JPH08145796A - Three dimensional spectrum display device - Google Patents

Three dimensional spectrum display device

Info

Publication number
JPH08145796A
JPH08145796A JP29091094A JP29091094A JPH08145796A JP H08145796 A JPH08145796 A JP H08145796A JP 29091094 A JP29091094 A JP 29091094A JP 29091094 A JP29091094 A JP 29091094A JP H08145796 A JPH08145796 A JP H08145796A
Authority
JP
Japan
Prior art keywords
spectrum
minimum value
value
spectrum signal
scale
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29091094A
Other languages
Japanese (ja)
Inventor
Muneo Maejima
宗郎 前嶋
Minoru Owada
実 大和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP29091094A priority Critical patent/JPH08145796A/en
Publication of JPH08145796A publication Critical patent/JPH08145796A/en
Pending legal-status Critical Current

Links

Landscapes

  • Spectrometry And Color Measurement (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE: To eliminate complexity of setting or resetting of a vertical axis scale before and after measurement of three dimensional spectrum by storing a maximum value, minimum value or peak information of a spectrum signal during measurement, and correcting the setting of the vertical scale so as to satisfy these information and preliminarily determined restriction conditions. CONSTITUTION: In a three dimensional spectrum, scattered light such as scattering of excitation light in the slant direction, semi-secondary light of the scattered light, and secondary light of the scattered light is observed. At the time of starting the measurement, an appropriate lower limit value and upper limit value of the vertical axis are determined and display of a graph on real time is started. For example, a minimum value and maximum value of the spectrum signal are temporarily determined, each one of spectrum data obtained is compared with these, and at the time point when smaller minimum value or larger maximum value is found, these values are replaced with the new values. These are adopted as the lower limit value and the upper limit value or a new spectrum vertical axis, calculated results are placed with contour line interval, spectrum display up to this time is erased, and re-evaluation is conducted with the new scale. This operation is repeated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は三次元スペクトル表示装
置に関する。
FIELD OF THE INVENTION The present invention relates to a three-dimensional spectrum display device.

【0002】[0002]

【従来の技術】分光蛍光光度計による三次元スペクトル
測定例は、日製産業株式会社,株式会社 日立製作所,
TECHNICAL DATA, FL No. 37 に記載されている。ここで
は縦軸スケールや等高線表示における等高線間隔の設定
方法については記載されておらず、測定者が測定後にス
ケール変更機能によって好適な縦軸スケールや等高線間
隔を決定している。
2. Description of the Related Art An example of three-dimensional spectrum measurement by a spectrofluorometer is Nissan Sangyo Co., Ltd., Hitachi, Ltd.
It is described in TECHNICAL DATA, FL No. 37. Here, the setting method of the vertical axis scale and the contour line interval in the contour line display is not described, and the measurer determines the suitable vertical axis scale and the contour line interval by the scale changing function after the measurement.

【0003】[0003]

【発明が解決しようとする課題】従来の技術では、分光
蛍光光度計における三次元測定では、測定前にあらかじ
め縦軸スケール(等高線表示であれば等高線間隔を含
む)を測定者が入力,設定して測定を行っていた。この
手法では、発光強度の大きく異なる複数の試料を連続し
て測定するような場合、三次元スペクトルによって試料
の詳細を確認するためには一回の測定毎に縦軸スケール
の変更を行わなければならず、繁雑である。また、測定
に先立って、試料からの発光の最大値を検出する機能を
備えた分光蛍光光度計も市販されているから、測定毎に
この機能の使用し縦軸スケールを設定することも可能で
あるが、この機能は試料を試料室にセットした状態で効
力を発揮する性質のものであり、経時変化しやすい試料
や、励起光の照射によって変成しやすい試料に対しては
不適当である。
In the prior art, in the three-dimensional measurement in the spectrofluorometer, the operator inputs and sets the vertical axis scale (including contour line intervals if contour lines are displayed) before measurement. Was being measured. In this method, in the case of continuously measuring a plurality of samples with greatly different emission intensities, the vertical scale must be changed for each measurement in order to confirm the details of the sample by the three-dimensional spectrum. No, it is complicated. In addition, since a spectrofluorometer equipped with a function to detect the maximum value of the light emission from the sample prior to the measurement is also commercially available, it is possible to use this function for each measurement and set the vertical scale. However, this function has the property of exerting its effect when the sample is set in the sample chamber, and is not suitable for a sample that easily changes with time or a sample that is easily transformed by the irradiation of excitation light.

