JP3036444B2 - Lattice strain evaluation method and apparatus using convergent electron diffraction pattern - Google Patents

Lattice strain evaluation method and apparatus using convergent electron diffraction pattern

Info

Publication number
JP3036444B2
JP3036444B2 JP8317604A JP31760496A JP3036444B2 JP 3036444 B2 JP3036444 B2 JP 3036444B2 JP 8317604 A JP8317604 A JP 8317604A JP 31760496 A JP31760496 A JP 31760496A JP 3036444 B2 JP3036444 B2 JP 3036444B2
Authority
JP
Japan
Prior art keywords
electron beam
diffraction pattern
sample
convergent
holz
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP8317604A
Other languages
Japanese (ja)
Other versions
JPH10162768A (en
Inventor
哲哉 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP8317604A priority Critical patent/JP3036444B2/en
Publication of JPH10162768A publication Critical patent/JPH10162768A/en
Application granted granted Critical
Publication of JP3036444B2 publication Critical patent/JP3036444B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、収束電子線回折法
を用いた結晶格子の歪み評価方法および評価装置に関す
る。
[0001] 1. Field of the Invention [0002] The present invention relates to a method and apparatus for evaluating crystal lattice distortion using a convergent electron beam diffraction method.

【0002】[0002]

【従来の技術】従来、この種の収束電子線回折図形を用
いた結晶格子歪み評価装置及びその評価方法は、例え
ば、特開平6−36729号公報に示されるように、微
細な試料の結晶構造歪みを評価することを可能とする目
的で用いられている。
2. Description of the Related Art Conventionally, this type of crystal lattice distortion evaluation apparatus and its evaluation method using a convergent electron beam diffraction pattern is disclosed in, for example, Japanese Patent Application Laid-Open No. 6-36729, as disclosed in It is used for the purpose of evaluating distortion.

【0003】図7は、従来の収束電子線回折図形を用い
た結晶格子歪み評価装置の一例を示す構成図である。電
子顕微鏡1によって、試料11の収束電子線回折図形を
得た後、画像取り込み装置2内にそのデータを取り込
む。画像記憶装置31により、得られたデータを保存
し、取り込んだ画像の処理並びに近似的なHOLZ線の
計算並びに電子顕微鏡の制御を処理装置6で行う。処理
装置6で行われた処理結果等は、表示装置5に表示す
る。電子顕微鏡1は、収束電子線9を試料11上に約1
0nmφに収束させる収束レンズ系10と、試料11で
回折された電子線を結像する対物レンズ系12と、収束
レンズ系の励磁電流を制御する制御装置3を備えてい
る。又、処理装置6には、ユーザーがパラメータを入力
するための2次元位置指定装置30を備えた入力装置7
が接続されている。
FIG. 7 is a configuration diagram showing an example of a conventional crystal lattice distortion evaluation apparatus using a convergent electron beam diffraction pattern. After obtaining a convergent electron diffraction pattern of the sample 11 by the electron microscope 1, the data is taken into the image taking device 2. The obtained data is stored by the image storage device 31, and the processing of the captured image, the calculation of the approximate HOLZ line, and the control of the electron microscope are performed by the processing device 6. The result of the processing performed by the processing device 6 is displayed on the display device 5. The electron microscope 1 puts the focused electron beam 9 on the sample 11 for about 1
A convergent lens system 10 for converging to 0 nmφ, an objective lens system 12 for imaging an electron beam diffracted by the sample 11, and a control device 3 for controlling an exciting current of the convergent lens system are provided. The processing device 6 includes an input device 7 including a two-dimensional position specifying device 30 for a user to input parameters.
Is connected.

【0004】次に歪評価装置の動作について説明する。
試料11中の極めて限られた領域に収束電子線を照射
し、収束電子線回折図形を画像取り込み装置2内に取り
込む。次に処理装置6が歪みを有しない場合の収束電子
線回折図形を近似計算し、実際に得られた回折図形と同
時に表示装置5に表示する。ユーザーは、2次元位置指
定装置30により、一致していないHOLZ線を指定す
る。処理装置6は、指定されたHOLZ線の指数を求め
て、試料がある結晶軸方向にどの程度歪みを有している
かを表示装置5に表示する。
Next, the operation of the distortion evaluation device will be described.
An extremely limited area in the sample 11 is irradiated with a focused electron beam, and a focused electron beam diffraction pattern is captured in the image capturing device 2. Next, the convergent electron beam diffraction pattern when the processing device 6 has no distortion is approximated and displayed on the display device 5 simultaneously with the actually obtained diffraction pattern. The user uses the two-dimensional position specification device 30 to specify a HOLZ line that does not match. The processing device 6 obtains an index of the designated HOLZ line, and displays on the display device 5 how much the sample has a distortion in a certain crystal axis direction.

【0005】[0005]

【発明が解決しようとする課題】この従来の歪評価装置
の第1の問題点は、試料中の広範囲にわたる格子歪みの
情報が得られない、ということである。その理由は、電
子線を収束させることにより、10nmφという小さな
プローブで局所的な領域の観察を行っているため、極め
て限られた領域の情報のみを得ている為である。
A first problem with the conventional strain estimating apparatus is that information on a wide range of lattice strain in a sample cannot be obtained. The reason is that, by converging the electron beam, a local area is observed with a probe as small as 10 nmφ, so that only information of an extremely limited area is obtained.

【0006】第2の問題点は、HOLZパターンの合わ
せ込みを行う際に、正確な電子顕微鏡に関するパラメー
ター(カメラ長、加速電圧)を得なければ、間違った格
子歪みの情報を得てしまう可能性がある、ということで
ある。その理由は、カメラ長の変化により収束電子線回
折図形が拡大縮小したり、加速電圧の変化により回折図
形が変形する為である。
[0006] The second problem is that if parameters (camera length, accelerating voltage) relating to the electron microscope are not accurately obtained when matching the HOLZ pattern, incorrect lattice distortion information may be obtained. That is, there is. The reason is that the convergent electron beam diffraction pattern is enlarged or reduced by a change in the camera length, or the diffraction pattern is deformed by a change in the acceleration voltage.

【0007】本発明の目的は、収束させた電子線を走査
させることにより、その回折図形から比較的広範囲にわ
たって結晶格子歪みの状態に関する情報を得る事にあ
る。
An object of the present invention is to obtain information on the state of crystal lattice distortion over a relatively wide range from a diffraction pattern by scanning a focused electron beam.

【0008】本発明の他の目的は、回折図形を解析する
際、HOLZ線の交点間線分比を比較することで、短時
間で結晶格子歪みの情報を得る事にある。
It is another object of the present invention to obtain information on crystal lattice distortion in a short time by comparing the line segment ratio between intersections of HOLZ lines when analyzing a diffraction pattern.

【0009】本発明の他の目的は、得られた交点間線分
比の情報を、実際の試料上の座標と対応させ、格子歪み
の状態を表示装置上で可視化させることにある。
Another object of the present invention is to make the obtained information on the line segment ratio between intersections correspond to the actual coordinates on the sample, and to visualize the state of lattice distortion on a display device.

【0010】[0010]

【課題を解決するための手段】本発明によれば、収束電
子線を試料内で走査させる手段と、得られた収束電子線
回折図形の試料上の座標を読みとる手段と、得られた収
束電子線回折図形内の特定のHOLZ線の交点を検出
し、HOLZ線交点間線分比を算出する手段とを有する
収束電子線回折図形を用いた結晶格子歪み評価装置が得
られる。
According to the present invention, a means for scanning a focused electron beam in a sample, a means for reading the coordinates of the obtained focused electron beam diffraction pattern on the sample, and a method for reading the obtained focused electron beam A means for detecting a point of intersection of a specific HOLZ line in a line diffraction pattern and calculating a line segment ratio between the HOLZ line intersections can be used to obtain a crystal lattice distortion evaluation apparatus using a focused electron beam diffraction pattern.

