JPH0476068B2 - - Google Patents

Info

Publication number
JPH0476068B2
JPH0476068B2 JP59065756A JP6575684A JPH0476068B2 JP H0476068 B2 JPH0476068 B2 JP H0476068B2 JP 59065756 A JP59065756 A JP 59065756A JP 6575684 A JP6575684 A JP 6575684A JP H0476068 B2 JPH0476068 B2 JP H0476068B2
Authority
JP
Japan
Prior art keywords
optical
optical device
storage case
voltage
elastic body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59065756A
Other languages
Japanese (ja)
Other versions
JPS60210770A (en
Inventor
Minoru Kanai
Genji Takahashi
Tadashi Sato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP59065756A priority Critical patent/JPS60210770A/en
Publication of JPS60210770A publication Critical patent/JPS60210770A/en
Publication of JPH0476068B2 publication Critical patent/JPH0476068B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、光方式電磁気測定装置に係り、特
に、高い精度を要求される測定に好適な構造をも
つ光方式電磁気測定装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to an optical electromagnetic measuring device, and particularly to an optical electromagnetic measuring device having a structure suitable for measurements requiring high accuracy.

〔発明の背景〕[Background of the invention]

従来、高電圧、大電流測定装置としては、計器
用変圧器PT、変流器CTが主として使われている
が、大形、高価、過渡電圧波形の変歪等の欠点が
あつた。そこで、近年、これに代わり光学的に電
圧、電流を測定する方式が注目されている。この
ような電圧、電流測定器は、小型で過渡電圧、電
流波形も忠実に再現できるが、現場で発生する振
動や温度変化に対して、誤差が増大するという欠
点があつた。
Conventionally, potential transformers PT and current transformers CT have been mainly used as high voltage and large current measuring devices, but these have drawbacks such as large size, high cost, and distortion of transient voltage waveforms. Therefore, in recent years, instead of this method, a method of optically measuring voltage and current has been attracting attention. Although such voltage and current measuring instruments are small and can faithfully reproduce transient voltage and current waveforms, they have the drawback of increasing errors due to vibrations and temperature changes that occur in the field.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、振動や温度変化が大きい環境
でも、高精度で電圧、電流を測定できる光方式電
磁気測定装置を提供するにある。
An object of the present invention is to provide an optical electromagnetic measuring device that can measure voltage and current with high accuracy even in an environment with large vibrations and temperature changes.

〔発明の概要〕[Summary of the invention]

本発明は、光学装置の全面が弾性体で保持され
るように、光学装置とその収納ケースの間に弾性
体を設けるとともに、収納ケース内の光学装置と
収納ケースの外部に設けられた光伝送路との接続
を可撓性の光伝送路で行なうようにしたことを特
徴とする。
The present invention provides an elastic body between the optical device and its storage case so that the entire surface of the optical device is held by the elastic body, and an optical transmission device provided between the optical device inside the storage case and the outside of the storage case. It is characterized in that the connection to the optical transmission line is made by a flexible optical transmission line.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を電圧測定器の場合を
とり上げ、第1図、2図、3図により説明する。
第1図及び第2図において光学装置1は、それぞ
れ互に接着されたレンズ2、偏光子3、波長板
4、電気光学素子5、検光子6、レンズ7及び8
により構成される。
Hereinafter, one embodiment of the present invention will be explained using a voltage measuring device with reference to FIGS. 1, 2, and 3.
In FIGS. 1 and 2, an optical device 1 includes a lens 2, a polarizer 3, a wave plate 4, an electro-optical element 5, an analyzer 6, lenses 7 and 8, which are bonded to each other.
Consisted of.

このような光学装置1はゴム系接着剤11が充
填されたケース12中に収納され、ゴム系接着剤
11によつて保持される。一方、ケース12と光
学装置1は、相互間で発生する相対変位を十分吸
収できる柔軟な光伝送路15,16,17で接続
される。また、ケース12には、コネクタ18,
19,20が固着され,コネクタ18,19,2
0には外部光伝送路21,22,23が螺着さ
れ、可撓性をもつ光伝送路15,16,17及び
外部光伝送路21,22,23がそれぞれ個別に
光学的に接続される。なお、可撓性をもつ光伝送
路としては、一般の光フアイバ等が用いられる。
電気光学素子5には、測定リード線30,31が
接続され、被測定電圧が測定リード線によつて電
気光学素子5に印加される。
Such an optical device 1 is housed in a case 12 filled with a rubber adhesive 11 and held by the rubber adhesive 11. On the other hand, the case 12 and the optical device 1 are connected by flexible optical transmission lines 15, 16, and 17 that can sufficiently absorb the relative displacement that occurs between them. The case 12 also includes a connector 18,
19, 20 are fixed, and the connectors 18, 19, 2
External optical transmission lines 21, 22, and 23 are screwed onto 0, and flexible optical transmission lines 15, 16, and 17 and external optical transmission lines 21, 22, and 23 are individually optically connected to each other. . Note that a general optical fiber or the like is used as the flexible optical transmission line.
Measurement lead wires 30 and 31 are connected to the electro-optical element 5, and a voltage to be measured is applied to the electro-optical element 5 through the measurement lead wires.