【0004】三次元クロマトにおいては測定に先立って
好適なスケールを設定しておくことは非常に困難であ
る。
In three-dimensional chromatography, it is very difficult to set a suitable scale prior to measurement.

【0005】本発明は三次元スペクトル測定の前後に縦
軸スケールを設定または再設定する繁雑さを排除しリア
ルタイムで常に好適な縦軸スケールで三次元スペクトル
表示を行うものである。
The present invention eliminates the complexity of setting or resetting the vertical scale before and after the three-dimensional spectrum measurement, and always displays the three-dimensional spectrum in real time with a suitable vertical scale.

【0006】[0006]

【課題を解決するための手段】上記課題は、測定中にス
ペクトル信号の最大値や最小値またはピーク情報を記憶
し、これらの情報と、あらかじめ設定した制約条件を満
たすように縦軸スケールを設定しなおすことで達成され
る。
[Means for Solving the Problems] The above problem is to store maximum and minimum values or peak information of a spectrum signal during measurement, and set a vertical axis scale so as to satisfy these information and preset constraint conditions. Achieved by reworking.

【0007】[0007]

【作用】上記課題は測定中にスペクトル信号の最大値や
最小値またはピーク位置を検出,記憶して縦軸スケール
を更新し表示することで、測定の前後に縦軸スケールの
設定は不要となる。また最大値,最小値検出の際に制約
条件を設けることで、三次元スペクトル内の目的の部分
をより好適な縦軸スケールで表示することが可能とな
る。例えば、分光蛍光光度計による三次元スペクトルで
あれば、励起光の散乱やその高次光,ラマン散乱やその
高次光の発生位置を制約条件としてこの発生位置から検
出された最大値や最小値は除外すれば蛍光成分のみを好
適な縦軸スケールで表示可能であり、三次元クロマトグ
ラムであれば、目的としている成分のリテンションタイ
ムがあらかじめわかっていればこの時間を制約条件とし
てこの時間近辺で検出された最大値や最小値のみを採用
することで、目的の成分に適したスケールで三次元スペ
クトルが表示可能となる。
The above problem is that the maximum value, the minimum value, or the peak position of the spectrum signal is detected and stored during the measurement, and the vertical axis scale is updated and displayed. Therefore, it is not necessary to set the vertical axis scale before and after the measurement. . In addition, by providing a constraint condition when detecting the maximum value and the minimum value, it becomes possible to display the target portion in the three-dimensional spectrum with a more suitable vertical scale. For example, in the case of a three-dimensional spectrum obtained by a spectrofluorometer, if the maximum value or the minimum value detected from this generation position is excluded by limiting the generation position of the excitation light scattering, its higher-order light, Raman scattering, or its higher-order light. Only the fluorescent component can be displayed on a suitable vertical scale, and if it is a three-dimensional chromatogram, if the retention time of the target component is known in advance, this time is the constraint condition and the maximum detected around this time. By using only the values and the minimum values, the three-dimensional spectrum can be displayed on a scale suitable for the target component.

【0008】[0008]

【実施例】以下、本発明の実施例を図面に基づいて説明
する。
Embodiments of the present invention will be described below with reference to the drawings.

【0009】図1は分光蛍光光度計による一般的な三次
元スペクトルを示す。斜め方向に励起光の散乱,散乱光
の1/2次光,散乱光の二次光などの散乱光が観測され
る。これらは、特に固体試料を測定した場合に表面の乱
反射によって強く観測される場合が多い。
FIG. 1 shows a typical three-dimensional spectrum from a spectrofluorometer. Scattered light such as scattered excitation light, half-order light of scattered light, and secondary light of scattered light is observed in an oblique direction. These are often strongly observed by diffuse reflection on the surface, especially when measuring a solid sample.

【0010】実際の測定は、EX波長(励起波長)を測
定範囲内の最小値(200nm)にセットし、EM波長
(蛍光波長)の走査を行い、走査終了後、励起波長を、
一定波長だけ(ここでは5nmとおく)大きい波長にセ
ットし、蛍光波長走査を行う、という動作を励起波長測
定範囲内の最大波長値(500nm)についての測定が
終了するまで繰り返す。
In actual measurement, the EX wavelength (excitation wavelength) is set to the minimum value (200 nm) within the measurement range, the EM wavelength (fluorescence wavelength) is scanned, and after the scanning is completed, the excitation wavelength is changed to
The operation of setting a wavelength larger by a fixed wavelength (here, set to 5 nm) and scanning the fluorescence wavelength is repeated until the measurement of the maximum wavelength value (500 nm) within the excitation wavelength measurement range is completed.

【0011】従来は、測定に先立って縦軸スケールおよ
び等高線間隔を設定しておき、この値に応じて三次元ス
ペクトルを表示していた。
Conventionally, a vertical axis scale and contour line intervals are set prior to measurement, and a three-dimensional spectrum is displayed according to these values.

【0012】本発明においては、測定開始時には適当な
縦軸の下限値と上限値(例えば0−100のように下限
値と上限値を設定する)でグラフをリアルタイムで表示
を開始する。ここで例えば、スペクトル信号の最小値を
10000、最大値を0と仮に設定しておき、取得した
スペクトルデータの一つ一つについてこれと比較して、
より小さな最小値あるいはより大きな最大値が発見され
た時点でこれらの値を新たな値に置き換える。これを縦
軸の新たなスペクトル縦軸の下限値,上限値とし、(上
限値−下限値)/10の計算結果を等高線間隔とおき、
これまで表示してきた三次元スペクトルを表示部から消
去し、新たなスケールで再描画する。さらに検出したス
ペクトルデータ点の次のデータ点から再度新たな最小
値,最大値とデータ点の比較を再開し、最小値,最大値
が更新された時点で新たな縦軸スケールと等高線間隔を
再設定し、三次元グラフを再描画するという操作を繰り
返す。しかし、スペクトルデータ値が徐々に増加してい
くような場合はデータ点の一点毎に三次元グラフの消
去,再表示を繰り返すことになり表示だけで多大な時間
を費やしてしまうので、新たな最小値が検出された場合
は、その最小値に、例えば0.75 を乗じた値を最小値
と置きなおし、新たな最大値については、その最大値
に、1.25 を乗じた値を最大値と置きなおすなどの処
理を加えてグラフの消去,再表示処理に進んでもよい。
最小値データ点毎に比較せず、常に0と置くなどの条件
を加えてもよい。
In the present invention, at the start of measurement, the graph is started to be displayed in real time with appropriate lower and upper limit values for the vertical axis (for example, the lower and upper limits are set as 0-100). Here, for example, the minimum value of the spectrum signal is tentatively set to 10000, and the maximum value is set to 0, and the acquired spectrum data is compared with each other,
When a smaller minimum value or a larger maximum value is found, these values are replaced with new values. This is set as the lower limit value and upper limit value of the new spectrum vertical axis of the vertical axis, and the calculation result of (upper limit value-lower limit value) / 10 is set as the contour line interval,
The three-dimensional spectrum that has been displayed so far is erased from the display unit and redrawn with a new scale. Furthermore, the comparison of the new minimum and maximum values and the data point is restarted from the data point next to the detected spectrum data point, and when the minimum and maximum values are updated, the new vertical scale and contour interval are restarted. The operation of setting and redrawing the three-dimensional graph is repeated. However, if the spectrum data value gradually increases, the 3D graph will be erased and redisplayed for each data point, and it will take a lot of time to display it. When a value is detected, the minimum value is multiplied by, for example, 0.75, and the value is replaced as the minimum value. For the new maximum value, the maximum value is multiplied by 1.25, and the maximum value is changed. You may proceed with the process of deleting and re-displaying the graph by adding processing such as replacing.
Instead of comparing the minimum value data points, a condition such as always setting 0 may be added.

【0013】ところで、図1の状態で上記の最小値,最
大値の検索処理を実行し、三次元スペクトルを表示した
とき、励起光の散乱光やその高次光に縦軸スケールがセ
ットされてしまう場合がほとんどである。ここで試料の
蛍光ピークは蛍光波長軸に添って励起光の波長よりも長
波長側に観測されること(図1では励起光の右下側の領
域に観測される)、また励起光の散乱およびその高次光
は(励起波長×n)の蛍光波長の位置に観測されるとい
う性質を利用する(ここで、nは1/2,1,2,3・・
・を表わす)。これをふまえて最大値を検出する際に以下
の制約条件をあらかじめ設定しておく。
By the way, when the above-mentioned minimum value and maximum value retrieval processing is executed in the state of FIG. 1 and a three-dimensional spectrum is displayed, when the vertical axis scale is set for scattered light of excitation light or its higher order light. Is the most. Here, the fluorescence peak of the sample should be observed along the fluorescence wavelength axis on the longer wavelength side than the wavelength of the excitation light (observed in the lower right region of the excitation light in Fig. 1), and the scattering of the excitation light And its higher-order light are observed at the position of the fluorescence wavelength of (excitation wavelength × n) (where n is 1/2, 1, 2, 3 ...
* Represents). Based on this, the following constraint conditions are set in advance when detecting the maximum value.

【0014】1)励起波長より小さい蛍光波長で検出さ
れた最大値は無視する。
1) Ignore the maximum value detected at a fluorescence wavelength smaller than the excitation wavelength.

【0015】2)(励起波長×n)−(分光器のバンド
幅)から(励起波長×n)−(分光器のバンド幅)の領
域で検出された最大値は無視する。ただし、n=1/
2,1,2とする。
2) Ignore the maximum value detected in the region of (excitation wavelength × n) − (bandwidth of spectroscope) to (excitation wavelength × n) − (bandwidth of spectroscope). However, n = 1 /
Set to 2, 1, 2.

【0016】この二つの制約条件を加えることによっ
て、散乱光およびその高次光に起因する部分を縦軸スケ
ールを決定する要因から除外し、試料からの発光のみの
強度で縦軸スケールを決定することが可能となる。
By adding these two constraint conditions, it is possible to exclude the part caused by scattered light and its higher-order light from the factors that determine the vertical axis scale, and determine the vertical axis scale by the intensity of only the light emission from the sample. It will be possible.

【0017】次に別の実施例を示す。図2は分光蛍光光
度計の三次元スペクトルだが、励起光の散乱およびラマ
ン散乱の影響を無視できない場合の例である。
Next, another embodiment will be described. FIG. 2 is a three-dimensional spectrum of a spectrofluorometer, but shows an example in which the influence of excitation light scattering and Raman scattering cannot be ignored.

【0018】励起波長を200nmにセットして、蛍光
波長を200nmから500nmまで走査し、処理装置
によって蛍光波長走査範囲内のピークを検出し、その蛍
光波長値とスペクトルデータ値を記憶する。次に励起波
長を205nmにセットし、蛍光波長を走査し、走査範
囲内のピークを検出する。励起光の散乱やラマン散乱
(各々の高次光が存在する場合も同様)のピーク位置は
励起波長を変化させると移動し、蛍光による発光のピー
ク位置は移動しないことから、最大値の検出に際し以下
の制約条件を設定しておく。
The excitation wavelength is set to 200 nm, the fluorescence wavelength is scanned from 200 nm to 500 nm, the peak in the fluorescence wavelength scanning range is detected by the processing device, and the fluorescence wavelength value and the spectrum data value are stored. Next, the excitation wavelength is set to 205 nm, the fluorescence wavelength is scanned, and the peak within the scanning range is detected. The peak positions of scattering of excitation light and Raman scattering (similarly when each higher-order light is present) move when the excitation wavelength is changed, and the peak position of emission due to fluorescence does not move. Set constraints.

【0019】1)前回の蛍光側波長走査で検出されたピ
ークと今回の波長走査で検出されたピークの中で、位置
の変化していないものの内大きいほうを最大値として採
用する。
1) Of the peaks detected by the previous wavelength scanning on the fluorescence side and the peaks detected by the current wavelength scanning, the larger one of the peaks whose positions have not changed is adopted as the maximum value.

【0020】2)1)を満足するピークが検出されなか
ったら、最大値は更新しない。
2) If no peak satisfying 1) is detected, the maximum value is not updated.

【0021】3)測定終了時に1)を満足するピークが
検出されていなかったら図1の例で示した最大値の検出
に関する制約条件をスペクトルデータに適用し、スペク
トルを描画する。
3) When the peak satisfying 1) is not detected at the end of the measurement, the constraint condition for detecting the maximum value shown in the example of FIG. 1 is applied to the spectrum data to draw the spectrum.

【0022】これらの制約条件を最大値の検出時に設け
ることによって、試料からの発光を好適な縦軸スケール
で表示することが可能となる。
By providing these constraint conditions when the maximum value is detected, it becomes possible to display the light emission from the sample on a suitable vertical scale.

【0023】他に、あらかじめ観察したいサンプルのピ
ーク位置が既知の場合は、このピーク位置の近辺で検出
された最大値を最大値として採用するなどの制約条件を
設けてもよい。
In addition, if the peak position of the sample to be observed is known in advance, a constraint condition may be set such that the maximum value detected near this peak position is adopted as the maximum value.

【0024】また、三次元クロマトグラムにおいて、観
察したい成分のリテンションタイムがあらかじめわかっ
ている場合は、この時間の近辺で検出された最大値をピ
ークとして採用するという制約条件を設定すれば、目的
の成分を好適な縦軸スケールでリアルタイムに観察する
ことが可能となる。
In addition, if the retention time of the component to be observed is known in advance in the three-dimensional chromatogram, setting the constraint condition that the maximum value detected in the vicinity of this time is adopted as the peak is The components can be observed in real time on a suitable vertical scale.

【0025】[0025]

【発明の効果】本発明によれば、三次元スペクトルを好
適な縦軸スケールでリアルタイムで観測することが可能
となる。
According to the present invention, a three-dimensional spectrum can be observed in real time on a suitable vertical scale.

【図面の簡単な説明】[Brief description of drawings]

【図1】散乱光やその高次光の影響が大きい蛍光三次元
スペクトルの説明図。
FIG. 1 is an explanatory diagram of a fluorescence three-dimensional spectrum that is greatly affected by scattered light and its higher-order light.

【図2】ラマン散乱の影響が大きい蛍光三次元スペクト
ルとピーク検出の説明図。
FIG. 2 is an explanatory diagram of fluorescence three-dimensional spectrum and peak detection that are greatly affected by Raman scattering.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】スペクトル信号を検出する検知器,前記ス
ペクトル信号を記憶する記憶装置と、前記記憶装置の記
憶情報を読み取りそれを画面上に表示する画像表示装
置,前記スペクトル信号の取得・スペクトルの表示・デ
ータの処理を行うデータ処理装置とを備え、前記スペク
トル信号は二つの因子P1とP2の関数として定まるも
のであって、前記画像表示装置は、前記記憶装置の前記
因子P1,P2よりなる座標系に等高線図,俯瞰図,ス
ペクトル信号強度に応じた階調表示またはこれらの組み
合わせとして表示するものにおいて、前記スペクトル信
号の測定中に前記スペクトル信号の最大値や最小値また
はP1軸やP2軸に添ったピークの値と位置を検出し、
前記記憶装置に記憶して、スペクトル表示の縦軸スケー
ルを前記スペクトル信号の最大値と最小値の差またはそ
の定数倍に自動設定して三次元スペクトルを表示し、測
定終了までにさらに大きいまたは小さいスペクトル信号
を検出した場合には、前記最大値または最小値を更新し
て、旧スケールによって表示されている前記三次元スペ
クトルを消去して、更新された新しい最大値または最小
値をもとに新しい縦軸スケールによって前記三次元スペ
クトルを再表示し、測定終了時に好適な縦軸スケールを
もって三次元スペクトル表示を行うことを特徴とする三
次元スペクトル表示装置。
1. A detector for detecting a spectrum signal, a storage device for storing the spectrum signal, an image display device for reading the storage information of the storage device and displaying it on a screen, an acquisition of the spectrum signal and a spectrum A data processing device for displaying and processing data, wherein the spectral signal is determined as a function of two factors P1 and P2, and the image display device comprises the factors P1 and P2 of the storage device. What is displayed as a contour map, a bird's-eye view, a gradation display according to the spectrum signal intensity or a combination thereof in a coordinate system, the maximum value or the minimum value of the spectrum signal or the P1 axis or P2 axis during the measurement of the spectrum signal The value and position of the peak along
Stored in the storage device, the vertical axis scale of the spectrum display is automatically set to the difference between the maximum value and the minimum value of the spectrum signal or a constant multiple thereof, and a three-dimensional spectrum is displayed. When a spectrum signal is detected, the maximum or minimum value is updated, the three-dimensional spectrum displayed by the old scale is deleted, and a new maximum or minimum value is updated based on the updated new maximum or minimum value. A three-dimensional spectrum display device, characterized in that the three-dimensional spectrum is re-displayed with a vertical axis scale, and the three-dimensional spectrum is displayed with a suitable vertical axis scale at the end of measurement.
【請求項2】スペクトル信号を検出する検知器,前記ス
ペクトル信号を記憶する記憶装置と、前記記憶装置の記
憶情報を読み取りそれを画面上に表示する画像表示装
置,前記スペクトル信号の取得・スペクトルの表示・デ
ータの処理を行うデータ処理装置とを備え、前記スペク
トル信号は二つの因子P1とP2の関数として定まるも
のであって、前記画像表示装置は、前記記憶装置の前記
因子P1,P2よりなる座標系に等高線図,俯瞰図,ス
ペクトル信号強度に応じた階調表示またはこれらの組み
合わせとして表示するものにおいて、前記スペクトル信
号の測定中に前記スペクトル信号の最大値や最小値また
はP1軸やP2軸に添ったピークの値と位置を検出し、
前記記憶装置に記憶して、スペクトル表示の縦軸スケー
ルを前記スペクトル信号の最大値と最小値の差またはそ
の定数倍に自動設定し、測定終了までにさらに大きいま
たは小さい前記スペクトル信号を検出した場合には、前
記最大値または最小値を更新して、更新された新しい最
大値または最小値をもとに新しい縦軸スケールを再設定
し、測定終了時に好適な縦軸スケールをもって三次元ス
ペクトルの再表示を行うことを特徴とする三次元スペク
トル表示装置。
2. A detector for detecting a spectrum signal, a storage device for storing the spectrum signal, an image display device for reading the storage information of the storage device and displaying it on a screen, an acquisition of the spectrum signal and a spectrum A data processing device for displaying and processing data, wherein the spectral signal is determined as a function of two factors P1 and P2, and the image display device comprises the factors P1 and P2 of the storage device. What is displayed as a contour map, a bird's-eye view, a gradation display according to the spectrum signal intensity or a combination thereof in a coordinate system, the maximum value or the minimum value of the spectrum signal or the P1 axis or P2 axis during the measurement of the spectrum signal The value and position of the peak along
When stored in the storage device, the vertical axis scale of the spectrum display is automatically set to the difference between the maximum value and the minimum value of the spectrum signal or a constant multiple thereof, and the spectrum signal which is larger or smaller by the end of the measurement is detected. The maximum value or minimum value is updated, a new vertical scale is set again based on the updated new maximum value or minimum value, and the three-dimensional spectrum is re-set with a suitable vertical scale at the end of measurement. A three-dimensional spectrum display device characterized by displaying.
【請求項3】請求項1または2において、前記スペクト
ル信号の最大値または最小値の検出に際し、前記因子P
1,P2について特定のP1,P2の条件下で検出され
た前記スペクトル信号の最大値または最小値のみを新し
い最大値または最小値として記憶するというあらかじめ
設定された制約条件を最大値または最小値の検出の際の
制約条件として適用して三次元表示における縦軸スケー
ルを自動設定し、測定終了時に好適な縦軸スケールをも
って三次元スペクトル表示を行う三次元スペクトル表示
装置。
3. The factor P according to claim 1 or 2, when the maximum value or the minimum value of the spectral signal is detected.
1, P2, the preset constraint that only the maximum or minimum value of the spectral signal detected under the specific P1, P2 condition is stored as a new maximum or minimum value of the maximum or minimum value. A three-dimensional spectrum display device which is applied as a constraint condition at the time of detection to automatically set a vertical axis scale in a three-dimensional display and which displays a three-dimensional spectrum with a suitable vertical scale at the end of measurement.
JP29091094A 1994-11-25 1994-11-25 Three dimensional spectrum display device Pending JPH08145796A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29091094A JPH08145796A (en) 1994-11-25 1994-11-25 Three dimensional spectrum display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29091094A JPH08145796A (en) 1994-11-25 1994-11-25 Three dimensional spectrum display device

Publications (1)

Publication Number Publication Date
JPH08145796A true JPH08145796A (en) 1996-06-07

Family

ID=17762096

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29091094A Pending JPH08145796A (en) 1994-11-25 1994-11-25 Three dimensional spectrum display device

Country Status (1)

Country Link
JP (1) JPH08145796A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5995344A (en) * 1996-06-14 1999-11-30 Sony Corporation Disc cartridge having design parameters of a recording and/or reproduction medium housed therein
WO2011027568A1 (en) * 2009-09-07 2011-03-10 株式会社日立ハイテクノロジーズ Spectrophotofluorometer
JP2012063148A (en) * 2010-09-14 2012-03-29 Shimadzu Corp Spectrophotofluorometer
JP2012507712A (en) * 2008-10-31 2012-03-29 バイオメリュー・インコーポレイテッド Method for separating, characterizing and / or identifying microorganisms using spectroscopy
JP2012511905A (en) * 2008-12-16 2012-05-31 バイオメリュー・インコーポレイテッド Method for characterizing microorganisms on solid or semi-solid media
JP2014206551A (en) * 2014-08-07 2014-10-30 ソニー株式会社 Data display method, program, data analyzing device and microparticle analysis system
JP2015210110A (en) * 2014-04-24 2015-11-24 株式会社小野測器 FFT analyzer
JP2016019525A (en) * 2008-10-31 2016-02-04 ビオメリュー・インコーポレイテッド Methods for separation, characterization, and/or identification of microorganisms using spectroscopy
US9619907B2 (en) 2010-04-28 2017-04-11 Sony Corporation Microparticle analyzing apparatus and data displaying method

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5995344A (en) * 1996-06-14 1999-11-30 Sony Corporation Disc cartridge having design parameters of a recording and/or reproduction medium housed therein
JP2012507712A (en) * 2008-10-31 2012-03-29 バイオメリュー・インコーポレイテッド Method for separating, characterizing and / or identifying microorganisms using spectroscopy
JP2016019525A (en) * 2008-10-31 2016-02-04 ビオメリュー・インコーポレイテッド Methods for separation, characterization, and/or identification of microorganisms using spectroscopy
JP2012511905A (en) * 2008-12-16 2012-05-31 バイオメリュー・インコーポレイテッド Method for characterizing microorganisms on solid or semi-solid media
JP2016073288A (en) * 2008-12-16 2016-05-12 ビオメリュー・インコーポレイテッド Methods for characterization of microorganisms on solid or semi-solid media
US9822389B2 (en) 2008-12-16 2017-11-21 bioMerièux, Inc Method for the characterization of microorganisms on solid or semi-solid media
WO2011027568A1 (en) * 2009-09-07 2011-03-10 株式会社日立ハイテクノロジーズ Spectrophotofluorometer
JP2011058818A (en) * 2009-09-07 2011-03-24 Hitachi High-Technologies Corp Spectrofluorometer
US10147209B2 (en) 2010-04-28 2018-12-04 Sony Corporation Microparticle analyzing apparatus and data displaying method
US11727612B2 (en) 2010-04-28 2023-08-15 Sony Corporation Microparticle analyzing apparatus and data displaying method
US11074727B2 (en) 2010-04-28 2021-07-27 Sony Corporation Microparticle analyzing apparatus and data displaying method
US9619907B2 (en) 2010-04-28 2017-04-11 Sony Corporation Microparticle analyzing apparatus and data displaying method
JP2012063148A (en) * 2010-09-14 2012-03-29 Shimadzu Corp Spectrophotofluorometer
JP2015210110A (en) * 2014-04-24 2015-11-24 株式会社小野測器 FFT analyzer
JP2014206551A (en) * 2014-08-07 2014-10-30 ソニー株式会社 Data display method, program, data analyzing device and microparticle analysis system

Similar Documents

Publication Publication Date Title
JP6671426B2 (en) Detection of defects on wafers using defect identification information
US8200006B2 (en) Image processing apparatus for analysis of pattern matching failure
US6333992B1 (en) Defect judgement processing method and apparatus
CN108885167B (en) System and method for analyzing core samples
US7383156B2 (en) Apparatus for inspecting wafer surface, method for inspecting wafer surface, apparatus for judging defective wafer, method for judging defective wafer, and apparatus for processing information on wafer surface
KR102337166B1 (en) Method and system for correlating optical images with scanning electron microscopy images
US7462827B2 (en) Non-destructive inspection method and apparatus therefor
US20020012118A1 (en) Method for characterizing defects on semiconductor wafers
US20150179400A1 (en) Defect Discovery and Inspection Sensitivity Optimization Using Automated Classification of Corresponding Electron Beam Images
US7337066B2 (en) System and method for automated baseline correction for Raman spectra
JP4787698B2 (en) Image display method
US20140376802A1 (en) Wafer Inspection Using Free-Form Care Areas
JP2002350127A (en) Method and system for measuring pattern with use of display microscope image
JPH08145796A (en) Three dimensional spectrum display device
JP2003065956A (en) Fluorescence-peak detecting method and fluorescence spectrophotometer
US5638167A (en) Method of measuring the light amount of a display picture element, display screen inspecting method and display screen inspecting apparatus
FR2614103A1 (en) INSTRUMENT FOR ANALYSIS OF A SAMPLE
JP3036444B2 (en) Lattice strain evaluation method and apparatus using convergent electron diffraction pattern
JP5442549B2 (en) Wire abnormality detection method, abnormality detection device, and abnormality detection program
JP2005331487A (en) Magnified observation device, magnified image observation method, magnified observation operation program, and computer-readable storage medium or storage device
JPH0621982B2 (en) Three-dimensional spectrum display device
KR102179948B1 (en) Inspection result presenting apparatus, inspection result presenting method and inspection result presenting program
JP3228436B2 (en) How to increase the number of interference fringes
JP3122395B2 (en) X-ray fluorescence analysis method and apparatus
JP2002082064A (en) Determining device and method for defective wafer