JPH08143930A - Method for refining molten metal - Google Patents

Method for refining molten metal

Info

Publication number
JPH08143930A
JPH08143930A JP29114994A JP29114994A JPH08143930A JP H08143930 A JPH08143930 A JP H08143930A JP 29114994 A JP29114994 A JP 29114994A JP 29114994 A JP29114994 A JP 29114994A JP H08143930 A JPH08143930 A JP H08143930A
Authority
JP
Japan
Prior art keywords
refining
molten metal
slag
gas
vacuum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29114994A
Other languages
Japanese (ja)
Other versions
JP3570569B2 (en
Inventor
Takashi Mukai
孝 向井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP29114994A priority Critical patent/JP3570569B2/en
Publication of JPH08143930A publication Critical patent/JPH08143930A/en
Application granted granted Critical
Publication of JP3570569B2 publication Critical patent/JP3570569B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE: To obtain molten metal high in cleanliness with a high refining efficiency by refining under low oxygen partial pressure atmosphere after decarburize-refining the molten metal and further refining under plasma heating at near the atmospheric pressure. CONSTITUTION: Solid raw material is charged into an induction heating refining furnace 5 and melted while reducing the pressure in an atmosphere shut-off chamber (a) and after blowing mixed gas of oxygen and Ar into the molten metal from a lance, the vacuum refining at <=1Torr is executed. At the time of completing the refining, the molten metal is poured in a re-refining vessel 27' with a cover body 27a and shifted to the re-refinzing position 27 with rails and a carriage 24 through a partition valve 4. Successively, slag-making agent is added from an auxiliary raw material charging system 9 and heated with an inert gas plasma heating device 23 to execute melting and heating of the slag-making agent, and Ar gas is blown and stirred from a porous plug 28 to execute the refining. At the time of completing the re-refining, the molten metal is cast into an ingot case 30 through a sliding nozzle 29. By this method, alloy high in cleanliness can be cast.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は溶湯を脱炭精錬し、続い
て真空、または低酸素分圧雰囲気下で精錬した後、大気
圧付近でさらにプラズマ加熱下で再精錬する溶湯の精錬
方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for refining a molten metal, which comprises decarburizing and refining a molten metal, subsequently refining it in a vacuum or in a low oxygen partial pressure atmosphere, and then refining it under plasma heating at around atmospheric pressure. It is a thing.

【0002】[0002]

【従来の技術】真空または低酸素分圧雰囲気下での精錬
法(以下、真空または低酸素分圧下精錬と記す)では、
高レベルの清浄鋼等を容易に得ることができることから
広く用いられており、真空誘導加熱炉(VIFとも称さ
れる)はその一つの手段である。この真空または低酸素
分圧下精錬において、ある種の不純物は、それ自身また
は酸化物等の化合物となって、溶湯から蒸発、飛散また
は浮上して分離されることにより、精錬が進行する。そ
して、この場合、精錬が進行した状態では、溶湯中の不
純物(本発明で不純物とは不純元素や非金属介在物の原
因となる物質を総称する)を非常に低いレベルにするこ
とができる。
2. Description of the Related Art In the refining method under vacuum or low oxygen partial pressure atmosphere (hereinafter referred to as refining under vacuum or low oxygen partial pressure),
It is widely used because high-level clean steel and the like can be easily obtained, and a vacuum induction heating furnace (also called VIF) is one of the means. In this refining under vacuum or low oxygen partial pressure, certain impurities become themselves or compounds such as oxides, and are evaporated, scattered or floated from the molten metal to be separated, whereby refining proceeds. Then, in this case, in the state where the refining has progressed, the impurities in the molten metal (impurities in the present invention are collectively referred to as substances causing impure elements or non-metallic inclusions) can be made to have a very low level.

【0003】真空または低酸素分圧下精錬において、精
錬炉の炉壁フリーボード部分には蒸発、飛散成分の一部
が凝縮してスカム状に付着している。また、精錬炉中の
溶湯液面には、別種の蒸発できないドロス状等の不純成
分が浮上して分離されている。精錬炉の傾注により出湯
する場合、溶湯流によりこれらの付着物や浮遊物が洗い
流されて溶湯中に再度取り込まれ、溶湯中に再混入す
る。さらに、受湯容器である取鍋またはタンディシュの
内張り耐火物は、それが受湯前に十分加熱されていない
場合、活性ガス成分を吸着しており、またこの耐火物は
受湯後、真空または低酸素分圧下での処理により活性化
した溶湯と一部反応し、または溶湯に侵食されて、これ
ら活性ガス、反応生成物、侵食物により溶湯を汚染す
る。
In refining under vacuum or low partial pressure of oxygen, a part of vaporized and scattered components is condensed and adhered to the freeboard portion of the refining furnace in the form of scum. Further, on the surface of the molten metal in the refining furnace, another kind of non-evaporable dross-like impure component floats and is separated. When tapping the smelting furnace, the deposits and suspended matter are washed away by the molten metal stream and taken into the molten metal again, and then remixed in the molten metal. In addition, the refractory lining of the ladle or tundish that is the hot water container adsorbs the active gas components if it is not heated sufficiently before the hot water is received, and this refractory also has a vacuum or low temperature after the hot water is received. It partially reacts with the molten metal activated by the treatment under the partial pressure of oxygen, or is corroded by the molten metal, and the molten metal is contaminated by these active gas, reaction products, and eroded food.

【0004】前記の再混入の防止方法として今日まで試
みられた方法には、精錬炉の炉底出湯を行なうととも
に、浮遊不純物の混入防止のため溶湯を一部炉内に残留
させる方法、インダクションスカル炉により溶湯を空中
出湯する方法、また、取鍋またはタンディッシュ内にお
いては、セラミックフィルタにより微小非金属介在物と
なり得る物質を除去する方法などが提案され一部実用化
されているが、種々の制約があり、未だ広く採用される
に至っていない。また、これらの方法はすべての再混入
物質や汚染物質等に対して有効ではないので、前記の各
再混入物質等に対して有効ならしめるためには、これら
を組み合わせることが必要である。しかし、これらは組
み合わせるほど、費用が嵩む等の問題を生ずる。
The methods that have been tried up to now as methods for preventing re-mixing include tapping the bottom of a refining furnace and leaving a part of the molten metal in the furnace to prevent mixing of floating impurities. A method of discharging molten metal in the air with a furnace, and a method of removing substances that may be fine non-metallic inclusions with a ceramic filter in a ladle or a tundish have been proposed and partially put into practical use. Due to restrictions, it has not yet been widely adopted. Further, these methods are not effective for all remixed substances, pollutants and the like, and therefore it is necessary to combine them in order to make them effective for each remixed substance and the like. However, the more they are combined, the more costly the problem arises.

【0005】一方、真空精錬後、黒鉛電極アーク加熱方
式の取鍋精錬炉、ASEA−SKF法などで再精錬する
ことで再混入物質等を除去することも考えられるが、こ
れらの方法では電極が黒鉛質であり、その電極を溶鋼表
面上のスラグ中に浸漬するので、溶湯中への炭素のピッ
クアップの問題が生ずる。特開平4-318118号は、真空脱
ガス処理により溶湯を脱炭した後、Sol.Al≧0.2wt%を
含有させた状態で、プラズマ加熱し、塩基度8以上のス
ラグの存在下で撹拌し、脱硫する極低炭、極低硫鋼の製
造方法を提案している。
On the other hand, after vacuum refining, it is possible to remove re-mixed substances by refining with a ladle refining furnace of graphite electrode arc heating system, ASEA-SKF method, etc. Since it is graphite and its electrode is immersed in the slag on the surface of the molten steel, the problem of carbon pickup in the molten metal arises. Japanese Unexamined Patent Publication No. 4-318118 discloses a method in which a molten metal is decarburized by vacuum degassing, then plasma heated in a state of containing Sol.Al ≧ 0.2 wt% and stirred in the presence of a slag having a basicity of 8 or more. , A method for producing ultra-low carbon desulfurized and ultra-low sulfur steel is proposed.

【0006】前記提案の方法では、プラズマ精錬前時点
でのスラグをプラズマ精錬炉に持ち込むので、プラズマ
精錬中でのSol.Alを高め、スラグの塩基度を8以上
に高くしなければならない。すなわち、スラグを持ち込
むので、スラグの改質のために大量の脱酸剤および還元
剤を必要とするため、精錬効果が劣る問題があった。
In the above-mentioned method, since the slag before the plasma refining is brought into the plasma refining furnace, Sol.Al in the plasma refining must be increased to raise the basicity of the slag to 8 or more. That is, since slag is brought in, a large amount of a deoxidizing agent and a reducing agent are required for modifying the slag, so that there is a problem that the refining effect is inferior.

【0007】[0007]

【発明が解決しようとする課題】ところで、ステンレス
鋼、Ni基合金あるいはNi−Fe合金など製品の中に
は、要求される特性を害する理由から、炭素の混入を厳
しく制限される金属材料が多い。上記の炭素の混入の多
くは溶解時の固体原料から持ち込まれ、低酸素の材料ほ
ど脱炭を強化しなければならない。脱炭は酸素などとの
反応で、燃焼させる手段が知られており、さらに減圧雰
囲気や真空雰囲気と組み合わせると効率がよい。しか
し、いずれの場合も反応生成物は酸化物であり、これが
精錬炉の溶湯面や炉壁に付着して、溶湯の動きによって
は溶湯中に再混入してせっかく精錬した溶湯を汚染する
という危険性が大きいものである。しかし、上記の脱炭
処理を回避しようとすると、精錬炉への挿入材料につい
て低Cの高級な材料を選択する必要があり、溶解するた
めの原料費が著しく高価になり、経済的な量産に適さな
い欠点がある。
By the way, in the products such as stainless steel, Ni-base alloys and Ni-Fe alloys, there are many metal materials for which the mixing of carbon is severely restricted for the reason of impairing the required properties. . Most of the above-mentioned carbon contamination is brought from the solid raw material at the time of melting, and the lower the oxygen content, the stronger the decarburization should be. Decarburization is a reaction with oxygen or the like, and means for burning it is known, and it is more efficient to combine it with a reduced pressure atmosphere or a vacuum atmosphere. However, in any case, the reaction product is an oxide, which adheres to the molten metal surface or wall of the smelting furnace and remixes into the molten metal depending on the movement of the molten metal, thus contaminating the smelted molten metal. It has a great nature. However, in order to avoid the above-mentioned decarburization treatment, it is necessary to select a high-grade material with a low C as the material to be inserted into the refining furnace, which significantly increases the raw material cost for melting, which leads to economical mass production. There are drawbacks that are not suitable.

【0008】本発明の目的は、上記のような製品の炭素
含有量が厳しく制限されるステンレス鋼、Ni基合金あ
るいはFe−Ni合金などの精錬時に、同じ予備精錬炉
内で効率良く脱炭でき、しかも前述の炭素のピックアッ
プの問題がなく、持込みスラグを改質する必要もなく、
高レベルの精錬等の場合にも柔軟に対応できる溶湯の精
錬方法を提供することである。
The object of the present invention is to efficiently decarburize in the same preliminary refining furnace when refining stainless steel, Ni-based alloys, Fe-Ni alloys, etc., in which the carbon content of the above products is severely limited. Moreover, there is no problem of the above-mentioned carbon pickup, and it is not necessary to modify the carry-in slag,
It is an object of the present invention to provide a molten metal refining method capable of flexibly coping with high-level refining.

【0009】[0009]

【課題を解決するための手段】本発明は、加熱手段を有
する容器により溶解した溶湯に酸素源または酸素源と不
活性ガスの混合物を添加または吹き込むことにより、溶
湯中の炭素と反応させてCOガス化して前記の容器外に
放出し、続いて真空または低酸素分圧雰囲気中で精錬し
て脱酸することにより、所定のレベルの予備精錬を達成
する。続いて予備精錬で、溶湯から一旦分離されてはい
るが、いまだその容器内にとどまり、スカム状、ドロス
状等として存在する不純物を、そのままの容器中で、新
たに造滓剤を添加してプラズマ加熱を行なって炭素の再
混入を防止しながら、溶湯中に混入した前記スカムやド
ロスに起因する不純物および非金属介在物を再精錬によ
り効率的に除去し、またはさらに高レベルに精錬する精
錬方法である。さらに、本発明は、予備精錬した後に、
再精錬するために溶湯を別の容器に移した後に再精錬す
ることができる。
According to the present invention, an oxygen source or a mixture of an oxygen source and an inert gas is added to or blown into a molten metal melted in a container having a heating means to react with carbon in the molten metal to form CO. A predetermined level of pre-refining is achieved by gasifying and releasing out of the vessel, followed by refining and deoxidizing in a vacuum or low oxygen partial pressure atmosphere. Then, in preliminary refining, it was once separated from the molten metal, but it still remained in the container, and impurities existing as scum-like, dross-like, etc. were added to the container as it was, and a new slag-making agent was added. Refining that efficiently removes impurities and non-metallic inclusions caused by the scum and dross mixed in the molten metal by plasma refining while preventing re-mixing of carbon by performing plasma heating, or refining to a higher level Is the way. Further, the present invention, after pre-refining,
The molten metal can be transferred to another container for re-refining and then re-refined.

【0010】すなわち、本発明の第1発明は、加熱手段
を有する容器中の溶湯に酸素源または酸素源と不活性ガ
スの混合物を添加または吹き込み、前記酸素源の添加ま
たは吹き込んだ後、真空または低酸素分圧雰囲気で、そ
の他の予備精錬をした後、該溶湯に造滓剤を添加し、不
活性ガスプラズマにより加熱して再精錬することを特徴
とする溶湯の精錬方法であり、第2発明は、加熱手段を
有する容器中の溶湯に酸素源または酸素源と不活性ガス
の混合物を添加または吹き込み、前記酸素源の添加また
は吹き込んだ後、真空または低酸素分圧雰囲気で、その
他の予備精錬をした後、前記溶湯を前記容器とは別容器
に移すとともに造滓剤を添加し、不活性ガスプラズマに
より加熱して再精錬することを特徴とする溶湯の精錬方
法である。本発明の特徴は、予備精錬の前段階で酸素源
による酸化精錬を実施し、引き続いて予備精錬と不活性
ガスプラズマによる再精錬を組み合わせたところにあ
る。
That is, the first aspect of the present invention is to add or blow an oxygen source or a mixture of an oxygen source and an inert gas into a molten metal in a container having a heating means, and after adding or blowing the oxygen source, vacuum or A method for refining a molten metal, which comprises refining by adding a slag-making agent to the molten metal after performing other preliminary refining in a low oxygen partial pressure atmosphere and heating the molten metal with an inert gas plasma, The invention is to add or blow an oxygen source or a mixture of an oxygen source and an inert gas into a molten metal in a container having a heating means, and after adding or blowing the oxygen source, in a vacuum or a low oxygen partial pressure atmosphere, and perform another preliminary operation. After the refining, the molten metal is transferred to a container different from the container, a slag-forming agent is added, and the mixture is heated by an inert gas plasma to be refined again. The feature of the present invention resides in that the oxidative refining with an oxygen source is carried out before the pre-refining, and then the pre-refining and the re-refining with an inert gas plasma are combined.

【0011】本発明でいう真空または低酸素分圧雰囲気
とは、それぞれ大気圧未満の雰囲気、または大気中の酸
素分圧すなわち213HPa(1013HPa×0.21)未満の酸素分圧
雰囲気を意味する。この条件を満足させる手段として
は、真空ポンプで排気し減圧すること、不活性ガス(A
rやN2ガス)で酸素の一部を置換すると、または減圧
とガス置換を組み合わせて、数100Torr以下の不活性ガ
ス雰囲気とする方法がある。これらのための実用炉とし
ては、真空誘導炉(VIF)、AOD炉、VOD炉など
があるが、プラズマ精錬での造滓剤を有効に活用するた
めに、予備精錬として誘導加熱方法によるものが望まし
い。また、第2発明において、更新容器は予備精錬での
スプラッシュやヒューム等による汚染を受けないように
準備するとよい。これに適する予備精錬炉と再精錬炉の
組合せ装置を図2に示す。図2では、更新容器は大気遮
断室aに仕切りバルブ4を介して連結する第2の大気遮
断室に予めセットされる。
The term "vacuum or low oxygen partial pressure atmosphere" as used in the present invention means an atmosphere of less than atmospheric pressure or an oxygen partial pressure of atmospheric air, that is, an oxygen partial pressure atmosphere of less than 213 HPa (1013 HPa × 0.21). Means for satisfying this condition include exhausting with a vacuum pump to reduce the pressure, and inert gas (A
There is a method of substituting a part of oxygen with r or N 2 gas) or by combining reduced pressure and gas substitution to obtain an inert gas atmosphere of several 100 Torr or less. As a practical furnace for these, there are a vacuum induction furnace (VIF), an AOD furnace, a VOD furnace, etc. desirable. Further, in the second invention, it is preferable that the renewal container is prepared so as not to be contaminated by splash or fume in the pre-refining. A pre-smelting furnace and re-smelting furnace combination apparatus suitable for this is shown in FIG. In FIG. 2, the renewal container is set in advance in a second atmosphere blocking chamber that is connected to the atmosphere blocking chamber a via a partition valve 4.

【0012】すなわち、予備精錬は真空または低酸素分
圧雰囲気下にある大気遮断室aで行なうので、再精錬容
器27は予熱した後、仕切りバルブ4を介して連結して
いる真空または減圧室で準備しておく。大気遮断室aで
の精錬が完了すると、仕切バルブ4を開放し、その開口
を経て再精錬容器27を軌条および台車24により大気
遮断室aの位置27′へ移動する。この時に大気遮断室
aと再精錬容器をセットしていた部屋は連通するが、ど
ちらも真空または減圧されているので同気圧になるだけ
で、やはり真空または低酸素分圧雰囲気が保たれること
になる。このようにすれば、更新容器は予備精錬中は大
気遮断室a外にあるのでスプラッシュやヒューム等の汚
染を受けない。
That is, since the pre-refining is carried out in the atmosphere shut-off chamber a under a vacuum or low oxygen partial pressure atmosphere, the re-refining vessel 27 is preheated and then in the vacuum or depressurized chamber connected via the partition valve 4. Be prepared. When the refining in the atmosphere shut-off chamber a is completed, the sluice valve 4 is opened, and the re-refining vessel 27 is moved to the position 27 'of the air shut-off chamber a by the rail and the carriage 24 through the opening. At this time, the atmosphere shut-off chamber a and the room in which the re-refining vessel is set communicate with each other, but both are in a vacuum or decompressed state, so that only the same atmospheric pressure is obtained, and a vacuum or low oxygen partial pressure atmosphere can be maintained. become. In this way, the renewal container is outside the atmosphere shut-off chamber a during the pre-refining, so that it is not contaminated with splash or fume.

【0013】また、本願の精錬方法および装置におい
て、再精錬は、ポーラスプラグ、その他の方法によるA
rなどのガス吹込み法や誘導法等による撹拌条件下で行
なうことが望ましく、また再精錬容器からの出湯は、容
器底に設けたスライディングノズル方式によるものが傾
注法やストッパ形式のものよりスラグの混入やプラズマ
加熱によるストッパの損傷等の不都合がなく適当であ
る。
Further, in the refining method and apparatus of the present application, re-refining is performed by a porous plug or other method.
It is desirable to perform it under stirring conditions such as the gas injection method such as r and the induction method, and the tapping method or stopper method is used for tapping the hot water from the re-refining vessel rather than the slanting method or stopper type. It is suitable because there is no inconvenience such as contamination of the metal or damage to the stopper due to plasma heating.

【0014】[0014]

【作用】前述のように本発明の方法は、炭素含有量が特
に少ないステンレス鋼、Ni基合金あるいはNi−Fe
合金などの精錬に適し、予備精錬時に溶湯中の炭素を、
酸素源の一例である酸素ガスを主体とするガスを溶湯中
に吹き込んで十分酸素と炭素を反応させてCOガスとし
て容器外に排出させたうえで、さらに溶湯中に残存する
酸素を真空または低酸素分圧雰囲気中に放出させて予備
精錬を行なう。その結果、スラグの発生が比較的少な
く、溶湯中の炭素が低く、さらに残存する酸素レベルが
低い溶湯を、次の重要な工程であるプラズマ加熱での再
精錬時に新たに添加する造滓剤の種類や量を少なくして
効果的に再精錬を行なうことができる。
As described above, according to the method of the present invention, stainless steel, Ni-based alloy or Ni-Fe having a particularly low carbon content is used.
Suitable for refining alloys, etc.
A gas mainly composed of oxygen gas, which is an example of an oxygen source, is blown into the molten metal to cause sufficient oxygen and carbon to react and be discharged as CO gas outside the container, and then the oxygen remaining in the molten metal is vacuumed or reduced. Preliminary refining is performed by releasing it into an oxygen partial pressure atmosphere. As a result, the generation of slag is relatively small, the carbon in the molten metal is low, and the residual oxygen level is low, and the slag forming agent that is newly added during re-refining by plasma heating, which is the next important step, Rerefining can be performed effectively by reducing the types and amounts.

【0015】予備精錬とそれに続く再精錬のメリットか
ら言えば本発明では、溶解時に混入する炭素をスラグが
発生することなく、予備精錬で除去することで、実質的
にスラグのない比較的きれいな状態で次のプラズマ再精
錬に移行することができる。これは本発明の重要な工程
であるプラズマ加熱での再精錬を予備精錬時のスカムや
ドロスなどの不純物除去に特化することができ、プラズ
マ加熱下で使用する造滓剤の種類や量も少なくて済むと
いう利点がある。
Speaking of the advantages of the pre-refining and the subsequent re-refining, in the present invention, the carbon mixed during the melting is removed by the pre-refining without generating the slag, so that a substantially clean state without slag is obtained. You can move on to the next plasma refining. This is an important step of the present invention, re-refining by plasma heating can be specialized in removing impurities such as scum and dross during pre-refining, and the type and amount of slag forming agent used under plasma heating There is an advantage that it can be small.

【0016】なお、上記の予備精錬時に実施する酸素ガ
スを主体とするガスの吹き込みは脱炭手段として望まし
い方法であるが、他の方法として、酸素ガス吹き込み
と、溶湯成分のうち主成分または副主成分からなる酸化
物を添加して(例えばFe−Ni合金の場合には、酸化
ニッケルを酸化物として使える)、溶湯中の炭素を酸化
させる方法とを併用して、より溶湯中の炭素を除去させ
てもよい。この場合、予め酸素主体のガス吹き込みによ
り一次の脱炭反応が終了しているため、前記酸化物の添
加は少量で済むので、望ましい方法である。この方法に
よると、酸化物添加によるスラグの発生は少なく、また
続いて行なう真空精錬によってスラグの一部は、分解さ
れてガス状となって容器外に放出される。そのため、次
の工程であるプラズマ加熱下で新たに添加する造滓剤
は、酸化物添加によるスラグの改質はほとんど無視する
ことができる。さらに本発明の予備精錬時の酸素ガスを
主体とするガス吹き込みによる脱炭精錬を行なうこと
で、平衡反応で同時に脱窒も促進させる利点もある。
Although blowing of a gas mainly composed of oxygen gas, which is carried out during the above-mentioned pre-refining, is a desirable method for decarburizing, as another method, blowing of oxygen gas and a main component or a sub-component of the molten metal component are used. By adding an oxide composed of the main component (for example, in the case of Fe-Ni alloy, nickel oxide can be used as an oxide) and oxidizing the carbon in the molten metal, the carbon in the molten metal can be further removed. It may be removed. In this case, since the primary decarburization reaction has been completed in advance by blowing in a gas mainly containing oxygen, the addition of the oxide can be small, which is a preferable method. According to this method, the generation of slag due to the addition of oxides is small, and a part of the slag is decomposed into gas in the subsequent vacuum refining and is discharged to the outside of the container. Therefore, the slag modification due to the addition of oxides can be almost ignored for the slag-forming agent that is newly added under the plasma heating which is the next step. Further, by carrying out decarburization refining by blowing gas mainly composed of oxygen gas at the time of preliminary refining of the present invention, there is an advantage that denitrification is simultaneously promoted in the equilibrium reaction.

【0017】本発明における再精錬は、予備精錬段階で
一旦分離された不純物および非金属介在物を、不活性ガ
スプラズマ加熱下で新たに添加する活性化させた造滓剤
により、効果的に吸収させることにより行なわれる。す
なわち、本発明において、新たに添加した造滓剤は予備
精錬時のスラグが実質的にないため、予備精錬からの持
込みスラグを改質するための新たな造滓剤を必要としな
いので、新たに添加する造滓剤の塩基度を必要以上に高
めなくてもよく、また添加も少量でよい。造滓剤はCa
Oを中心とする複合フラックスで塩基度を2以上とす
る。望ましくは3〜7に調整すると最適である。その結
果、不活性ガスプラズマ加熱により十分加熱されて低粘
性かつ活性化されることにより、前記付着物、浮遊物等
の再混入物質および非金属介在物ならびに耐火物に起因
する汚染物質を効果的に捕集することができ、望ましく
は後述の不活性ガス吹込み等による十分な撹拌により、
溶湯と十分に相互に交換しつつ接触し、高い精錬効果を
生ずる。
The re-refining in the present invention effectively absorbs impurities and non-metallic inclusions once separated in the preliminary refining step by an activated slag-forming agent which is newly added under the heating of an inert gas plasma. It is carried out by That is, in the present invention, since the newly added slag-forming agent has substantially no slag at the time of pre-smelting, a new slag-forming agent for modifying the brought-in slag from the pre-smelting is not required, It is not necessary to raise the basicity of the slag-making agent added to the composition more than necessary, and a small amount may be added. The slag forming agent is Ca
A compound flux centered on O with a basicity of 2 or more. It is optimal to adjust it to 3 to 7. As a result, it is sufficiently heated by the inert gas plasma heating to have low viscosity and activation, so that the contaminants caused by the re-mixed substances such as the above-mentioned deposits, suspended substances, non-metallic inclusions and refractories can be effectively Can be collected, preferably by sufficient agitation such as by blowing an inert gas described later,
Contact with the molten metal while exchanging them sufficiently, producing a high refining effect.

【0018】なお、プラズマ加熱下で行なう再精錬前の
予備精錬終了時点の溶湯が実質的にスラグのないものと
は、予備精錬を行なう目的で造滓剤を添加して十分な反
応を終えて発生したスラグがないことを指す。したがっ
て、本発明のうちの第2発明において、別容器の再精錬
に注湯する前の予備精錬終了直前、または終了直後の溶
湯に、造滓剤を添加して再精錬炉に注湯することがある
が、これは予備精錬炉中で造滓剤の添加による精錬を目
的としたものではないので、予備精錬での反応用のスラ
グはないものと実質的に同一であり、本発明方法に包含
されるものである。また、大気中で実施される不活性ガ
スプラズマ加熱法は、上述のように造滓剤を効果的に加
熱する一方、溶湯や造滓剤の表面を被覆して溶湯の酸化
や造滓剤が酸化性となることを防ぎつつ、溶湯を昇温
し、または温度低下を補償し、かつ、黒鉛電極アーク加
熱法のごとく、炭素のピックアップ等の再汚染の危険が
ない。なお、本発明方法では、後述の実施例のように予
備精錬以上の高レベルにまで精錬を行なうものも含む。
It should be noted that the fact that the molten metal at the end of the pre-refining before plasma refining is substantially slag-free means that a slag-forming agent is added for the purpose of pre-refining to complete the reaction. It means that there is no slag that has occurred. Therefore, in the second invention of the present invention, adding the slag forming agent to the molten metal immediately before or after the completion of the pre-smelting before pouring the molten metal into the re-smelting in another container, and pouring the molten metal into the re-smelting furnace. However, since this is not intended for refining by adding a slag-forming agent in the pre-refining furnace, it is substantially the same as the one without slag for reaction in the pre-refining, It is included. Further, the inert gas plasma heating method carried out in the atmosphere effectively heats the slag-forming agent as described above, while coating the surface of the molten metal or the slag-forming agent to prevent oxidation of the molten metal or the slag-forming agent. While preventing oxidization, the temperature of the molten metal is raised or the temperature drop is compensated, and there is no risk of re-contamination such as carbon pickup as in the graphite electrode arc heating method. The method of the present invention includes a method of refining to a higher level than the pre-refining as in Examples described later.

【0019】本発明の最終工程の精錬であるプラズマ加
熱による再精錬方法における望ましい態様として撹拌を
加えるとよい。撹拌の方法は、炉底に設けたポーラスプ
ラグからの不活性ガスによるものが、撹拌効果の点から
望ましい。また、電磁撹拌装置を単独または併用して用
いてもよい。不活性ガスプラズマ加熱装置は、前述のよ
うにバーナのごとく、CO2、H2O、遊離O2等の酸化
性ガスを発生せず、かつ高温加熱に適するから、本発明
において再精錬に用いることはもちろん、容器を更新す
る場合は予備精錬継続中に、他方でこの加熱装置を用い
て再精錬容器を高清浄かつ高温に予熱するのに用いるこ
とができる。
As a desirable mode in the re-refining method by plasma heating which is the refining in the final step of the present invention, stirring may be added. The stirring method is preferably an inert gas from a porous plug provided at the bottom of the furnace from the viewpoint of the stirring effect. Moreover, you may use an electromagnetic stirring device individually or in combination. As described above, the inert gas plasma heating device does not generate an oxidizing gas such as CO 2 , H 2 O, and free O 2 like the burner, and is suitable for high temperature heating. Therefore, the inert gas plasma heating device is used for re-refining in the present invention. Of course, this can be used to preheat the re-refining vessel to a high degree of cleanliness and high temperature while continuing the pre-refining when renewing the vessel, while using this heating device.

【0020】[0020]

【実施例】【Example】

(実施例1)図1に示す設備を用いて、以下に示す手順
で操業を行った。誘導加熱精錬炉5に、固体原料を投入
した後、蓋体3を施し、真空排気系6aにより大気遮断
室a内を減圧し、誘導加熱炉により溶解を開始した。次
いで溶解した溶湯に、図示しないランスを溶湯中に挿入
し、前記ランスを介して大気遮断室aの外部から酸素ガ
スとArガスを混合したガスを吹き込んだ。前記混合ガ
スの吹き込みを終了した後、ランスを溶湯から引き上げ
てガスの供給を中止し、続いて大気遮断室を1Torr以上
に真空度を上げて真空精錬を行なった。
(Example 1) Using the equipment shown in FIG. 1, operation was performed in the following procedure. After the solid raw material was charged into the induction heating and refining furnace 5, the lid 3 was applied, the inside of the atmosphere blocking chamber a was depressurized by the vacuum exhaust system 6a, and the melting was started by the induction heating furnace. Next, a lance (not shown) was inserted into the molten metal, and a mixed gas of oxygen gas and Ar gas was blown from the outside of the atmosphere blocking chamber a through the lance. After the blowing of the mixed gas was completed, the lance was pulled up from the molten metal to stop the gas supply, and subsequently, the atmosphere blocking chamber was vacuum refined to 1 Torr or more for vacuum refining.

【0021】並行的に大気遮断室aの内部には、予め予
熱された再精錬容器が容器蓋体27aを付けてセットさ
れている。これは予備精錬中のスプラッシュなどを防止
するためである。大気遮断室aでの精錬が完了すると、
誘導加熱精錬炉5を傾動することにより、溶湯を再精錬
容器27′へ出湯する。次に仕切バルブ4を開放し、そ
の開口を経て再精錬容器27′を軌条および台車24に
より再精錬位置27へ移動する。続いて副原料投入系9
により造滓剤を添加し、不活性ガスプラズマ加熱装置に
より加熱して造滓剤の溶融、加熱を行ない、かつ不活性
ガス導入系7bを経てポーラスプラグ28からArガス
吹込み撹拌することにより、再精錬を行なった。再精錬
が終了し、所定の鎮静を行なった後、スライディングノ
ズル29を経てインゴットケース30に鋳造した。本実
施例では、再精錬容器27′は予め大気遮断室a内にセ
ットしたが、図2のような設備で実施してもよい。この
場合は、再精錬容器の予熱が十分行なえること、スプラ
ッシュなどの汚染が防止できる効果がある。
In parallel, inside the atmosphere shut-off chamber a, a re-refining container preheated in advance is set with a container lid 27a. This is to prevent splashing during pre-refining. When the refining in the atmosphere shut-off chamber a is completed,
By tilting the induction heating refining furnace 5, the molten metal is discharged to the re-refining vessel 27 '. Next, the partition valve 4 is opened, and the re-refining vessel 27 ′ is moved to the re-refining position 27 by the rail and the carriage 24 through the opening. Subsequent raw material input system 9
By adding a slag forming agent by, heating by an inert gas plasma heating device to melt and heat the slag forming agent, and by stirring by Ar gas blowing from the porous plug 28 through the inert gas introducing system 7b, Re-refined. After the re-refining was completed and a predetermined sedation was performed, it was cast into the ingot case 30 through the sliding nozzle 29. In this embodiment, the re-refining vessel 27 'is set in advance in the air shut-off chamber a, but it may be carried out by the equipment as shown in FIG. In this case, it is possible to sufficiently preheat the re-refining vessel and to prevent contamination such as splash.

【0022】次に本願の方法発明の効果を各種のテスト
例で説明する。いずれも、実験に用いた溶湯は、Fe−
42Ni合金である。図3は、真空誘導加熱精錬炉で固体
原料を投入して溶解を開始し、原料が溶け終った時点か
ら、酸素源の添加または吹き込みを行なわずに真空引き
を継続させた際の経過時間に対する予備精錬の進行度合
を、溶湯中のO値とC値で測定した結果を示した図であ
る。図3から、真空精錬により、溶湯中のO値が急速に
低下し、その際に酸素と炭素が結び付いてCOガスとな
って大気遮断室aの外部に排出される結果、C値も同時
に減少していることがわかる。しかし、上記の予備真空
精錬で減少したC値はせいぜい60ppm程度であった。
Next, the effects of the method invention of the present application will be described with various test examples. In each case, the molten metal used in the experiment was Fe-
42Ni alloy. FIG. 3 shows the elapsed time from the time when the solid raw material was charged in the vacuum induction heating and refining furnace to start the melting and the melting of the raw material was completed, and the evacuation was continued without adding or blowing the oxygen source. It is the figure which showed the result of having measured the progress degree of preliminary refining by the O value and C value in molten metal. From FIG. 3, the O value in the molten metal rapidly decreases due to the vacuum refining, and at that time, oxygen and carbon are combined to form CO gas, which is discharged to the outside of the atmosphere shut-off chamber a. As a result, the C value simultaneously decreases. You can see that However, the C value reduced by the above-mentioned preliminary vacuum refining was at most about 60 ppm.

【0023】図4は、前記予備精錬と同一条件で精錬し
た溶湯を予め不活性ガスプラズマ加熱装置で内張り耐火
物を加熱した再精錬容器へ上述と同一条件の傾注により
受湯し、造滓剤を添加すると共に、炉底のポーラスプラ
グによるアルゴンガス撹拌と溶湯上面からの不活性ガス
プラズマ加熱を行ないつつ、本発明における再精錬を行
なった時のガス濃度の変化を示すものである。この図か
ら、本発明に係る再精錬で再混入物の再溶解は防止さ
れ、時間の経過とともに、ガス濃度はむしろ徐々に低下
しており、予備精錬のレベル以上に精錬が進行している
ことがわかる。しかし、C値は、予備精錬後のレベルと
ほぼ同様で、再精錬によってさらに脱炭させることがで
きなかった。
FIG. 4 shows that the molten metal refined under the same conditions as the preliminary refining is poured into the re-refining container in which the refractory lining has been heated in advance by an inert gas plasma heating device by decanting under the same conditions as described above, and the slag forming agent. Fig. 3 shows a change in gas concentration when re-refining is performed in the present invention while adding argon, stirring argon gas with a porous plug at the bottom of the furnace, and heating an inert gas plasma from the upper surface of the molten metal. From this figure, re-melting of the re-mixture was prevented by the re-refining according to the present invention, the gas concentration rather decreased gradually with the passage of time, and the refining progressed above the level of the pre-refining. I understand. However, the C value was almost the same as the level after the pre-refining, and it could not be further decarburized by the re-refining.

【0024】次に図5に上記と同様に誘導加熱炉5で固
体原料を溶解し、原料が溶け終った時点で溶湯中にラン
スを挿入して、このランスから、酸素ガスとArガスの
混合ガスの吹き込みを開始するとともに、酸化ニッケル
を溶湯トン当り3kg添加し、続いて真空度を高めて予備
精錬した時のO値、C値の挙動を示した。図5から混合
ガスの吹き込みと酸化ニッケルの添加により、脱炭反応
が図3の場合より促進することができるが、混合ガスの
吹き込みを酸化ニッケルの添加により一旦O値が高くな
り、その後の真空精錬によりO値は減少するが、酸素源
を加えたために真空精錬だけではO値を十分低下させる
ことが難しく、図3に比べて精錬後のO値が高くなって
しまう結果となった。しかし、本発明の重要な構成要件
であるその後のプラズマ精錬炉で、再精錬を組み合わせ
ることでO値をさらに低減することができる。
Next, in FIG. 5, the solid raw material is melted in the induction heating furnace 5 in the same manner as described above, and when the raw material is completely melted, a lance is inserted into the molten metal, and from this lance, oxygen gas and Ar gas are mixed. The behavior of O value and C value was shown when the gas injection was started and nickel oxide was added in an amount of 3 kg per ton of molten metal, followed by pre-refining by increasing the degree of vacuum. From FIG. 5, the decarburization reaction can be promoted more by blowing the mixed gas and adding nickel oxide than in the case of FIG. 3, but the O value of the blowing of the mixed gas is once increased by the addition of nickel oxide, and the subsequent vacuum Although the O value decreased by refining, it was difficult to sufficiently reduce the O value only by vacuum refining because an oxygen source was added, and the O value after refining became higher than that in FIG. However, the O value can be further reduced by combining re-refining in the subsequent plasma refining furnace, which is an important constituent feature of the present invention.

【0025】図6は、上記図5に示した混合ガスの吹込
み、および酸化ニッケルを添加して脱炭を促進させ、続
いて真空精錬を行なった後の溶湯を、プラズマ精錬炉に
移して造滓剤を添加した時点からの経過時間に対する溶
湯中のO値とC値の変化をプロットしたものである。な
お、プラズマ精錬炉での精錬方法は、図4の場合と同じ
であるが、C値の上昇のほとんどない状態で脱酸を十分
に行なうことができ、不純物や非金属介在物の除去が行
なえることがわかる。上述したように、特に低炭素が要
求される合金を精錬するためには、予備精錬炉で十分脱
炭反応を行なって、さらに真空精錬によって脱酸させた
きれいな溶湯を、次のプラズマ加熱による再精錬をする
と極めて清浄度の高い合金が得られることがわかる。
FIG. 6 shows that the molten metal after blowing the mixed gas shown in FIG. 5 and adding nickel oxide to accelerate decarburization and subsequently performing vacuum refining is transferred to a plasma refining furnace. 9 is a plot of changes in O value and C value in the molten metal with respect to the time elapsed from the time when the slag forming agent was added. The refining method in the plasma refining furnace is the same as in the case of FIG. 4, but deoxidation can be sufficiently performed in a state where the C value hardly rises, and impurities and nonmetallic inclusions can be removed. I understand that As mentioned above, in order to refine alloys that require particularly low carbon, a sufficient decarburization reaction is performed in the preliminary refining furnace, and the clean molten metal deoxidized by vacuum refining is re-heated by the next plasma heating. It can be seen that refining yields an extremely clean alloy.

【0026】なお、以上の実施例において、予備精錬の
例として真空精錬法を用いた例で述べたが、本発明はこ
れに限定されない。すなわち、精錬対象である溶湯が含
有する合金成分元素によっては、その成分の蒸発等によ
る損失を防止抑制するため、通常、絶対圧力で200Torr
程度以下の不活性ガス雰囲気が適宜選定されており、高
真空でない場合も本発明に含む。また、上記実施例にお
いて、予備精錬炉で直接固体原料から溶解を行なったも
のについて説明したが、真空精錬する前の工程、つまり
溶解および酸素源の吹き込みまたは添加を別の容器で行
なってもよいことは言うまでもない。
Although the vacuum refining method is used as an example of the pre-refining in the above embodiments, the present invention is not limited to this. In other words, depending on the alloy component elements contained in the molten metal that is the object of refining, in order to prevent loss due to evaporation of the components, it is usually 200 Torr at absolute pressure.
An inert gas atmosphere of a certain degree or less is appropriately selected, and the present invention includes the case where the vacuum is not high. Further, in the above-mentioned embodiment, the melting was performed directly from the solid raw material in the preliminary refining furnace, but the step before the vacuum refining, that is, the melting and the blowing or addition of the oxygen source may be performed in another container. Needless to say.

【0027】(実施例3)図7に示す設備を用いて、以
下に示す手順で操業を行なった。実施例1と同じFe−
42Ni合金の固体原料を容器50内に投入した後、容器
真空蓋53を施し、真空排気系54により容器50内を
減圧し、誘導加熱コイル52により溶解を開始した。次
いで溶解した溶湯に図示しないランスをこの溶湯51に
挿入し、前記ランスを介して外部から酸素ガスとArガ
スを混合したガスを吹き込んだ。上記の混合ガスの吹き
込みを終了した後に、引き続いて酸化ニッケルと酸化鉄
(Fe23)を合計で溶湯トン当り3kgを投入装置55
から添加した。
(Embodiment 3) Using the equipment shown in FIG. 7, operation was performed in the following procedure. Fe-same as in Example 1
After the solid raw material of 42Ni alloy was charged into the container 50, the container vacuum lid 53 was provided, the pressure inside the container 50 was reduced by the vacuum exhaust system 54, and the melting was started by the induction heating coil 52. Next, a lance (not shown) was inserted into the melt 51, and a mixed gas of oxygen gas and Ar gas was blown from the outside through the lance. After the blowing of the above mixed gas is completed, subsequently, a total of 3 kg of nickel oxide and iron oxide (Fe 2 O 3 ) is added to the molten metal per ton of the charging device 55.
Added from.

【0028】次に真空排気系54の容量を高めて脱酸を
開始した。脱酸精錬が終了した時点で真空排気系54を
止め、アルゴン底吹き撹拌装置58からアルゴンガスを
流入して置換した上で投入装置55から造滓剤を添加し
た。次いで容器真空蓋53の外部にセットしてあるプラ
ズマ加熱トーチ56を容器50内に挿入してプラズマ加
熱を開始し、同時に前記前記アルゴン底吹き撹拌装置5
8からアルゴンガスを吹き込みながら溶湯を撹拌させて
再精錬を行なった。再精錬が終了するとスライディング
ノズル57を開口し、前記スライディングノズルの下に
用意されたインゴットケースに受湯した。このようにし
て得られた鋳塊から採取した試料をガス分析した結果、
実施例1の混合ガスと酸化ニッケルを加えて脱炭、脱酸
し、さらにプラズマ加熱炉で再精錬した合金のO値が22
ppm、C値が26ppmであったのに対して、上記方法による
合金はO値が26ppm、C値は29ppmであった。
Next, the capacity of the vacuum exhaust system 54 was increased to start deoxidation. When the deoxidation refining was completed, the vacuum evacuation system 54 was stopped, and argon gas was introduced from the argon bottom-blown stirrer 58 to replace it, and then the slag forming agent was added from the charging device 55. Next, the plasma heating torch 56 set outside the container vacuum lid 53 is inserted into the container 50 to start plasma heating, and at the same time, the argon bottom blowing stirring device 5 is used.
The molten metal was stirred while blowing argon gas from No. 8, and refining was performed. When the re-refining was completed, the sliding nozzle 57 was opened and the hot water was received in the ingot case prepared under the sliding nozzle. As a result of gas analysis of the sample collected from the ingot thus obtained,
The O value of the alloy obtained by decarburizing and deoxidizing by adding the mixed gas and nickel oxide of Example 1 and further refining in the plasma heating furnace is 22.
The alloy by the above method had an O value of 26 ppm and a C value of 29 ppm, while the ppm and C values were 26 ppm.

【0029】[0029]

【発明の効果】以上述べたように、本発明は、加熱手段
を有する精錬炉を用い、酸素ガスまたは酸素ガスと不活
性ガスの混合ガスの吹き込むなどの酸素源の供給によっ
て、十分な脱炭を用い、さらに真空または低酸素分圧雰
囲気で予備精錬して脱酸させることで実質的にスラグの
ない比較的きれいな溶湯の状態で、次のプラズマ加熱精
錬に移行できるため、精錬効率の高い極めて清浄度の高
い合金を得ることができる。本発明の方法では、予備精
錬でのスラグの発生が比較的少なく、溶湯中の炭素が低
く、さらに残存する酸素レベルが低い溶湯が得られる。
その結果、プラズマ加熱での再精錬時に新たに添加する
造滓剤の種類や量を少なくして効果的に再精錬を行なう
ことができる。
As described above, the present invention uses a refining furnace having a heating means, and supplies sufficient oxygen by supplying an oxygen source such as blowing in oxygen gas or a mixed gas of oxygen gas and an inert gas. In addition, by further refining and deoxidizing in a vacuum or low oxygen partial pressure atmosphere, it is possible to move to the next plasma heating refining in the state of relatively clean molten metal with substantially no slag, so refining efficiency is extremely high. An alloy with high cleanliness can be obtained. According to the method of the present invention, a molten metal having a relatively small amount of slag generated in the pre-refining, a low carbon content in the molten metal, and a low residual oxygen level can be obtained.
As a result, it is possible to effectively carry out re-refining by reducing the kind and amount of the slag-forming agent newly added at the time of re-refining by plasma heating.

【0030】さらに本発明の予備精錬時の酸素ガスを主
体とするガス吹き込みによる脱炭精錬を行なうことで、
平衡反応で同時に脱窒も促進させる利点もある。また、
本発明は、脱炭および脱酸を行なう予備精錬を終了した
溶湯を別の容器に更新することで、さらにきれいな溶湯
の状態で次のプラズマ加熱による再精錬を効率的に行な
うことができる。
Further, by carrying out decarburization refining by gas blowing mainly of oxygen gas at the time of preliminary refining of the present invention,
The equilibrium reaction also has the advantage of simultaneously promoting denitrification. Also,
According to the present invention, the molten metal which has been subjected to the pre-refining for decarburization and deoxidation is replaced with another container, so that the re-refining by the next plasma heating can be efficiently performed in a state of a more clean molten metal.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例に用いた装置の一例を示す図で
ある。
FIG. 1 is a diagram showing an example of an apparatus used in an example of the present invention.

【図2】本発明の実施例に用いた装置の一例を示す図で
ある。
FIG. 2 is a diagram showing an example of an apparatus used in an example of the present invention.

【図3】真空誘導炉で溶解した溶湯にノズルを挿入して
酸素ガスとArガスの混合ガスを吹き込み始めた時点か
らの経過時間に対するC値の変化を示す図である。
FIG. 3 is a diagram showing a change in C value with respect to an elapsed time from when a nozzle is inserted into a molten metal melted in a vacuum induction furnace and a mixed gas of oxygen gas and Ar gas is started to be blown.

【図4】上記予備精錬(図3)後、溶湯を別容器の再精
錬炉に注湯し、新たな造滓剤を添加してプラズマ加熱に
よる再精錬を開始した時点からの経過時間とO値とC値
の変化を示す図である。
[Fig. 4] After the above pre-refining (Fig. 3), the molten metal is poured into a re-refining furnace in another container, a new slag-making agent is added, and re-refining by plasma heating is started. It is a figure which shows the change of a value and C value.

【図5】真空誘導炉で酸素ガスとArガスの混合ガスの
吹き込みを終了した後、酸化ニッケルを添加するととも
に、開始した時点からの経過時間に対するO値とC値の
変化を示す図である。
FIG. 5 is a diagram showing changes in O value and C value with respect to elapsed time from the time when nickel oxide is added after the blowing of the mixed gas of oxygen gas and Ar gas is completed in the vacuum induction furnace. .

【図6】上記予備精錬(図5)後、溶湯を別容器の再精
錬炉に注湯し、新たな造滓剤を添加してプラズマ加熱に
よる再精錬を開始した時点からの経過時間とO値とC値
の変化を示す図である。
[Fig. 6] After the preliminary refining (Fig. 5), the molten metal is poured into a re-refining furnace in a separate container, a new refining agent is added, and re-refining by plasma heating is started. It is a figure which shows the change of a value and C value.

【図7】本発明の実施例に用いた装置の一例を示す図で
ある。
FIG. 7 is a diagram showing an example of an apparatus used in Examples of the present invention.

【符号の説明】[Explanation of symbols]

1 真空または低酸素分圧下精錬装置、2 大気遮断室
本体、3 蓋体、4仕切りバルブ、5 誘導加熱精錬
炉、6a 真空排気系、6b 真空排気系、7a 不活
性ガス導入系、7b 不活性ガス導入系、8 副原料投
入系、9 副原料投入系、20 再精錬装置、22 仕
切りドア、23 不活性ガスプラズマ加熱装置、24
軌条および台車、27 再精錬容器(再精錬位置)、2
7a 容器蓋体、28 ポーラスプラグ、29 スライ
ディングノズル、30 インゴットケース、31 台
車、a 大気遮断室、b 大気遮断室、50 容器、5
1溶湯、52 誘導加熱コイル、53 容器真空蓋、5
4 真空排気系、55 投入装置、56 プラズマ加熱
トーチ、57 スライディングノズル、58 アルゴン
底吹き撹拌装置
1 vacuum or low oxygen partial pressure refining equipment, 2 atmosphere blocking chamber body, 3 lid, 4 partition valve, 5 induction heating refining furnace, 6a vacuum exhaust system, 6b vacuum exhaust system, 7a inert gas introduction system, 7b inert Gas introduction system, 8 auxiliary raw material charging system, 9 auxiliary raw material charging system, 20 re-refining device, 22 partition door, 23 inert gas plasma heating device, 24
Rails and carts, 27 re-refining vessels (re-refining position), 2
7a Container lid, 28 Porous plug, 29 Sliding nozzle, 30 Ingot case, 31 Carriage, a Air shutoff chamber, b Air shutoff chamber, 50 container, 5
1 molten metal, 52 induction heating coil, 53 container vacuum lid, 5
4 vacuum exhaust system, 55 charging device, 56 plasma heating torch, 57 sliding nozzle, 58 argon bottom blowing stirring device

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 加熱手段を有する容器中の溶湯に酸素源
または酸素源と不活性ガスの混合物を添加または吹き込
み、前記酸素源の添加または吹きんだ後、真空または低
酸素分圧雰囲気で、その他の予備精錬をした後、該溶湯
に造滓剤を添加し、不活性ガスプラズマにより加熱して
再精錬することを特徴とする溶湯の精錬方法。
1. An oxygen source or a mixture of an oxygen source and an inert gas is added or blown into a molten metal in a container having a heating means, and after the addition or blowing of the oxygen source, a vacuum or a low oxygen partial pressure atmosphere, A method for refining a molten metal, which comprises performing a preliminary refining process and then adding a slag forming agent to the molten metal and heating the molten metal with an inert gas plasma for refining.
【請求項2】 加熱手段を有する容器中の溶湯に酸素源
または酸素源と不活性ガスの混合物を添加または吹き込
み、前記酸素源の添加または吹き込んだ後、真空または
低酸素分圧雰囲気で、その他の予備精錬をした後、前記
溶湯を前記容器とは別容器に移すとともに造滓剤を添加
し、不活性ガスプラズマにより加熱して再精錬すること
を特徴とする溶湯の精錬方法。
2. An oxygen source or a mixture of an oxygen source and an inert gas is added to or blown into the molten metal in a container having a heating means, and after the addition or blowing of the oxygen source, a vacuum or a low oxygen partial pressure atmosphere is used. After the preliminary refining, the molten metal is transferred to a container different from the container, a slag-forming agent is added, and the mixture is heated by an inert gas plasma to be refined again.
【請求項3】 予備精錬の加熱手段は誘導加熱によるも
のである請求項1または2に記載の溶湯の精錬方法。
3. The molten metal refining method according to claim 1 or 2, wherein the heating means for the pre-refining is induction heating.
JP29114994A 1994-11-25 1994-11-25 Refining method of molten metal Expired - Fee Related JP3570569B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29114994A JP3570569B2 (en) 1994-11-25 1994-11-25 Refining method of molten metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29114994A JP3570569B2 (en) 1994-11-25 1994-11-25 Refining method of molten metal

Publications (2)

Publication Number Publication Date
JPH08143930A true JPH08143930A (en) 1996-06-04
JP3570569B2 JP3570569B2 (en) 2004-09-29

Family

ID=17765084

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29114994A Expired - Fee Related JP3570569B2 (en) 1994-11-25 1994-11-25 Refining method of molten metal

Country Status (1)

Country Link
JP (1) JP3570569B2 (en)

Also Published As

Publication number Publication date
JP3570569B2 (en) 2004-09-29

Similar Documents

Publication Publication Date Title
WO2007091700A1 (en) Method of denitrifying molten steel
KR100227252B1 (en) Method of refining molten metal
WO1995032312A1 (en) Method and apparatus for refining molten metal
US4097269A (en) Process of desulfurizing liquid melts
JP2008163389A (en) Method for producing bearing steel
JP2008063610A (en) Method for producing molten steel
JP3627755B2 (en) Method for producing high cleanliness ultra low carbon steel with extremely low S content
JP3893770B2 (en) Melting method of high clean ultra low carbon steel
JP2005272958A (en) Method for utilizing vacuum-degassing apparatus
JP2004511659A (en) Method for producing stainless steel, especially special steel containing chromium and chromium nickel
JP2008169407A (en) Method for desulfurizing molten steel
JP3465801B2 (en) Method for refining molten Fe-Ni alloy
JP3570569B2 (en) Refining method of molten metal
JPH08143932A (en) Method for refining molten metal
JP3438830B2 (en) Refining method and equipment for molten metal
JP4534734B2 (en) Melting method of low carbon high manganese steel
JPH0987732A (en) Method for refining molten steel
US4199350A (en) Method for the production of quality steels
JPH08143931A (en) Method for refining molten metal
JPH08143933A (en) Method for refining molten metal
JP2002030330A (en) Method for heating molten steel in vacuum refining furnace
JPH08143944A (en) Method for refining molten metal
JPH08143943A (en) Method for refining molten metal
JPH08143938A (en) Method for refining molten metal
JPH08143936A (en) Method for refining molten metal

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Effective date: 20040326

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20040510

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20040604

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Effective date: 20040617

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20070702

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080702

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20090702

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20100702

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20100702

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110702

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110702

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120702

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees