JPH08146047A - Method for fixing optical part - Google Patents

Method for fixing optical part

Info

Publication number
JPH08146047A
JPH08146047A JP6290193A JP29019394A JPH08146047A JP H08146047 A JPH08146047 A JP H08146047A JP 6290193 A JP6290193 A JP 6290193A JP 29019394 A JP29019394 A JP 29019394A JP H08146047 A JPH08146047 A JP H08146047A
Authority
JP
Japan
Prior art keywords
optical
optical axis
pockels element
optical component
external force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6290193A
Other languages
Japanese (ja)
Other versions
JP3250922B2 (en
Inventor
Hidenobu Hamada
英伸 浜田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP29019394A priority Critical patent/JP3250922B2/en
Publication of JPH08146047A publication Critical patent/JPH08146047A/en
Application granted granted Critical
Publication of JP3250922B2 publication Critical patent/JP3250922B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Magnetic Variables (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Abstract

PURPOSE: To provide a method for fixing a Pockels element of a voltage sensor in a simple constitution without using an adhesive. CONSTITUTION: A polarizer 1, a 0-order λ/4 wavelength constant 2, a Pockels element 3 and an analyzer 4 are sequentially arranged on the same optical axis. An external force with suitable elasticity is applied in parallel to the optical axis to each of the λ/4 wavelength constant 2 and analyzer 4 which are on the entering side and emitting side of light to the Pockels element 3, thereby forming a face contact with the Pockels element 3 via a non-bonded face. The Pockels element 3 is fixed by the friction force generated by this face contact. An external force of suitable elasticity smaller than the external force parallel to the optical axis is applied to the Pockels element 3 at least in one direction perpendicular to the direction of the optical axis.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、配電線の対地間電圧
あるいはモータ等の駆動電源電圧を検知する光PT等に
利用される電気光学効果を有する電圧センサにおける光
学部品の固定方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of fixing an optical component in a voltage sensor having an electro-optical effect, which is used for a light PT or the like for detecting a ground voltage of a distribution line or a drive power source voltage of a motor or the like.

【0002】[0002]

【従来の技術】従来、光電圧センサは、例えば図4に示
すように、センサ部26、入力側光学系21、出力側光
学系22、光信号処理部(図示せず)より構成され、セ
ンサ部26は、光の入射側から光軸上に偏光子1、λ/
4波長板2、ポッケスル素子3、検光子4で構成され、
各光学部品は、それぞれ互いに接する光軸面(光軸を含
む面で、光の入射面あるいは出射面)を全て接着剤で接
着されている。ポッケルス素子3には電圧印加用に電圧
端子14、リード線13、電極5が電気的に接続されて
おり、被測定電圧27は前記電圧端子14に印加され
る。
2. Description of the Related Art Conventionally, as shown in FIG. 4, for example, an optical voltage sensor has a sensor section 26, an input side optical system 21, an output side optical system 22, and an optical signal processing section (not shown). The section 26 includes the polarizer 1, λ /
Comprised of a four-wave plate 2, a pocket element 3, and an analyzer 4,
Each optical component has an optical axis surface (a surface including the optical axis, which is a light incident surface or a light emitting surface) that is in contact with each other, and is bonded with an adhesive. A voltage terminal 14, a lead wire 13, and an electrode 5 are electrically connected to the Pockels element 3 for voltage application, and a measured voltage 27 is applied to the voltage terminal 14.

【0003】光信号処理部と前記センサ部26とは入力
側光学系21と出力側光学系22によって接続されてい
る。すなわち、前記センサ部26の入力側光軸面は前記
入力側光学系21のセンサ部側光軸面と、出力側光軸面
は前記出力側光学系22のセンサ部側光軸面とそれぞれ
接着剤により接着固定されている。また、前記入力側光
学系21は、光軸上に入力用光ファイバー、フェルール
8、レンズ9で構成され、各光学部品の相互の光軸面は
接着剤により接着され、前記出力側光学系22も前記入
力側光学系21と同様の構成となっている。
The optical signal processing section and the sensor section 26 are connected by an input side optical system 21 and an output side optical system 22. That is, the input side optical axis surface of the sensor section 26 is bonded to the sensor section side optical axis surface of the input side optical system 21, and the output side optical axis surface is bonded to the sensor section side optical axis surface of the output side optical system 22. It is fixed by adhesive. Further, the input side optical system 21 is composed of an input optical fiber, a ferrule 8 and a lens 9 on the optical axis, and mutual optical axis surfaces of the respective optical parts are adhered by an adhesive agent, and the output side optical system 22 also. It has the same configuration as the input side optical system 21.