【0011】また、本発明によれば、収束電子線を試料
内で走査させ、得られた収束電子線回折図形内の特定の
HOLZ線の交点を随時検出し、それぞれの収束電子回
折図形内のHOLZ線交点間線分比を算出することで、
試料上の任意の領域における結晶格子歪み場を検出し評
価する方法が得られる。さらに、HOLZ線の交点間線
分比と、それらが得られた座標とを対応させ、交点間線
分比の値を色分けあるいは等高線状に表示することもで
きる。
Further, according to the present invention, a convergent electron beam is scanned in a sample, and an intersection of a specific HOLZ line in the obtained convergent electron diffraction pattern is detected as needed. By calculating the line segment ratio between the HOLZ line intersections,
A method for detecting and evaluating a crystal lattice strain field in an arbitrary region on the sample is obtained. Furthermore, the line segment ratio between intersections of the HOLZ line and the coordinates at which they are obtained may be associated with each other, and the value of the line segment ratio between intersections may be displayed in a color-coded or contoured manner.

【0012】[0012]

【発明の実施の形態】本発明の第1の実施の形態につい
て、図面を参照して詳細に説明する。図1を参照する
と、電子線発生源を備えた電子顕微鏡1により得られた
試料11の回折図形を取り込む画像取り込み装置2と、
取り込んだ画像データの処理並びにその回折像が得られ
た測定点の座標データを格納し、測定領域における結晶
格子の歪み状態を表示装置5に表示させる処理装置6
と、外部からユーザーが指示する情報を入力する入力装
置7と、それらのデータを保存する外部記憶装置8と、
処理装置6と接続された電子レンズ系の専門の入力装置
4を備えて構成される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment of the present invention will be described in detail with reference to the drawings. Referring to FIG. 1, an image capturing device 2 for capturing a diffraction pattern of a sample 11 obtained by an electron microscope 1 having an electron beam source,
Processing device 6 for processing the captured image data and storing the coordinate data of the measurement point at which the diffraction image is obtained, and displaying the distortion state of the crystal lattice in the measurement region on display device 5.
An input device 7 for inputting information specified by a user from outside, an external storage device 8 for storing the data,
An electronic lens system specialized input device 4 connected to the processing device 6 is provided.

【0013】電子顕微鏡1は、電子レンズ系の制御装置
3と、収束電子線9を試料11上に5nm程度に収束さ
せる収束レンズ系10と、試料11で回折された電子線
を結像する対物レンズ系12を備える。又、対物レンズ
系12の励磁状態を変更することにより、平行な電子ビ
ームを得て、通常の透過電子顕微鏡として使用すること
も可能である。
The electron microscope 1 comprises an electron lens system controller 3, a converging lens system 10 for converging a converging electron beam 9 on a sample 11 to about 5 nm, and an objective for imaging an electron beam diffracted by the sample 11. The lens system 12 is provided. By changing the excitation state of the objective lens system 12, a parallel electron beam can be obtained and used as a normal transmission electron microscope.

【0014】次に、本実施の形態の収束電子回折図形を
用いた歪評価装置の動作を図1、測定時における収束電
子線の状態を表す図2,測定点A,Bで得られた収束電
子線回折図形の模式図である図3,図4および歪み評価
装置の動作の流れを示す図5を用いて説明する。まず収
束レンズ系10を平行ビームが得られる状態にする。ユ
ーザーは任意の測定領域15を、画像取り込み装置2に
よって取り込まれ、表示装置5上に表示された透過電子
顕微鏡像上で入力装置7を用いて決定する(図5、5
1)。レンズ系制御用入力装置4からの入力によりレン
ズ系制御装置3を働かせて、収束電子線9を測定領域1
5内で走査する。更に、収束電子線9を測定領域15内
で走査させる際に、どの程度の間隔で回折図形を画像取
り込み装置2に取り込むかを指示する。この際の指示
は、電子線の走査速度が一定の場合、時間間隔でも良い
し、測定点間の距離を指示しても良い(図5、52)。
入力されたこれらの情報は、処理装置6内に一時的に格
納される。次に、収束レンズ系10の励磁状態を変更す
ることにより収束電子線9を得る。指定された領域の任
意の点に収束電子線9を入射させ、図3の様な収束電子
線回折図形を得、それを画像取り込み装置2内に取り込
み、表示装置5に表示させる。ユーザーは、表示装置5
上に表示された収束電子線回折図形上で、入力装置7か
ら解析の対象とする複数のHOLZ線の交点17、1
8、19、20を指定する(図5、53)。その後、処
理装置6は電子レンズ系の制御装置3と連動して、試料
11内の指定された領域15で連続的に収束電子線9を
走査する。
Next, the operation of the strain evaluation apparatus using the convergent electron diffraction pattern according to the present embodiment is shown in FIG. 1, FIG. 2 showing the state of the convergent electron beam at the time of measurement, and the convergence obtained at measurement points A and B. This will be described with reference to FIGS. 3 and 4 which are schematic diagrams of an electron diffraction pattern and FIG. 5 which shows the flow of the operation of the distortion evaluation apparatus. First, the converging lens system 10 is set to a state where a parallel beam can be obtained. The user determines an arbitrary measurement area 15 using the input device 7 on a transmission electron microscope image captured by the image capturing device 2 and displayed on the display device 5 (FIGS. 5 and 5).
1). The lens system control device 3 is operated by the input from the lens system control input device 4, and the convergent electron beam 9 is changed to the measurement region 1
Scan within 5. Further, when the converging electron beam 9 is scanned in the measurement area 15, an instruction is given as to how often a diffraction pattern is to be captured in the image capturing device 2. The instruction at this time may be a time interval or a distance between measurement points when the scanning speed of the electron beam is constant (FIG. 5, 52).
These pieces of input information are temporarily stored in the processing device 6. Next, the converging electron beam 9 is obtained by changing the excitation state of the converging lens system 10. The convergent electron beam 9 is made incident on an arbitrary point in the designated area to obtain a convergent electron beam diffraction pattern as shown in FIG. 3, which is taken into the image capturing device 2 and displayed on the display device 5. The user can select the display device 5
On the convergent electron beam diffraction pattern displayed above, the intersections 17, 1, and 2 of a plurality of HOLZ lines to be analyzed are input from the input device 7.
8, 19 and 20 are designated (FIG. 5, 53). Thereafter, the processing device 6 continuously scans the designated region 15 in the sample 11 with the convergent electron beam 9 in cooperation with the control device 3 of the electron lens system.

【0015】これにより画像取り込み装置2内に、その
測定領域内における収束電子線回折図形が取り込まれ
る。取り込まれた収束電子線回折図形は、試料上におけ
る測定点の位置データと対応させ、随時データ処理装置
6に転送される(図5、54)。データ処理装置6内で
は、ユーザーによって指示された各測定点A,Bにおけ
るHOLZ線の交点17、18、19、20(図3)、
23、24、25、26(図4)を判別し、交点間の線
分21、22、27、28を求めその線分比を算出す
る。この手法では、0.01%程度の格子定数変位を見
積もることが可能である。更に、処理装置6内におい
て、測定点の試料上の座標と、その座標における線分比
の値を色分けあるいは等高線として、表示装置5上に表
示する(図5、55)。これにより、試料中のどのよう
な位置にHOLZパターンの異常、即ち、結晶格子歪み
が存在するかが可視化される。又、これらのデータは、
外部記憶装置8によって保存される。
Thus, the focused electron beam diffraction pattern in the measurement area is captured in the image capturing device 2. The captured convergent electron beam diffraction pattern is transferred to the data processing device 6 as needed in correspondence with the position data of the measurement point on the sample (FIG. 5, 54). In the data processing device 6, the intersections 17, 18, 19, 20 (FIG. 3) of the HOLZ lines at the respective measurement points A, B designated by the user,
23, 24, 25, and 26 (FIG. 4) are determined, and line segments 21, 22, 27, and 28 between the intersections are obtained, and the line segment ratio is calculated. With this method, it is possible to estimate a lattice constant displacement of about 0.01%. Further, in the processing device 6, the coordinates of the measurement point on the sample and the value of the line segment ratio at the coordinates are displayed on the display device 5 as color-coded or contour lines (FIG. 5, 55). This makes it possible to visualize at which position in the sample the HOLZ pattern is abnormal, that is, the crystal lattice distortion is present. Also, these data
It is stored by the external storage device 8.