光源からの光は外部光伝送路21、コネクタ1
8、伝送路15を介して光学系1に入射され、レ
ンズ2で平行光にされた後、偏光子3、波長板4
等を通り、電気光学素子5で位相変調を受けた
後、検光子6で二方向の成分に分けられ、それぞ
れの光は、伝送路16,17、コネクタ19,2
0及び外部伝送路22,23を通して処理回路に
伝送され、処理回路では位相変調度を演算によつ
て求め、変調度に比例した電気信号を出力する。
The light from the light source is transmitted through the external optical transmission line 21 and the connector 1.
8. The light enters the optical system 1 via the transmission line 15, is made into parallel light by the lens 2, and is then sent to the polarizer 3 and the wavelength plate 4.
etc., and undergoes phase modulation at the electro-optical element 5, and is then separated into components in two directions by the analyzer 6.
0 and external transmission lines 22 and 23, the processing circuit calculates the degree of phase modulation and outputs an electrical signal proportional to the degree of modulation.

ここで、収納ケース12が振動した場合を考え
ると、光学系1は収納ケース12に、ゴム系接着
剤11で保持されているため、振動による力がゴ
ム系接着剤11で吸収され、光学装置1に伝達し
ない。従つて、光学装置1に加わる応力が小さい
ため、誤差の発生が少ない。
Here, considering the case where the storage case 12 vibrates, the optical system 1 is held in the storage case 12 by the rubber adhesive 11, so the force caused by the vibration is absorbed by the rubber adhesive 11, and the optical system 1 Not transmitted to 1. Therefore, since the stress applied to the optical device 1 is small, errors are less likely to occur.

次に、温度が変化し光学系が熱膨張、収縮した
場合を考えると、やはり、ゴム系接着剤11が自
由に変形するため、光学装置1に加わる応力が小
さくなる。このことは第4図から明らかである。
第4図は、温度の変化に対する光学装置1からの
出力光量に変動を示したもので、出力光量の変動
が大きいと誤差も増大するため、光量変動はでき
るだけ小さいことが望ましい。第4図でAは光学
装置1を収納ケース12に固着した場合の温度特
性であり、Bは本発明に示すように光学装置1を
収納ケース12からゴム系接着剤で保持した場合
の温度特性である。第4図に示すように、Aの特
性はBの特性に比較して光学装置1を収納ケース
12に固着したため、光学装置1に熱応力が作用
し大幅に光量が変動しており測定誤差も増大する
ことがわかる。
Next, if we consider the case where the optical system thermally expands and contracts due to a change in temperature, the stress applied to the optical device 1 will be reduced because the rubber adhesive 11 will also freely deform. This is clear from FIG.
FIG. 4 shows the variation in the amount of light output from the optical device 1 with respect to changes in temperature. If the variation in the amount of output light is large, the error will also increase, so it is desirable that the variation in the amount of light be as small as possible. In FIG. 4, A is the temperature characteristic when the optical device 1 is fixed to the storage case 12, and B is the temperature characteristic when the optical device 1 is held from the storage case 12 with a rubber adhesive as shown in the present invention. It is. As shown in FIG. 4, the characteristics of A are different from those of B because the optical device 1 is fixed to the storage case 12, so thermal stress is applied to the optical device 1, and the amount of light fluctuates significantly, resulting in measurement errors. It can be seen that it increases.

なお、振動などにより光学装置1が多少変位し
ても、伝送路15,16,17は可撓性があるた
め収納ケース12と光学装置1の相対変位があつ
ても光量伝送には支障がない。
Note that even if the optical device 1 is slightly displaced due to vibration or the like, the transmission lines 15, 16, and 17 are flexible, so even if there is a relative displacement between the storage case 12 and the optical device 1, there will be no problem in transmitting the amount of light. .

また、電圧センサについてのみ示したが、電
界、磁界及び電流センサについても同様な構成
で、同様な効果を得ることができる。
Moreover, although only the voltage sensor is shown, the same effect can be obtained with the same configuration for electric field, magnetic field, and current sensors.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、光学装置の全面が弾性体で保
持されるように、光学装置とその収納ケースの間
に弾性体を設けることにより、振動や温度変化の
大きい環境でも高精度で電圧、電流を測定できる
光方式電磁気測定装置を提供できる。
According to the present invention, by providing an elastic body between the optical device and its storage case so that the entire surface of the optical device is held by the elastic body, voltage and current can be controlled with high precision even in environments with large vibrations and temperature changes. It is possible to provide an optical electromagnetic measurement device that can measure .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の断面図、第2図は
第1図の−矢視断面図、第3図は第1図の
部詳細図、第4図は本発明の効果を説明する図で
ある。 1……光学装置、3……偏光子、5……光学素
子、6……検光子、12……収納ケース、11…
…ゴム系接着剤。
Fig. 1 is a sectional view of an embodiment of the present invention, Fig. 2 is a sectional view taken along the - arrow in Fig. 1, Fig. 3 is a detailed view of the part shown in Fig. 1, and Fig. 4 explains the effects of the present invention. This is a diagram. DESCRIPTION OF SYMBOLS 1... Optical device, 3... Polarizer, 5... Optical element, 6... Analyzer, 12... Storage case, 11...
...Rubber adhesive.

Claims (1)

【特許請求の範囲】 1 偏光子、光学素子及び検光素子等からなる光
学装置を収納ケース中に配置したものにおいて、 前記光学装置の全面が弾性体で保持されるよう
に、前記光学装置と前記収納ケースの間に弾性体
を設けるとともに、 前記収納ケース内の光学装置と前記収納ケース
の外部に設けられた光伝送路との接続を可撓性の
光伝送路で行なうようにしたことを特徴とする光
方式電磁気測定装置。
[Scope of Claims] 1. An optical device including a polarizer, an optical element, an analyzer, etc. is arranged in a storage case, and the optical device is arranged such that the entire surface of the optical device is held by an elastic body. An elastic body is provided between the storage cases, and a flexible optical transmission path is used to connect the optical device inside the storage case to an optical transmission path provided outside the storage case. Features: Optical electromagnetic measuring device.
JP59065756A 1984-04-04 1984-04-04 Optical type electromagnetism measuring apparatus Granted JPS60210770A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59065756A JPS60210770A (en) 1984-04-04 1984-04-04 Optical type electromagnetism measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59065756A JPS60210770A (en) 1984-04-04 1984-04-04 Optical type electromagnetism measuring apparatus

Publications (2)

Publication Number Publication Date
JPS60210770A JPS60210770A (en) 1985-10-23
JPH0476068B2 true JPH0476068B2 (en) 1992-12-02

Family

ID=13296189

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59065756A Granted JPS60210770A (en) 1984-04-04 1984-04-04 Optical type electromagnetism measuring apparatus

Country Status (1)

Country Link
JP (1) JPS60210770A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0481073U (en) * 1990-11-27 1992-07-15
JP5534653B2 (en) 2008-05-28 2014-07-02 株式会社東芝 Photovoltage sensor
JP5710802B2 (en) * 2014-01-15 2015-04-30 株式会社東芝 Photovoltage sensor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5793881U (en) * 1980-11-28 1982-06-09

Also Published As

Publication number Publication date
JPS60210770A (en) 1985-10-23

Similar Documents

Publication Publication Date Title
EP0098875B1 (en) Quadrature fiber-optic interferometer matrix
JP4340718B2 (en) Optical fiber thermometer and temperature compensated optical fiber sensor
GB2197069A (en) Optically driven sensor device
US4524322A (en) Fiber optic system for measuring electric fields
JPS62297716A (en) Method and device for measuring magnitude of physical quantity
US5119024A (en) Optical device for sensing magnetic inductions
JPH0476068B2 (en)
JPH04291165A (en) Optical sensor and manufacture thereof
JPH01182824A (en) Optical element
JPH08262117A (en) Electric signal measuring instrument
JP2655931B2 (en) Optical fiber gyro, and navigation system and moving object having the optical fiber gyro
JP3228862B2 (en) Optical voltage sensor
WO2020125305A1 (en) Series-connected integrated temperature and vibration sensor employing blazed grating and fiber bragg grating optical fiber
JPS6398568A (en) Optical potential device
US4012955A (en) Apparatus for measuring the incident power of light in fiber optics
JP2003014790A (en) Optical applied measuring device
JPH0225761A (en) Optical current transformer
JP3250922B2 (en) How to fix optical components
JPS6256968B2 (en)
JP2008275499A (en) Optical voltage sensor
JP2000162057A (en) Optical waveguide stress sensor
JPH0238923A (en) Method for restraining noises of optical fiber sensor
JPS60164253A (en) Accelerometer
JPH0619383B2 (en) Optical current measuring device
JP2990763B2 (en) Optical voltage sensor