【0004】この光学部品用接着剤としては、エポキシ
系樹脂が使用され、また、ポッケルス素子としては、B
12SiO20(BSO),KDPや自然複屈折を有する
LiNbO3 ,LiTaO3 等が使用される。なお、上
記の説明において光軸面とは光軸に垂直な面のことであ
って、光の入射面と出射面の2つの面を有する。そし
て、接着固定された前記センサ部26、前記入力側光学
系21、前記出力側光学系22は、下ケース25に機械
的に固定される。
An epoxy resin is used as the adhesive for the optical parts, and B is used as the Pockels element.
i 12 SiO 20 (BSO), KDP, LiNbO 3 having natural birefringence, LiTaO 3 or the like is used. In the above description, the optical axis surface is a surface perpendicular to the optical axis and has two surfaces, a light incident surface and a light emitting surface. Then, the sensor unit 26, the input side optical system 21, and the output side optical system 22 that are adhesively fixed are mechanically fixed to the lower case 25.

【0005】次に、公知の光電圧センサについて説明す
る。入力用光ファイバー6の光源としては、例えば中心
波長0.88μmのLEDが使用され、無偏光のLED
の光はセンサ部24の偏光子1を通過後直線偏光とな
る。この直線偏光はλ/4波長板2を通過すると円偏光
になり、この円偏光はポッケルス素子3を通過するとポ
ッケルス素子3に印加された電圧27により屈折率が変
化し楕円化する。この楕円偏光の光が検光子4を通過す
ると、その出力は、出力用光ファイバ7を介して、受光
器においてポッケルス素子3の通過光の偏光状態に対応
して変化する検光子4の出力強度をモニターし、光量
(強度)の変調度を計算することによって印加電圧27
を測定することができる。
Next, a known optical voltage sensor will be described. As the light source of the input optical fiber 6, for example, an LED with a center wavelength of 0.88 μm is used, and a non-polarized LED is used.
Light becomes linearly polarized light after passing through the polarizer 1 of the sensor unit 24. This linearly polarized light becomes circularly polarized light when passing through the λ / 4 wave plate 2, and when this circularly polarized light passes through the Pockels element 3, the refractive index changes due to the voltage 27 applied to the Pockels element 3 and becomes elliptical. When this elliptically polarized light passes through the analyzer 4, its output changes its output intensity via the output optical fiber 7 in the light receiver in accordance with the polarization state of the light passing through the Pockels element 3. The applied voltage 27 is calculated by monitoring the light intensity (intensity).
Can be measured.

【0006】ここで、前記光量の変調度とは、光量のA
C成分と光量のCD成分の比のことである。ところで、
前記光電圧センサは、屋外の温度条件の厳しい環境下で
使用されることが多く、温度特性には厳しい性能が要求
され、−20〜80℃において変調度変化が±1%以下
であることが望まれている。
Here, the modulation degree of the light quantity is A of the light quantity.
It is the ratio of the C component to the CD component of the amount of light. by the way,
The photovoltage sensor is often used in an environment where the temperature conditions are severe outdoors, and strict performance is required for temperature characteristics, and the modulation degree change is −1% or less at −20 to 80 ° C. Is desired.

【0007】この温度特性については、λ/4波長板2
やポッケルス素子3はその接着部の応力により自然複屈
折やポッケルス効果が変化したり、またLiNbO3
どのZ軸を光軸としても入射光の軸ずれが生ずることに
より自然複屈折の温度特性が現れる等さまざまな現象が
生ずることが報告されている。応力によるλ/4波長板
2の複屈折の変化は、λ/4波長板2として0次を使用
することによりその応力を緩和することができる。ま
た、軸ずれによる自然複屈折の発生は、光学部品の光軸
面の面だし精度を30分以下にすることにより、軸ずれ
角を0.2°以下とし、軸ずれによる温度特性を克服す
ることができる。
Regarding this temperature characteristic, the λ / 4 wave plate 2
In the Pockels element 3, the natural birefringence and the Pockels effect change due to the stress of the adhesive portion, and even if the Z axis of LiNbO 3 or the like is used as the optical axis, the axial deviation of the incident light occurs, so that the temperature characteristic of the natural birefringence is improved. It has been reported that various phenomena such as appearing occur. The change in the birefringence of the λ / 4 wave plate 2 due to the stress can be relaxed by using the 0th order as the λ / 4 wave plate 2. In addition, the occurrence of natural birefringence due to axis misalignment reduces the axis misalignment angle to 0.2 ° or less by overcoming the optical axis surface precision of the optical component for 30 minutes or less, and overcomes the temperature characteristics due to axis misalignment. be able to.