【0016】次に本発明の第2の実施の形態について説
明する。平行ビームによる透過電子顕微鏡像により測定
領域を指定する代わりに、図6に示す様に、二次電子検
出器29を電子顕微鏡内部に取り付け、走査電子顕微鏡
像を用いても良い。通常、収束電子線回折像は、透過電
子顕微鏡像を観察するよりも試料が厚い領域でなくて
は、明瞭なコントラストを持つHOLZパターンが得ら
れない。試料が厚い場合には、高電圧で電子を加速すれ
ば電子の透過力が増加するため、像の観察が可能であ
る。ところが、高電圧で加速された電子は、試料自体に
結晶欠陥等のダメージをもたらす。この第2の実施の形
態では、電子線の加速電圧を下げた状態でも試料の像観
察が可能なことから、試料に対して与える電子線が与え
るダメージを軽減できるという効果を有する。
Next, a second embodiment of the present invention will be described. Instead of designating the measurement area with a transmission electron microscope image using a parallel beam, a secondary electron detector 29 may be mounted inside the electron microscope and a scanning electron microscope image may be used as shown in FIG. Normally, a focused electron beam diffraction image cannot obtain a HOLZ pattern having a clear contrast unless the sample is thicker than a region observed by a transmission electron microscope image. When the sample is thick, if the electrons are accelerated at a high voltage, the penetrating power of the electrons increases, so that an image can be observed. However, electrons accelerated by a high voltage cause damage such as crystal defects to the sample itself. In the second embodiment, since the image of the sample can be observed even when the acceleration voltage of the electron beam is lowered, there is an effect that the damage given to the sample by the electron beam can be reduced.

【0017】[0017]

【発明の効果】以上説明したように本発明による第1の
効果は、測定点を1万取った場合、格子歪み場の情報が
10分程度という短時間で得られることである。その理
由は、従来例の様に測定点一つ一つに対してユーザーを
介して収束電子回折図形の合わせ込みを行うといったこ
とはせず、処理装置内でHOLZ線の交点を検出し、交
点間の線分比を算出するといった単純な計算で行われる
ためである。
As described above, the first effect of the present invention is that when 10,000 measurement points are taken, information on the lattice strain field can be obtained in a short time of about 10 minutes. The reason is that the converging electron diffraction pattern is not adjusted for each measurement point via the user as in the conventional example, but the intersection of the HOLZ lines is detected in the processing device and the intersection is detected. This is because the calculation is performed by a simple calculation such as calculating a line segment ratio between them.

【0018】第2の効果は、高い空間分解能で、10×
10μm程度の広い領域の格子歪み変化の情報が得られ
る事である。その理由は、5nmφという小さな電子線
プローブをある領域内で走査させるためである。
The second effect is that high spatial resolution and 10 ×
This means that information on a change in lattice distortion in a wide area of about 10 μm can be obtained. The reason is that a small electron beam probe of 5 nmφ scans in a certain area.

【0019】第3の効果は、格子歪みの存在する位置
が、視覚的に容易に認識される事である。その理由は、
試料中の測定位置とHOLZ線の交点間線分比のデータ
を一対一に対応させ、表示装置上で測定結果を、比の値
の大小で色分けあるいは等高線表示させる為である。
A third effect is that the position where the lattice distortion exists can be easily recognized visually. The reason is,
This is because the data of the line segment ratio between the intersection of the measurement position and the HOLZ line in the sample is made to correspond one-to-one, and the measurement result is color-coded or displayed as a contour line on the display device according to the value of the ratio.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施の形態の全体構成を示す図
である。
FIG. 1 is a diagram showing an overall configuration of a first embodiment of the present invention.

【図2】測定時における収束電子線の状態を表す図であ
る。
FIG. 2 is a diagram showing a state of a focused electron beam at the time of measurement.

【図3】図2で測定点Aで得られた収束電子線回折図形
の模式図である。
FIG. 3 is a schematic diagram of a convergent electron beam diffraction pattern obtained at a measurement point A in FIG.

【図4】図2で測定点Bで得られた収束電子線回折図形
の模式図である。
FIG. 4 is a schematic diagram of a convergent electron beam diffraction pattern obtained at a measurement point B in FIG.

【図5】歪み評価装置の動作の流れを示す図である。FIG. 5 is a diagram showing a flow of operation of the distortion evaluation device.

【図6】本発明の第2の実施の形態の装置構成を示す図
である。
FIG. 6 is a diagram illustrating a device configuration according to a second embodiment of the present invention.

【図7】従来例の全体構成を示す図である。FIG. 7 is a diagram showing an entire configuration of a conventional example.

【符号の説明】[Explanation of symbols]

1 透過型電子顕微鏡 2 画像取り込み装置 3 レンズ系制御装置 4 レンズ系制御用入力装置 5 表示装置 6 処理装置 7 入力装置 8 外部記憶装置 9 収束電子線 10 収束レンズ系 11 試料 12 対物レンズ系 13,14 収束電子線回折像 15 測定領域 29 二次電子検出器 30 二次元位置指定装置 31 画像記憶装置 DESCRIPTION OF SYMBOLS 1 Transmission electron microscope 2 Image capture device 3 Lens system control device 4 Lens system control input device 5 Display device 6 Processing device 7 Input device 8 External storage device 9 Convergent electron beam 10 Convergent lens system 11 Sample 12 Objective lens system 13, 14 Convergent electron beam diffraction image 15 Measurement area 29 Secondary electron detector 30 Two-dimensional position specifying device 31 Image storage device

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 収束電子線を試料内で走査させる手段
と、得られた収束電子線回折図形の試料上の座標を読み
とる手段と、得られた収束電子線回折図形内の特定のH
OLZ線の交点を検出し、HOLZ線交点間線分比を算
出する手段とを有することを特徴とする収束電子線回折
図形を用いた結晶格子歪み評価装置。
1. A means for scanning a focused electron beam in a sample, a means for reading the coordinates of the obtained focused electron beam diffraction pattern on the sample, and a specific H in the obtained focused electron beam diffraction pattern.
Means for detecting an intersection of OLZ lines and calculating a line segment ratio between intersections of HOLZ lines. A crystal lattice distortion evaluation apparatus using a convergent electron diffraction pattern.
【請求項2】 収束電子線を試料内で走査させ、得られ
た収束電子線回折図形内の特定のHOLZ線の交点を随
時検出し、それぞれの収束電子回折図形内のHOLZ線
交点間線分比を算出することで、試料上の任意の領域に
おける結晶格子歪み場を検出することを特徴とする収束
電子線回折図形を用いた結晶格子歪み評価方法。
2. A convergent electron beam is scanned in a sample, an intersection point of a specific HOLZ line in an obtained convergent electron diffraction pattern is detected as needed, and a line segment between HOLZ line intersections in each convergent electron diffraction pattern is obtained. A crystal lattice distortion evaluation method using a focused electron beam diffraction pattern, wherein a crystal lattice distortion field in an arbitrary region on a sample is detected by calculating a ratio.
【請求項3】 HOLZ線の交点間線分比と、それが得
られた座標とを対応させ、交点間線分比の値を色分けあ
るいは等高線状に表示する請求項2記載の収束電子線回
折図形を用いた結晶格子歪み評価方法。
3. A focused electron beam diffraction method according to claim 2, wherein the line segment ratio between intersections of the HOLZ line is associated with the obtained coordinates, and the value of the line segment ratio between intersections is displayed in a color-coded or contoured manner. Crystal lattice distortion evaluation method using figures.
JP8317604A 1996-11-28 1996-11-28 Lattice strain evaluation method and apparatus using convergent electron diffraction pattern Expired - Fee Related JP3036444B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8317604A JP3036444B2 (en) 1996-11-28 1996-11-28 Lattice strain evaluation method and apparatus using convergent electron diffraction pattern

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8317604A JP3036444B2 (en) 1996-11-28 1996-11-28 Lattice strain evaluation method and apparatus using convergent electron diffraction pattern

Publications (2)

Publication Number Publication Date
JPH10162768A JPH10162768A (en) 1998-06-19
JP3036444B2 true JP3036444B2 (en) 2000-04-24

Family

ID=18090062

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8317604A Expired - Fee Related JP3036444B2 (en) 1996-11-28 1996-11-28 Lattice strain evaluation method and apparatus using convergent electron diffraction pattern

Country Status (1)

Country Link
JP (1) JP3036444B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006242914A (en) * 2005-03-07 2006-09-14 Fujitsu Ltd Lattice distortion evaluation method for crystal material, and evaluation device therefor
KR200490171Y1 (en) * 2018-01-12 2019-10-08 주식회사 하프컵스 Cup with different drinks

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002068944A1 (en) * 2001-02-28 2002-09-06 Hitachi, Ltd. Method and apparatus for measuring physical properties of micro region
JP3867524B2 (en) 2001-07-05 2007-01-10 株式会社日立製作所 Observation apparatus and observation method using electron beam
JP3665778B2 (en) 2002-08-30 2005-06-29 株式会社東芝 Lattice constant determination method and material evaluation method using the same
JP2004093263A (en) * 2002-08-30 2004-03-25 Fujitsu Ltd Method of evaluating lattice strain in crystal material
JP7406914B2 (en) * 2018-07-25 2023-12-28 株式会社デンソー SiC wafer and SiC wafer manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006242914A (en) * 2005-03-07 2006-09-14 Fujitsu Ltd Lattice distortion evaluation method for crystal material, and evaluation device therefor
KR200490171Y1 (en) * 2018-01-12 2019-10-08 주식회사 하프컵스 Cup with different drinks

Also Published As

Publication number Publication date
JPH10162768A (en) 1998-06-19

Similar Documents

Publication Publication Date Title
TWI647442B (en) Defect classification device and defect classification method
JP4616120B2 (en) Image processing apparatus and inspection apparatus
US6345107B1 (en) Image processing apparatus and method of processing height data to obtain image data using gradient data calculated for a plurality of different points of a surface and adjusted in accordance with a selected angle of illumination
US8502141B2 (en) Graphical user interface for use with electron beam wafer inspection
JPH09184714A (en) Pattern dimension measuring method
WO2010050136A1 (en) Method for observing sample and electronic microscope
CN111279183B (en) Crystal orientation map generation device, charged particle beam device, crystal orientation map generation method, and program
US6553323B1 (en) Method and its apparatus for inspecting a specimen
JP4585822B2 (en) Dimension measuring method and apparatus
WO2016017561A1 (en) Charged particle beam device
JP2008210731A (en) Transmission electron microscope with electronic spectroscope
JP3036444B2 (en) Lattice strain evaluation method and apparatus using convergent electron diffraction pattern
WO2013133021A1 (en) Scanning-electron-microscope image processing device and scanning method
US8552371B2 (en) Method for adjusting imaging magnification and charged particle beam apparatus
JPH08313217A (en) Noncontact image measuring system
JP2005121552A (en) Lattice strain measuring device and measuring method
JPH0636729A (en) Distortion evaluating device using focused electron beam diffraction pattern and its evaluating method
JP3488707B2 (en) Pattern dimension measuring device
JPH11167893A (en) Scanning electron microscope
JP6207893B2 (en) Template creation device for sample observation equipment
KR20220040466A (en) charged particle beam device
US5477049A (en) Particle analysis method
JP6078356B2 (en) Template matching condition setting device and charged particle beam device
JP2822213B2 (en) Imaging system and drawing creation system
JPH07282769A (en) Electron beam diffracting device

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000125

LAPS Cancellation because of no payment of annual fees