効であるとの知見を得、その知見に基づく研究開発の結果、本発明の完成に至った。   The present inventor transmits electromagnetic signals from a plurality of reference positions with known ground three-dimensional coordinates to the ground, receives these electromagnetic signals at the ground measurement positions, and measures his own three-dimensional coordinates. We focused on surveying the underground position. However, in this case, as described above, since the combined electromagnetic field signal from each reference position is received at the underground measurement position, it is necessary to separate the combined signal into signals at each reference position. As a method of signal separation, as in the case of terrestrial broadcast radio waves, the transmission frequency of the electromagnetic wave signal transmitted from each reference position is changed to be multi-channel, and the signal is separated by synchronous detection at each reference position at the measurement position in the ground. It is possible. However, since the frequency band with good propagation characteristics in the ground is extremely narrow compared to the ground, considering the separation characteristics (band-pass characteristics) of the synchronous circuit, it is necessary to secure a sufficient number of channels in the case of multi-channeling by frequency. Is difficult. The present inventor obtained knowledge that the method of encoding and separating signals from each reference position is effective for surveying the underground position, and as a result of research and development based on the knowledge, the present invention was completed. .

図1の実施例及び図2の流れ図を参照するに、本発明の地中位置計測方法は、地上又は地中の対地三次元座標が既知の複数の基準位置R1、R2、R3から基準位置R1、R2、R3毎に自己相関が強く相互相関が弱いデジタル基準位置識別符号列P1、P2、P3で変調された周期性基準信号fr1、fr2、fr3を所定搬送周波数fcの回転磁界3に乗せて地中2へ発信し、各回転磁界3が到達する地中2の計測位置Qに三以上の受信コイル素子群211、212、213が所定相互関係Q1、Q2、Q3で取り付けられた磁界計測装置20を所定姿勢Sで配置して回転磁界3により各コイル素子211、212、213に誘起される信号fq1、fq2、fq3を計測し、各コイル素子211、212、213の計測信号fq1、fq2、fq3と各識別符号列P1、P2、P3との相関に基づき計測位置Qにおける各基準信号fr1、fr2、fr3の位相τ1、τ2、τ3を検知し、各基準信号fr1、fr2、fr3の位相τ1、τ2、τ3のコイル素子相互間位相差Δτ1-2、Δτ1-3、Δτ2-3とコイル素子群211、212、213の所定相互関係Q1、Q2、Q3及び姿勢Sとにより計測位置Qから見た各基準位置R1、R2、R3の向きθR1、θR2、θR3を検出し、各基準位置R1、R2、R3の既知三次元座標と計測位置Qから見た各基準位置R1、R2、R3の向きθR1、θR2、θR3とから計測位置Qの対地三次元座標を算出してなるものである。 Referring to the embodiment of FIG. 1 and the flowchart of FIG. 2, the ground position measuring method of the present invention is based on a plurality of reference positions R 1 , R 2 , R 3 whose ground or ground three-dimensional coordinates are known. reference position R 1, R 2, R 3 correlation strong autocorrelation weak digital reference position identification for each code sequence P 1, P 2, modulated periodic reference signal P 3 fr 1, fr 2, fr 3 Is transmitted to the underground 2 on the rotating magnetic field 3 having a predetermined carrier frequency fc, and three or more receiving coil element groups 21 1 , 21 2 , 21 3 are located at the measurement position Q of the underground 2 where each rotating magnetic field 3 reaches. A magnetic field measuring device 20 attached with a predetermined mutual relationship Q 1 , Q 2 , Q 3 is arranged in a predetermined posture S, and signals fq 1 induced in the coil elements 21 1 , 21 2 , 21 3 by the rotating magnetic field 3, fq 2, measured fq 3, the measurement based on the correlation between the coil elements 21 1, 21 2, 21 3 of the measurement signal fq 1, fq 2, fq 3 and each identification code strings P 1, P 2, P 3 Each group at position Q Signals fr 1, fr 2, fr phase tau 1 of 3, τ 2, τ 3 detects each reference signal fr 1, fr 2, phase tau 1 of fr 3, τ 2, τ 3 coil elements inter-position Seen from the measurement position Q by the phase differences Δτ 1-2 , Δτ 1-3 , Δτ 2-3 and the predetermined interrelationships Q 1 , Q 2 , Q 3 and posture S of the coil element groups 21 1 , 21 2 , 21 3 . each reference position R 1, R 2, R 3 orientation θ R1, θ R2, θ R3 detects, each reference as viewed from the reference position R 1, R 2, known three-dimensional coordinates and measurement position Q of R 3 The three-dimensional coordinates of the measurement position Q are calculated from the orientations θ R1 , θ R2 , θ R3 of the positions R 1 , R 2 , R 3 .

また図1の実施例を参照するに、本発明の地中位置計測システムは、地上又は地中の対地三次元座標が既知の複数の基準位置R1、R2、R3に設置され且つ基準位置R1、R2、R3毎に自己相関が強く相互相関が弱いデジタル基準位置識別符号列P1、P2、P3で変調された周期性基準信号fr1、fr2、fr3を所定搬送周波数fcの回転磁界3に乗せて地中2へ発信する信号発信装置101、102、103、各回転磁界3が到達する地中2の計測位置Qに所定姿勢Sで配置され且つ所定相互関係Q1、Q2、Q3で取り付けられた三以上の受信コイル素子群211、212、213で回転磁界3により誘起される信号fq1、fq2、fq3を計測する磁界計測装置20、基準位置R1、R2、R3毎の三次元座標及び識別符号列P1、P2、P3とコイル素子群211、212、213の所定相互関係Q1、Q2、Q3及び姿勢Sとを記憶する記憶手段31、各コイル素子211、212、213の計測信号fq1、fq2、fq3を入力して各識別符号列P1、P2、P3との相関に基づき計測位置Qにおける各基準信号fr1、fr2、fr3の位相τ1、τ2、τ3を検知する位相検知手段321、322、323、各基準信号fr1、fr2、fr3の位相τ1、τ2、τ3のコイル素子相互間位相差Δτ1-2、Δτ1-3、Δτ2-3とコイル素子群211、212、213の所定相互関係Q1、Q2、Q3及び姿勢Sとにより計測位置Qから見た各基準位置R1、R2、R3の向きθR1、θR2、θR3を検出する向き検出手段331、332、333、並びに向き検出手段331、332、333による各基準位置R1、R2、R3の向きθR1、θR2、θR3と各基準位置R1、R2、R3の三次元座標とから計測位置Qの対地三次元座標を算出する座標算出手段34を備えてなるものである。 Referring also to the embodiment of FIG. 1, the underground position measurement system of the present invention is installed at a plurality of reference positions R 1 , R 2 , R 3 whose ground or underground three-dimensional coordinates are known and used as a reference. For each position R 1 , R 2 , R 3 , a periodic reference signal fr 1 , fr 2 , fr 3 modulated with a digital reference position identification code string P 1 , P 2 , P 3 with strong autocorrelation and weak cross-correlation Signal transmitters 10 1 , 10 2 , 10 3 that are transmitted to the underground 2 on the rotating magnetic field 3 having a predetermined carrier frequency fc are arranged in a predetermined posture S at the measurement position Q of the underground 2 where each rotating magnetic field 3 reaches. In addition, signals fq 1 , fq 2 , fq 3 induced by the rotating magnetic field 3 are measured by three or more receiving coil element groups 21 1 , 21 2 , 21 3 attached with a predetermined mutual relationship Q 1 , Q 2 , Q 3. Magnetic field measuring device 20, three-dimensional coordinates for each of reference positions R 1 , R 2 , R 3 and identification code strings P 1 , P 2 , P 3 and predetermined interrelationship Q of coil element groups 21 1 , 21 2 , 21 3 1 , Q 2 Storage means 31, the coil elements 21 1, 21 2, 21 3 of the measurement signal fq 1, fq 2, each identified by entering the fq 3 code sequence P 1, P 2 for storing and Q 3 and posture S, Phase detection means 32 1 , 32 2 , 32 3 , each reference signal for detecting the phase τ 1 , τ 2 , τ 3 of each reference signal fr 1 , fr 2 , fr 3 at the measurement position Q based on the correlation with P 3 fr 1 , fr 2 , fr 3 phases τ 1 , τ 2 , τ 3 phase differences between coil elements Δτ 1-2 , Δτ 1-3 , Δτ 2-3 and coil element groups 21 1 , 21 2 , 21 predetermined correlation to Q 1 3, Q 2, Q 3 and the posture respective reference positions as viewed from the measurement position Q by the S R 1, R 2, R 3 orientation θ R1, θ R2, orientation detection for detecting the theta R3 The orientations θ R1 , θ R2 , θ R3 and the respective reference positions R 1 of the reference positions R 1 , R 2 , R 3 by the means 33 1 , 33 2 , 33 3 and the direction detection means 33 1 , 33 2 , 33 3 , R 2 , R 3 coordinate coordinate calculation means 34 for calculating the ground three-dimensional coordinates of the measurement position Q from the three-dimensional coordinates It is something to be made.

好ましくは、磁界計測装置20の配置姿勢Sを計測する姿勢計測装置26を設け、その姿勢計測装置26の計測姿勢Sから向き検出手段331、332、333により各基準位置R1、R2、R3の向きθR1、θR2、θR3を検出する。更に好ましくは、三以上の受信コイル素子群211、212、213を、磁界計測装置20上の同一直線上とならない三以上の所定位置に取り付ける。信号発信装置101、102、103が発信する回転磁界3の所定搬送周波数fcは、地中での減衰が小さい周波数とすることが望ましく、例えば200kHz以下とし、更に望ましくは10kHz程度とする。 Preferably, an attitude measurement device 26 that measures the arrangement attitude S of the magnetic field measurement device 20 is provided, and each reference position R 1 , R is detected from the measurement attitude S of the attitude measurement device 26 by the direction detection means 33 1 , 33 2 , 33 3. 2 , R 3 directions θ R1 , θ R2 , θ R3 are detected. More preferably, the three or more receiving coil element groups 21 1 , 21 2 , and 21 3 are attached to three or more predetermined positions on the magnetic field measuring apparatus 20 that are not on the same straight line. The predetermined carrier frequency fc of the rotating magnetic field 3 transmitted by the signal transmission devices 10 1 , 10 2 , 10 3 is preferably a frequency with a small attenuation in the ground, for example, 200 kHz or less, and more preferably about 10 kHz. .

本発明の地中位置計測方法及びシステムは、対地三次元座標が既知の複数の基準位置からそれぞれ基準位置識別符号列で変調された周期性基準信号を回転磁界に乗せて地中へ発信し、地中の計測位置に設けた三以上の受信コイル素子群で前記回転磁界により誘起される信号を計測し、各コイル素子の計測信号と各識別符号列との相関に基づき計測位置における各基準信号の位相を検知し、コイル素子相互間における各基準信号の位相差により計測位置から見た各基準位置の向きを検出し、各基準位置の既知三次元座標と各基準位置の向きとから計測位置の対地三次元座標を算出するので、次の顕著な効果を奏する。   The ground position measurement method and system of the present invention transmits a periodic reference signal modulated by a reference position identification code string from a plurality of reference positions whose ground three-dimensional coordinates are known to the ground, on a rotating magnetic field, The signal induced by the rotating magnetic field is measured by three or more receiving coil element groups provided at the measurement position in the ground, and each reference signal at the measurement position is based on the correlation between the measurement signal of each coil element and each identification code string. The direction of each reference position viewed from the measurement position is detected from the phase difference of each reference signal between the coil elements, and the measurement position is determined from the known three-dimensional coordinates of each reference position and the direction of each reference position. Since the three-dimensional coordinates of the ground are calculated, the following remarkable effects are obtained.

(イ)複数の基準信号が合成された計測信号から各基準信号の位相を検知できるので、地中の複数の計測位置で同時に対地三次元座標の測量が可能となる。
(ロ)また、三以上の受信コイル素子群を地中の任意の計測位置へ移動させることにより、その対地三次元座標を直接計測できる。
(ハ)各基準位置は、計測位置に回転磁界が到達する範囲内であれば計測位置の直上でなくても足りるため、地上に構造物等の障害物がある場合の地中位置の測量にも適用可能である。
(ニ)地上に多数の基準位置を適当に配置し、地中の計測対象範囲内の任意位置で少なくとも三つの基準信号を受信可能とすることにより、地上におけるGPSと同様の測位システムを地中で実現できる。
(ホ)地中を移動しながらその位置を測量するシールド工事や水平ボーリング工事、構造物下方における複数の地中位置の同時測量を必要とするアンダーピニング工事等への有効利用が期待できる。
(A) Since the phase of each reference signal can be detected from a measurement signal obtained by combining a plurality of reference signals, it is possible to simultaneously measure the ground three-dimensional coordinates at a plurality of measurement positions in the ground.
(B) Further, the three-dimensional coordinates of the ground can be directly measured by moving three or more receiving coil element groups to an arbitrary measurement position in the ground.
(C) Since each reference position need not be directly above the measurement position within the range where the rotating magnetic field reaches the measurement position, it can be used for surveying the underground position when there are obstacles such as structures on the ground. Is also applicable.
(D) By positioning a large number of reference positions on the ground appropriately and receiving at least three reference signals at arbitrary positions within the measurement target range in the ground, a positioning system similar to GPS on the ground is Can be realized.
(E) Effective use can be expected for shield construction, horizontal boring construction that surveys the position while moving underground, and underpinning construction that requires simultaneous survey of multiple underground positions below the structure.

図1は、本発明による地中位置計測システムのブロック図を示す。同図に示す地中位置計測システムは、対地三次元座標が既知の複数の基準位置Rにそれぞれ設置する信号発信装置10と、地中2の計測位置Qに配置する磁界計測装置20及び位置計測装置30とを有する。各信号発信装置10によりそれぞれ異なる基準位置識別符号列Pで変調された周期性基準信号frを回転磁界3に乗せて地中2へ発信し、磁界計測装置20により計測位置Qにおいて回転磁界3が誘起する信号fqを計測し、位置計測装置30により計測信号fqと各基準位置Rの既知三次元座標とから計測位置Qの対地三次元座標を算出する。図示例では各基準位置Rを地上に設けているが、基準位置Rは例えばボーリング坑内のような地中に設けてもよい。好ましくは、図示例のように三以上の基準位置Rを設け、三以上の基準位置Rの既知三次元座標に基づき計測位置Qの対地三次元座標を算出する。   FIG. 1 shows a block diagram of an underground position measurement system according to the present invention. The underground position measurement system shown in the figure includes a signal transmission device 10 installed at each of a plurality of reference positions R having known ground three-dimensional coordinates, a magnetic field measurement device 20 disposed at a measurement position Q of the underground 2, and position measurement. Device 30. A periodic reference signal fr modulated with a different reference position identification code string P by each signal transmitting device 10 is transmitted to the underground 2 on the rotating magnetic field 3, and the rotating magnetic field 3 is generated at the measuring position Q by the magnetic field measuring device 20. The induced signal fq is measured, and the position measurement device 30 calculates the three-dimensional ground coordinate of the measurement position Q from the measurement signal fq and the known three-dimensional coordinates of each reference position R. In the illustrated example, each reference position R is provided on the ground, but the reference position R may be provided in the ground such as in a borehole. Preferably, three or more reference positions R are provided as in the illustrated example, and the ground three-dimensional coordinates of the measurement position Q are calculated based on the known three-dimensional coordinates of the three or more reference positions R.

図示例の各信号発信装置10は、回転磁界3を発生するように配置された複数の送信コイル11、12と、その配置に応じた位相差の交流電流を各送信コイル11、12に供給する交流電流供給装置13とを有する。図示例では、図11の場合と同様に、中心点が共通であり且つ相互に直交する相等しい第1送信コイル11及び第2送信コイル12を用い、交流電流供給装置13から二相交流電流を供給することにより、各送信コイル11、12から交流電流と同じ速度(後述する周期性信号fsの角速度=2πf)で回転する円形の回転磁界3を発生させる。ただし、本発明で用いる信号発信装置10は回転磁界3を発生させるものであれば足り、その構成は図示例に限定されない。   Each signal transmission device 10 in the illustrated example supplies a plurality of transmission coils 11 and 12 arranged so as to generate the rotating magnetic field 3 and an alternating current having a phase difference corresponding to the arrangement to each transmission coil 11 and 12. And an alternating current supply device 13. In the illustrated example, as in the case of FIG. 11, a two-phase alternating current is generated from the alternating current supply device 13 by using the first transmitting coil 11 and the second transmitting coil 12 that have the same center point and are orthogonal to each other. By supplying, a circular rotating magnetic field 3 that rotates at the same speed as the alternating current (angular speed of periodic signal fs to be described later = 2πf) is generated from each of the transmission coils 11 and 12. However, the signal transmission device 10 used in the present invention only needs to generate the rotating magnetic field 3, and the configuration is not limited to the illustrated example.

図示例の交流電流供給装置13は、周期性信号fsを発生する発生器14と、供給装置13毎に自己相関が強く相互相関が弱いデジタル基準位置識別符号列Pを発生する発生器15と、所定搬送周波数fcの搬送波信号を発生する発生器(発振器)16と、変調器17及び18とを有する。周期性信号fsの一例は、例えば図3(A)に示すように周波数400Hz程度の正弦波信号である。またデジタル基準位置識別符号列Pの一例は、図4に示すように、M系列(Maximum length sequence)等のnビット(図示例では7ビット)のPN(Pseudo Noise;擬似ランダム)符号列である。PN符号列は疑似雑音とも呼ばれ、平衡性、連なり性、相関性の三つのランダム性を満足する符号列である。図4(A)は、基準位置R1の識別符号列発生器15が発生する7ビットの識別符号列P1{-1、1、1、1、-1、-1、1}を示し、同図(B)は、基準位置R2の識別符号列発生器15が発生する7ビットの識別符号列P2{1、-1、1、1、1、-1、-1}を示す。 The alternating current supply device 13 in the illustrated example includes a generator 14 that generates a periodic signal fs, a generator 15 that generates a digital reference position identification code string P having a strong autocorrelation and a weak cross-correlation for each supply device 13, A generator (oscillator) 16 that generates a carrier wave signal having a predetermined carrier frequency fc, and modulators 17 and 18 are included. An example of the periodic signal fs is a sine wave signal having a frequency of about 400 Hz as shown in FIG. An example of the digital reference position identification code sequence P is an n-bit (7 bits in the illustrated example) PN (Pseudo Noise) code sequence such as an M sequence (Maximum length sequence) as shown in FIG. . The PN code string is also called pseudo-noise, and is a code string that satisfies three randomities of balance, linkage, and correlation. 4A shows a 7-bit identification code sequence P 1 {−1, 1, 1, 1, −1, −1, 1} generated by the identification code sequence generator 15 at the reference position R 1 . Fig (B), the identification code string P 2 of 7-bit identification code string generator 15 of the reference position R 2 occurs {1, -1,1,1,1, -1, -1} indicates a.

例えば基準位置R1の交流電流供給装置13は、変調器17により、周期T0の正弦波信号である周期性信号fsの絶対値(図3(B)参照)を、その半周期T0/2のビット長の識別符号列P1(図4(A)参照)で変調し、送信コイル11に送る周期性基準信号fr1((1)式参照)と、送信コイル12に送る周期性基準信号fr'1((2)式参照)とを生成する。周期性基準信号fr1の波形を図5(A)に示す。更に、変調器18によって各周期性基準信号fr1、fr'1を搬送周波数fcの搬送波に乗せ、二相交流電流として基準位置R1の各送信コイル11、12に供給する。 For example alternating current supply device 13 of the reference position R 1 is the modulator 17, the absolute value of the periodic signal fs is a sine wave signal with a period T 0 (see FIG. 3 (B)), the half period T 0 / second identification bit length code sequence P 1 is modulated by (see FIG. 4 (a) refer), the transmitter coil 11 to send periodic reference signal fr 1 ((1) see formula), periodic basis to send to the transmitter coil 12 A signal fr ′ 1 (see equation (2)) is generated. The waveform of the periodicity reference signal fr 1 is shown in FIG. Further, the modulator 18 puts the periodic reference signals fr 1 and fr ′ 1 on a carrier wave having a carrier frequency fc, and supplies the signals to the transmission coils 11 and 12 at the reference position R 1 as a two-phase alternating current.

Figure 2006145302
Figure 2006145302

同様に基準位置R2の交流電流供給装置13は、変調器17により図5(B)に示すような周期性基準信号fr2、fr'2を生成し、変調器18により搬送周波数fcの二相交流電流として基準位置R2の送信コイル11、12に供給する。また基準位置R3の交流電流供給装置13も、変調器17により周期性基準信号fr3、fr'3を生成し、変調器18により搬送周波数fcの二相交流電流として基準位置R3の送信コイル11、12に供給する。基準位置R1、R2、R3毎に自己相関が強く相互相関が弱いデジタル基準位置識別符号列P1、P2、P3によって送信コイル11、12に供給する交流波形を符号化することにより、各基準位置R1、R2、R3の送信コイル11、12の発生する回転磁界3が合成された場合でも、識別符号列P1、P2、P3との相関に基づき、合成された回転磁界3の波形から各基準位置R1、R2、R3の基準信号fr1、fr2、fr3を分離することが可能となる。 Similarly, the alternating current supply device 13 at the reference position R 2 generates the periodic reference signals fr 2 and fr ′ 2 as shown in FIG. 5B by the modulator 17 and the carrier frequency fc by the modulator 18. supplied to the transmitter coil 11 and 12 of the reference position R 2 as phase alternating current. The alternating current supply device 13 at the reference position R 3 also generates periodic reference signals fr 3 and fr ′ 3 by the modulator 17 and transmits the reference position R 3 as a two-phase alternating current at the carrier frequency fc by the modulator 18. Supply to coils 11 and 12. For each of the reference positions R 1 , R 2 , and R 3 , the AC waveform supplied to the transmission coils 11 and 12 is encoded by the digital reference position identification code strings P 1 , P 2 , and P 3 having strong autocorrelation and weak cross-correlation. Thus, even when the rotating magnetic fields 3 generated by the transmission coils 11 and 12 at the reference positions R 1 , R 2 and R 3 are combined, they are combined based on the correlation with the identification code strings P 1 , P 2 and P 3. It is possible to separate the reference signals fr 1 , fr 2 , fr 3 of the reference positions R 1 , R 2 , R 3 from the waveform of the rotating magnetic field 3 that has been generated.

各基準位置R1、R2、R3の基準信号fr1、fr2、fr3の周波数fsは、全ての基準位置R1、R2、R3において同一でもとくに問題はなく、適当に選択することができる。他方、基準信号fr1、fr2、fr3を乗せる搬送波の周波数fcは、地中において回転磁界3の減衰を小さくするため、できるだけ低周波帯とし、且つ、地中(自然界)に存在する磁気雑音に対して十分なS/N比が得られる周波数とすることが望ましい。例えば搬送波の周波数fcを200kHz以下とし、望ましくは100kHz以下、更に望ましくは10kHz程度とする。 Frequency fs of the reference signal fr 1, fr 2, fr 3 of the reference positions R 1, R 2, R 3 is not particularly a problem at the same at all the reference position R 1, R 2, R 3, suitably chosen can do. On the other hand, the frequency fc of the carrier wave on which the reference signals fr 1 , fr 2 , and fr 3 are placed is set to a low frequency band as much as possible in order to reduce the attenuation of the rotating magnetic field 3 in the ground, and magnetism existing in the ground (natural world). It is desirable that the frequency is such that a sufficient S / N ratio can be obtained against noise. For example, the carrier frequency fc is set to 200 kHz or less, preferably 100 kHz or less, and more preferably about 10 kHz.

地中2の計測位置Qに配置する図示例の磁界計測装置20は、所定相互関係Q1、Q2、Q3で取り付けられた三以上の受信コイル素子群211、212、213と、各受信コイル素子211、212、213により計測された磁界強度を復調して計測信号fq1、fq2、fq3を取り出す復調器231、232、233とを有する。図示例の復調器231、232、233は、交流電流供給装置13の搬送周波数fcと同じ周波数の信号発生器(発振器)を内蔵している。好ましくは、各受信コイル素子211、212、213を、図8を参照して後述するように、磁界計測装置20上の同一直線上とならない所定位置Q1、Q2、Q3に取り付ける。ただし、受信コイル素子21の数が四以上である場合は、受信コイル素子21が同一直線上に取り付けられていてもよい。磁界計測装置20は、所定の姿勢(例えば、鉛直向き又は水平向き)Sで計測位置Qに配置するか、又はその配置姿勢Sを後述する姿勢計測装置26で計測する。 The magnetic field measuring device 20 in the illustrated example arranged at the measurement position Q in the ground 2 has three or more receiving coil element groups 21 1 , 21 2 , 21 3 attached with predetermined interrelationships Q 1 , Q 2 , Q 3. , and a demodulator 23 1, 23 2, 23 3 to take out each receiving coil elements 21 1, 21 2, 21 3 demodulates the magnetic field strength measured by the measuring signal fq 1, fq 2, fq 3. Demodulator 23 1 in the illustrated example, 23 2, 23 3 incorporates a signal generator having the same frequency as the carrier frequency fc of the alternating current supply device 13 (oscillator). Preferably, the receiving coil elements 21 1 , 21 2 , and 21 3 are placed at predetermined positions Q 1 , Q 2 , and Q 3 that are not on the same straight line on the magnetic field measuring device 20, as will be described later with reference to FIG. Install. However, when the number of receiving coil elements 21 is four or more, the receiving coil elements 21 may be attached on the same straight line. The magnetic field measurement device 20 is arranged at a measurement position Q in a predetermined posture (for example, vertical orientation or horizontal orientation) S, or the arrangement posture S is measured by an orientation measurement device 26 described later.

計測位置Qにおける磁界強度は、各基準位置R1、R2、R3からの回転磁界3が地中伝播による時間遅れ及び振幅減衰を伴って合成されたものであり、電磁誘導によって各受信コイル素子211、212、213に発生する計測信号fq1、fq2、fq3の波形は、各基準位置R1、R2、R3の基準信号fr1、fr2、fr3が位相差及び振幅差を伴って混信した状態の波形となる。図6(A)及び(B)は、図5(A)の周期性基準信号fr1と同図(B)の周期性基準信号fr2とが計測位置Qにおいて位相差=414度、振幅比(fr2/fr1)=0.8で合成されているときに、受信コイル素子211で計測される計測信号fq1の波形、及び受信コイル素子212で計測される計測信号fq2の波形をそれぞれ示す。受信コイル素子213で計測される計測信号fq3も、位相及び振幅が若干相違するものの、ほぼ同様の波形となるはずである。 The magnetic field intensity at the measurement position Q is obtained by combining the rotating magnetic field 3 from each reference position R 1 , R 2 , R 3 with time delay and amplitude attenuation due to underground propagation, and each receiving coil by electromagnetic induction. The waveforms of the measurement signals fq 1 , fq 2 , fq 3 generated at the elements 21 1 , 21 2 , 21 3 are the positions of the reference signals fr 1 , fr 2 , fr 3 at the respective reference positions R 1 , R 2 , R 3. The waveform is in a state of interference with phase difference and amplitude difference. 6A and 6B show the phase difference = 414 degrees between the periodicity reference signal fr 1 of FIG. 5A and the periodicity reference signal fr 2 of FIG. 5B at the measurement position Q, and the amplitude ratio. The waveform of the measurement signal fq 1 measured by the reception coil element 21 1 and the waveform of the measurement signal fq 2 measured by the reception coil element 21 2 when (fr 2 / fr 1 ) = 0.8 are combined. Each is shown. Measurement signal fq 3 that is measured by the receiving coil element 21 3 also, although the phase and amplitude slightly different, it should be substantially the same waveform.

磁界計測装置20の出力する計測信号fq1、fq2、fq3を位置計測装置30に入力し、位置計測装置30において計測位置Qの対地三次元座標を算出する。図示例の位置計測装置30は、記憶手段31と、位相検知手段32と、向き検出手段33と、座標算出手段34とを有する。記憶手段31には、基準位置R1、R2、R3毎の三次元座標及び識別符号列P1、P2、P3と、磁界計測装置20のコイル素子211、212、213の所定相互関係Q1、Q2、Q3と、磁界計測装置20の配置姿勢Sとを記憶する。位置計測装置30の一例はコンピュータであり、位相検知手段32、向き検出手段33及び座標算出手段34の一例はコンピュータの内蔵プログラムである。 Measurement signals fq 1 , fq 2 , and fq 3 output from the magnetic field measurement device 20 are input to the position measurement device 30, and the position measurement device 30 calculates the three-dimensional coordinates of the measurement position Q to the ground. The position measurement device 30 in the illustrated example includes a storage unit 31, a phase detection unit 32, a direction detection unit 33, and a coordinate calculation unit 34. The storage means 31 includes three-dimensional coordinates and identification code strings P 1 , P 2 , P 3 for each of the reference positions R 1 , R 2 , R 3, and coil elements 21 1 , 21 2 , 21 3 of the magnetic field measuring device 20. The predetermined mutual relations Q 1 , Q 2 , Q 3 and the arrangement posture S of the magnetic field measuring apparatus 20 are stored. An example of the position measurement device 30 is a computer, and examples of the phase detection means 32, the orientation detection means 33, and the coordinate calculation means 34 are programs built in the computer.

図2は、図1のシステムを用いた地中位置計測方法の流れ図の一例を示す。以下、同流れ図を参照して、本発明による計測位置Qの対地三次元座標の計測手順、及び位置計測装置30の位相検知手段32、向き検出手段33及び座標算出手段34による処理を説明する。先ずステップS101において、測量すべき地中2の計測位置Qに各信号発信装置10の回転磁界3が到達するように、信号発信装置10を設置すべき複数の基準位置Rを地上又は地中に設定する(図10も参照)。また、各基準位置Rの対地三次元座標を、例えばGPS等により測量して位置計測装置30の記憶手段31に記憶する。設定した各基準位置Rにそれぞれ信号発信装置10を設置し、ステップS102において各基準位置Rから、それぞれ異なる基準位置識別符号列Pで変調された周期性基準信号frを回転磁界3に乗せて地中2へ発信する。ステップS103において、地中2の計測位置Qに磁界計測装置20を所定姿勢Sで配置し、ステップS105において、磁界計測装置20の各受信コイル素子211、212、213で回転磁界3により誘起される計測信号fq1、fq2、fq3を計測して位置計測装置30に入力する。 FIG. 2 shows an example of a flowchart of the underground position measurement method using the system of FIG. Hereinafter, with reference to the flowchart, the measurement procedure of the three-dimensional coordinates of the measurement position Q according to the present invention and the processing by the phase detection means 32, the orientation detection means 33, and the coordinate calculation means 34 of the position measurement device 30 will be described. First, in step S101, a plurality of reference positions R on which the signal transmission devices 10 are to be installed are placed on the ground or in the ground so that the rotating magnetic field 3 of each signal transmission device 10 reaches the measurement position Q of the underground 2 to be measured. Set (see also FIG. 10). Further, the three-dimensional ground coordinates of each reference position R are measured by, for example, GPS, and stored in the storage unit 31 of the position measuring device 30. The signal transmission device 10 is installed at each set reference position R, and the periodic reference signal fr modulated by the different reference position identification code string P is placed on the rotating magnetic field 3 from each reference position R in step S102. Call 2nd. In step S103, the magnetic field measuring device 20 is arranged in a predetermined posture S at the measurement position Q in the ground 2. In step S105, the receiving coil elements 21 1 , 21 2 , 21 3 of the magnetic field measuring device 20 are rotated by the rotating magnetic field 3. The induced measurement signals fq 1 , fq 2 , and fq 3 are measured and input to the position measurement device 30.

図2のステップS106は、位置計測装置30の位相検知手段32による処理を示す。図示例の位置計測装置30は三つの位相検知手段321、322、323を有し、各位相検知手段321、322、323にそれぞれ受信コイル素子211、212、213の計測信号fq1、fq2、fq3を入力して位相τをずらしながら各識別符号列P1、P2、P3との相関値Mを求め、識別符号列P1、P2、P3との相関値Mが最大となる位相τ1、τ2、τ3を、それぞれ計測位置Qにおける各基準信号fr1、fr2、fr3の位相τ1、τ2、τ3として検知する。計測信号fqj(j=1、2、3)と識別符号列Pi(i=1、2、3)との相関値Mは、例えば(10)式のように定義できる。ただし、計測信号fqjと識別符号列Piとの相関値Mの算出方法は(10)式に限定されるものではない。 Step S106 in FIG. 2 shows processing by the phase detection means 32 of the position measuring device 30. The position measurement apparatus 30 in the illustrated example has three phase detection means 32 1 , 32 2 , and 32 3 , and each of the phase detection means 32 1 , 32 2 , and 32 3 has a receiving coil element 21 1 , 21 2 , 21 3, respectively. Measurement signals fq 1 , fq 2 , fq 3 are input and the correlation value M with each identification code string P 1 , P 2 , P 3 is obtained while shifting the phase τ, and the identification code strings P 1 , P 2 , P 3 correlation values M is the maximum of the phase τ 1, τ 2, the tau 3, each reference signal at each measuring position Q fr 1, fr 2, phase tau 1 of fr 3, τ 2, is detected as tau 3 . The correlation value M between the measurement signal fqj (j = 1, 2, 3) and the identification code string Pi (i = 1, 2, 3) can be defined, for example, as in equation (10). However, the calculation method of the correlation value M between the measurement signal fqj and the identification code string Pi is not limited to the equation (10).

Figure 2006145302
Figure 2006145302

例えば図示例の位相検知手段321において、図7(A)に示すように、受信コイル素子211の計測信号fq1(図6(A)参照)の位相τ=0〜1260度の部分と、記憶手段31に記憶した識別符号列P1(図4(A)参照)との積を、識別符号列P1の周期T(図4(A)では1260度)にわたり積分して相関値M(τ)を求める。次に、図7(B)に示すように周期Tの範囲内で位相τをずらしながら相関値M(τ)を求めるサイクルを繰り返し、相関値M(τ)が最大となる位相τmaxを受信コイル211における基準信号fr1の位相τ1として検知する。図7の実施例では、相関値M(τ)が同図(A)の位相において同図(B)の位相より大きくなっており、このサイクルの繰り返しにより、例えば受信コイル211における基準信号fr1の位相τ1=0を検知する。 For example, in the phase detection means 32 1 of the illustrated example, as shown in FIG. 7A, the portion of the measurement signal fq 1 (see FIG. 6A) of the receiving coil element 21 1 with the phase τ = 0 to 1260 degrees storage means 31 identification code string stored in the P 1 (see FIG. 4 (a) see) the product of the identification code string P 1 of the period T correlation value by integrating over (see FIG. 4 (a) in the 1260 degrees) M Find (τ). Next, as shown in FIG. 7B, the cycle for obtaining the correlation value M (τ) is repeated while shifting the phase τ within the range of the period T, and the phase τmax at which the correlation value M (τ) is maximized is determined as the receiving coil. detecting a phase tau 1 of the reference signal fr 1 in 21 1. In the embodiment of FIG. 7, the correlation value M (tau) is the phase in FIG (A) is larger than the phase of FIG. (B), by the repetition of this cycle, for example, the reference signal fr in the receiving coil 21 1 to detect the first phase τ 1 = 0.

同様に図示例の位相検知手段322において、図7(C)に示すように、受信コイル素子212の計測信号fq2(図6(B)参照)と識別符号列P1との積を識別符号列P1の周期Tにわたり積分して相関値M(τ)を求めるサイクルを、周期Tの範囲内で両者の位相τをずらしながら繰り返すことにより、相関値M(τ)が最大となる位相τmaxとして受信コイル212における基準信号fr1の位相τ2を検知する。図示例では、例えば受信コイル212における基準信号fr1の位相τ2=45度を検知する。更に位相検知手段323において、受信コイル素子213の計測信号fq3と識別符号列P1との積を識別符号列P1の周期Tにわたり積分して相関値M(τ)を求めるサイクルを繰り返し、同様にして受信コイル213における基準信号fr1の位相τ3を検知する。位相検知手段321、322、323により、計測位置Qの各受信コイル素子211、212、213における基準信号fr1の位相τ1、τ2、τ3を全て求めることができる。 Similarly, in the illustrated phase detection means 32 2 , as shown in FIG. 7C, the product of the measurement signal fq 2 (see FIG. 6B) of the reception coil element 21 2 and the identification code string P 1 is calculated. By repeating the cycle for obtaining the correlation value M (τ) by integrating over the period T of the identification code string P 1 while shifting both phases τ within the range of the period T, the correlation value M (τ) is maximized. detecting a phase tau 2 of the reference signal fr 1 in the receiving coil 21 2 as a phase .tau.max. In the illustrated example, for example, the phase τ 2 = 45 degrees of the reference signal fr 1 in the receiving coil 21 2 is detected. Further the phase detecting means 32 3, the cycles for obtaining the receiving coil element 21 3 of the measurement signal fq 3 and the identification code strings P 1 correlation values by integrating over the period T of the identification code strings P 1 product of M (tau) repeatedly detects the phase tau 3 of the reference signal fr 1 in the receiving coil 21 3 in the same manner. The phase detection means 32 1 , 32 2 , 32 3 can obtain all the phases τ 1 , τ 2 , τ 3 of the reference signal fr 1 in the receiving coil elements 21 1 , 21 2 , 21 3 at the measurement position Q. .

位相検知手段321、322、323では、基準信号fr1の位相τ1、τ2、τ3だけでなく、基準信号fr2の位相τ1、τ2、τ3、及び基準信号fr3の位相τ1、τ2、τ3も同様に検知できる。すなわち、位相検知手段321、322、323において、受信コイル素子211、212、213の計測信号fq1、fq2、fq3と識別符号列P2(図4(B)参照)との相関値M(τ)が最大となる位相τmaxを求めることにより計測位置Qにおける基準信号fr2の位相τ1、τ2、τ3を検知し、計測信号fq1、fq2、fq3と識別符号列P3との相関値M(τ)が最大となる位相τmaxを求めることにより計測位置Qにおける基準信号fr3の位相τ1、τ2、τ3を検知すればよい。 Phase detecting means 32 1, 32 2, in 32 3, the phase tau 1 of the reference signal fr 1, tau 2, not only tau 3, phase tau 1 of the reference signal fr 2, tau 2, tau 3, and the reference signal fr 3 phase τ 1, τ 2, τ 3 can also be detected similarly. That is, in the phase detecting means 32 1, 32 2, 32 3, the receiving coil elements 21 1, 21 2, 21 3 of the measurement signal fq 1, fq 2, fq 3 the identification code string P 2 (FIG. 4 (B) refer to ) To detect the phase τ 1 , τ 2 , τ 3 of the reference signal fr 2 at the measurement position Q, and the measurement signals fq 1 , fq 2 , fq The phase τ 1 , τ 2 , τ 3 of the reference signal fr 3 at the measurement position Q may be detected by obtaining the phase τmax that maximizes the correlation value M (τ) between 3 and the identification code string P 3 .

図2のステップS107は、位置計測装置30の向き検出手段33による処理を示す。図示例の位置計測装置30は三つの向き検出手段331、332、333を有し、各向き検出手段331、332、333において各基準信号fr1、fr2、fr3の位相τ1、τ2、τ3のコイル素子相互間の位相差Δτ1-2、Δτ1-3、Δτ2-3を求め、その位相差Δτ1-2、Δτ1-3、Δτ2-3とコイル素子211、212、213の所定相互関係Q1、Q2、Q3及び配置姿勢Sとから、各基準位置R1、R2、R3の向きθR1、θR2、θR3を検出する。 Step S107 in FIG. 2 shows processing by the orientation detection means 33 of the position measuring device 30. The position measurement apparatus 30 in the illustrated example has three direction detection means 33 1 , 33 2 , and 33 3 , and in each of the direction detection means 33 1 , 33 2 , and 33 3 , each reference signal fr 1 , fr 2 , fr 3 The phase differences Δτ 1-2 , Δτ 1-3 , Δτ 2-3 between the coil elements of the phases τ 1 , τ 2 , τ 3 are obtained, and the phase differences Δτ 1-2 , Δτ 1-3 , Δτ 2- 3 and the coil elements 21 1, 21 2, 21 3 of a predetermined interrelationship Q 1, Q 2, Q 3 and the placement position S, the reference position R 1, R 2, R 3 orientation theta R1, theta R2, θ R3 is detected.

例えば図示例の向き検出手段331は、位相検知手段321、322、323から計測位置Qにおける基準信号fr1の位相τ1、τ2、τ3を全て入力し、基準信号fr1のコイル素子211、212相互間の位相差Δτ1-2、コイル素子211、213相互間の位相差Δτ1-3、及びコイル素子212、213相互間の位相差Δτ2-3を求める。基準信号fr1は基準位置R1を中心として周期性信号fsの角速度=2πfで回転しているので、図8に示すように基準信号fr1のコイル素子211、212相互間の位相差Δτ1-2は、コイル素子211、212の位置Q1、Q2を結ぶ線分を弦とし基準位置R1を頂点とする円周角に相当する。すなわち基準位置R1は、コイル素子211、212の位置Q1、Q2を含み且つ円周角=Δτ1-2の球面C1(図7(A)及び(B)の実施例では円周角=45度の球面C1)上にあるはずである。また基準位置R1は、コイル素子211、213の位置Q1、Q3を含み且つ円周角=Δτ1-3の球面C2上にあり、コイル素子212、213の位置Q2、Q3を含み且つ円周角=Δτ2-3の球面C3上にもあるはずである。従って、記憶手段31に記憶された各コイル素子群211、212、213の磁界計測装置20上の所定位置Q1、Q2、Q3、及び磁界計測装置20の所定姿勢Sを用い、図8に示すように各コイル素子相互間の位相差Δτ1-2、Δτ1-3、Δτ2-3から球面C1、C2、C3の交点R1の座標を求めることにより、向き検出手段331において計測位置Qから見た基準位置R1の向きθR1を検出することができる。 For example, the orientation detection means 33 1 in the illustrated example inputs all the phases τ 1 , τ 2 , τ 3 of the reference signal fr 1 at the measurement position Q from the phase detection means 32 1 , 32 2 , 32 3 , and the reference signal fr 1 Phase difference Δτ 1-2 between the coil elements 21 1 and 21 2 , phase difference Δτ 1-3 between the coil elements 21 1 and 21 3 , and phase difference Δτ 2 between the coil elements 21 2 and 21 3. Find -3 . Since the reference signal fr 1 rotates around the reference position R 1 at the angular velocity of the periodic signal fs = 2πf, the phase difference between the coil elements 21 1 and 21 2 of the reference signal fr 1 as shown in FIG. Δτ 1-2 corresponds to a circumferential angle having a line segment connecting the positions Q 1 and Q 2 of the coil elements 21 1 and 21 2 as a chord and a reference position R 1 as an apex. That is, the reference position R 1 includes the positions Q 1 and Q 2 of the coil elements 21 1 and 21 2 , and a spherical surface C 1 having a circumferential angle = Δτ 1-2 (in the embodiment shown in FIGS. 7A and 7B, a circle). It should be on the spherical surface C1) with a peripheral angle = 45 degrees. The reference position R 1 includes the positions Q 1 and Q 3 of the coil elements 21 1 and 21 3 and is on the spherical surface C2 with the circumferential angle = Δτ 1-3 , and the position Q 2 of the coil elements 21 2 and 21 3 , Q 3 and also on a spherical surface C3 with a circumferential angle = Δτ 2-3 . Therefore, the predetermined positions Q 1 , Q 2 , Q 3 on the magnetic field measuring device 20 of each coil element group 21 1 , 21 2 , 21 3 stored in the storage means 31 and the predetermined posture S of the magnetic field measuring device 20 are used. As shown in FIG. 8, by obtaining the coordinates of the intersection R 1 of the spherical surfaces C 1, C 2, C 3 from the phase differences Δτ 1-2 , Δτ 1-3 , Δτ 2-3 between the coil elements, the direction detecting means In 33 1 , the direction θ R1 of the reference position R 1 viewed from the measurement position Q can be detected.

同様に図示例の向き検出手段332において、基準信号fr2の位相τ1、τ2、τ3からコイル素子相互間の位相差Δτ1-2、Δτ1-3、Δτ2-3を求め、図8のように 球面C1、C2、C3の交点R2を求めることにより、計測位置Qから見た基準位置R2の向きθR2を検出できる。更に向き検出手段333において、基準信号fr3の位相τ1、τ2、τ3からコイル素子相互間の位相差Δτ1-2、Δτ1-3、Δτ2-3を求め、図8のように球面C1、C2、C3の交点R3を求めることにより、計測位置Qから見た基準位置R3の向きθR3を検出できる。 Similarly, in the direction detection means 33 2 in the illustrated example, phase differences Δτ 1-2 , Δτ 1-3 , Δτ 2-3 between the coil elements are obtained from the phases τ 1 , τ 2 , τ 3 of the reference signal fr 2. As shown in FIG. 8, the orientation θ R2 of the reference position R 2 viewed from the measurement position Q can be detected by obtaining the intersection R 2 of the spherical surfaces C1, C2, and C3. In addition the orientation detection means 33 3, the phase tau 1 of the reference signal fr 3, tau 2, tau 3 phase .DELTA..tau 1-2 between coil elements mutually from, .DELTA..tau 1-3, a calculated .DELTA..tau 2-3, 8 by obtaining the intersection R 3 spherical C1, C2, C3 as it can detect the orientation theta R3 of the reference position R 3, as viewed from the measurement position Q.

なお図8において符号Fは球面C1、C2の交線を表し、球面C1、C2、C3の交点R1が交線Fと球面C3との交差点として求まることを示す。また図8は、磁界計測装置20上の同一直線上とならない三所定位置Q1、Q2、Q3に受信コイル素子211、212、213を取り付けた例を示すが、受信コイル素子21の数が四以上である場合は、受信コイル素子21を同一直線上に取り付けた場合であっても、四以上のコイル素子相互間の位相差Δτから各基準位置Rの向きθRを検出することが可能である。 Reference numeral F in FIG. 8 represents the line of intersection of the spherical C1, C2, the intersection R 1 of the spherical C1, C2, C3 indicate that obtained as the intersection of the intersection line F and the spherical C3. FIG. 8 shows an example in which receiving coil elements 21 1 , 21 2 , and 21 3 are attached to three predetermined positions Q 1 , Q 2 , and Q 3 that are not on the same straight line on the magnetic field measuring apparatus 20. When the number of 21 is four or more, the direction θ R of each reference position R is detected from the phase difference Δτ between the four or more coil elements even when the receiving coil elements 21 are mounted on the same straight line. Is possible.

図2のステップS108は、位置計測装置30の座標算出手段34による処理を示す。図示例の座標算出手段34は、向き検出手段331、332、333から各基準位置R1、R2、R3の向きθR1、θR2、θR3を入力し、記憶手段31に記憶された各基準位置R1、R2、R3の既知三次元座標から三角測量の原理によって、計測位置Qの対地三次元座標を算出する。図9は、三以上の基準位置Rの既知三次元座標に基づき、計測位置Qの対地三次元座標を算出する方法を示す。同図に示すように、計測位置Qの対地三次元座標は、基準位置R1、R2及び向きベクトルθR1、θR2を含む平面H1-2、基準位置R1、R3及び向きベクトルθR1、θR3を含む平面H1-3、及び基準位置R2、R3及び向きベクトルθR2、θR3を含む平面H2-3の交点として算出することができる。同図の符号Lは平面H1-2、H1-3の交線を表し、計測位置Qの対地三次元座標が交線Lと平面H2-3との交差点として求まることを示す。ただし、少なくとも二点の基準位置R1、R2の向きθR1、θR2が検出できれば、三角形Q、R1、R2の各頂点における角度が決まるので、その基準位置R1、R2の既知三次元座標から三角測量の原理によって計測位置Qの対地三次元座標を算出することが可能である。算出した計測位置Qの対地三次元座標は、例えば位置計測装置30の出力装置(表示装置)39に出力して確認する。 Step S108 in FIG. 2 shows processing by the coordinate calculation means 34 of the position measuring device 30. The coordinate calculation unit 34 in the illustrated example inputs the orientations θ R1 , θ R2 , and θ R3 of the reference positions R 1 , R 2 , and R 3 from the direction detection units 33 1 , 33 2 , and 33 3 , and stores them in the storage unit 31. From the stored three-dimensional coordinates of the reference positions R 1 , R 2 , and R 3 , the three-dimensional ground coordinates of the measurement position Q are calculated according to the principle of triangulation. FIG. 9 shows a method of calculating the ground three-dimensional coordinates of the measurement position Q based on the known three-dimensional coordinates of three or more reference positions R. As shown in the figure, the three-dimensional coordinates of the measurement position Q to the ground are the plane H 1-2 including the reference positions R 1 and R 2 and the orientation vectors θ R1 and θ R2 , the reference positions R 1 and R 3 and the orientation vector. It can be calculated as the intersection of the plane H 1-3 including θ R1 and θ R3 and the plane H 2-3 including the reference positions R 2 and R 3 and the orientation vectors θ R2 and θ R3 . The symbol L in the figure represents an intersection line between the planes H 1-2 and H 1-3 , and indicates that the three-dimensional coordinates of the measurement position Q to the ground are obtained as an intersection between the intersection line L and the plane H 2-3 . However, if the orientations θ R1 , θ R2 of at least two reference positions R 1 , R 2 can be detected, the angles at the vertices of the triangles Q, R 1 , R 2 are determined, so the reference positions R 1 , R 2 It is possible to calculate the ground three-dimensional coordinates of the measurement position Q from the known three-dimensional coordinates by the principle of triangulation. The calculated three-dimensional coordinates of the measurement position Q with respect to the ground are, for example, output to the output device (display device) 39 of the position measurement device 30 and confirmed.

図2のステップS109において、他の地中計測位置Qの対地三次元座標を算出する必要があるか否かを判断し、必要な場合はステップS103へ戻り、次の計測位置Qに磁界計測装置20を配置して上述したステップS103〜S108を繰り返す。例えば、地中2の計測対象範囲内の任意位置Qで複数の基準信号frが受信可能となるように多数の基準位置Rを地上に配置しておけば(図10参照)、図2の流れ図により、計測対象範囲を移動しながら任意位置Qで自己の対地三次元座標を直接計測することが可能となり、地上におけるGPSと同様の測位システムを地中で実現することができる。また本発明によれば、地中の複数の計測位置Qで同時に対地三次元座標を測量することが可能である。   In step S109 in FIG. 2, it is determined whether or not it is necessary to calculate the ground three-dimensional coordinates of another underground measurement position Q. If necessary, the process returns to step S103, and the magnetic field measurement device is moved to the next measurement position Q. 20 is arranged and steps S103 to S108 described above are repeated. For example, if a large number of reference positions R are arranged on the ground so that a plurality of reference signals fr can be received at an arbitrary position Q within the measurement target range of the underground 2 (see FIG. 10), the flowchart of FIG. Thus, it becomes possible to directly measure the three-dimensional coordinates of the ground at an arbitrary position Q while moving the measurement target range, and a positioning system similar to GPS on the ground can be realized in the ground. Further, according to the present invention, it is possible to survey the ground three-dimensional coordinates simultaneously at a plurality of measurement positions Q in the ground.

こうして本発明の目的である「複数の地中位置において同時に対地三次元座標を計測できる地中位置計測方法及びシステム」を達成することができる。   Thus, the “underground position measuring method and system capable of simultaneously measuring ground three-dimensional coordinates at a plurality of underground positions”, which is an object of the present invention, can be achieved.

図1の実施例では、磁界計測装置20の配置姿勢Sを計測する姿勢計測装置26を設け、図2のステップS104において姿勢計測装置26により磁界計測装置20の配置姿勢Sを計測し、その計測姿勢Sから各基準位置R1、R2、R3の向きθR1、θR2、θR3を検出している。図2のステップS107において向き検出手段331、332、333により各基準位置R1、R2、R3の向きθR1、θR2、θR3を検出するためには、コイル素子211、212、213の配置姿勢Sが必要である。本発明では磁界計測装置20を鉛直向き又は水平向きで配置すれば足りるが、磁気雑音に対して十分なS/N比が得られない場合や何らかの理由で姿勢がずれる場合もある。図示例の姿勢計測装置26は姿勢制御装置27を含み、位置計測装置30の姿勢制御手段37と姿勢制御装置27とによって例え十分なS/N比が得られる磁界計測装置20の向きを選択し、その磁界計測装置20の配置姿勢Sを位置計測装置30の姿勢計測手段36と姿勢計測装置26とにより計測して記憶手段31に記憶する。姿勢計測装置26及び姿勢制御装置27を設けることにより、本発明の地中位置計測システムの自動化が期待できる。 In the embodiment of FIG. 1, an attitude measurement device 26 that measures the arrangement attitude S of the magnetic field measurement device 20 is provided, and the arrangement attitude S of the magnetic field measurement device 20 is measured by the attitude measurement device 26 in step S104 of FIG. The orientations θ R1 , θ R2 , and θ R3 of the reference positions R 1 , R 2 , and R 3 are detected from the posture S. In order to detect the directions θ R1 , θ R2 , θ R3 of the respective reference positions R 1 , R 2 , R 3 by the direction detecting means 33 1 , 33 2 , 33 3 in step S107 in FIG. 2, the coil element 21 1 , 21 2 , 21 3 are required. In the present invention, it is sufficient to arrange the magnetic field measuring device 20 in a vertical direction or a horizontal direction. However, there may be a case where a sufficient S / N ratio cannot be obtained with respect to magnetic noise, or the posture may be shifted for some reason. The posture measurement device 26 in the illustrated example includes a posture control device 27, and selects the direction of the magnetic field measurement device 20 that provides a sufficient S / N ratio by the posture control means 37 and the posture control device 27 of the position measurement device 30. The orientation S of the magnetic field measurement device 20 is measured by the orientation measurement means 36 and the orientation measurement device 26 of the position measurement device 30 and stored in the storage means 31. By providing the attitude measurement device 26 and the attitude control device 27, it can be expected that the underground position measurement system of the present invention is automated.

図10は、複数のシールド掘削機6を用いた地下トンネル工事に本発明を適用した実施例を示す。図示例では、地中2の掘削計画線9上の各計測位置Qで複数の基準信号frが受信可能となるように、掘削計画線9に沿って計画線9の両側に複数の基準位置R1〜R11を地上に設定し、各基準位置R1〜R11にそれぞれ信号発信装置101〜1011を設置している。本発明によれば、複数のシールド掘削機6を計画線9に沿って掘進させながらその先端部の地中位置Qの対地三次元座標を同時に測量することができ、図示例のように各シールド掘削機6を異なる向きから同一の地中位置に向けて掘進させてトンネルを接合する場合に有効に利用できる。また、地上に構造物5等がある場合でも、複数の基準信号frが到達する範囲内であれば、構造物下方の計測位置Qの測量に適用できる。従って、構造物下方における複数の地中位置の同時測量を必要とするアンダーピニング工事等への有効利用も期待できる。 FIG. 10 shows an embodiment in which the present invention is applied to underground tunnel construction using a plurality of shield excavators 6. In the illustrated example, a plurality of reference positions R on both sides of the plan line 9 along the excavation plan line 9 so that a plurality of reference signals fr can be received at each measurement position Q on the excavation plan line 9 in the ground 2. 1 to R 11 are set on the ground, and signal transmission devices 10 1 to 10 11 are installed at reference positions R 1 to R 11 , respectively. According to the present invention, it is possible to simultaneously measure the three-dimensional coordinates of the ground position Q at the tip of the shield excavator 6 while digging a plurality of shield excavators 6 along the planned line 9. This can be used effectively when excavating the excavator 6 from different directions toward the same underground position to join the tunnel. Even when there is a structure 5 or the like on the ground, it can be applied to surveying the measurement position Q below the structure as long as it is within the range where the plurality of reference signals fr reach. Therefore, it can be expected to be effectively used for underpinning work that requires simultaneous surveying of a plurality of underground positions below the structure.

本発明の一実施例の説明図であるIt is explanatory drawing of one Example of this invention. 本発明の地中位置計測方法の流れ図の一例であるIt is an example of the flowchart of the underground position measuring method of this invention. 識別符号列Pで変調前の周期性信号fsの一例の説明図である。It is explanatory drawing of an example of the periodic signal fs before the modulation by the identification code string P. 基準位置R毎の識別符号列Pの一例の説明図である。5 is an explanatory diagram of an example of an identification code string P for each reference position R. FIG. 識別符号列Pで変調後の周期性基準信号fr(搬送周波数fcによる変調前)の一例の説明図である。It is explanatory drawing of an example of the periodicity reference signal fr (before the modulation | alteration by the carrier frequency fc) after modulating with the identification code string P. FIG. コイル素子が出力する計測信号fqの一例の説明図であるIt is explanatory drawing of an example of the measurement signal fq which a coil element outputs 計測信号fqから各基準信号frの位相を検出する方法の説明図であるIt is explanatory drawing of the method of detecting the phase of each reference signal fr from the measurement signal fq. 各基準信号frのコイル素子相互間の位相差Δτにより計測位置Qから見た各基準位置Rの向きを検出する方法の説明図であるIt is explanatory drawing of the method of detecting the direction of each reference position R seen from the measurement position Q by the phase difference Δτ between coil elements of each reference signal fr. 各基準位置Rの三次元座標と計測位置Qから見た各基準位置Rの向きとから計測位置Qの三次元座標を算出する方法の説明図である。4 is an explanatory diagram of a method for calculating the three-dimensional coordinates of the measurement position Q from the three-dimensional coordinates of each reference position R and the direction of each reference position R viewed from the measurement position Q. 本発明の他の実施例の説明図であるIt is explanatory drawing of the other Example of this invention. 従来の地中位置検出方法の一例の説明図であるIt is explanatory drawing of an example of the conventional underground position detection method.

符号の説明Explanation of symbols

1…地表面 2…地中
3…回転磁界 5…構造物
6…シールド掘削機 7…水平ボーリング機
9…掘削計画線
10…信号発信装置 11…送信コイル
12…送信コイル 13…交流電流供給装置
14…周期性信号発生器 15…識別符号列発生器
16…搬送波信号発生器 17…変調器
18…変調器
20…磁界計測装置 21…受信コイル素子
22…支持体 23…復調器
26…姿勢計測装置 27…姿勢制御装置
30…位置計測装置 31…記憶手段
32…位相検知手段 33…向き検出手段
34…座標算出手段
36…姿勢計測手段 37…姿勢制御手段
39…出力装置(表示装置)
51…地下埋設配管 52…移動台車
53…車輪 54…制御装置
55、58、59、62、63、65…信号線
56…第1送信コイル 57…第2送信コイル
58、59…電力線 60…信号供給装置
60a…信号発生器 60b…拡散符号発生器
60c…スペクトル拡散変調器
60d…AM変調器
61…磁気検出装置 62…基台
63…支持板 64…変位棒
65…移動手段 66…第1受信コイル
67…第2受信コイル 70…第1信号測定器
71…第2信号測定器 74…信号表示器
74a…表示画面
fc…搬送周波数 fq…計測信号
fr…周期性基準信号 fs…周期性信号
A…交点 C…球面
F…交線 H…平面
L…交線 M…相関値
P…デジタル基準位置識別符号列
Q…計測位置
Qi…コイル相互関係(コイル取り付け位置)
R…基準位置
S…配置姿勢又は計測姿勢
θR…基準位置の向き
τ…位相 Δτ…位相差
DESCRIPTION OF SYMBOLS 1 ... Ground surface 2 ... Underground 3 ... Rotating magnetic field 5 ... Structure 6 ... Shield excavator 7 ... Horizontal boring machine 9 ... Drilling plan line
10 ... Signal transmitter 11 ... Transmission coil
12 ... Transmitting coil 13 ... AC current supply device
14 ... periodic signal generator 15 ... identification code string generator
16 ... Carrier signal generator 17 ... Modulator
18 ... Modulator
20 ... Magnetic field measuring device 21 ... Receive coil element
22 ... Support 23 ... Demodulator
26… Attitude measurement device 27… Attitude control device
30 ... Position measuring device 31 ... Memory means
32 ... Phase detection means 33 ... Direction detection means
34: Coordinate calculation means
36 ... Attitude measurement means 37 ... Attitude control means
39 ... Output device (display device)
51… Underground piping 52… Moving cart
53 ... wheel 54 ... control device
55, 58, 59, 62, 63, 65 ... Signal line
56 ... 1st transmission coil 57 ... 2nd transmission coil
58, 59 ... Power line 60 ... Signal supply device
60a ... Signal generator 60b ... Spread code generator
60c ... Spread spectrum modulator
60d AM modulator
61… Magnetic detector 62… Base
63 ... Support plate 64 ... Displacement rod
65 ... Moving means 66 ... First receiver coil
67 ... Second receiving coil 70 ... First signal measuring instrument
71 ... Second signal measuring instrument 74 ... Signal indicator
74a… Display screen
fc ... carrier frequency fq ... measurement signal
fr ... periodicity reference signal fs ... periodicity signal A ... intersection C ... spherical surface F ... intersection line H ... plane L ... intersection line M ... correlation value P ... digital reference position identification code string Q ... measurement position
Qi: Coil correlation (coil mounting position)
R: Reference position S: Arrangement posture or measurement posture θ R : Reference position direction τ: Phase Δτ: Phase difference

Claims (8)

地上又は地中の対地三次元座標が既知の複数の基準位置から基準位置毎に自己相関が強く相互相関が弱いデジタル基準位置識別符号列で変調された周期性基準信号を所定搬送周波数の回転磁界に乗せて地中へ発信し、前記各回転磁界が到達する地中の計測位置に三以上の受信コイル素子群が所定相互関係で取り付けられた磁界計測装置を所定姿勢で配置して前記回転磁界により各コイル素子に誘起される信号を計測し、前記各コイル素子の計測信号と各識別符号列との相関に基づき計測位置における各基準信号の位相を検知し、前記各基準信号の位相のコイル素子相互間位相差とコイル素子群の所定相互関係及び姿勢とにより計測位置から見た各基準位置の向きを検出し、前記各基準位置の既知三次元座標と前記計測位置から見た各基準位置の向きとから計測位置の対地三次元座標を算出してなる地中位置計測方法。   A rotating magnetic field having a predetermined carrier frequency is generated from a periodic reference signal modulated with a digital reference position identification code string having a strong autocorrelation and a weak cross-correlation for each reference position from a plurality of reference positions whose ground or ground three-dimensional coordinates are known. A magnetic field measuring device having three or more receiving coil element groups attached in a predetermined relationship at a measurement position in the ground where each rotating magnetic field arrives is placed in a predetermined posture and placed in the ground. To measure the signal induced in each coil element, detect the phase of each reference signal at the measurement position based on the correlation between the measurement signal of each coil element and each identification code string, and coil the phase of each reference signal The direction of each reference position seen from the measurement position is detected by the phase difference between the elements and the predetermined mutual relationship and posture of the coil element group, and each reference position seen from the known three-dimensional coordinates of each reference position and the measurement position Underground position measuring method comprising calculating the ground three-dimensional coordinates of the measurement position from the orientation. 請求項1の計測方法において、前記三以上の受信コイル素子群を、前記磁界計測装置上の同一直線上とならない三以上の所定位置に取り付けてなる地中位置計測方法。   2. The measuring method according to claim 1, wherein the three or more receiving coil element groups are attached to three or more predetermined positions that are not on the same straight line on the magnetic field measuring apparatus. 請求項1又は2の計測方法において、前記デジタル基準位置識別符号列をnビットのPN(Pseudo Noise)符号列とし、前記周期性基準信号を周期T0の正弦波の絶対値をその半周期T0/2のビット長のPN符号列で変調したものとし、前記各コイル素子の計測信号の位相をずらしつつ当該計測信号と各PN符号列との積を当該PN符号列の周期Tにわたり積分し且つその積分値が最大となる計測信号の位相を各基準信号の位相として検知してなる地中位置計測方法。 3. The measurement method according to claim 1, wherein the digital reference position identification code string is an n-bit PN (Pseudo Noise) code string, and the periodic reference signal is an absolute value of a sine wave having a period T 0 and its half period T. It is assumed that the signal is modulated by a PN code string having a bit length of 0/2, and the product of the measurement signal and each PN code string is integrated over the period T of the PN code string while shifting the phase of the measurement signal of each coil element. An underground position measurement method in which the phase of the measurement signal having the maximum integral value is detected as the phase of each reference signal. 地上又は地中の対地三次元座標が既知の複数の基準位置に設置され且つ基準位置毎に自己相関が強く相互相関が弱いデジタル基準位置識別符号列で変調された周期性基準信号を所定搬送周波数の回転磁界に乗せて地中へ発信する信号発信装置、前記各回転磁界が到達する地中の計測位置に所定姿勢で配置され且つ所定相互関係で取り付けられた三以上の受信コイル素子群で前記回転磁界により誘起される信号を計測する磁界計測装置、前記基準位置毎の三次元座標及び識別符号列と前記コイル素子群の所定相互関係及び姿勢とを記憶する記憶手段、前記各コイル素子の計測信号を入力して各識別符号列との相関に基づき計測位置における各基準信号の位相を検知する位相検知手段、前記各基準信号の位相のコイル素子相互間位相差とコイル素子群の所定相互関係及び姿勢とにより計測位置から見た各基準位置の向きを検出する向き検出手段、並びに前記向き検出手段による各基準位置の向きと各基準位置の三次元座標とから計測位置の対地三次元座標を算出する座標算出手段を備えてなる地中位置計測システム。   A periodic reference signal modulated with a digital reference position identification code string that is installed at a plurality of known reference positions where ground or underground three-dimensional coordinates are known, and each of the reference positions has a strong autocorrelation and a weak cross-correlation. A signal transmitting device that transmits the rotating magnetic field to the ground, and the three or more receiving coil element groups that are arranged in a predetermined posture at a measurement position in the ground where each rotating magnetic field reaches and are attached in a predetermined relationship with each other. Magnetic field measuring apparatus for measuring a signal induced by a rotating magnetic field, storage means for storing a three-dimensional coordinate and identification code string for each reference position and a predetermined correlation and posture of the coil element group, measurement of each coil element Phase detection means for inputting a signal and detecting the phase of each reference signal at the measurement position based on the correlation with each identification code string, the phase difference between the coil elements of the phase of each reference signal and the coil element Direction detection means for detecting the orientation of each reference position viewed from the measurement position according to a predetermined mutual relationship and posture of the group, and the measurement position from the orientation of each reference position by the orientation detection means and the three-dimensional coordinates of each reference position An underground position measurement system comprising coordinate calculation means for calculating ground three-dimensional coordinates. 請求項4の計測システムにおいて、前記磁界計測装置の配置姿勢を計測する姿勢計測装置を設け、前記向き検出手段により姿勢計測装置の計測姿勢から各基準位置の向きを検出してなる地中位置計測システム。   5. The measurement system according to claim 4, wherein an attitude measurement device that measures an arrangement attitude of the magnetic field measurement device is provided, and an orientation detection unit detects an orientation of each reference position from the measurement orientation of the orientation measurement device by the orientation detection unit. system. 請求項4又は5の計測システムにおいて、前記三以上の受信コイル素子群を、前記磁界計測装置上の同一直線上とならない三以上の所定位置に取り付けてなる地中位置計測システム。   The measurement system according to claim 4 or 5, wherein the three or more receiving coil element groups are attached to three or more predetermined positions that are not on the same straight line on the magnetic field measuring device. 請求項4から6の何れかの計測システムにおいて、前記デジタル基準位置識別符号列をnビットのPN(Pseudo Noise)符号列とし、前記周期性基準信号を周期T0の正弦波の絶対値をその半周期T0/2のビット長のPN符号列で変調したものとし、前記位相検知手段により、前記各コイル素子の計測信号の位相をずらしつつ当該計測信号と各PN符号列との積を当該PN符号列の周期Tにわたり積分し且つその積分値が最大となる計測信号の位相を各基準信号の位相として検知してなる地中位置計測システム。 As in any of the measurement system of claims 4 6, wherein the digital reference position identification code string as the n-bit PN (Pseudo Noise) code sequence, the absolute value of the sine wave of period T 0 the periodic reference signal and those modulated half cycle T 0/2 bit length of the PN code sequence, wherein the phase detection means, wherein the the product of the measurement signal and the PN code sequence while shifting the phase of the measurement signal of each coil element An underground position measurement system in which the phase of a measurement signal that is integrated over the period T of the PN code string and the integration value is maximum is detected as the phase of each reference signal. 請求項4から7の何れかの計測システムにおいて、前記回転磁界の所定搬送周波数を地中での減衰が小さい周波数としてなる地中位置計測システム。   8. The measurement system according to claim 4, wherein the predetermined carrier frequency of the rotating magnetic field is a frequency with a small attenuation in the ground.
JP2004333794A 2004-11-17 2004-11-17 Method and system for measuring underground position Pending JP2006145302A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004333794A JP2006145302A (en) 2004-11-17 2004-11-17 Method and system for measuring underground position

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004333794A JP2006145302A (en) 2004-11-17 2004-11-17 Method and system for measuring underground position

Publications (1)

Publication Number Publication Date
JP2006145302A true JP2006145302A (en) 2006-06-08

Family

ID=36625177

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004333794A Pending JP2006145302A (en) 2004-11-17 2004-11-17 Method and system for measuring underground position

Country Status (1)

Country Link
JP (1) JP2006145302A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011168996A (en) * 2010-02-17 2011-09-01 Yasuda Engineering Kk Equipment for controlling excavation direction of shield machine for jacking shield tunneling method
CN107462146A (en) * 2017-09-04 2017-12-12 中国计量大学 Subsurface three-dimensional displacement measurement system and method based on more mutual inductance mechanism
CN113417646A (en) * 2021-07-15 2021-09-21 中铁二十三局集团有限公司 Large-section tunnel supporting structure suitable for Xigeda stratum and construction method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011168996A (en) * 2010-02-17 2011-09-01 Yasuda Engineering Kk Equipment for controlling excavation direction of shield machine for jacking shield tunneling method
CN107462146A (en) * 2017-09-04 2017-12-12 中国计量大学 Subsurface three-dimensional displacement measurement system and method based on more mutual inductance mechanism
CN107462146B (en) * 2017-09-04 2023-07-25 中国计量大学 Underground three-dimensional displacement measurement system and method based on multi-mutual inductance mechanism
CN113417646A (en) * 2021-07-15 2021-09-21 中铁二十三局集团有限公司 Large-section tunnel supporting structure suitable for Xigeda stratum and construction method
CN113417646B (en) * 2021-07-15 2023-07-07 中铁二十三局集团有限公司 Large-section tunnel supporting structure suitable for Xigeda stratum and construction method

Similar Documents

Publication Publication Date Title
US10254425B2 (en) Locating arrangement and method using boring tool and cable locating signals
US10761233B2 (en) Sondes and methods for use with buried line locator systems
US9703002B1 (en) Utility locator systems and methods
US7336078B1 (en) Multi-sensor mapping omnidirectional sonde and line locators
US8188745B2 (en) Precise location and orientation of a concealed dipole transmitter
CA2187487C (en) Rotating magnet for distance and direction measurements
US7755360B1 (en) Portable locator system with jamming reduction
US20110156957A1 (en) Precise positioning using a distributed sensor network
CN104870746A (en) Deep formation evaluation systems and methods
JP3746283B2 (en) Continuous cable position search device, continuous cable position search method, and continuous cable position search program
CN103726839A (en) Deposit boundary measuring device and method
CN102918426B (en) Use being accurately positioned for distributed sensor networks
JP2006145302A (en) Method and system for measuring underground position
JPH10318748A (en) Method and system for measuring position
CN103670389A (en) Electric scanning method and device for formation interface detection
CN113566686A (en) Method and device for verifying buried depth position based on ultra-large buried depth pipeline
WO1991003708A1 (en) Position detecting device for underground excavator
CN203685171U (en) Electric scanning device for formation interface detection
JP3716743B2 (en) Drilling pipe tip position and orientation measurement method and excavation pipe tip position and orientation measurement apparatus
JP2004191125A (en) Underwater position measuring method and underwater position measuring device
Yu et al. Applying Electrical Magnetic Coil and In-Pipe INS to Map Underground Pipeline Track
JP2003042707A (en) Excavation method
JP2009216666A (en) Underground position detection system
EP2519839A1 (en) Precise positioning using a distributed sensor network
JPH08247704A (en) Method for detecting position