【0008】しかし、図5に示すように、従来の光電圧
センサは、最大10%程度の温度特性があり、しかも、
応力は光センサ製造時の環境条件で変化するため、その
温度特性にも再現性がなく、温度特性を管理することは
非常に困難であり、ポッケルス素子3に加わる応力を緩
和するための方法は見出されていない。
However, as shown in FIG. 5, the conventional optical voltage sensor has a temperature characteristic of about 10% at maximum, and
Since the stress changes depending on the environmental conditions at the time of manufacturing the optical sensor, its temperature characteristic is not reproducible, and it is very difficult to control the temperature characteristic. A method for relaxing the stress applied to the Pockels element 3 is Not found.

【0009】[0009]

【発明が解決しようとする課題】以上のように、従来の
方法では、互いに接する光軸面は全て接着剤により接着
しているので、ポッケルス素子に加わる応力を制御する
ことが不可能であり、温度特性も不良で、かつ各光電圧
センサ間で温度特性が不揃となるため、正確な電圧測定
ができず、温度特性を管理するためには全数を評価する
ことが必要となりコスト増の原因となっていた。
As described above, in the conventional method, since the optical axis surfaces which are in contact with each other are all bonded by the adhesive, it is impossible to control the stress applied to the Pockels element. Since the temperature characteristics are also poor and the temperature characteristics are not uniform among the optical voltage sensors, accurate voltage measurement cannot be performed, and it is necessary to evaluate all of them in order to manage the temperature characteristics, which causes a cost increase. It was.

【0010】この発明は、上記のような課題を解決さ
せ、接着剤を使用しない簡単な構成で電圧センサを構成
するポッケルス素子の固定方法を提供することを目的と
する。
An object of the present invention is to solve the above problems and to provide a method of fixing a Pockels element which constitutes a voltage sensor with a simple structure without using an adhesive.

【0011】[0011]

【課題を解決するための手段】この発明はこの目的を達
成するため、従来例のセンサ部24を構成する光学部品
の中で、外部応力によりポッケルス効果が変動するポッ
ケルス素子のみを接着剤で接着せずに光軸上に固定する
方法であって、前記ポッケルス素子と同一光軸上にあっ
て、前記ポッケルス素子の光の入射側と出射側のそれぞ
れに配置されたλ/4波長板と検光子のそれぞれに、前
記ポッケルス素子部分の光軸と平行方向で前記ポッケル
ス素子の方向に付勢する弾性のある外力を加えることに
よって、前記ポッケルス素子と面接触させ、その時に発
生する摩擦力によって前記ポッケルス素子を固定するこ
とを特徴とするものである。
In order to achieve this object, the present invention adheres only the Pockels element, of which the Pockels effect is fluctuated by external stress, among the optical components constituting the sensor section 24 of the conventional example, with an adhesive. And a method of fixing the light on the optical axis of the Pockels element, which is on the same optical axis as the Pockels element and is arranged on the light incident side and the light emitting side of the Pockels element. By applying an elastic external force that biases each of the photons in the direction of the Pockels element in a direction parallel to the optical axis of the Pockels element portion, the photons are brought into surface contact with the Pockels element, and the frictional force generated at that time causes the contact. It is characterized by fixing the Pockels element.

【0012】また、前記ポッケルス素子には、光軸方向
と垂直な方向に前記光軸と平行方向の適当な弾性を有す
る外力よりも弱い適当な弾性を有する外力を加えること
を特徴とするものである。
Further, the Pockels element is applied with an external force having an appropriate elasticity weaker than an external force having an appropriate elasticity in a direction parallel to the optical axis in a direction perpendicular to the optical axis direction. is there.

【0013】[0013]

【作用】上記の方法により光学部品を固定すると、ポッ
ケルス素子は接着剤を使用した接着面がなくなり、接着
剤との熱膨張係数の相違により発生する応力から解放さ
れるため、光電圧センサは温度の影響を受けずに被測定
電圧を正確に測定することができる。
When the optical component is fixed by the above method, the Pockels element has no adhesive surface using an adhesive and is released from the stress generated due to the difference in the thermal expansion coefficient from the adhesive, so that the optical voltage sensor has a temperature The voltage to be measured can be accurately measured without being affected by.

