JP3522858B2 - Gas turbine intake cooling system - Google Patents
Gas turbine intake cooling systemInfo
- Publication number
- JP3522858B2 JP3522858B2 JP28527194A JP28527194A JP3522858B2 JP 3522858 B2 JP3522858 B2 JP 3522858B2 JP 28527194 A JP28527194 A JP 28527194A JP 28527194 A JP28527194 A JP 28527194A JP 3522858 B2 JP3522858 B2 JP 3522858B2
- Authority
- JP
- Japan
- Prior art keywords
- gas turbine
- water
- intake
- ice
- heat storage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Description
【0001】[0001]
【産業上の利用分野】本発明は、コンバインドサイクル
クル発電プラントのガスタービン設備の出力増加に対処
可能なガスタービン吸気冷却装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gas turbine intake air cooling device capable of coping with an increase in output of gas turbine equipment of a combined cycle power plant.
【0002】[0002]
【従来の技術】近年の火力発電設備においては、シング
ルサイクル発電プラントの老朽更新を期に、熱効率の向
上を図り得るコンバインドサイクル発電プラントへ移行
しつつある。2. Description of the Related Art In recent years, in thermal power generation facilities, a single cycle power generation plant is being replaced with a combined cycle power generation plant capable of improving thermal efficiency when the old cycle is replaced.
【0003】このコンバインドサイクル発電プラント
は、シングルサイクル発電プラントとは異なり、従来の
ボイラの代りにガスタービンを備えており、このガスタ
ービンの駆動による発電機と、ガスタービンの排ガスを
利用した排熱回収ボイラからの蒸気が供給される蒸気タ
ービン駆動による発電機とでそれぞれ発電を行うもの
で、効率はシングルサイクル発電プラントに比べて10
%ほど向上するものである。 このコンバインドサイク
ル発電プラントに使用されるガスタービンは、燃料に圧
縮した空気を供給して燃焼させることで、高温・高圧ガ
スを作り、そのガスでタービンを回転させ、動力を得る
ものである。Unlike the single cycle power plant, this combined cycle power plant is equipped with a gas turbine instead of the conventional boiler, and a generator driven by this gas turbine and exhaust heat utilizing the exhaust gas of the gas turbine are used. Power is generated by a steam turbine-driven generator that is supplied with steam from a recovery boiler, and the efficiency is 10% compared to a single-cycle power plant.
It is improved by about%. A gas turbine used in this combined cycle power generation plant supplies high-temperature and high-pressure gas by supplying compressed air to fuel and burning it, and the turbine is rotated by the gas to obtain power.
【0004】このガスタービンの出力は、燃焼用空気の
温度と湿度により影響される。また、ガスタービンは吸
入可能酸素量(空気量)に関係し、吸入空気量が多いほ
ど又低温空気であるほど増大する。The output of this gas turbine is affected by the temperature and humidity of the combustion air. Further, the gas turbine is related to the inhalable oxygen amount (air amount), and increases as the intake air amount increases and as the temperature becomes lower.
【0005】この場合、空気中の水分が多いほど、高圧
・高温ガス中の水蒸気量が多く、この水蒸気の潜熱量は
排熱回収ボイラで冷却された後も使用されずに外部に放
出されるため、吸入空気中の水分(湿度)も少ない方が
コンバインドサイクル発電の出力を上昇させることがで
きる。In this case, the more moisture in the air, the greater the amount of water vapor in the high pressure / high temperature gas, and the amount of latent heat of this water vapor is discharged to the outside without being used even after being cooled by the exhaust heat recovery boiler. Therefore, the output of combined cycle power generation can be increased when the water content (humidity) in the intake air is smaller.
【0006】従って、夏期と冬季ではその出力特性が異
なり、特に夏期の昼間は電力需要がピークに達する時で
あるから、このコンバインドサイクル発電の出力低下は
深刻な問題である。Therefore, the output characteristics are different in summer and winter, and especially during the daytime in summer, when the power demand reaches a peak, the output reduction of this combined cycle power generation is a serious problem.
【0007】[0007]
【発明が解決しようとする課題】現在提案されているガ
スタービン吸気冷却システムは、氷蓄熱を利用したもの
で、夜間の低電力需要の間に冷凍機により冷熱を氷の形
で蓄熱し、昼間のピーク時にこの冷熱を取出して、ガス
タービンの吸気を冷却するものである。つまり、夜間に
海水等を冷却水として冷凍機を運転して氷蓄熱槽に氷を
蓄えておき、昼間のピーク時に解氷した冷水で空気冷却
用の熱交換器(空気冷却器:吸気流路内に設置してあ
る)へ供給し、ガスタービンの吸気を冷却するものであ
る。The gas turbine intake air cooling system that has been proposed at present utilizes ice heat storage, and the cold heat is stored in the form of ice by a refrigerator during low power demand at night, and is used during the daytime. This cold heat is taken out at the peak of, and the intake air of the gas turbine is cooled. That is, the refrigerator is operated by using seawater as cooling water at night to store ice in the ice heat storage tank, and the cold water thawed at the peak of daytime is used to cool the air with a heat exchanger (air cooler: intake passage). It is installed inside) to cool the intake air of the gas turbine.
【0008】このシステムでは、氷蓄熱槽に蓄える氷量
に問題があり、氷量が少ないと氷蓄熱槽自身が大型化
し、その他にも主要大型構成機器に冷凍機・空気冷却器
の二つがあるので、コストとスペースの面でなかなか実
用化しにくい状況にある。[0008] In this system, there is a problem in the amount of ice stored in the ice heat storage tank. If the ice storage capacity is small, the ice heat storage tank itself becomes large, and there are two major large-scale components, a refrigerator and an air cooler. Therefore, it is difficult to put it into practical use in terms of cost and space.
【0009】また、このシステムの氷蓄熱槽における技
術的問題は、夜間から昼間のピーク時までの間(18時
間程度)に製氷した後、昼間のピーク時の2〜4時間ほ
どでその冷熱を取出すことに起因している。つまり、高
速で氷を溶かすことの必要性と、空気冷却器からの戻り
水温度をあまり高くできないことの2点から、氷蓄熱槽
と空気冷却器間の冷水循環量が非常に多くなり、従来の
空調用の大型氷蓄熱システムと比較して4〜6倍程度に
なる。Further, a technical problem in the ice heat storage tank of this system is that after the ice is made during the peak hours of the daytime (about 18 hours), the cold heat is removed in about 2 to 4 hours during the peak hours of the daytime. It is due to taking out. In other words, the necessity of melting the ice at a high speed and the fact that the temperature of the return water from the air cooler cannot be made too high make the chilled water circulation amount between the ice storage tank and the air cooler extremely large, and It is about 4 to 6 times as large as the large-scale ice heat storage system for air conditioning.
【0010】さらに、冷水の循環流量が多くなると、氷
蓄熱槽内での戻り水の対流時間が短く、十分に氷を溶か
しきらずに循環される。そのため、冷水の取水温度が高
くなり、冷水を管内に通水して空気と熱交換させる空気
冷却器が大型化する。すると、空気冷却器を通過すると
きの空気側の圧力損失が増大し、圧力が低下することか
ら吸入酸素量の減少が問題となってくる。Further, when the circulation flow rate of the cold water increases, the convection time of the return water in the ice heat storage tank is short, and the ice water is circulated without being sufficiently melted. Therefore, the intake temperature of the cold water becomes high, and the size of the air cooler for passing the cold water through the pipe to exchange heat with the air becomes large. Then, the pressure loss on the air side when passing through the air cooler increases, and the pressure drops, which causes a problem of reducing the intake oxygen amount.
【0011】本発明は、上記の事情に鑑みてなされたも
ので、空気側の圧力損失が少なく、効率良くガスタービ
ンの出力を増大することができるガスタービン吸気冷却
装置を提供することを目的とする。The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a gas turbine intake air cooling device which has a small pressure loss on the air side and which can efficiently increase the output of a gas turbine. To do.
【0012】[0012]
【課題を解決するための手段】本発明は上記の目的を達
成するため、次のような手段によりガスタービン吸気冷
却装置を構成するものである。請求項1に対応する発明
は、ガスタービンの燃焼用空気の吸込み流路を形成する
吸気ダクトを二つに分岐すると共に、その分岐部に流路
切換えダンパーを設け、その一方の分岐吸気ダクト内
に、水が流下する内壁を多孔質面とし、空気と熱交換す
る外壁に水平溝とこの水平溝を基準として一定間隔で鉛
直リブを設けた二枚の平板により内部に中空部を形成し
た複数個の冷却板を吸気の流れ方向に対して平行になる
ように適宜の間隔を存して鉛直に設置し、且つこれら各
冷却板の上部より中空部に冷水を導いて前記ガスタービ
ンの吸気により蒸発させるようにしたものである。The present invention SUMMARY OF THE INVENTION is to constitute the gas turbine intake air cooling apparatus because, by the following means to achieve the above object. In the invention corresponding to claim 1, the intake duct forming the intake passage of the combustion air of the gas turbine is branched into two, and a passage switching damper is provided at the branch portion, and one of the branch intake ducts is provided. In addition, the inner wall through which water flows down has a porous surface to exchange heat with air.
A horizontal groove on the outer wall and lead at regular intervals based on this horizontal groove.
A plurality of cooling plates each having a hollow portion formed inside by two flat plates provided with straight ribs are vertically installed at appropriate intervals so as to be parallel to the flow direction of the intake air, and The cold water is guided from the upper part of the cooling plate to the hollow part to be evaporated by the intake air of the gas turbine.
【0013】請求項2に対応する発明は、ガスタービン
の燃焼用空気の吸込み流路を形成する吸気ダクトを二つ
に分岐すると共に、その分岐部に流路切換えダンパーを
設け、その一方の分岐吸気ダクト内に、水が流下する内
壁を多孔質面とし、空気と熱交換する外壁に水平溝とこ
の水平溝を基準として一定間隔で鉛直リブを設けた二枚
の平板により内部に中空部を形成した複数個の冷却板を
吸気の流れ方向に対して平行になるように適宜の間隔を
存して鉛直に設置すると共に、分岐吸気ダクトの上面に
水供給部と氷蓄熱部とを備えた氷蓄熱容器を前記各冷却
板の上部より中空部に連通させて設ける構成とし、前記
氷蓄熱容器の水供給部より氷蓄熱部を通して流下する水
を前記各冷却板の中空部に導いて前記ガスタービンの吸
気により高真空状態で蒸発させるようにしたものであ
る。According to the second aspect of the present invention, the intake duct forming the suction flow path of the combustion air of the gas turbine is branched into two, and a flow path switching damper is provided at the branch portion, and one branch is provided. While water flows down into the intake duct
The wall is a porous surface, and the outer wall that exchanges heat with air has a horizontal groove.
Two pieces with vertical ribs at regular intervals based on the horizontal groove of
A plurality of cooling plates, each of which has a hollow portion formed inside by a flat plate, are vertically installed at appropriate intervals so as to be parallel to the flow direction of the intake air, and a water supply unit is provided on the upper surface of the branch intake duct. An ice heat storage container including an ice heat storage unit is provided so as to communicate with the hollow portion from the upper portion of each cooling plate, and water flowing down through the ice heat storage unit from the water supply unit of the ice heat storage container is provided in each of the cooling plates. The gas is introduced into the hollow portion of the gas turbine to be evaporated in a high vacuum state by the intake of the gas turbine.
【0014】請求項3に対応する発明は、ガスタービン
の燃焼用空気の吸込み流路を形成する吸気ダクトを二つ
に分岐すると共に、その分岐部に流路切換えダンパーを
設け、その一方の分岐吸気ダクト内に二枚の平板により
内部に中空部を形成した複数個の冷却板を吸気の流れ方
向に対して平行になるように適宜の間隔を存して鉛直に
設置すると共に、分岐吸気ダクトの上面に水供給部と上
部及び側部にそれぞれ配設され且つ冷凍機から通水され
る0℃以下のブラインによりスタティックな氷を付着さ
せる水平伝熱管と、最上部、上部側方及び中間部側方に
それぞれ配設され且つ前記水平伝熱管の外表面に水を上
部より供給する水分配器とから構成された氷蓄熱部を備
えた氷蓄熱容器を前記各冷却板の上部より中空部に連通
させて設ける構成とし、前記氷蓄熱容器の水供給部より
氷蓄熱部を通して流下する水を前記各冷却板の中空部に
導いて前記ガスタービンの吸気により高真空状態で蒸発
させるようにしたものである。The invention corresponding to claim 3 is a gas turbine.
Two intake ducts that form the intake passage for the combustion air
And a flow path switching damper at the branch
Provided by two flat plates in one of the branch intake ducts
How the intake air flows through multiple cooling plates with hollow parts inside
Vertically with an appropriate interval so that it is parallel to the direction
Install it and place the water supply on top of the branch intake duct.
A horizontal heat transfer tubes which parts and attaching 0 ℃ less brine by static ice is passed through from each disposed to and refrigerator side, are arranged respectively at the top, the upper side and the intermediate portion side In addition, an ice heat storage unit including a water distributor for supplying water to the outer surface of the horizontal heat transfer tube from above is provided.
The obtained ice storage container is connected to the hollow part from the top of each cooling plate.
The water supply unit of the ice heat storage container
Water flowing down through the ice heat storage part is put in the hollow part of each cooling plate.
Guided and vaporized in a high vacuum state by the intake of the gas turbine
It was made to let .
【0015】請求項4に対応する発明は、請求項2又は
請求項3に対応する発明のガスタービン吸気冷却装置に
おいて、氷蓄熱容器の中間部側方に配設された水分配器
は、下部に穴を開けた水平パイプ群としてこれら水平パ
イプ群を斜めに配置し、その上部を平板により固定する
ようにしたものである。An invention corresponding to claim 4 is claim 2 or
A gas turbine intake air cooling device of the invention corresponding to claim 3
In the water distributor arranged on the side of the middle portion of the ice heat storage container, the horizontal pipes are arranged diagonally as horizontal pipes with holes at the bottom, and the upper part is fixed by a flat plate. It is a thing.
【0016】請求項5に対応する発明は、請求項1乃至
請求項3の何れかに対応する発明のガスタービン吸気冷
却装置において、冷却板は水平面に対して10度以上傾
けた樋型形状の梁を二枚の平板の間に挟み込むように設
けたものである。[0016] invention corresponding to claim 5, to claim 1
Gas turbine intake air cooling of the invention according to any one of claims 3
In the cooling device, the cooling plate is provided such that a gutter-shaped beam inclined by 10 degrees or more with respect to the horizontal plane is sandwiched between two flat plates.
【0017】請求項6に対応する発明は、請求項3に対
応する発明のガスタービン吸気冷却装置において、冷却
板を構成する二枚の平板は、水が流下する内壁を多孔質
面とし、空気と熱交換する外壁に水平溝とこの水平溝を
基準として一定間隔で鉛直リブが設けられたものであ
る。The invention corresponding to claim 6 corresponds to claim 3.
In the gas turbine intake air cooling device of the invention, the two flat plates constituting the cooling plate have a porous surface on the inner wall through which water flows down, and a horizontal groove on the outer wall that exchanges heat with the air, and a constant horizontal groove. Vertical ribs are provided at intervals.
【0018】[0018]
【作用】請求項1に対応する発明のガスタービン吸気冷
却装置にあっては、ガスタービンの吸気流路となる吸気
ダクトを二つに分岐し、その一方の分岐吸気ダクトに冷
却部を設け、もう一方の分岐吸気ダクトは空間だけにし
て流路切換ダンパーにより、夜間は冷却部のない吸気ダ
クトを使用し、昼間は冷却部のある吸気ダクトを使用し
て吸気温度を下げることにより、昼間の電力負荷ピーク
時におけるガスタービンの出力を増加することができ
る。そして、吸気を冷却する冷却板は中空にしてあり、
高真空状態で水を流下・蒸発させることで低伝熱面積且
つ低圧力損失で吸気を冷却することが可能となる。特
に、水と吸気とを熱交換させる平板の内壁を多孔質面に
し、外壁を水平溝と鉛直リブにて構成することで、空気
中の水分を飛散させずに効率良く吸気を冷却することが
可能となる。 In the gas turbine intake air cooling device of the invention corresponding to claim 1, the intake duct serving as the intake passage of the gas turbine is branched into two, and one of the branched intake ducts is provided with a cooling section. The other branch intake duct is limited to space, and by using a flow path switching damper, an intake duct without a cooling unit is used at night, and an intake duct with a cooling unit is used during the daytime to lower the intake temperature. It is possible to increase the output of the gas turbine during peak power loads. And the cooling plate that cools the intake air is hollow,
By allowing water to flow down and evaporate in a high vacuum state, it is possible to cool intake air with a low heat transfer area and low pressure loss. Special
In addition, the inner wall of the flat plate that exchanges heat between water and intake air is made porous.
The outer wall consists of horizontal grooves and vertical ribs,
It is possible to cool the intake air efficiently without scattering the water inside.
It will be possible.
【0019】請求項2に対応する発明のガスタービン吸
気冷却装置にあっては、上記の作用効果に加えて冷却板
の中空部より高真空状態で水を蒸発させているので、分
岐吸気ダクトの上面に各冷却板の上部より中空部に連通
させて設けられた水供給部と氷蓄熱部とを備えた氷蓄熱
容器内の氷蓄熱部の氷表面に水蒸気を凝縮・吸収させる
ことが可能となる。In the gas turbine intake air cooling device of the invention corresponding to claim 2, in addition to the above-mentioned function and effect, water is evaporated from the hollow portion of the cooling plate in a high vacuum state. It is possible to condense and absorb water vapor on the ice surface of the ice heat storage part in the ice heat storage container provided with the water supply part and the ice heat storage part provided on the upper surface so as to communicate with the hollow part from the upper part of each cooling plate. Become.
【0020】請求項3に対応する発明のガスタービン吸
気冷却装置にあっては、請求項2に対応する発明の作用
効果に加えて氷表面への水蒸気の供給をスムーズに行う
ことができる。In the gas turbine intake air cooling device of the invention according to claim 3, in addition to the effect of the invention of claim 2, it is possible to smoothly supply water vapor to the ice surface.
【0021】請求項4に対応する発明のガスタービン吸
気冷却装置にあっては、上記請求項2又は請求項3に対
応する発明の作用効果に加えて、高真空状態での製氷を
水配分器から水を流下させて流下液膜状態でスタティッ
ク氷を生成でき、氷蓄熱容器の中間部側方の水分配器が
流下水捕獲遮蔽板ともなるので、解氷時に水蒸気の凝縮
と表面氷の融解により生じる水が氷表面を覆い、水蒸気
の凝縮性能の低下を防止できる。The gas turbine intake air cooling device of the invention corresponding to claim 4 is the same as that of claim 2 or claim 3.
In addition to the function and effect of the present invention , static ice can be generated in the falling liquid film state by flowing water from the water distributor in the high vacuum state, and the water distributor on the side of the intermediate part of the ice storage container flows down. Since it also serves as a water trapping plate, water generated by condensation of water vapor and melting of surface ice covers the ice surface at the time of thawing, and it is possible to prevent deterioration of water vapor condensation performance.
【0022】請求項5に対応する発明のガスタービン吸
気冷却装置にあっては、上記請求項1乃至請求項3の何
れかに対応する発明の作用効果に加えて、鉛直冷却板の
薄い平板と樋型梁による構成としたことで、中空部内で
の流下液膜蒸発性能を向上させることができる。In the gas turbine intake air cooling device of the invention corresponding to claim 5, what is claimed in any one of claims 1 to 3 is
In addition to the action and effect of the invention corresponding thereto, the thin film of the vertical cooling plate and the structure of the gutter beam can improve the evaporating performance of the falling liquid film in the hollow portion.
【0023】請求項6に対応する発明のガスタービン吸
気冷却装置にあっては、上記請求項3に対応する発明の
作用効果に加えて、水と吸気とを熱交換させる平板の内
壁を多孔質面にし、外壁を水平溝と鉛直リブにて構成す
ることで、空気中の水分を飛散させずに効率良く吸気を
冷却することが可能となる。In the gas turbine intake air cooling device of the invention corresponding to claim 6, the invention corresponding to claim 3 is provided.
In addition to the function and effect, the inner wall of the flat plate that exchanges heat between water and intake air is made porous, and the outer wall is composed of horizontal grooves and vertical ribs, so that the intake of water can be done efficiently without scattering water in the air. It becomes possible to cool.
【0024】[0024]
【実施例】以下本発明の一実施例を図面を参照して説明
する。図1は本発明によるガスタービン吸気冷却装置の
構成例を示す斜視図、図2はガスタービン吸気冷却装置
を吸気側から見た図である。図1及び図2において、ガ
スタービン吸気ダクト1を冷却部を有する分岐吸気ダク
ト1aと冷却部の持たない分岐吸気ダクト1bの二つに
分岐し、これら分岐吸気ダクト1aと1bとの分岐部に
は流路切換えダンパ2が設けられている。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a perspective view showing a configuration example of a gas turbine intake air cooling device according to the present invention, and FIG. 2 is a view of the gas turbine intake air cooling device seen from the intake side. In FIG. 1 and FIG. 2, the gas turbine intake duct 1 is branched into two, a branch intake duct 1a having a cooling part and a branch intake duct 1b not having a cooling part, and a branch part between these branch intake ducts 1a and 1b. Is provided with a flow path switching damper 2.
【0025】上記冷却部は、分岐吸気ダクト1a内に等
間隔を存して垂直にそれぞれ設けられた複数の空気冷却
パネル(鉛直冷却板)4及び底部に配設された取水板7
と、分岐吸気ダクト1a上面の開口部に設けられ、内部
に氷付着パイプ群5が配設された氷蓄熱容器6と、取水
板7及び氷蓄熱容器6の底部から水を汲上げて氷付着パ
イプ群5の上から水を供給する水循環水ポンプ28とを
備えている。The cooling unit includes a plurality of air cooling panels (vertical cooling plates) 4 vertically provided at equal intervals in the branch intake duct 1a and a water intake plate 7 disposed at the bottom.
And an ice heat storage container 6 provided in an opening on the upper surface of the branch intake duct 1a, in which an ice adhesion pipe group 5 is arranged, and water is drawn from the water intake plate 7 and the bottom of the ice heat storage container 6 to attach ice. A water circulating water pump 28 for supplying water from above the pipe group 5 is provided.
【0026】上記鉛直冷却板4は、図3、図4に示すよ
うに2枚の平板4a,4b間にその平面に対して10度
以上傾けた樋型梁23を挟み込んで構成され、図5に示
すように樋型梁23と平板との接続部を末広がり形状2
4にしてある。また水22が流下する平板内壁には、銅
容射により多孔室面25を形成している。As shown in FIGS. 3 and 4, the vertical cooling plate 4 is constructed by sandwiching a gutter-shaped beam 23 inclined between the flat plates 4a and 4b at an angle of 10 degrees or more with respect to the flat plate, as shown in FIG. As shown in Fig. 2, the connection between the gutter-shaped beam 23 and the flat plate is widened toward the end.
It is set to 4. A porous chamber surface 25 is formed on the inner wall of the flat plate through which the water 22 flows down by copper spraying.
【0027】さらに、鉛直冷却板4は図6に示すように
水平溝26を加工し、一定間隔で鉛直リブ27を固定す
ると共に、分岐吸気ダクト1aの上面19から突き出た
形で氷蓄熱容器6に固定され、鉛直冷却板4の上部20
には内壁に水22を供給するための切欠部21が設けら
れており、図2に示すフロリナート式の水位調節器11
により流下量が一定になるようにしてある。Further, as shown in FIG. 6, the vertical cooling plate 4 is formed with the horizontal grooves 26, the vertical ribs 27 are fixed at regular intervals, and the ice storage container 6 is projected from the upper surface 19 of the branch intake duct 1a. Fixed to the upper part 20 of the vertical cooling plate 4.
Is provided with a notch 21 for supplying water 22 to the inner wall thereof, and the Fluorinert type water level controller 11 shown in FIG.
The flow rate is kept constant by.
【0028】また、氷蓄熱容器6は氷を管外に付着蓄熱
する多数の水平伝熱管5(氷付着パイプ)を有してお
り、上部の水平伝熱管5aと側部の水平伝熱管5bに分
れている。Further, the ice heat storage container 6 has a large number of horizontal heat transfer pipes 5 (ice adhesion pipes) for adhering and storing ice outside the pipes. The horizontal heat transfer pipes 5a in the upper part and the horizontal heat transfer pipes 5b in the side parts are provided. I know.
【0029】そして、この水平伝熱管群5に水を供給す
る水分配器8が設けられている。この水分配器8として
は、上部伝熱管群5aに水を供給する最上部の水分配器
8aと側部の伝熱管群5bに水を供給する上部側方の水
分配器8bと側部伝熱管群5b内に一定鉛直間隔で存在
する中間部側方の水分配器8cを備えている。この場
合、水配分器8cは、下方に穴を開口した水平パイプで
あり、上部を傾いた平板で固定されている。A water distributor 8 for supplying water to the horizontal heat transfer tube group 5 is provided. The water distributor 8 includes an uppermost water distributor 8a for supplying water to the upper heat transfer tube group 5a and an upper side water distributor 8b for supplying water to the side heat transfer tube group 5b and a side heat transfer tube group 5b. It is provided with a water distributor 8c on the side of the middle part, which is present inside at a constant vertical interval. In this case, the water distributor 8c is a horizontal pipe having a hole opened downward, and the upper part thereof is fixed by an inclined flat plate.
【0030】一方、図1において、12はダクト外部に
設けられ、水平伝熱管群5に0℃以下のブラインを供給
する冷凍機12で、この冷凍機12と水平伝熱管群5と
の間にはブラインを再び冷凍機12に戻す循環路が形成
されている。On the other hand, in FIG. 1, reference numeral 12 denotes a refrigerator 12 which is provided outside the duct and supplies brine of 0 ° C. or less to the horizontal heat transfer tube group 5, and between the refrigerator 12 and the horizontal heat transfer tube group 5. Has a circuit for returning brine to the refrigerator 12 again.
【0031】次に上記のように構成されたガスタービン
吸気冷却装置の作用を述べる。昼間の電力負荷ピーク時
に鉛直冷却板4が備えられている分岐吸気ダクト1aを
流路切換ダンパ2により選択して吸気3が導入され、ま
た夜間のオフピーク時には分岐吸気ダクト1bを流路切
換ダンパ2により選択して吸気3が導入されるものとす
る。Next, the operation of the gas turbine intake air cooling device constructed as described above will be described. The branch intake duct 1a provided with the vertical cooling plate 4 is selected by the flow path switching damper 2 to introduce the intake air 3 at the peak of the electric power load in the daytime, and the branch intake duct 1b is connected to the flow path switching damper 2 at the off-peak time at night. It is assumed that the intake air 3 is introduced by selecting by.
【0032】まず、夜間のオフピーク時の作用について
述べるに、分岐吸気ダクト1aにおいては、空気冷却パ
ネル4の上部に設置した氷蓄熱容器6において、冷凍機
12からの0℃以下のブラインを水平伝熱管(氷付着パ
イプ)5群の管内に通し、水循環水ポンプ28により貯
水板7と氷蓄熱容器6の底部から水を汲上げ、氷付着パ
イプ5群の上から水を供給し、スタティック氷を付着さ
せて氷を蓄積する。First, the operation at night during off-peak hours will be described. In the branch intake duct 1a, in the ice heat storage container 6 installed above the air cooling panel 4, brine below 0 ° C. from the refrigerator 12 is horizontally transferred. Water is pumped from the bottoms of the water storage plate 7 and the ice heat storage container 6 by the water circulating water pump 28 through the pipe of the heat pipe (ice adhesion pipe) 5 group, and water is supplied from above the ice adhesion pipe 5 group to generate static ice. Accumulate and accumulate ice.
【0033】この氷蓄熱容器6での製氷時は、図7にそ
の詳細を示すように水分配器8から落下(流下)してく
る水13が0℃以下のブライン15を管内に通した水平
伝熱管5群で冷却され、凍結してスタティック氷14と
なる。During ice making in the ice heat storage container 6, as shown in detail in FIG. 7, the water 13 falling (flowing down) from the water distributor 8 is horizontally transferred by passing a brine 15 at a temperature of 0 ° C. or less through a pipe. It is cooled by 5 groups of heat tubes and frozen to become static ice 14.
【0034】次に昼間電力負荷ピーク時の作用について
述べるに、鉛直冷却板4から蒸発してきた水蒸気17が
氷蓄熱容器6内に上昇してくると、図8にその詳細を示
すように水平伝熱管5群に付着蓄積されている氷14の
表面で凝縮すると共に、表面の氷14を溶かす。ここ
で、水平伝熱管5b群の鉛直方向段数が多くなると、凝
縮・溶融した水13の流下量が多くなり、氷14の表面
で凝縮性能が低下するので、水分配器8cを一定鉛直段
数置きに設置し、水分配器8cを固定している傾いた平
板により、氷蓄熱容器6内の内壁16へと水13を導い
ている。これにより、氷14の表面での凝縮性能の低下
を防止できる。Next, the operation at the peak of daytime electric power load will be described. When the water vapor 17 evaporated from the vertical cooling plate 4 rises into the ice heat storage container 6, the horizontal transmission is performed as shown in FIG. 8 in detail. It condenses on the surface of the ice 14 that has adhered and accumulated to the group of heat tubes 5 and melts the ice 14 on the surface. Here, when the number of horizontal heat transfer tubes 5b in the vertical direction increases, the amount of condensed / melted water 13 that flows down increases, and the condensation performance deteriorates on the surface of the ice 14. Therefore, the water distributor 8c is placed every fixed number of vertical steps. The inclined flat plate which is installed and which fixes the water distributor 8c guides the water 13 to the inner wall 16 in the ice heat storage container 6. This can prevent the condensation performance on the surface of the ice 14 from decreasing.
【0035】この時、鉛直冷却板内へ供給される水の量
は堰10によって仕切られた水貯溜部9からフロート式
の水位調節器11により鉛直冷却板4内への流下量を調
節する。この流下量の調節により、鉛直冷却板4で蒸発
する水蒸気量を一定にすることができる。At this time, the amount of water supplied into the vertical cooling plate is adjusted by the float type water level controller 11 from the water reservoir 9 partitioned by the weir 10 into the vertical cooling plate 4. By adjusting the flow amount, the amount of water vapor evaporated on the vertical cooling plate 4 can be made constant.
【0036】このような構成のガスタービン吸気冷却装
置とすれば、次のような効果を得ることができる。夏期
の昼間、電力負荷ピーク時である2〜3時間に多量の吸
気を冷却するため、水の顕熱(1kcal/kg)・氷の融解熱
(80kcal/kg)だけでは、氷量(氷充填率:氷の水に対
する重量割合)を多くしても30%程度であり、戻り水
の顕熱量(戻り温度は12℃)を含めて利用できたとし
ても、かなり大きな氷蓄熱槽が必要となる。これに対し
て、水の蒸発潜熱(597kcal/kg)を利用できれば少な
い水量で吸気を冷却することが可能である。つまり、3
0%の氷充填率を有する氷蓄熱槽と単位質量当りの冷熱
量で比較すると、597/(0.3×80+12)=1
6.58となり、十分に少ない質量(水量)で吸気冷却
に対応することができる。With the gas turbine intake air cooling device having such a configuration, the following effects can be obtained. During the summer daytime, a large amount of intake air is cooled during the peak power load of 2-3 hours. Therefore, the sensible heat of water (1 kcal / kg) and the heat of melting of ice (80 kcal / kg) alone are enough for the amount of ice (ice filling Ratio: The weight ratio of ice to water is about 30% even if it is increased, and even if the amount of sensible heat of return water (return temperature is 12 ° C) can be used, a considerably large ice heat storage tank is required. . On the other hand, if the latent heat of vaporization of water (597 kcal / kg) can be used, it is possible to cool the intake air with a small amount of water. That is, 3
Comparing the amount of cold heat per unit mass with an ice heat storage tank having an ice filling rate of 0%, 597 / (0.3 × 80 + 12) = 1
Since this is 6.58, intake air cooling can be supported with a sufficiently small mass (water amount).
【0037】この場合、吸気温度を冷却するには水の蒸
発温度が5℃程度になることから、水を高真空で蒸発さ
せる必要があるが、満液式蒸発器では水深による水圧が
かかるので、無理がある。In this case, since the evaporation temperature of water is about 5 ° C. to cool the intake air temperature, it is necessary to evaporate the water in a high vacuum. However, in the full-fill type evaporator, water pressure is applied depending on the water depth. , It's impossible.
【0038】そこで、本実施例では伝熱管群だけの構成
ではなく、鉛直の冷却パネル内に水を流下して蒸発させ
る方式とし、且つ鉛直冷却板4と連通させて氷蓄熱容器
6内を真空状態にしたので、水を流下・蒸発させること
で低伝熱面積且つ低圧力損失で吸気を冷却することが可
能となる。Therefore, in the present embodiment, not only the heat transfer tube group is constituted, but a system in which water is made to flow down into a vertical cooling panel to evaporate, and the inside of the ice heat storage container 6 is vacuumized by communicating with the vertical cooling plate 4. Since the state is set, it becomes possible to cool the intake air with a low heat transfer area and a low pressure loss by allowing water to flow down and evaporate.
【0039】また、鉛直冷却板4を図3、図4に示すよ
うに2枚の平板間にその平面に対して10度以上傾けた
樋型梁23を挟み込んで構成し、図5に示すように樋型
梁23と平板との接続部を末広がり形状としているの
で、鉛直冷却板4内を流下する水22は、相対する平板
4a,4bの内壁上を交互に出入りしながら流下するこ
とが可能となり、鉛直冷却板4の内壁に形成される流下
液膜に擾乱を与え、蒸発性能を向上させることができ
る。As shown in FIG. 5, the vertical cooling plate 4 is constructed by sandwiching a gutter-shaped beam 23 which is inclined by 10 degrees or more with respect to the plane between two flat plates as shown in FIGS. Since the connection portion between the gutter-shaped beam 23 and the flat plate has a divergent shape, the water 22 flowing down in the vertical cooling plate 4 can flow down while alternately flowing in and out on the inner walls of the opposed flat plates 4a and 4b. Therefore, the falling liquid film formed on the inner wall of the vertical cooling plate 4 is disturbed, and the evaporation performance can be improved.
【0040】また、水22が流下する平板4a,4bの
内壁には、銅容射により多孔室面25を形成しているの
で、蒸発熱伝達特性を高めることができる。さらに、鉛
直冷却板4の外壁では吸気3を冷却するために空気中の
含有水分が凝縮するので、図6に示すように水平溝26
を加工し、一定間隔で鉛直リブ27を固定するようにし
ているので、凝縮水分を水平溝26に沿って流し、鉛直
リブ27で堰止め鉛直方向下向に流下させ、ガスタービ
ン側へ水滴が随伴されることを防止できる。Further, since the porous chamber surface 25 is formed by copper spraying on the inner walls of the flat plates 4a, 4b through which the water 22 flows down, the evaporation heat transfer characteristic can be improved. Further, since the water content in the air is condensed on the outer wall of the vertical cooling plate 4 to cool the intake air 3, the horizontal groove 26 is formed as shown in FIG.
Since the vertical ribs 27 are fixed at regular intervals, condensed water is caused to flow along the horizontal groove 26, and the condensed water is blocked by the vertical ribs 27 so as to flow downward in the vertical direction. It can be prevented from being accompanied.
【0041】[0041]
【発明の効果】以上述べたように本発明によれば、ガス
タービンの吸気流路内で吸気を冷却するために鉛直冷却
板を吸気流れと平行に設置し、その冷却板内で水と流下
液膜蒸発を行なわすために夜間の低電力負荷時に蓄積し
た冷却板と連通している上部の氷蓄熱容器内のスタテッ
ィク氷に水蒸気を高真空で凝縮させるようにしたので、
冷却面積を小さくし、吸気冷却する際に生じる圧力損失
を低減してガスタービンの出力をより高くすることがで
きるガスタービン吸気冷却装置を提供できる。As described above, according to the present invention, in order to cool the intake air in the intake passage of the gas turbine, the vertical cooling plate is installed in parallel with the intake flow, and water flows down in the cooling plate. In order to perform liquid film evaporation, it was arranged to condense the water vapor with high vacuum on the static ice in the upper ice heat storage container that is in communication with the cold plate accumulated at the time of low power load at night,
It is possible to provide a gas turbine intake air cooling device that can reduce the cooling area, reduce the pressure loss that occurs during intake air cooling, and increase the output of the gas turbine.
【図1】図1は本発明によるガスタービン吸気冷却装置
の一実施例を示す構成図。FIG. 1 is a configuration diagram showing an embodiment of a gas turbine intake air cooling device according to the present invention.
【図2】同実施例のガスタービン吸気冷却装置を吸気側
から見た図。FIG. 2 is a view of the gas turbine intake air cooling device of the embodiment as seen from the intake side.
【図3】同実施例における鉛直冷却板の鉛直断面図。FIG. 3 is a vertical cross-sectional view of a vertical cooling plate in the example.
【図4】同実施例における鉛直冷却板内の樋型梁の構造
図。FIG. 4 is a structural diagram of a gutter-shaped beam in a vertical cooling plate in the example.
【図5】同実施例における鉛直冷却板の水平断面図。FIG. 5 is a horizontal sectional view of a vertical cooling plate according to the embodiment.
【図6】同実施例における鉛直冷却板群と上部氷蓄熱容
器との接続状況の説明図。FIG. 6 is an explanatory diagram of a connection state between a vertical cooling plate group and an upper ice heat storage container in the same embodiment.
【図7】同実施例における氷蓄熱容器内の氷付着状況を
示す図。FIG. 7 is a view showing an ice adhering state in the ice heat storage container in the embodiment.
【図8】同実施例における氷蓄熱容器内での解氷状況を
示す図。FIG. 8 is a view showing a condition of melting ice in the ice heat storage container in the embodiment.
1……吸気ダクト、1a,1b……分岐吸気ダクト、2
……流路切換えダンパ、3……空気、4……鉛直冷却
板、5,5a,5b……氷付着パイプ群、6……氷蓄熱
容器、7……貯水板、8a,8b,8c……水分配器、
9……水貯溜部、10……堰、11……フロート式液面
調節器、12……冷凍機、13……氷、14……氷、1
5……プライン、16……氷蓄熱容器内壁、17……水
蒸気、18……凝縮水、19……吸気ダクトの上面、2
0……鉛直冷却板の上部、21……水供給用の切欠部、
22……空気冷却パイプ内に流下する水、23……斜め
樋型梁、24……樋の末広がり部、25……多孔質面、
26……水平溝、27……鉛直リブ、28……循環水ポ
ンプ。1 ... Intake duct, 1a, 1b ... Branch intake duct, 2
...... Flow path switching damper, 3 ...... Air, 4 ...... Vertical cooling plate, 5, 5a, 5b ...... Ice adhering pipe group, 6 ...... Ice heat storage container, 7 ...... Water storage plate, 8a, 8b, 8c ... ... water distributor,
9 ... Water reservoir, 10 ... Weir, 11 ... Float type liquid level controller, 12 ... Refrigerator, 13 ... Ice, 14 ... Ice, 1
5 ... Prine, 16 ... Inner wall of ice heat storage container, 17 ... Steam, 18 ... Condensed water, 19 ... Top of intake duct, 2
0 ... upper part of vertical cooling plate, 21 ... notch for water supply,
22 ... Water flowing down into the air cooling pipe, 23 ... Oblique gutter-shaped beam, 24 ... Spreading part of gutter, 25 ... Porous surface,
26 ... Horizontal groove, 27 ... Vertical rib, 28 ... Circulating water pump.
Claims (6)
を形成する吸気ダクトを二つに分岐すると共に、その分
岐部に流路切換えダンパーを設け、その一方の分岐吸気
ダクト内に、水が流下する内壁を多孔質面とし、空気と
熱交換する外壁に水平溝とこの水平溝を基準として一定
間隔で鉛直リブを設けた二枚の平板により内部に中空部
を形成した複数個の冷却板を吸気の流れ方向に対して平
行になるように適宜の間隔を存して鉛直に設置し、且つ
これら各冷却板の上部より中空部に冷水を導いて前記ガ
スタービンの吸気により蒸発させるようにしたことを特
徴とするガスタービン吸気冷却装置。1. An intake duct forming a suction flow path for combustion air of a gas turbine is branched into two parts, and a flow path switching damper is provided at the branch part, and water is introduced into one of the branch intake ducts. The inner wall that flows down has a porous surface,
Horizontal groove on outer wall for heat exchange and constant with reference to this horizontal groove
A plurality of cooling plates each having a hollow portion formed inside by two flat plates provided with vertical ribs at intervals are vertically installed at appropriate intervals so as to be parallel to the flow direction of intake air, and A gas turbine intake cooling device, characterized in that cold water is guided from the upper part of each of these cooling plates to a hollow part and evaporated by the intake air of the gas turbine.
を形成する吸気ダクトを二つに分岐すると共に、その分
岐部に流路切換えダンパーを設け、その一方の分岐吸気
ダクト内に、水が流下する内壁を多孔質面とし、空気と
熱交換する外壁に水平溝とこの水平溝を基準として一定
間隔で鉛直リブを設けた二枚の平板により内部に中空部
を形成した複数個の冷却板を吸気の流れ方向に対して平
行になるように適宜の間隔を存して鉛直に設置すると共
に、分岐吸気ダクトの上面に水供給部と氷蓄熱部とを備
えた氷蓄熱容器を前記各冷却板の上部より中空部に連通
させて設ける構成とし、前記氷蓄熱容器の水供給部より
氷蓄熱部を通して流下する水を前記各冷却板の中空部に
導いて前記ガスタービンの吸気により高真空状態で蒸発
させるようにしたことを特徴とするガスタービン吸気冷
却装置。2. An intake duct forming an intake flow path for combustion air of a gas turbine is branched into two parts, and a flow path switching damper is provided at the branch part, and water is introduced into one of the branch intake ducts. The inner wall that flows down has a porous surface,
Horizontal groove on outer wall for heat exchange and constant with reference to this horizontal groove
In addition to vertically installing a plurality of cooling plates having a hollow portion formed inside by two flat plates provided with vertical ribs at intervals so as to be parallel to the flow direction of the intake air with appropriate intervals, An ice heat storage container provided with a water supply unit and an ice heat storage unit on the upper surface of the branch intake duct is provided so as to communicate with the hollow portion from the upper portion of each cooling plate, and the ice heat storage unit is provided from the water supply unit of the ice heat storage container. A gas turbine intake air cooling device, characterized in that water flowing down through the gas turbine is introduced into the hollow portion of each cooling plate to be evaporated in a high vacuum state by the intake air of the gas turbine.
を形成する吸気ダクトを二つに分岐すると共に、その分
岐部に流路切換えダンパーを設け、その一方の分岐吸気
ダクト内に二枚の平板により内部に中空部を形成した複
数個の冷却板を吸気の流れ方向に対して平行になるよう
に適宜の間隔を存して鉛直に設置すると共に、分岐吸気
ダクトの上面に水供給部と上部及び側部にそれぞれ配設
され且つ冷凍機から通水される0℃以下のブラインによ
りスタティックな氷を付着させる水平伝熱管と、最上
部、上部側方及び中間部側方にそれぞれ配設され且つ前
記水平伝熱管の外表面に水を上部より供給する水分配器
とから構成された氷蓄熱部を備えた氷蓄熱容器を前記各
冷却板の上部より中空部に連通させて設ける構成とし、
前記氷蓄熱容器の水供給部より氷蓄熱部を通して流下す
る水を前記各冷却板の中空部に導いて前記ガスタービン
の吸気により高真空状態で蒸発させるようにしたことを
特徴とするガスタービン吸気冷却装置。3. A suction flow passage for combustion air of a gas turbine.
The intake duct that forms the
A flow path switching damper is installed at the branch, and one side of the branch intake
Duplex with two flat plates inside the duct
Make several cooling plates parallel to the flow direction of intake air
Vertical installation with an appropriate interval between
Horizontal heat transfer tubes, which are installed on the upper surface of the duct and at the upper and side parts respectively, and static ice is attached by the brine of 0 ° C or less, which is passed from the refrigerator, and the uppermost part, the lateral part of the upper part, and the middle part. The ice heat storage container provided with an ice heat storage portion each of which is disposed on the side of the heat transfer tube and is composed of a water distributor that supplies water to the outer surface of the horizontal heat transfer tube from above.
The cooling plate is provided so as to communicate with the hollow portion from above,
Flow down from the water supply section of the ice heat storage container through the ice heat storage section.
The gas turbine by guiding the water to the hollow part of each cooling plate.
That it was made to evaporate in a high vacuum state by the intake of
Characteristic gas turbine intake air cooling device.
分配器は、下部に穴を開けた水平パイプ群としてこれら
水平パイプ群を斜めに配置し、その上部を平板により固
定するようにしたことを特徴とする請求項2又は請求項
3記載のガスタービン吸気冷却装置。4. A water distributor, which is arranged on the side of an intermediate portion of an ice heat storage container, has a horizontal pipe group having a hole at the bottom thereof, the horizontal pipe groups are arranged obliquely, and the upper portion thereof is fixed by a flat plate. The gas turbine intake air cooling device according to claim 2 or 3, characterized in that.
た樋型形状の梁を二枚の平板の間に挟み込むように設け
たことを特徴とする請求項1乃至請求項3の何れかに記
載のガスタービン吸気冷却装置。5. The cooling plate is provided so that a gutter-shaped beam inclined by 10 degrees or more with respect to a horizontal plane is sandwiched between two flat plates . In
Placing the gas turbine intake air cooling apparatus.
下する内壁を銅溶射により多孔質面とし、空気と熱交換
する外壁に水平溝とこの水平溝を基準として一定間隔で
鉛直リブが設けられたことを特徴とする請求項3記載の
ガスタービン吸気冷却装置。6. The two flat plates constituting the cooling plate have an inner wall through which water flows down made of a porous surface by copper spraying, and an outer wall for heat exchange with air has horizontal grooves and vertical grooves at regular intervals with reference to the horizontal grooves. The gas turbine intake air cooling device according to claim 3 , wherein a rib is provided.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28527194A JP3522858B2 (en) | 1994-11-18 | 1994-11-18 | Gas turbine intake cooling system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28527194A JP3522858B2 (en) | 1994-11-18 | 1994-11-18 | Gas turbine intake cooling system |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH08144785A JPH08144785A (en) | 1996-06-04 |
JP3522858B2 true JP3522858B2 (en) | 2004-04-26 |
Family
ID=17689348
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP28527194A Expired - Fee Related JP3522858B2 (en) | 1994-11-18 | 1994-11-18 | Gas turbine intake cooling system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3522858B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10153911B4 (en) * | 2001-11-02 | 2010-08-19 | Alstom Technology Ltd. | Fastening means for injection nozzles in an air intake duct of a turbomachine |
CN113775418B (en) * | 2021-08-27 | 2023-11-14 | 威海光晟航天航空科技有限公司 | Engine air inlet channel structure and preparation method |
-
1994
- 1994-11-18 JP JP28527194A patent/JP3522858B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH08144785A (en) | 1996-06-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5655373A (en) | Gas turbine intake air cooling apparatus | |
RU2125693C1 (en) | Method of heat exchanger and device for realization of this method | |
KR950003785B1 (en) | Air conditioning system | |
WO2021228096A1 (en) | Automatic spraying water-curtain evaporative cooling heat exchanger, and heat pump module unit | |
US10030913B1 (en) | Heat pipe dry cooling system | |
CN111473666A (en) | Cascade evaporation cold and hot pump module unit | |
US20150260434A1 (en) | Air Source Heat Exchange System and Method Utilizing Temperature Gradient and Water | |
JP3522858B2 (en) | Gas turbine intake cooling system | |
CN109237833A (en) | Wet film formula low form total heat recovery multi-connected heat pump unit | |
KR100526758B1 (en) | Hybrid cooling tower | |
CN212409447U (en) | Self-spraying water curtain type evaporative cooling heat exchanger and heat pump module unit | |
CN212409458U (en) | Cascade evaporation cold and hot pump module unit | |
WO2015068874A1 (en) | Refrigerator for district cooling system | |
JP2010255939A (en) | Air conditioning system | |
JP4255059B2 (en) | Combined heat storage system | |
JP2008064426A (en) | Condenser and refrigerating machine | |
JP2002061961A (en) | Solar cogeneration integrated system | |
CN210220737U (en) | Cooling tower | |
CN218895684U (en) | Condensed water heat exchange system and storage device | |
JPH05312056A (en) | Intake air cooling system of gas turbine | |
KR100470404B1 (en) | Condenser for refrigerator and airconditioner using plural heat exchanger | |
CN219829000U (en) | Supercooling dehumidifier | |
CN221463914U (en) | Water curtain spray type device for improving supercooling degree of condenser | |
JP2001317845A (en) | Method and apparatus for utilizing cold heat of natural ice | |
JPH10227498A (en) | Thermal storage type cooling and heating method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20031201 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20040203 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20040205 |
|
LAPS | Cancellation because of no payment of annual fees |