JPH08144785A - Gas turbine intake cooling device - Google Patents

Gas turbine intake cooling device

Info

Publication number
JPH08144785A
JPH08144785A JP28527194A JP28527194A JPH08144785A JP H08144785 A JPH08144785 A JP H08144785A JP 28527194 A JP28527194 A JP 28527194A JP 28527194 A JP28527194 A JP 28527194A JP H08144785 A JPH08144785 A JP H08144785A
Authority
JP
Japan
Prior art keywords
gas turbine
water
ice
intake air
heat storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28527194A
Other languages
Japanese (ja)
Other versions
JP3522858B2 (en
Inventor
Katsuya Yamashita
勝也 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP28527194A priority Critical patent/JP3522858B2/en
Publication of JPH08144785A publication Critical patent/JPH08144785A/en
Application granted granted Critical
Publication of JP3522858B2 publication Critical patent/JP3522858B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE: To increase the output of a gas turbine with good efficiency with small pressure loss on the air side. CONSTITUTION: An intake duct for forming an intake passage of air for combustion of a gas turbine is made diverge into two parts, a passage switching damper 2 is disposed in the diverging part, plural cooling plates 4 are vertically installed at suitable spaces in such a manner as to be parallel to the flow direction of intake air in one diverged intake duct 1a and form a hollow part in the interior thereof by two flat plates, and an ice heat storage reservoir 6 including a water supply part and an ice heat storage part is provided on the upper surface of the diverged intake duct 1a in such a manner as to communicate from the upper side of each cooling plate 4 to the hollow part. Accordingly, water which flows down from the water supply part of the ice heat storage reservoir 6 through the ice heat storage part is introduced into the hollow part of each cooling plate 4 and evaporated in high vacuum condition by the intake air of the gas turbine.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、コンバインドサイクル
クル発電プラントのガスタービン設備の出力増加に対処
可能なガスタービン吸気冷却装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gas turbine intake air cooling device capable of coping with an increase in output of gas turbine equipment of a combined cycle power plant.

【0002】[0002]

【従来の技術】近年の火力発電設備においては、シング
ルサイクル発電プラントの老朽更新を期に、熱効率の向
上を図り得るコンバインドサイクル発電プラントへ移行
しつつある。
2. Description of the Related Art In recent years, in thermal power generation facilities, a single cycle power generation plant is being replaced with a combined cycle power generation plant capable of improving thermal efficiency when the old cycle is replaced.

【0003】このコンバインドサイクル発電プラント
は、シングルサイクル発電プラントとは異なり、従来の
ボイラの代りにガスタービンを備えており、このガスタ
ービンの駆動による発電機と、ガスタービンの排ガスを
利用した排熱回収ボイラからの蒸気が供給される蒸気タ
ービン駆動による発電機とでそれぞれ発電を行うもの
で、効率はシングルサイクル発電プラントに比べて10
%ほど向上するものである。 このコンバインドサイク
ル発電プラントに使用されるガスタービンは、燃料に圧
縮した空気を供給して燃焼させることで、高温・高圧ガ
スを作り、そのガスでタービンを回転させ、動力を得る
ものである。
Unlike the single cycle power plant, this combined cycle power plant is equipped with a gas turbine instead of the conventional boiler, and a generator driven by this gas turbine and exhaust heat utilizing the exhaust gas of the gas turbine are used. Power is generated by a steam turbine-driven generator that is supplied with steam from a recovery boiler, and the efficiency is 10% compared to a single-cycle power plant.
It is improved by about%. A gas turbine used in this combined cycle power generation plant supplies high-temperature and high-pressure gas by supplying compressed air to fuel and burning it, and the turbine is rotated by the gas to obtain power.

【0004】このガスタービンの出力は、燃焼用空気の
温度と湿度により影響される。また、ガスタービンは吸
入可能酸素量(空気量)に関係し、吸入空気量が多いほ
ど又低温空気であるほど増大する。
The output of this gas turbine is affected by the temperature and humidity of the combustion air. Further, the gas turbine is related to the inhalable oxygen amount (air amount), and increases as the intake air amount increases and as the temperature becomes lower.

【0005】この場合、空気中の水分が多いほど、高圧
・高温ガス中の水蒸気量が多く、この水蒸気の潜熱量は
排熱回収ボイラで冷却された後も使用されずに外部に放
出されるため、吸入空気中の水分(湿度)も少ない方が
コンバインドサイクル発電の出力を上昇させることがで
きる。
In this case, the more moisture in the air, the greater the amount of water vapor in the high pressure / high temperature gas, and the amount of latent heat of this water vapor is discharged to the outside without being used even after being cooled by the exhaust heat recovery boiler. Therefore, the output of combined cycle power generation can be increased when the water content (humidity) in the intake air is smaller.

【0006】従って、夏期と冬季ではその出力特性が異
なり、特に夏期の昼間は電力需要がピークに達する時で
あるから、このコンバインドサイクル発電の出力低下は
深刻な問題である。
Therefore, the output characteristics are different in summer and winter, and especially during the daytime in summer, when the power demand reaches a peak, the output reduction of this combined cycle power generation is a serious problem.

【0007】[0007]

【発明が解決しようとする課題】現在提案されているガ
スタービン吸気冷却システムは、氷蓄熱を利用したもの
で、夜間の低電力需要の間に冷凍機により冷熱を氷の形
で蓄熱し、昼間のピーク時にこの冷熱を取出して、ガス
タービンの吸気を冷却するものである。つまり、夜間に
海水等を冷却水として冷凍機を運転して氷蓄熱槽に氷を
蓄えておき、昼間のピーク時に解氷した冷水で空気冷却
用の熱交換器(空気冷却器:吸気流路内に設置してあ
る)へ供給し、ガスタービンの吸気を冷却するものであ
る。
The gas turbine intake air cooling system that has been proposed at present utilizes ice heat storage, and the cold heat is stored in the form of ice by a refrigerator during low power demand at night, and is used during the daytime. This cold heat is taken out at the peak of, and the intake air of the gas turbine is cooled. That is, the refrigerator is operated by using seawater as cooling water at night to store ice in the ice heat storage tank, and the cold water thawed at the peak of daytime is used to cool the air with a heat exchanger (air cooler: intake passage). It is installed inside) to cool the intake air of the gas turbine.

【0008】このシステムでは、氷蓄熱槽に蓄える氷量
に問題があり、氷量が少ないと氷蓄熱槽自身が大型化
し、その他にも主要大型構成機器に冷凍機・空気冷却器
の二つがあるので、コストとスペースの面でなかなか実
用化しにくい状況にある。
[0008] In this system, there is a problem in the amount of ice stored in the ice heat storage tank. If the ice storage capacity is small, the ice heat storage tank itself becomes large, and there are two major large-scale components, a refrigerator and an air cooler. Therefore, it is difficult to put it into practical use in terms of cost and space.

【0009】また、このシステムの氷蓄熱槽における技
術的問題は、夜間から昼間のピーク時までの間(18時
間程度)に製氷した後、昼間のピーク時の2〜4時間ほ
どでその冷熱を取出すことに起因している。つまり、高
速で氷を溶かすことの必要性と、空気冷却器からの戻り
水温度をあまり高くできないことの2点から、氷蓄熱槽
と空気冷却器間の冷水循環量が非常に多くなり、従来の
空調用の大型氷蓄熱システムと比較して4〜6倍程度に
なる。
Further, a technical problem in the ice heat storage tank of this system is that after the ice is made during the peak hours of the daytime (about 18 hours), the cold heat is removed in about 2 to 4 hours during the peak hours of the daytime. It is due to taking out. In other words, the necessity of melting the ice at a high speed and the fact that the temperature of the return water from the air cooler cannot be made too high make the chilled water circulation amount between the ice storage tank and the air cooler extremely large, and It is about 4 to 6 times as large as the large-scale ice heat storage system for air conditioning.

【0010】さらに、冷水の循環流量が多くなると、氷
蓄熱槽内での戻り水の対流時間が短く、十分に氷を溶か
しきらずに循環される。そのため、冷水の取水温度が高
くなり、冷水を管内に通水して空気と熱交換させる空気
冷却器が大型化する。すると、空気冷却器を通過すると
きの空気側の圧力損失が増大し、圧力が低下することか
ら吸入酸素量の減少が問題となってくる。
Further, when the circulation flow rate of the cold water increases, the convection time of the return water in the ice heat storage tank is short, and the ice water is circulated without being sufficiently melted. Therefore, the intake temperature of the cold water becomes high, and the size of the air cooler for passing the cold water through the pipe to exchange heat with the air becomes large. Then, the pressure loss on the air side when passing through the air cooler increases, and the pressure drops, which causes a problem of reducing the intake oxygen amount.

【0011】本発明は、上記の事情に鑑みてなされたも
ので、空気側の圧力損失が少なく、効率良くガスタービ
ンの出力を増大することができるガスタービン吸気冷却
装置を提供することを目的とする。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a gas turbine intake air cooling device which has a small pressure loss on the air side and which can efficiently increase the output of a gas turbine. To do.

【0012】[0012]

【課題を解決するための手段】本発明は上記の目的を達
成するため次のような手段によりガスタービン吸気冷却
装置を構成するものである。請求項1に対応する発明
は、ガスタービンの燃焼用空気の吸込み流路を形成する
吸気ダクトを二つに分岐すると共に、その分岐部に流路
切換えダンパーを設け、その一方の分岐吸気ダクト内に
二枚の平板により内部に中空部を形成した複数個の冷却
板を吸気の流れ方向に対して平行になるように適宜の間
隔を存して鉛直に設置し、且つこれら各冷却板の上部よ
り中空部に冷水を導いて前記ガスタービンの吸気により
蒸発させるようにしたものである。
In order to achieve the above-mentioned object, the present invention comprises a gas turbine intake air cooling device by the following means. In the invention corresponding to claim 1, the intake duct forming the intake passage of the combustion air of the gas turbine is branched into two, and a passage switching damper is provided at the branch portion, and one of the branch intake ducts is provided. A plurality of cooling plates, each of which has a hollow portion formed by two flat plates inside, are vertically installed at appropriate intervals so as to be parallel to the flow direction of the intake air, and the upper part of each cooling plate. The cold water is guided to the hollow portion so as to be evaporated by the intake air of the gas turbine.

【0013】請求項2に対応する発明は、ガスタービン
の燃焼用空気の吸込み流路を形成する吸気ダクトを二つ
に分岐してその分岐部に流路切換えダンパーを設け、そ
の一方の分岐吸気ダクト内に二枚の平板により内部に中
空部を形成した複数個の冷却板を吸気の流れ方向に対し
て平行になるように適宜の間隔を存して鉛直に設置する
と共に、分岐吸気ダクトの上面に水供給部と氷蓄熱部と
を備えた氷蓄熱容器を前記各冷却板の上部より中空部に
連通させて設ける構成とし、前記氷蓄熱容器の水供給部
より氷蓄熱部を通して流下する水を前記各冷却板の中空
部に導いて前記ガスタービンの吸気により高真空状態で
蒸発させるようにしたものである。
According to a second aspect of the present invention, an intake duct forming a suction flow path for combustion air of a gas turbine is branched into two parts, and a flow path switching damper is provided at the branch part. A plurality of cooling plates, each having a hollow portion formed by two flat plates inside the duct, are installed vertically at appropriate intervals so as to be parallel to the flow direction of the intake air. An ice heat storage container having a water supply unit and an ice heat storage unit on the upper surface is provided so as to communicate with the hollow portion from the upper portion of each cooling plate, and water flowing down from the water supply unit of the ice heat storage container through the ice heat storage unit. Is introduced into the hollow portion of each cooling plate to be evaporated in a high vacuum state by the intake of the gas turbine.

【0014】請求項3に対応する発明は、請求項2に対
応する発明の氷蓄熱容器の氷蓄熱部として、上部及び側
部にそれぞれ配設され且つ冷凍機から通水される0℃以
下のブラインによりスタティックな氷を付着させる水平
伝熱管群と、最上部、上部側方及び中間部側方にそれぞ
れ配設され且つ前記水平伝熱管群の外表面に水を上部よ
り供給する水分配器とから構成するようにしたものであ
る。
According to a third aspect of the present invention, as an ice heat storage part of the ice heat storage container of the second aspect of the invention, the ice storage part is provided at the upper and side portions, respectively, and the temperature is 0 ° C. or less which is passed from the refrigerator. A group of horizontal heat transfer tubes to which static ice is adhered by brine, and water distributors which are respectively arranged on the uppermost side, upper side and middle side, and which supply water to the outer surfaces of the horizontal heat transfer tube groups from the upper side. It is designed to be configured.

【0015】請求項4に対応する発明は、請求項3に対
応する発明の氷蓄熱容器の中間部側方に配設された水分
配器として、下部に穴を開けた水平パイプ群としてこれ
ら水平パイプ群を斜めに配置し、その上部を平板により
固定するようにしたものである。
The invention according to claim 4 is a water distributor arranged laterally of the intermediate portion of the ice heat storage container of the invention as claimed in claim 3, which is a horizontal pipe group having holes at the bottom thereof. The groups are arranged diagonally and the upper part is fixed by a flat plate.

【0016】請求項5に対応する発明は、請求項1又は
2に対応する発明の冷却板として、水平面に対して10
度以上傾けた樋型形状の梁を二枚の平板の間に挟み込む
ように設けたものである。
The invention corresponding to claim 5 is the cooling plate of the invention according to claim 1 or 2, and is 10 with respect to a horizontal plane.
A gutter-shaped beam tilted more than a degree is provided so as to be sandwiched between two flat plates.

【0017】請求項6に対応する発明は、請求項1又は
2に対応する発明の冷却板を構成する二枚の平板は、水
が流下する内壁に銅容射により多孔質面とし、空気と熱
交換する外壁は水平溝を基準として一定間隔で鉛直リブ
を設けたものである。
The invention corresponding to claim 6 is such that the two flat plates constituting the cooling plate of the invention according to claim 1 or 2 are made into a porous surface by copper spraying on the inner wall through which water flows down, and The outer wall for heat exchange is provided with vertical ribs at regular intervals based on the horizontal groove.

【0018】[0018]

【作用】請求項1に対応する発明のガスタービン吸気冷
却装置にあっては、ガスタービンの吸気流路となる吸気
ダクトを二つに分岐し、その一方の分岐吸気ダクトに冷
却部を設け、もう一方の分岐吸気ダクトは空間だけにし
て流路切換えダンパにより、夜間は冷却部のない吸気ダ
クトを使用し、昼間は冷却部のある吸気ダクトを使用し
て吸気温度を下げることにより、昼間の電力負荷ピーク
時におけるガスタービンの出力を増加することができ
る。そして、吸気を冷却する冷却板は中空にしてあり、
高真空状態で水を流下・蒸発させることで低伝熱面積且
つ低圧力損失で吸気を冷却することが可能となる。
In the gas turbine intake air cooling device of the invention corresponding to claim 1, the intake duct serving as the intake passage of the gas turbine is branched into two, and one of the branched intake ducts is provided with a cooling section. The other branch intake duct is limited to space, and by using a flow path switching damper, an intake duct without a cooling unit is used at night, and an intake duct with a cooling unit is used during the daytime to lower the intake temperature, thus It is possible to increase the output of the gas turbine during peak power loads. And the cooling plate that cools the intake air is hollow,
By allowing water to flow down and evaporate in a high vacuum state, it is possible to cool intake air with a low heat transfer area and low pressure loss.

【0019】請求項2に対応する発明のガスタービン吸
気冷却装置にあっては、上記の作用効果に加えて冷却板
の中空部より高真空状態で水を蒸発させているので、分
岐吸気ダクトの上面に各冷却板の上部より中空部に連通
させて設けられた水供給部と氷蓄熱部とを備えた氷蓄熱
容器内の氷蓄熱部の氷表面に水蒸気を凝縮・吸収させる
ことが可能となる。
In the gas turbine intake air cooling device of the invention corresponding to claim 2, in addition to the above-mentioned function and effect, water is evaporated from the hollow portion of the cooling plate in a high vacuum state. It is possible to condense and absorb water vapor on the ice surface of the ice heat storage part in the ice heat storage container provided with the water supply part and the ice heat storage part provided on the upper surface so as to communicate with the hollow part from the upper part of each cooling plate. Become.

【0020】請求項3に対応する発明のガスタービン吸
気冷却装置にあっては、請求項2に対応する発明の作用
効果に加えて氷表面への水蒸気の供給をスムーズに行う
ことができる。
In the gas turbine intake air cooling device of the invention according to claim 3, in addition to the effect of the invention of claim 2, it is possible to smoothly supply water vapor to the ice surface.

【0021】請求項4に対応する発明のガスタービン吸
気冷却装置にあっては、高真空状態での製氷を水配分器
から水を流下させて流下液膜状態でスタティック氷を生
成でき、氷蓄熱容器の中間部側方の水分配器が流下水捕
獲遮蔽板ともなるので、解氷時に水蒸気の凝縮と表面氷
の融解により生じる水が氷表面を覆い、水蒸気の凝縮性
能の低下を防止できる。
In the gas turbine intake air cooling device of the invention according to claim 4, static ice can be generated in a falling liquid film state by flowing down water from the water distributor for ice making in a high vacuum state, and ice storage. Since the water distributor on the side of the middle part of the container also serves as a falling water trapping plate, water generated by condensation of water vapor and melting of surface ice covers the ice surface at the time of thawing ice, thereby preventing deterioration of water vapor condensation performance.

【0022】請求項5に対応する発明のガスタービン吸
気冷却装置にあっては、鉛直冷却板の薄い平板と樋型梁
による構成としたことで、中空部内での流下液膜蒸発性
能を向上させることができる。
In the gas turbine intake air cooling device of the invention corresponding to claim 5, the thin plate of the vertical cooling plate and the gutter-shaped beam are used to improve the evaporative performance of the falling liquid film in the hollow portion. be able to.

【0023】請求項6に対応する発明のガスタービン吸
気冷却装置にあっては、水と吸気とを熱交換させる平板
の内壁を多孔質面にし、外壁を水平溝と鉛直リブにて構
成することで、空気中の水分を飛散させずに効率良く吸
気を冷却することが可能となる。
In the gas turbine intake air cooling device of the invention according to claim 6, the inner wall of the flat plate for exchanging heat between water and intake air is made porous, and the outer wall is made up of horizontal grooves and vertical ribs. Therefore, it is possible to efficiently cool the intake air without scattering the water in the air.

【0024】[0024]

【実施例】以下本発明の一実施例を図面を参照して説明
する。図1は本発明によるガスタービン吸気冷却装置の
構成例を示す斜視図、図2はガスタービン吸気冷却装置
を吸気側から見た図である。図1及び図2において、ガ
スタービン吸気ダクト1を冷却部を有する分岐吸気ダク
ト1aと冷却部の持たない分岐吸気ダクト1bの二つに
分岐し、これら分岐吸気ダクト1aと1bとの分岐部に
は流路切換えダンパ2が設けられている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a perspective view showing a configuration example of a gas turbine intake air cooling device according to the present invention, and FIG. 2 is a view of the gas turbine intake air cooling device seen from the intake side. In FIG. 1 and FIG. 2, the gas turbine intake duct 1 is branched into two, a branch intake duct 1a having a cooling part and a branch intake duct 1b not having a cooling part, and a branch part between these branch intake ducts 1a and 1b. Is provided with a flow path switching damper 2.

【0025】上記冷却部は、分岐吸気ダクト1a内に等
間隔を存して垂直にそれぞれ設けられた複数の空気冷却
パネル(鉛直冷却板)4及び底部に配設された取水板7
と、分岐吸気ダクト1a上面の開口部に設けられ、内部
に氷付着パイプ群5が配設された氷蓄熱容器6と、取水
板7及び氷蓄熱容器6の底部から水を汲上げて氷付着パ
イプ群5の上から水を供給する水循環水ポンプ28とを
備えている。
The cooling unit includes a plurality of air cooling panels (vertical cooling plates) 4 vertically provided at equal intervals in the branch intake duct 1a and a water intake plate 7 disposed at the bottom.
And an ice heat storage container 6 provided in an opening on the upper surface of the branch intake duct 1a, in which an ice adhesion pipe group 5 is arranged, and water is drawn from the water intake plate 7 and the bottom of the ice heat storage container 6 to attach ice. A water circulating water pump 28 for supplying water from above the pipe group 5 is provided.

【0026】上記鉛直冷却板4は、図3、図4に示すよ
うに2枚の平板4a,4b間にその平面に対して10度
以上傾けた樋型梁23を挟み込んで構成され、図5に示
すように樋型梁23と平板との接続部を末広がり形状2
4にしてある。また水22が流下する平板内壁には、銅
容射により多孔室面25を形成している。
As shown in FIGS. 3 and 4, the vertical cooling plate 4 is constructed by sandwiching a gutter-shaped beam 23 inclined between the flat plates 4a and 4b at an angle of 10 degrees or more with respect to the flat plate, as shown in FIG. As shown in Fig. 2, the connection between the gutter-shaped beam 23 and the flat plate is widened toward the end.
It is set to 4. A porous chamber surface 25 is formed on the inner wall of the flat plate through which the water 22 flows down by copper spraying.

【0027】さらに、鉛直冷却板4は図6に示すように
水平溝26を加工し、一定間隔で鉛直リブ27を固定す
ると共に、分岐吸気ダクト1aの上面19から突き出た
形で氷蓄熱容器6に固定され、鉛直冷却板4の上部20
には内壁に水22を供給するための切欠部21が設けら
れており、図2に示すフロリナート式の水位調節器11
により流下量が一定になるようにしてある。
Further, as shown in FIG. 6, the vertical cooling plate 4 is formed with the horizontal grooves 26, the vertical ribs 27 are fixed at regular intervals, and the ice storage container 6 is projected from the upper surface 19 of the branch intake duct 1a. Fixed to the upper part 20 of the vertical cooling plate 4.
Is provided with a notch 21 for supplying water 22 to the inner wall thereof, and the Fluorinert type water level controller 11 shown in FIG.
The flow rate is kept constant by.

【0028】また、氷蓄熱容器6は氷を管外に付着蓄熱
する多数の水平伝熱管5(氷付着パイプ)を有してお
り、上部の水平伝熱管5aと側部の水平伝熱管5bに分
れている。
Further, the ice heat storage container 6 has a large number of horizontal heat transfer pipes 5 (ice adhesion pipes) for adhering and storing ice outside the pipes. The horizontal heat transfer pipes 5a in the upper part and the horizontal heat transfer pipes 5b in the side parts are provided. I know.

【0029】そして、この水平伝熱管群5に水を供給す
る水分配器8が設けられている。この水分配器8として
は、上部伝熱管群5aに水を供給する最上部の水分配器
8aと側部の伝熱管群5bに水を供給する上部側方の水
分配器8bと側部伝熱管群5b内に一定鉛直間隔で存在
する中間部側方の水分配器8cを備えている。この場
合、水配分器8cは、下方に穴を開口した水平パイプで
あり、上部を傾いた平板で固定されている。
A water distributor 8 for supplying water to the horizontal heat transfer tube group 5 is provided. The water distributor 8 includes an uppermost water distributor 8a for supplying water to the upper heat transfer tube group 5a and an upper side water distributor 8b for supplying water to the side heat transfer tube group 5b and a side heat transfer tube group 5b. It is provided with a water distributor 8c on the side of the middle part, which is present inside at a constant vertical interval. In this case, the water distributor 8c is a horizontal pipe having a hole opened downward, and the upper part thereof is fixed by an inclined flat plate.

【0030】一方、図1において、12はダクト外部に
設けられ、水平伝熱管群5に0℃以下のブラインを供給
する冷凍機12で、この冷凍機12と水平伝熱管群5と
の間にはブラインを再び冷凍機12に戻す循環路が形成
されている。
On the other hand, in FIG. 1, reference numeral 12 denotes a refrigerator 12 which is provided outside the duct and supplies brine of 0 ° C. or less to the horizontal heat transfer tube group 5, and between the refrigerator 12 and the horizontal heat transfer tube group 5. Has a circuit for returning brine to the refrigerator 12 again.

【0031】次に上記のように構成されたガスタービン
吸気冷却装置の作用を述べる。昼間の電力負荷ピーク時
に鉛直冷却板4が備えられている分岐吸気ダクト1aを
流路切換ダンパ2により選択して吸気3が導入され、ま
た夜間のオフピーク時には分岐吸気ダクト1bを流路切
換ダンパ2により選択して吸気3が導入されるものとす
る。
Next, the operation of the gas turbine intake air cooling device constructed as described above will be described. The branch intake duct 1a provided with the vertical cooling plate 4 is selected by the flow path switching damper 2 to introduce the intake air 3 at the peak of the electric power load in the daytime, and the branch intake duct 1b is connected to the flow path switching damper 2 at the off-peak time at night. It is assumed that the intake air 3 is introduced by selecting by.

【0032】まず、夜間のオフピーク時の作用について
述べるに、分岐吸気ダクト1aにおいては、空気冷却パ
ネル4の上部に設置した氷蓄熱容器6において、冷凍機
12からの0℃以下のブラインを水平伝熱管(氷付着パ
イプ)5群の管内に通し、水循環水ポンプ28により貯
水板7と氷蓄熱容器6の底部から水を汲上げ、氷付着パ
イプ5群の上から水を供給し、スタティック氷を付着さ
せて氷を蓄積する。
First, the operation at night during off-peak hours will be described. In the branch intake duct 1a, in the ice heat storage container 6 installed above the air cooling panel 4, brine below 0 ° C. from the refrigerator 12 is horizontally transferred. Water is pumped from the bottoms of the water storage plate 7 and the ice heat storage container 6 by the water circulating water pump 28 through the pipe of the heat pipe (ice adhesion pipe) 5 group, and water is supplied from above the ice adhesion pipe 5 group to generate static ice. Accumulate and accumulate ice.

【0033】この氷蓄熱容器6での製氷時は、図7にそ
の詳細を示すように水分配器8から落下(流下)してく
る水13が0℃以下のブライン15を管内に通した水平
伝熱管5群で冷却され、凍結してスタティック氷14と
なる。
During ice making in the ice heat storage container 6, as shown in detail in FIG. 7, the water 13 falling (flowing down) from the water distributor 8 is horizontally transferred by passing a brine 15 at a temperature of 0 ° C. or less through a pipe. It is cooled by 5 groups of heat tubes and frozen to become static ice 14.

【0034】次に昼間電力負荷ピーク時の作用について
述べるに、鉛直冷却板4から蒸発してきた水蒸気17が
氷蓄熱容器6内に上昇してくると、図8にその詳細を示
すように水平伝熱管5群に付着蓄積されている氷14の
表面で凝縮すると共に、表面の氷14を溶かす。ここ
で、水平伝熱管5b群の鉛直方向段数が多くなると、凝
縮・溶融した水13の流下量が多くなり、氷14の表面
で凝縮性能が低下するので、水分配器8cを一定鉛直段
数置きに設置し、水分配器8cを固定している傾いた平
板により、氷蓄熱容器6内の内壁16へと水13を導い
ている。これにより、氷14の表面での凝縮性能の低下
を防止できる。
Next, the operation at the peak of daytime electric power load will be described. When the water vapor 17 evaporated from the vertical cooling plate 4 rises into the ice heat storage container 6, the horizontal transmission is performed as shown in FIG. 8 in detail. It condenses on the surface of the ice 14 that has adhered and accumulated to the group of heat tubes 5 and melts the ice 14 on the surface. Here, when the number of horizontal heat transfer tubes 5b in the vertical direction increases, the amount of condensed / melted water 13 that flows down increases, and the condensation performance deteriorates on the surface of the ice 14. Therefore, the water distributor 8c is placed every fixed number of vertical steps. The inclined flat plate which is installed and which fixes the water distributor 8c guides the water 13 to the inner wall 16 in the ice heat storage container 6. This can prevent the condensation performance on the surface of the ice 14 from decreasing.

【0035】この時、鉛直冷却板内へ供給される水の量
は堰10によって仕切られた水貯溜部9からフロート式
の水位調節器11により鉛直冷却板4内への流下量を調
節する。この流下量の調節により、鉛直冷却板4で蒸発
する水蒸気量を一定にすることができる。
At this time, the amount of water supplied into the vertical cooling plate is adjusted by the float type water level controller 11 from the water reservoir 9 partitioned by the weir 10 into the vertical cooling plate 4. By adjusting the flow amount, the amount of water vapor evaporated on the vertical cooling plate 4 can be made constant.

【0036】このような構成のガスタービン吸気冷却装
置とすれば、次のような効果を得ることができる。夏期
の昼間、電力負荷ピーク時である2〜3時間に多量の吸
気を冷却するため、水の顕熱(1kcal/kg)・氷の融解熱
(80kcal/kg)だけでは、氷量(氷充填率:氷の水に対
する重量割合)を多くしても30%程度であり、戻り水
の顕熱量(戻り温度は12℃)を含めて利用できたとし
ても、かなり大きな氷蓄熱槽が必要となる。これに対し
て、水の蒸発潜熱(597kcal/kg)を利用できれば少な
い水量で吸気を冷却することが可能である。つまり、3
0%の氷充填率を有する氷蓄熱槽と単位質量当りの冷熱
量で比較すると、597/(0.3×80+12)=1
6.58となり、十分に少ない質量(水量)で吸気冷却
に対応することができる。
With the gas turbine intake air cooling device having such a configuration, the following effects can be obtained. During the summer daytime, a large amount of intake air is cooled during the peak power load of 2-3 hours. Therefore, the sensible heat of water (1 kcal / kg) and the heat of melting of ice (80 kcal / kg) alone are enough for the amount of ice (ice filling). Ratio: The weight ratio of ice to water is about 30% even if it is increased, and even if the amount of sensible heat of return water (return temperature is 12 ° C) can be used, a considerably large ice heat storage tank is required. . On the other hand, if the latent heat of vaporization of water (597 kcal / kg) can be used, it is possible to cool the intake air with a small amount of water. That is, 3
Comparing the amount of cold heat per unit mass with an ice heat storage tank having an ice filling rate of 0%, 597 / (0.3 × 80 + 12) = 1
Since this is 6.58, intake air cooling can be supported with a sufficiently small mass (water amount).

【0037】この場合、吸気温度を冷却するには水の蒸
発温度が5℃程度になることから、水を高真空で蒸発さ
せる必要があるが、満液式蒸発器では水深による水圧が
かかるので、無理がある。
In this case, since the evaporation temperature of water is about 5 ° C. to cool the intake air temperature, it is necessary to evaporate the water in a high vacuum. However, in the full-fill type evaporator, water pressure is applied depending on the water depth. , It's impossible.

【0038】そこで、本実施例では伝熱管群だけの構成
ではなく、鉛直の冷却パネル内に水を流下して蒸発させ
る方式とし、且つ鉛直冷却板4と連通させて氷蓄熱容器
6内を真空状態にしたので、水を流下・蒸発させること
で低伝熱面積且つ低圧力損失で吸気を冷却することが可
能となる。
Therefore, in the present embodiment, not only the heat transfer tube group is constituted, but a system in which water is made to flow down into a vertical cooling panel to evaporate, and the inside of the ice heat storage container 6 is vacuumized by communicating with the vertical cooling plate 4. Since the state is set, it becomes possible to cool the intake air with a low heat transfer area and a low pressure loss by allowing water to flow down and evaporate.

【0039】また、鉛直冷却板4を図3、図4に示すよ
うに2枚の平板間にその平面に対して10度以上傾けた
樋型梁23を挟み込んで構成し、図5に示すように樋型
梁23と平板との接続部を末広がり形状としているの
で、鉛直冷却板4内を流下する水22は、相対する平板
4a,4bの内壁上を交互に出入りしながら流下するこ
とが可能となり、鉛直冷却板4の内壁に形成される流下
液膜に擾乱を与え、蒸発性能を向上させることができ
る。
As shown in FIG. 5, the vertical cooling plate 4 is constructed by sandwiching a gutter-shaped beam 23 which is inclined by 10 degrees or more with respect to the plane between two flat plates as shown in FIGS. Since the connection portion between the gutter-shaped beam 23 and the flat plate has a divergent shape, the water 22 flowing down in the vertical cooling plate 4 can flow down while alternately flowing in and out on the inner walls of the opposed flat plates 4a and 4b. Therefore, the falling liquid film formed on the inner wall of the vertical cooling plate 4 is disturbed, and the evaporation performance can be improved.

【0040】また、水22が流下する平板4a,4bの
内壁には、銅容射により多孔室面25を形成しているの
で、蒸発熱伝達特性を高めることができる。さらに、鉛
直冷却板4の外壁では吸気3を冷却するために空気中の
含有水分が凝縮するので、図6に示すように水平溝26
を加工し、一定間隔で鉛直リブ27を固定するようにし
ているので、凝縮水分を水平溝26に沿って流し、鉛直
リブ27で堰止め鉛直方向下向に流下させ、ガスタービ
ン側へ水滴が随伴されることを防止できる。
Further, since the porous chamber surface 25 is formed by copper spraying on the inner walls of the flat plates 4a, 4b through which the water 22 flows down, the evaporation heat transfer characteristic can be improved. Further, since the water content in the air is condensed on the outer wall of the vertical cooling plate 4 to cool the intake air 3, the horizontal groove 26 is formed as shown in FIG.
Since the vertical ribs 27 are fixed at regular intervals, condensed water is caused to flow along the horizontal groove 26, and the condensed water is blocked by the vertical ribs 27 so as to flow downward in the vertical direction. It can be prevented from being accompanied.

【0041】[0041]

【発明の効果】以上述べたように本発明によれば、ガス
タービンの吸気流路内で吸気を冷却するために鉛直冷却
板を吸気流れと平行に設置し、その冷却板内で水と流下
液膜蒸発を行なわすために夜間の低電力負荷時に蓄積し
た冷却板と連通している上部の氷蓄熱容器内のスタテッ
ィク氷に水蒸気を高真空で凝縮させるようにしたので、
冷却面積を小さくし、吸気冷却する際に生じる圧力損失
を低減してガスタービンの出力をより高くすることがで
きるガスタービン吸気冷却装置を提供できる。
As described above, according to the present invention, in order to cool the intake air in the intake passage of the gas turbine, the vertical cooling plate is installed in parallel with the intake flow, and water flows down in the cooling plate. In order to perform liquid film evaporation, it was arranged to condense the water vapor with high vacuum on the static ice in the upper ice heat storage container that is in communication with the cold plate accumulated at the time of low power load at night,
It is possible to provide a gas turbine intake air cooling device that can reduce the cooling area, reduce the pressure loss that occurs during intake air cooling, and increase the output of the gas turbine.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は本発明によるガスタービン吸気冷却装置
の一実施例を示す構成図。
FIG. 1 is a configuration diagram showing an embodiment of a gas turbine intake air cooling device according to the present invention.

【図2】同実施例のガスタービン吸気冷却装置を吸気側
から見た図。
FIG. 2 is a view of the gas turbine intake air cooling device of the embodiment as seen from the intake side.

【図3】同実施例における鉛直冷却板の鉛直断面図。FIG. 3 is a vertical cross-sectional view of a vertical cooling plate in the example.

【図4】同実施例における鉛直冷却板内の樋型梁の構造
図。
FIG. 4 is a structural diagram of a gutter-shaped beam in a vertical cooling plate in the example.

【図5】同実施例における鉛直冷却板の水平断面図。FIG. 5 is a horizontal sectional view of a vertical cooling plate according to the embodiment.

【図6】同実施例における鉛直冷却板群と上部氷蓄熱容
器との接続状況の説明図。
FIG. 6 is an explanatory diagram of a connection state between a vertical cooling plate group and an upper ice heat storage container in the same embodiment.

【図7】同実施例における氷蓄熱容器内の氷付着状況を
示す図。
FIG. 7 is a view showing an ice adhering state in the ice heat storage container in the embodiment.

【図8】同実施例における氷蓄熱容器内での解氷状況を
示す図。
FIG. 8 is a view showing a condition of melting ice in the ice heat storage container in the embodiment.

【符号の説明】[Explanation of symbols]

1……吸気ダクト、1a,1b……分岐吸気ダクト、2
……流路切換えダンパ、3……空気、4……鉛直冷却
板、5,5a,5b……氷付着パイプ群、6……氷蓄熱
容器、7……貯水板、8a,8b,8c……水分配器、
9……水貯溜部、10……堰、11……フロート式液面
調節器、12……冷凍機、13……氷、14……氷、1
5……プライン、16……氷蓄熱容器内壁、17……水
蒸気、18……凝縮水、19……吸気ダクトの上面、2
0……鉛直冷却板の上部、21……水供給用の切欠部、
22……空気冷却パイプ内に流下する水、23……斜め
樋型梁、24……樋の末広がり部、25……多孔質面、
26……水平溝、27……鉛直リブ、28……循環水ポ
ンプ。
1 ... Intake duct, 1a, 1b ... Branch intake duct, 2
...... Flow path switching damper, 3 ...... Air, 4 ...... Vertical cooling plate, 5, 5a, 5b ...... Ice adhering pipe group, 6 ...... Ice heat storage container, 7 ...... Water storage plate, 8a, 8b, 8c ... ... water distributor,
9 ... Water reservoir, 10 ... Weir, 11 ... Float type liquid level controller, 12 ... Refrigerator, 13 ... Ice, 14 ... Ice, 1
5 ... Prine, 16 ... Inner wall of ice heat storage container, 17 ... Steam, 18 ... Condensed water, 19 ... Top of intake duct, 2
0 ... upper part of vertical cooling plate, 21 ... notch for water supply,
22 ... Water flowing down into the air cooling pipe, 23 ... Oblique gutter-shaped beam, 24 ... Spreading part of gutter, 25 ... Porous surface,
26 ... Horizontal groove, 27 ... Vertical rib, 28 ... Circulating water pump.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 ガスタービンの燃焼用空気の吸込み流路
を形成する吸気ダクトを二つに分岐すると共に、その分
岐部に流路切換えダンパーを設け、その一方の分岐吸気
ダクト内に二枚の平板により内部に中空部を形成した複
数個の冷却板を吸気の流れ方向に対して平行になるよう
に適宜の間隔を存して鉛直に設置し、且つこれら各冷却
板の上部より中空部に冷水を導いて前記ガスタービンの
吸気により蒸発させるようにしたことを特徴とするガス
タービン吸気冷却装置。
1. An intake duct forming a suction flow path for combustion air of a gas turbine is branched into two parts, and a flow path switching damper is provided at the branch part, and two branch intake air ducts are provided in one of the branch intake ducts. A plurality of cooling plates, each of which has a hollow portion formed by a flat plate, are vertically installed at appropriate intervals so as to be parallel to the flow direction of the intake air, and the upper portion of each cooling plate is placed in the hollow portion. A gas turbine intake air cooling device, characterized in that cold water is guided to be evaporated by the intake air of the gas turbine.
【請求項2】 ガスタービンの燃焼用空気の吸込み流路
を形成する吸気ダクトを二つに分岐してその分岐部に流
路切換えダンパーを設け、その一方の分岐吸気ダクト内
に二枚の平板により内部に中空部を形成した複数個の冷
却板を吸気の流れ方向に対して平行になるように適宜の
間隔を存して鉛直に設置すると共に、分岐吸気ダクトの
上面に水供給部と氷蓄熱部とを備えた氷蓄熱容器を前記
各冷却板の上部より中空部に連通させて設ける構成と
し、前記氷蓄熱容器の水供給部より氷蓄熱部を通して流
下する水を前記各冷却板の中空部に導いて前記ガスター
ビンの吸気により高真空状態で蒸発させるようにしたこ
とを特徴とするガスタービン吸気冷却装置。
2. An intake duct that forms a suction flow path for combustion air of a gas turbine is branched into two, and a flow path switching damper is provided at the branch portion, and two flat plates are provided in one of the branch intake ducts. A plurality of cooling plates with a hollow inside are installed vertically with an appropriate interval so as to be parallel to the flow direction of the intake air, and at the same time, the water supply unit and the ice are installed on the upper surface of the branch intake duct. An ice heat storage container having a heat storage unit is provided so as to communicate with the hollow portion from the upper portion of each of the cooling plates, and water flowing down from the water supply unit of the ice storage container through the ice heat storage unit is hollow in each of the cooling plates. A gas turbine intake air cooling apparatus, characterized in that the gas turbine intake air is introduced into a gas turbine to be evaporated in a high vacuum state by the gas turbine intake air.
【請求項3】 氷蓄熱容器の氷蓄熱部は、上部及び側部
にそれぞれ配設され且つ冷凍機から通水される0℃以下
のブラインによりスタティックな氷を付着させる水平伝
熱管群と、最上部、上部側方及び中間部側方にそれぞれ
配設され且つ前記水平伝熱管群の外表面に水を上部より
供給する水分配器とから構成したことを特徴とする請求
項2記載のガスタービン吸気冷却装置。
3. An ice heat storage section of an ice heat storage container, which is arranged at an upper portion and a side portion and has a group of horizontal heat transfer tubes to which static ice is adhered by brine of 0 ° C. or less which is passed from a refrigerator, The gas turbine intake system according to claim 2, further comprising: a water distributor, which is arranged on each of an upper portion, a lateral portion of the upper portion, and a lateral portion of the intermediate portion, and which supplies water to the outer surface of the horizontal heat transfer tube group from the upper portion. Cooling system.
【請求項4】 氷蓄熱容器の中間部側方に配設された水
分配器は、下部に穴を開けた水平パイプ群としてこれら
水平パイプ群を斜めに配置し、その上部を平板により固
定するようにしたことを特徴とする請求項3記載のガス
タービン吸気冷却装置。
4. A water distributor, which is arranged on the side of an intermediate portion of an ice heat storage container, has a horizontal pipe group having a hole at the bottom thereof, the horizontal pipe groups are arranged obliquely, and the upper portion thereof is fixed by a flat plate. The gas turbine intake air cooling device according to claim 3, wherein
【請求項5】 冷却板は水平面に対して10度以上傾け
た樋型形状の梁を二枚の平板の間に挟み込むように設け
たことを特徴とする請求項1又は2記載のガスタービン
吸気冷却装置。
5. The gas turbine intake according to claim 1, wherein the cooling plate is provided so that a gutter-shaped beam inclined by 10 degrees or more with respect to a horizontal plane is sandwiched between two flat plates. Cooling system.
【請求項6】 冷却板を構成する二枚の平板は、水が流
下する内壁に銅容射により多孔質面とし、空気と熱交換
する外壁は水平溝を基準として一定間隔で鉛直リブを設
けたことを特徴とする請求項1又は2記載のガスタービ
ン吸気冷却装置。
6. The two flat plates constituting the cooling plate have a porous surface formed by copper spraying on an inner wall through which water flows down, and an outer wall which exchanges heat with air is provided with vertical ribs at regular intervals based on a horizontal groove. The gas turbine intake air cooling device according to claim 1 or 2, characterized in that.
JP28527194A 1994-11-18 1994-11-18 Gas turbine intake cooling system Expired - Fee Related JP3522858B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28527194A JP3522858B2 (en) 1994-11-18 1994-11-18 Gas turbine intake cooling system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28527194A JP3522858B2 (en) 1994-11-18 1994-11-18 Gas turbine intake cooling system

Publications (2)

Publication Number Publication Date
JPH08144785A true JPH08144785A (en) 1996-06-04
JP3522858B2 JP3522858B2 (en) 2004-04-26

Family

ID=17689348

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28527194A Expired - Fee Related JP3522858B2 (en) 1994-11-18 1994-11-18 Gas turbine intake cooling system

Country Status (1)

Country Link
JP (1) JP3522858B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10153911A1 (en) * 2001-11-02 2003-05-15 Alstom Switzerland Ltd Fixing device for fuel injectors in an air intake channel of a turbo-engine comprises a frame-like support inserted in an intermediate space between an air intake housing and a housing of another component of the air intake channel
CN113775418A (en) * 2021-08-27 2021-12-10 威海光晟航天航空科技有限公司 Engine air inlet passage structure and preparation method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10153911A1 (en) * 2001-11-02 2003-05-15 Alstom Switzerland Ltd Fixing device for fuel injectors in an air intake channel of a turbo-engine comprises a frame-like support inserted in an intermediate space between an air intake housing and a housing of another component of the air intake channel
DE10153911B4 (en) * 2001-11-02 2010-08-19 Alstom Technology Ltd. Fastening means for injection nozzles in an air intake duct of a turbomachine
CN113775418A (en) * 2021-08-27 2021-12-10 威海光晟航天航空科技有限公司 Engine air inlet passage structure and preparation method
CN113775418B (en) * 2021-08-27 2023-11-14 威海光晟航天航空科技有限公司 Engine air inlet channel structure and preparation method

Also Published As

Publication number Publication date
JP3522858B2 (en) 2004-04-26

Similar Documents

Publication Publication Date Title
US5655373A (en) Gas turbine intake air cooling apparatus
RU2125693C1 (en) Method of heat exchanger and device for realization of this method
US7765827B2 (en) Multi-stage hybrid evaporative cooling system
CN111473662A (en) Self-spraying water curtain type evaporative cooling heat exchanger and heat pump module unit
CN111473666A (en) Cascade evaporation cold and hot pump module unit
US20150260434A1 (en) Air Source Heat Exchange System and Method Utilizing Temperature Gradient and Water
CN109237833A (en) Wet film formula low form total heat recovery multi-connected heat pump unit
JP3522858B2 (en) Gas turbine intake cooling system
KR100526758B1 (en) Hybrid cooling tower
JP3367323B2 (en) High-temperature regenerator and absorption chiller / heater for absorption chiller / heater
CN113483506B (en) Evaporation type condenser
CN212409458U (en) Cascade evaporation cold and hot pump module unit
JP2002061961A (en) Solar cogeneration integrated system
JP2008064426A (en) Condenser and refrigerating machine
CN218895684U (en) Condensed water heat exchange system and storage device
CN210220737U (en) Cooling tower
CN219829000U (en) Supercooling dehumidifier
JPH05312056A (en) Intake air cooling system of gas turbine
KR200315236Y1 (en) Hybrid cooling tower
KR100470404B1 (en) Condenser for refrigerator and airconditioner using plural heat exchanger
CN217585453U (en) Drainage cooling device
CN215864158U (en) Evaporation type condenser
JP2000055520A (en) Liquefied natural gas cold using vaporizer
CN111735321A (en) Cooling tower
JPH10227498A (en) Thermal storage type cooling and heating method

Legal Events

Date Code Title Description
A521 Written amendment

Effective date: 20031201

Free format text: JAPANESE INTERMEDIATE CODE: A523

A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20040203

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Effective date: 20040205

Free format text: JAPANESE INTERMEDIATE CODE: A61

LAPS Cancellation because of no payment of annual fees