【0014】[0014]

【実施例】以下、具体例について詳細に説明する。図1
は、この発明の光学部品の固定方法の実施例である光電
圧センサの概略図であり、図2は本実施例の組立図であ
る。図1に示すように、光電圧センサは、センサ部2
0、入力側光学系21、出力側光学系22、光信号処理
部(図示せず)より構成され、センサ部20は光の入射
側から光軸上に偏光子1、0次λ/4波長板2、ポッケ
ルス素子3、検光子4から構成され、偏光子1−0次λ
/4波長板2間のみは、光軸面を接着剤で接着する。ポ
ッケルス素子3には電圧印加用に電圧端子14、リード
線11、電極5が電気的に接続されており、被測定電圧
25は、前記電圧端子14に印加される。
EXAMPLES Specific examples will be described in detail below. FIG.
FIG. 2 is a schematic view of an optical voltage sensor which is an embodiment of the method for fixing an optical component of the present invention, and FIG. 2 is an assembly drawing of this embodiment. As shown in FIG. 1, the optical voltage sensor includes a sensor unit 2
0, an input side optical system 21, an output side optical system 22, and an optical signal processing unit (not shown). The sensor unit 20 has a polarizer 1, a 0th-order λ / 4 wavelength on the optical axis from the light incident side. It is composed of a plate 2, a Pockels element 3, and an analyzer 4, and has a polarizer of 1-0 order λ.
Only between the / 4 wavelength plates 2, the optical axis surfaces are bonded with an adhesive. A voltage terminal 14, a lead wire 11, and an electrode 5 are electrically connected to the Pockels element 3 for voltage application, and a measured voltage 25 is applied to the voltage terminal 14.

【0015】光信号処理部(図示せず)と前記センサ部
20とは入力側光学系21と出力側光学系22によって
接続されており、前記センサ部20の入力側光軸面は前
記入力側光学系21のセンサ部側光軸面と、出力側光軸
面は前記出力側光学系22のセンサ部側光軸面とそれぞ
れ接着剤により接着固定されている。また、前記入力側
光学系21は、光軸上に入力用光ファイバー6、フェル
ール8、レンズ9で構成され、各光学部品の相互の光軸
面は接着剤により接着され、前記出力側光学系22も前
記入力側光学系21と同様の構成を有する。
An optical signal processing unit (not shown) and the sensor unit 20 are connected by an input side optical system 21 and an output side optical system 22, and the input side optical axis surface of the sensor unit 20 is the input side. The sensor section side optical axis surface of the optical system 21 and the output side optical axis surface are adhered and fixed to the sensor section side optical axis surface of the output side optical system 22 by an adhesive. The input side optical system 21 is composed of an input optical fiber 6, a ferrule 8 and a lens 9 on the optical axis, and the mutual optical axis surfaces of the respective optical components are adhered by an adhesive agent, and the output side optical system 22. Also has the same configuration as the input side optical system 21.

【0016】このように、接着剤の接着により光電圧セ
ンサの光学部分は、第1パートであるポッケルス素子
3、第2パートである偏光子1と0次λ/4波長板2と
入力側光学系21、および第3パートである検光子4と
前記出力側光学系22の3パートに構造的に分かれる。
なお、本実施例では、偏光子1と検光子4において光軸
が直角に曲げられるコの字形の光軸28を有するが、各
光学部品の光入出力面はそれぞれの光軸面に一致してい
る。
As described above, the optical parts of the optical voltage sensor are adhered by the adhesive so that the Pockels element 3 which is the first part, the polarizer 1 which is the second part, the 0th-order λ / 4 wave plate 2 and the input side optics. The system 21 is structurally divided into three parts, that is, the analyzer 4 which is the third part and the output side optical system 22.
In this embodiment, the polarizer 1 and the analyzer 4 have a U-shaped optical axis 28 in which the optical axes are bent at right angles, but the light input / output surfaces of the respective optical components coincide with the respective optical axis surfaces. ing.

【0017】下ケース15には、上記3パートがそれぞ
れその光軸が合うように配置できるような溝が設けら
れ、また、偏光子1と検光子4をそれぞれ前記第一パー
ト部分の光軸と平行な方向でポッケルス素子の方向に付
勢する2個の横バネ11を配置できるようにその両側面
に収容部23が設けられている。次に、図2の組立図に
基づいて、この発明の光電圧センサの組立方法を説明す
る。前記3パートを、下ケースに設けられた溝内に光軸
がほぼ一致するように配置し、2個の横側バネ11を下
ケースの側面に設けられた収容部23に配置すると、第
2パートおよび第3パートには前記第1パート部分の光
軸と平行で互いに反対方向に力が加わり、前記第二パー
トの偏光子1がポッケルス素子の方向に、前記第三パー
トの検光子4もポッケルス素子の方向にそれぞれ付勢さ
れ、前記3パートはλ/4波長板2−ポッケルス素子3
間とポッケルス素子3−検光子4間で無接着面が密着
し、横側バネ11により接触面に生ずる摩擦力によって
前記3パートは光軸が合うように固定される。
The lower case 15 is provided with a groove so that the optical axes of the three parts can be aligned with each other, and the polarizer 1 and the analyzer 4 are respectively aligned with the optical axes of the first part. A housing portion 23 is provided on both side surfaces of the lateral springs 11 so that the two lateral springs 11 that urge the Pockels elements in the parallel direction can be arranged. Next, a method of assembling the optical voltage sensor of the present invention will be described based on the assembly diagram of FIG. When the three parts are arranged in the groove provided in the lower case so that their optical axes are substantially aligned with each other, and the two lateral springs 11 are arranged in the housing portion 23 provided on the side surface of the lower case, A force is applied to the part and the third part in parallel to the optical axis of the first part and in opposite directions, so that the polarizer 1 of the second part is directed toward the Pockels element, and the analyzer 4 of the third part is also applied. Each of the three parts is biased in the direction of the Pockels element, and the three parts are λ / 4 wave plates 2-Pockels element 3
The non-adhesive surface is in close contact between the Pockels element 3 and the analyzer 4, and the three parts are fixed so that the optical axes are aligned by the frictional force generated on the contact surface by the lateral spring 11.

【0018】このようにして、前記3パートが下ケース
15上に固定された状態で、3パートの上面に上側バネ
ガイド板16を載置する。前記上側バネガイド板16に
は2個の上側バネ13が挿入できる穴24が設けられて
おり、前記光軸に対して上側バネ13の力が垂直に加わ
るように前記上側バネ13を圧縮して穴24内に取り付
ける。前記横側バネ11と前記上側バネ13を圧縮した
状態で、バネ押さえケース枠17を図2に示されている
下ケース15と上側バネガイド板16を覆うように取り
付けることにより、前記横側バネ11と前記上側バネ1
3は圧縮状態のまま固定され、センサの光学部分を構成
する3パートも光軸が永久に固定された状態でセットさ
れる。
In this way, the upper spring guide plate 16 is placed on the upper surface of the three parts while the three parts are fixed on the lower case 15. The upper spring guide plate 16 is provided with a hole 24 into which the two upper springs 13 can be inserted. The upper spring 13 is compressed so that the force of the upper spring 13 is perpendicular to the optical axis. Install in 24. In a state where the lateral spring 11 and the upper spring 13 are compressed, the spring holding case frame 17 is attached so as to cover the lower case 15 and the upper spring guide plate 16 shown in FIG. And the upper spring 1
3 is fixed in the compressed state, and the three parts forming the optical part of the sensor are also set with their optical axes permanently fixed.

【0019】上記の通り、この発明のバネ押さえ式光電
圧センサは、ポッケスル素子が接着剤による接着面を有
しないので、温度による影響を受けず、温度特性は図3
に示されているように±1%以内の良好なものであっ
た。ただし、圧縮した状態での上側バネ13の弾性力
は、圧縮した状態の横側バネ11の弾性力よりも小さく
なるようにバネ定数とケース寸法を考慮する。例えば、
本実施例において、横側バネ11の弾性力は約360g
であるのに対し、上側バネ13の弾性力は約100gで
ある。上側バネ13の役割は、横側バネ11だけでは各
パートに上下方向に自由度ができ、振動が発生すること
を防止することであって、上側バネ13の弾性力が大き
いと光学部品は下ケースの下側に押さえつけられ、温度
変化によりケースが変形する場合光学部品にケースから
の力が加わり光軸のずれが生ずる恐れがある。そのた
め、横側バネ11の力を上側バネ13の力より強くする
ことによって光学部品とケースとの相互作用を最小にす
ることができる。
As described above, in the spring-pressing optical voltage sensor of the present invention, since the pocket element does not have an adhesive surface by an adhesive, it is not affected by temperature and the temperature characteristic is as shown in FIG.
As shown in (4), it was a favorable value within ± 1%. However, the spring constant and the case size are taken into consideration so that the elastic force of the upper spring 13 in the compressed state is smaller than the elastic force of the lateral spring 11 in the compressed state. For example,
In this embodiment, the elastic force of the lateral spring 11 is about 360 g.
On the other hand, the elastic force of the upper spring 13 is about 100 g. The role of the upper spring 13 is to allow each part to have a degree of freedom in the vertical direction only with the lateral spring 11, and to prevent vibration from occurring. When the case is deformed due to temperature change due to being pressed against the lower side of the case, a force from the case may be applied to the optical component to cause a shift of the optical axis. Therefore, by making the force of the lateral spring 11 stronger than that of the upper spring 13, the interaction between the optical component and the case can be minimized.

【0020】なお、ポッケルス素子3と0次λ/4波長
板2間とポッケルス3と検光子4間以外の接着には従来
と同じエポキシ系樹脂が使用される。ポッケルス素子3
としては、Bi12SiO20(BSO),KDPや自然複
屈折を有するLiNbO3 ,LiTaO3 等を使用す
る。また、λ/4波長板として、接着による応力緩和の
ために0次を使用したが、高次のλ波長板を使用する時
には、この発明と同様にこのλ波長板も無接着にするこ
とができる。
The same epoxy resin as in the prior art is used for bonding other than between the Pockels element 3 and the 0th-order λ / 4 wave plate 2 and between the Pockels 3 and the analyzer 4. Pockels element 3
As the material, Bi 12 SiO 20 (BSO), KDP, LiNbO 3 having natural birefringence, LiTaO 3 or the like is used. Further, as the λ / 4 wave plate, the 0th order is used for stress relaxation due to adhesion. However, when a higher order λ waveplate is used, the λ waveplate can be made non-adhesive as in the present invention. it can.

【0021】偏光子1や検光子4等の光学部品の光軸面
の面だし精度は、30分以下のものを使用し、軸ずれ角
を0,2°以下とすることによって、軸ずれによる温度
特性を抑えている。ケース材料としては、温度変化によ
るケース変形の小さい無機材料、例えばセラミック製が
好適であるが、有機材料例えばABS樹脂等を用いても
特性上とくに問題はない。
The optical axis planes of the optical components such as the polarizer 1 and the analyzer 4 have a surface alignment accuracy of 30 minutes or less, and the axis deviation angle is set to 0 or 2 ° or less. The temperature characteristics are suppressed. As the case material, an inorganic material, which is small in case deformation due to temperature change, such as a ceramic material is preferable, but an organic material such as an ABS resin does not cause any problem in terms of characteristics.

【0022】なお、横側バネ11の個数については、偏
光子1あるいは検光子4のいずれか一方の光軸面とは反
対側の面をケース内側面に接触させ、反対側を1個のバ
ネで押圧する方式でも良いが、この場合は、ケースと偏
光子あるいは検光子との相互作用が強いので、ケース材
料として温度変化によるケース変形の小さいセラミック
製のものを用いることが好適である。また、上側バネ1
3の個数については、横側バネの力よりも弱いのであれ
ば個数はとくに問題ではない。また、実施例では弾性の
ある外力の発生手段としてバネ(スプリング)を使用し
たが、ゴムや板バネ等弾性力を有する他の手段も使用で
きる。
Regarding the number of the lateral springs 11, the surface of the polarizer 1 or the analyzer 4 opposite to the optical axis surface is brought into contact with the inner surface of the case, and the opposite side is one spring. However, in this case, since the interaction between the case and the polarizer or the analyzer is strong, it is preferable to use a case material made of ceramic, which is small in case deformation due to temperature change. Also, the upper spring 1
Regarding the number of 3, the number of 3 does not matter as long as it is weaker than the force of the lateral spring. Further, in the embodiment, the spring is used as the elastic external force generating means, but other means having elastic force such as rubber or leaf spring may be used.

【0023】なお、図1の光電圧センサは、センサー部
20、入力側光学系21、出力側光学系22のほぼ全て
がケースの中に収納され、光ファイバーのみがケースか
ら突出するピッグテイルタイプなのに対し、図2の光電
圧センサは、レンズホルダー10の一部がケースの外側
に突出するファイバー挿入タイプである。図2のファイ
バー挿入タイプは、光電圧センサ組立後に光ファイバー
を用意できるというメリットがあるが、一方、レンズホ
ルダー10がケース外に露出するため、前記レンズホル
ダー10に外力が加わると前記3パートの光軸がずれ特
性が悪くなるというデメリットもあり、レンズホルダー
10に外力が加わる可能性の低い用途において使用され
るのが好適である。
The optical voltage sensor of FIG. 1 is a pigtail type in which almost all of the sensor unit 20, the input side optical system 21 and the output side optical system 22 are housed in the case, and only the optical fiber projects from the case. On the other hand, the optical voltage sensor of FIG. 2 is a fiber insertion type in which a part of the lens holder 10 projects outside the case. The fiber insertion type of FIG. 2 has an advantage that an optical fiber can be prepared after assembling the optical voltage sensor, but on the other hand, since the lens holder 10 is exposed to the outside of the case, when an external force is applied to the lens holder 10, the optical parts of the three parts are exposed. There is also a demerit that the axis shift characteristic deteriorates, and it is suitable for use in applications where the external force is unlikely to be applied to the lens holder 10.

【0024】[0024]

【発明の効果】以上のように、この発明によれば、ポッ
ケルス素子は接着剤を使用した面がなくなり、接着剤と
の熱膨張の相違により発生する応力から解放されるた
め、光電圧センサは温度の影響を受けずに被測定電圧を
正確に測定することができるとともに、温度特性管理が
容易となるため、従来のものに比べ大幅に管理のための
手数を少なくすることができコストダウンを行うことが
できるという効果を有するものである。
As described above, according to the present invention, since the Pockels element has no surface using the adhesive and is released from the stress generated by the difference in thermal expansion from the adhesive, the optical voltage sensor is provided. The voltage to be measured can be accurately measured without being affected by temperature, and the temperature characteristics can be easily managed, so the number of management steps can be greatly reduced compared to the conventional one, and cost can be reduced. It has the effect that it can be performed.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実施例におけるバネ押さえ式光電圧
センサの概略図である。
FIG. 1 is a schematic view of a spring holding type optical voltage sensor according to an embodiment of the present invention.

【図2】この発明の実施例におけるバネ押さえ式光電圧
センサの組立図である。
FIG. 2 is an assembly view of a spring holding type optical voltage sensor according to an embodiment of the present invention.

【図3】この発明の実施例のバネ押さえ式光電圧センサ
の温度特性図である。
FIG. 3 is a temperature characteristic diagram of a spring holding type optical voltage sensor according to an embodiment of the present invention.

【図4】従来の接着方式光電圧センサの概略図である。FIG. 4 is a schematic view of a conventional adhesive type optical voltage sensor.

【図5】従来の接着方式光電圧センサの温度特性図であ
る。
FIG. 5 is a temperature characteristic diagram of a conventional adhesive type optical voltage sensor.

【符号の説明】[Explanation of symbols]

1 偏光子 2 0次λ/4波長板 3 ポッケルス素子 4 検光子 5 電極 6 入力用光ファイバー 7 出力用光ファイバー 8 フェルール 9 レンズ 10 レンズホルダー 11 横側バネ 12 上側バネ 13 リード線 14 電圧端子 15 下ケース 16 上側バネガイド板 17 バネ押さえケース枠 18 第2パート 19 第3パート 20 センサ部 21 入力側光学系 22 出力側光学系 23 収容部 24 穴 25 従来例の下ケース 26 従来例のセンサ部 27 印加電圧(被測定電圧) 28 光軸 1 Polarizer 2 0th λ / 4 Wave Plate 3 Pockels Element 4 Analyzer 5 Electrode 6 Input Optical Fiber 7 Output Optical Fiber 8 Ferrule 9 Lens 10 Lens Holder 11 Side Spring 12 Upper Spring 13 Lead Wire 14 Voltage Terminal 15 Lower Case 16 Upper Spring Guide Plate 17 Spring Holding Case Frame 18 Second Part 19 Third Part 20 Sensor Part 21 Input Side Optical System 22 Output Side Optical System 23 Housing Part 24 Hole 25 Conventional Case Lower Case 26 Conventional Example Sensor Part 27 Applied Voltage (Measured voltage) 28 Optical axis

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 光学部品の集合体の内、外部応力により
光学係数が変動する第一の光学部品を光軸上に固定する
方法であって、前記第一の光学部品と同一光軸上にあっ
て前記第一の光学部品の光の入射側と出射側のそれぞれ
に配置された第二の光学部品と第三の光学部品のそれぞ
れに前記第一の光学部品部分の光軸と平行方向に適当な
弾性を有する外力を加えて前記第一の光学部品と無接着
面を介して面接触させ、外力により接触面に発生する摩
擦力により前記第一の光学部品を固定することを特徴と
する光学部品の固定方法。
1. A method for fixing, on an optical axis, a first optical component of an aggregate of optical components, the optical coefficient of which fluctuates due to an external stress, which is on the same optical axis as the first optical component. There is a second optical component and a third optical component respectively disposed on the light incident side and the light emitting side of the first optical component in a direction parallel to the optical axis of the first optical component. An external force having an appropriate elasticity is applied to bring it into surface contact with the first optical component via a non-adhesive surface, and the first optical component is fixed by a frictional force generated on the contact surface by the external force. How to fix optical parts.
【請求項2】 第一の光学部品には、光軸方向と垂直な
方向に前記光軸と平行方向の適当な弾性を有する外力よ
りも弱い適当な弾性を有する外力を加えることを特徴と
する請求項1に記載の光学部品の固定方法。
2. An external force having an appropriate elasticity weaker than an external force having an appropriate elasticity in a direction parallel to the optical axis is applied to the first optical component in a direction perpendicular to the optical axis direction. The method for fixing an optical component according to claim 1.
JP29019394A 1994-11-24 1994-11-24 How to fix optical components Expired - Fee Related JP3250922B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29019394A JP3250922B2 (en) 1994-11-24 1994-11-24 How to fix optical components

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29019394A JP3250922B2 (en) 1994-11-24 1994-11-24 How to fix optical components

Publications (2)

Publication Number Publication Date
JPH08146047A true JPH08146047A (en) 1996-06-07
JP3250922B2 JP3250922B2 (en) 2002-01-28

Family

ID=17752963

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29019394A Expired - Fee Related JP3250922B2 (en) 1994-11-24 1994-11-24 How to fix optical components

Country Status (1)

Country Link
JP (1) JP3250922B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2284548A1 (en) * 2008-05-28 2011-02-16 Kabushiki Kaisha Toshiba Optical voltage sensor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2284548A1 (en) * 2008-05-28 2011-02-16 Kabushiki Kaisha Toshiba Optical voltage sensor
EP2284548A4 (en) * 2008-05-28 2014-06-18 Toshiba Kk Optical voltage sensor
US8829890B2 (en) 2008-05-28 2014-09-09 Kabushiki Kaisha Toshiba Optical voltage sensor

Also Published As

Publication number Publication date
JP3250922B2 (en) 2002-01-28

Similar Documents

Publication Publication Date Title
Jaeger et al. Integrated optics Pockels cell high-voltage sensor
US5475489A (en) Determination of induced change of polarization state of light
US5035495A (en) Optical unit including a substrate and optical element supported on the substrate such that thermal stresses are prevented from being exerted on the optical element
JPH0718889B2 (en) Optical parts
KR960013755B1 (en) Optical magnetic-field sensor
JP2001041983A (en) Photo-voltage sensor
JP2001041983A5 (en)
JP3250922B2 (en) How to fix optical components
JP3228862B2 (en) Optical voltage sensor
JPH01182824A (en) Optical element
JP3231214B2 (en) How to assemble a light voltage sensor
JPH0225761A (en) Optical current transformer
JP4105299B2 (en) Photovoltage sensor
JPH0617928B2 (en) Optical element composite
JPS6396513A (en) Sensor
JPS6254170A (en) Optical measuring instrument
JPS6070328A (en) Pressure measuring device
JP3415972B2 (en) Optical fiber sensor and polarizer unit
JPS6398568A (en) Optical potential device
JPH09274056A (en) Current measuring device for optical fiber
SU1173325A1 (en) Device for high-voltage measurement
JPH0476068B2 (en)
JP2893013B1 (en) Optical magnetic field sensor
JPH1054850A (en) Optical-voltage/photocurrent sensor
JPS6398512A (en) Sensor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071116

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081116

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091116

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091116

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101116

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111116

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees