JPH08141073A - Warming device and hollow fiber membrane type artificial lung having the same - Google Patents

Warming device and hollow fiber membrane type artificial lung having the same

Info

Publication number
JPH08141073A
JPH08141073A JP6283100A JP28310094A JPH08141073A JP H08141073 A JPH08141073 A JP H08141073A JP 6283100 A JP6283100 A JP 6283100A JP 28310094 A JP28310094 A JP 28310094A JP H08141073 A JPH08141073 A JP H08141073A
Authority
JP
Japan
Prior art keywords
hollow fiber
fiber membrane
artificial lung
heat
housing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6283100A
Other languages
Japanese (ja)
Other versions
JP3601861B2 (en
Inventor
Hiroaki Hamazaki
弘昭 浜崎
Eerio Toshi Katsuta
エーリオ俊 勝田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Terumo Corp
Original Assignee
Terumo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Terumo Corp filed Critical Terumo Corp
Priority to JP28310094A priority Critical patent/JP3601861B2/en
Publication of JPH08141073A publication Critical patent/JPH08141073A/en
Application granted granted Critical
Publication of JP3601861B2 publication Critical patent/JP3601861B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE: To provide a hollow fiber membrane type artificial lung capable of averting the degradation of gas exchangeability with lapse of time. CONSTITUTION: A warming device 1 is so mounted as to cover a gas leading out side port 33 of this hollow fiber membrane type artificial lung 2 and a heating member 12 is made to generate heat by the electric power inputted from a power supply section. A heat transfer member 11 is heated by this heating member 12 and the gas leading out part 31 and partition walls 24 of the hollow fiber membrane type artificial lung 2 are heated by the heat transfer member 11. On the other hand, the heat of the heating member 12 generating heat is insulated by a heat insulating member 13.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、長期体外循環に使用さ
れる中空糸膜型人工肺のガス交換能の経時的低下を改善
するために用いる加温装置及びそれを備えた中空糸膜型
人工肺に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heating device used for improving the gas exchange capacity of a hollow fiber membrane oxygenator used for long-term extracorporeal circulation over time and a hollow fiber membrane device including the same. It is about artificial lungs.

【0002】[0002]

【従来の技術】近年、操作性や安全性に優れた遠心ポン
プ、患者に経皮的に挿入可能なカニューレ等の開発がな
され、酸素加性能、二酸化炭素除去性能が優れ、血液損
傷の少ない中空糸膜型人工肺は、長時間にわたり心肺機
能をサポートするV−Aバイパス等の体外補助循環に使
用されるようになった。
2. Description of the Related Art In recent years, a centrifugal pump excellent in operability and safety, a cannula that can be inserted into a patient percutaneously, and the like have been developed. The synovial oxygenator has come to be used for extracorporeal assisted circulation such as VA bypass that supports cardiopulmonary function for a long time.

【0003】ところが、このような中空糸膜型人工肺に
おいては、長時間使用すると経時的なガス交換能が低下
するという問題点があった。すなわち、血液中の水分が
中空糸膜を透過し、ガス中に流出し水蒸気となり、その
水蒸気がガス導出部付近で外気により急激に冷却され、
中空糸膜表面に付着して、ガス交換能を低下させる、い
わゆるウエットラングと呼ばれる現象が現れる。
However, in such a hollow fiber membrane oxygenator, there is a problem that the gas exchange capacity with time decreases when used for a long time. That is, water in blood permeates the hollow fiber membrane, flows out into gas to become water vapor, and the water vapor is rapidly cooled by the outside air near the gas outlet,
A phenomenon called so-called wet rung appears, which adheres to the surface of the hollow fiber membrane and reduces the gas exchange capacity.

【0004】これに対して、ガス導出部側のハウジング
外壁面に温度保持手段を設けた中空糸膜型人工肺や中空
糸膜のガス導出部側の隔壁に熱線を埋設した中空糸膜型
人工肺が開発された。
On the other hand, a hollow fiber membrane type artificial lung in which a temperature holding means is provided on the outer wall surface of the housing on the gas outlet side or a hollow fiber membrane type artificial lung in which a heating wire is embedded in the partition wall of the hollow fiber membrane on the gas outlet side. The lungs were developed.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、温度保
持手段を設けた人工肺は、単に、ガス導出口を形成する
ハウジング外壁面を発泡材により覆ったものであるの
で、保温効果を長時間維持することは困難である。ま
た、熱線を隔壁に埋設した人工肺は、通電手段により熱
線に電流を与え発熱させるものであるので、長時間にわ
たり加熱することは可能であるが、伝熱及び断熱効果が
低いため温度を高く維持し続けなければならない。この
ため、長時間にわたり一定温度を維持すると、温度が高
いため血液に影響を及ぼす恐れがある。
However, since the oxygenator provided with the temperature holding means simply covers the outer wall surface of the housing forming the gas outlet with the foam material, the heat retaining effect is maintained for a long time. Is difficult. Further, the artificial lung in which the heat wire is embedded in the partition wall can be heated for a long period of time because the current is applied to the heat wire by the energizing means to generate heat, but the heat transfer and heat insulation effects are low, so the temperature is high. You have to keep it. Therefore, maintaining a constant temperature for a long time may affect blood because of the high temperature.

【0006】本発明は、このような従来の問題点に鑑み
てなされたものであって、効果的に伝熱及び断熱するこ
とにより、ガス交換能の経時的な低下を回避し、長時間
ウエットラング現象を防止することが可能な加温装置及
びそれを備えた中空糸膜型人工肺を提供することを目的
とする。
The present invention has been made in view of the above-mentioned conventional problems, and effectively heat-transfers and insulates to avoid a decrease in gas exchange capacity over time, and to wet for a long time. An object of the present invention is to provide a heating device capable of preventing the rung phenomenon and a hollow fiber membrane type artificial lung including the heating device.

【0007】[0007]

【課題を解決するための手段】このような目的は、本発
明の加温装置及びそれを備えた中空糸膜型人工肺により
達成される。
This object is achieved by the heating device of the present invention and the hollow fiber membrane type artificial lung provided with the heating device.

【0008】すなわち、本発明の加温装置は、中空糸膜
型人工肺に装着し、該人工肺のガス導出部を一定温度に
保持するための加温装置であって、該ガス導出部付近を
覆って、伝熱する伝熱部材と、該伝熱部材に接して設け
られ、前記伝熱部材を加熱する加熱部材と、該加熱部材
に電力を供給するための電源供給部と、前記加熱部材に
接して設けられ、前記加熱部材に発生した温度を保持す
るための断熱部材とからなることを特徴とする。
That is, the warming device of the present invention is a warming device which is attached to a hollow fiber membrane-type artificial lung to maintain the gas outlet of the oxygenator at a constant temperature. A heat transfer member for transmitting heat, a heating member provided in contact with the heat transfer member for heating the heat transfer member, a power supply unit for supplying electric power to the heating member, and the heating unit. It is characterized in that it is provided in contact with the member and comprises a heat insulating member for holding the temperature generated in the heating member.

【0009】また、該加温装置は、前記伝熱部材、前記
加熱部材及び前記断熱部材が積層されてなる有底筒状の
形状であることが好ましい。
Further, it is preferable that the heating device has a bottomed cylindrical shape in which the heat transfer member, the heating member and the heat insulating member are laminated.

【0010】さらに、前記加温装置は、前記伝熱部材及
び前記断熱部材が有底筒状の形状であり、前記加熱部材
の一方面が前記断熱部材の内底面に接して位置し、他方
面が前記伝熱部材の外底面に接して位置することが好ま
しい。
Further, in the heating device, the heat transfer member and the heat insulating member have a bottomed cylindrical shape, one surface of the heating member is positioned in contact with the inner bottom surface of the heat insulating member, and the other surface is Is preferably in contact with the outer bottom surface of the heat transfer member.

【0011】また、前記加温装置は、前記人工肺の隔壁
及びガス導出部を覆うように人工肺に装着するための人
工肺装着部及び人工肺のガス導出口を装着するためのガ
ス導出口装着部を備えることが好ましい。
Further, the warming device is provided with an artificial lung attachment portion for attaching to the artificial lung so as to cover the partition wall and the gas outlet portion of the artificial lung, and a gas outlet for attaching the gas outlet of the artificial lung. It is preferable to provide a mounting portion.

【0012】また、本発明の加温装置を備えた中空糸膜
型人工肺は、ハウジングと、該ハウジング内に収納され
た多数の多孔質中空糸膜と、該中空糸膜の両端部を前記
ハウジングの両端部に液密に固定する隔壁と、該隔壁と
前記中空糸膜の外面と前記ハウジングの内壁とにより形
成された血液室に連通する血液流入口及び血液流出口
と、前記ハウジングの一端側に設けられ前記中空糸膜の
内部と連通するガス導入口と、前記ハウジングの他端側
に設けられ前記中空糸膜の内部と連通するガス導出口と
からなる中空糸膜型人工肺であって、前記ハウジングの
該ガス導出口側端部に、前記加温装置を備えることを特
徴とする。
The hollow fiber membrane type artificial lung provided with the heating device of the present invention comprises a housing, a large number of porous hollow fiber membranes housed in the housing, and both ends of the hollow fiber membrane. A partition for liquid-tightly fixing to both ends of the housing, a blood inlet and a blood outlet communicating with a blood chamber formed by the partition, the outer surface of the hollow fiber membrane and the inner wall of the housing, and one end of the housing A hollow fiber membrane-type artificial lung comprising a gas inlet provided on the side and communicating with the inside of the hollow fiber membrane, and a gas outlet provided on the other end side of the housing and communicating with the inside of the hollow fiber membrane. The heating device is provided at an end of the housing on the gas outlet side.

【0013】[0013]

【作用】上記構成において、本発明の加温装置及びそれ
を備えた中空糸膜型人工肺は、加温装置を中空糸膜型人
工肺の底面部に装着し、電源供給部より入力した電力に
より加熱部材を発熱させ、該加熱部材により伝熱部材を
加熱し、該伝熱部材により中空糸膜型人工肺の底面部に
熱を伝え、該人工肺のガス導出部を加温できる。一方、
発熱した加熱部材の熱を断熱部材により断熱することが
できる。このため、長時間にわたり中空糸膜型人工肺を
使用することを可能とする。
In the above structure, the heating device of the present invention and the hollow fiber membrane-type artificial lung including the heating device are equipped with the heating device on the bottom surface of the hollow fiber membrane-type artificial lung, and the power input from the power supply unit is supplied. The heating member generates heat, the heating member heats the heat transfer member, the heat transfer member transfers heat to the bottom surface of the hollow fiber membrane-type artificial lung, and the gas outlet of the artificial lung can be heated. on the other hand,
The heat of the heating member that has generated heat can be insulated by the heat insulating member. Therefore, it is possible to use the hollow fiber membrane type artificial lung for a long time.

【0014】[0014]

【実施例】以下、本発明の加温装置及びそれを備えた中
空糸膜型人工肺を添付図面に示す好適な実施例に基づい
て詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The warming device of the present invention and the hollow fiber membrane-type artificial lung equipped with the same will be described below in detail with reference to the preferred embodiments shown in the accompanying drawings.

【0015】最初に、本発明の加温装置について、図1
及び図2を用いて説明する。図1は、本発明の実施例に
係る加温装置の外観図であり、図2は、本発明の実施例
に係る加温装置の断面図である。
First, the heating device of the present invention will be described with reference to FIG.
2 and FIG. FIG. 1 is an external view of a heating device according to an embodiment of the present invention, and FIG. 2 is a cross-sectional view of the heating device according to an embodiment of the present invention.

【0016】図において、本発明の加温装置1は、中空
糸膜型人工肺のガス導出部付近を覆って伝熱する伝熱部
材11と、伝熱部材11に接して設けられ伝熱部材11
を加熱する加熱部材12と、加熱部材12に電力を供給
するための電源供給部14と、加熱部材12に接して設
けられ加熱部材12に発生した温度を保持するための断
熱部材13とからなる。そして、伝熱部材11、加熱部
材12及び断熱部材13は、積層されてなる。伝熱部材
11及び断熱部材13は、有底筒状の形状であり、加熱
部材12は、一方面が断熱部材13の内底面に接して位
置し、他方面が伝熱部材11の外底面に接して位置す
る。さらに、加温装置1は、人工肺の隔壁及びガス導出
部を覆うように人工肺を装着するための人工肺装着部1
5及び人工肺のガス導出口を装着するためのガス導出口
装着部16を備えている。そして、加温装置1は、人工
肺のガス導出部及び隔壁を覆う高さを有しているか、そ
れ以上の高さを有している。また、人工肺装着部15
は、中空糸膜型人工肺のガス導出側ポートの形状に合わ
せて形成され、ガス導出口装着部16は、中空糸膜型人
工肺のガス導出口の位置に合わせて形成されている。
In the figure, a heating device 1 of the present invention includes a heat transfer member 11 for covering the gas outlet of a hollow fiber membrane oxygenator and transferring heat, and a heat transfer member provided in contact with the heat transfer member 11. 11
A heating member 12 for heating the heating member 12, a power supply unit 14 for supplying electric power to the heating member 12, and a heat insulating member 13 provided in contact with the heating member 12 for holding the temperature generated in the heating member 12. . The heat transfer member 11, the heating member 12, and the heat insulating member 13 are laminated. The heat transfer member 11 and the heat insulating member 13 have a cylindrical shape with a bottom, and the heating member 12 has one surface in contact with the inner bottom surface of the heat insulating member 13 and the other surface on the outer bottom surface of the heat transfer member 11. Located close to each other. Further, the warming device 1 includes an artificial lung attachment part 1 for attaching the artificial lung so as to cover the partition wall and the gas outlet of the artificial lung.
5 and a gas outlet port mounting portion 16 for mounting the gas outlet port of the artificial lung. The heating device 1 has a height that covers the gas outlet and the partition wall of the artificial lung, or has a height higher than that. In addition, the artificial lung attachment part 15
Is formed in conformity with the shape of the gas outlet port of the hollow fiber membrane-type oxygenator, and the gas outlet port attachment portion 16 is formed in conformity with the position of the gas outlet port of the hollow fiber membrane-type oxygenator.

【0017】そして、電源供給部14は、温度制御装置
(図示せず)に接続されていて、温度制御装置は、通電
手段(例えば、直流電源)より電流を導いて、所定の温
度となるように電流を制御した後に、電源供給部14を
介して加熱部材12に電力が供給されるように構成され
ている。そして、供給された電力により加熱部材12が
発熱し、加熱部材12により伝熱部材11が加熱され、
伝熱部材11により中空糸膜型人工肺のガス導出部及び
隔壁の全体を加温する。一方、発熱した加熱部材12の
熱を断熱部材13により断熱するように構成されてい
る。このため、長時間にわたり中空糸膜型人工肺を使用
することを可能とする。
The power supply unit 14 is connected to a temperature control device (not shown), and the temperature control device guides an electric current from an energizing means (for example, a DC power supply) so that the temperature becomes a predetermined temperature. After controlling the electric current, the electric power is supplied to the heating member 12 via the power supply unit 14. Then, the heating member 12 generates heat by the supplied electric power, and the heating member 12 heats the heat transfer member 11,
The heat transfer member 11 heats the entire gas outlet and partition of the hollow fiber membrane-type artificial lung. On the other hand, the heat generated by the heating member 12 is insulated by the heat insulating member 13. Therefore, it is possible to use the hollow fiber membrane type artificial lung for a long time.

【0018】加温装置1の形状としては、人工肺のガス
導出部及び隔壁を覆う形状であれば特に限定されるもの
ではないが、人工肺のガス導出側ポートに合った形状で
あることが好ましく、具体的には有底筒状であることが
好ましく、特に有底円筒状であることがより好ましい。
The shape of the heating device 1 is not particularly limited as long as it covers the gas outlet portion and the partition wall of the artificial lung, but may be a shape that matches the gas outlet port of the artificial lung. It is preferable, specifically, to have a bottomed cylindrical shape, and particularly preferable to have a bottomed cylindrical shape.

【0019】伝熱部材11の材質としては、熱伝導率の
高いものが好ましく、例えば、アルミニウム、銅、鉄、
アルミニウム合金、亜鉛合金等が挙げられが、軽重量で
加工し易く、熱伝導率が高いことから、特にアルミニウ
ムであることが好ましい。また、伝熱部材11の肉厚
は、0.1mm〜100mm程度、好ましくは1.0m
m〜5.0mm程度、特に好ましくは2.0mmであ
り、肉厚が0.1mm以下であると、強度に不安があ
り、100mm以上であると、加熱するための熱エネル
ギーを多く必要とし、効率的な伝熱ができずに経済的な
負担がかかる。
The material of the heat transfer member 11 is preferably one having a high thermal conductivity, such as aluminum, copper, iron,
Examples thereof include aluminum alloys and zinc alloys, but aluminum is particularly preferable because it is easy to process with a light weight and has high thermal conductivity. The thickness of the heat transfer member 11 is about 0.1 mm to 100 mm, preferably 1.0 m.
m-5.0 mm, particularly preferably 2.0 mm, when the wall thickness is 0.1 mm or less, there is concern about the strength, and when it is 100 mm or more, a large amount of heat energy for heating is required, An economical burden is imposed because efficient heat transfer cannot be performed.

【0020】加熱部材12は、図に示すような人工肺の
底面部と同様な形状であるものの他、人工肺のガス導出
側ポートと同様な形状であるものでもよく、例えば、シ
リコンラバーヒーター、遠赤外線ヒーター、フィルム型
ヒーター等が挙げられるが、薄いシート状で柔軟性に優
れ、必要な形状に加工し易いことから、特にシリコンラ
バーヒーターを用いることが好ましい。また、加温装置
1を小型化するため、加熱部材12の肉厚は、なるべく
小さく、効率的に加熱できる省エネタイプであることが
好ましく、具体的には0.5mm〜1.5mm程度の肉
厚であることが好ましい。
The heating member 12 may have a shape similar to that of the bottom surface of the artificial lung as shown in the figure, or may have a shape similar to that of the gas outlet port of the artificial lung. For example, a silicon rubber heater, Far-infrared heaters, film type heaters and the like can be mentioned, but it is particularly preferable to use a silicon rubber heater because it is a thin sheet, has excellent flexibility, and can be easily processed into a required shape. Further, in order to reduce the size of the heating device 1, it is preferable that the thickness of the heating member 12 is as small as possible and an energy saving type capable of efficiently heating the heating member 12, specifically, a thickness of about 0.5 mm to 1.5 mm. It is preferably thick.

【0021】断熱部材13としては、熱伝導率が低く、
熱の発散を防止できる材質であれば、特に限定されるも
のではないが、例えば、ポリエチレン、ポリウレタン、
ポリスチレン、ポリエチレン、ポリプロピレン等の高分
子材料の発泡体等が挙げられるが、断熱効果が高く加工
し易いことから、特に発泡ポリエチレンであることが好
ましい。また、断熱部材13の肉厚は、0.1mm〜1
00mm程度、好ましくは1.0mm〜10mm程度、
特に好ましくは5.0mmであり、肉厚が0.1mm以
下であると、断熱効果が乏しく、熱の発散を充分に防止
することが困難であり、100mm以上であると、加温
装置1の大きさが大となり、人工心肺回路等の回路中に
配置されている人工肺に取り付けにくい。
The heat insulating member 13 has a low thermal conductivity,
The material is not particularly limited as long as it can prevent the dissipation of heat, but for example, polyethylene, polyurethane,
Examples thereof include foams made of polymer materials such as polystyrene, polyethylene, and polypropylene. However, foamed polyethylene is particularly preferable because it has a high heat insulating effect and is easily processed. The thickness of the heat insulating member 13 is 0.1 mm to 1
About 00 mm, preferably about 1.0 mm to 10 mm,
Particularly preferably, it is 5.0 mm, and when the wall thickness is 0.1 mm or less, the heat insulating effect is poor, and it is difficult to sufficiently prevent heat dissipation, and when it is 100 mm or more, the heating device 1 has The size is large, and it is difficult to attach it to an artificial lung arranged in a circuit such as a cardiopulmonary bypass circuit.

【0022】温度制御装置は、人工肺のガス導出部の温
度が、血液の温度と同じか或いはやや高く維持されるよ
に制御するものであり、例えば、加熱部材12に接続し
たクロメル・アルメル又は鉄・コンスタン等の熱電対、
若しくは白金、ニッケル等の抵抗温度センサー等から発
せられる信号をON/OFF動作や微動作、PDI動作
等を制御方式とする。
The temperature control device controls the temperature of the gas outlet of the artificial lung so as to be maintained at the same as or slightly higher than the temperature of blood. For example, a chromel alumel connected to the heating member 12 or Thermocouples such as iron and constant,
Alternatively, a signal generated from a resistance temperature sensor such as platinum or nickel is used as a control method for ON / OFF operation, fine operation, PDI operation, or the like.

【0023】次いで、本発明の加温装置を備えた中空糸
膜型人工肺について、図3を用いて説明する。図3は、
本発明の実施例に係る加温装置を備えた中空糸膜型人工
肺の断面図である。
Next, a hollow fiber membrane type artificial lung equipped with the heating device of the present invention will be described with reference to FIG. FIG.
It is sectional drawing of the hollow fiber membrane type oxygenator provided with the heating apparatus which concerns on the Example of this invention.

【0024】図において、本発明の加温装置を備えた中
空糸膜型人工肺4は、中空糸膜型人工肺2と加温装置1
とからなり、中空糸膜型人工肺2は、ハウジング21
と、ハウジング21内に収納された多数の多孔質中空糸
膜22と、中空糸膜22の両端部をハウジング21の両
端部に液密に固定する隔壁23,24と、隔壁23,2
4と中空糸膜22の外面とハウジング21の内壁とによ
り形成された血液室25に連通する血液流入口26及び
血液流出口27と、ハウジング21の一端側に設けられ
中空糸膜22の内部と連通するガス導入口28と、ハウ
ジング21の他端側に設けられ中空糸膜22の内部と連
通するガス導出口29とからなり、ハウジング21のガ
ス導出部31側端部に、加温装置1を備えている。
In the figure, a hollow fiber membrane type artificial lung 4 equipped with a heating device of the present invention is shown as a hollow fiber membrane type artificial lung 2 and a heating device 1.
The hollow fiber membrane type artificial lung 2 comprises a housing 21
A large number of porous hollow fiber membranes 22 housed in the housing 21, partition walls 23 and 24 for liquid-tightly fixing both end portions of the hollow fiber membranes 22 to both end portions of the housing 21, and partition walls 23 and 2.
4, an outer surface of the hollow fiber membrane 22 and a blood chamber 25 formed by the inner wall of the housing 21, the blood inlet 26 and the blood outlet 27 communicating with each other, and the inside of the hollow fiber membrane 22 provided at one end of the housing 21. The gas inlet 28 communicates with the gas outlet 29 provided at the other end of the housing 21 and communicates with the inside of the hollow fiber membrane 22. The heating device 1 is provided at the end of the housing 21 on the gas outlet 31 side. Is equipped with.

【0025】より具体的に説明すると、中空糸膜型人工
肺2は、血液流入口26と血液流出口27と中間部に拘
束部34を有するハウジング21と、ハウジング21内
に軸方向に収納されたガス交換膜である中空糸膜22の
集合体と、中空糸膜の両端部をハウジング21に液密に
保持する隔壁23,24とを有し、ハウジング21内は
ガス室と血液室に区画され、ハウジング21の端部であ
る一方側の隔壁23の上方には中空糸膜22の内部空間
であるガス室に連通するガス導入口28を有するキャッ
プ状のガス導入側ポート32と、他方側の隔壁24の下
方に設けられ中空糸膜22の内部空間に連通するガス導
出口29を有するキャップ状のガス導出側ポート33が
取り付けられている。そして、ガス導入口28から導入
されたガスは、隔壁23により形成されてなるガス導入
部30よりガス室に流入し、血液室25の血液とガス交
換を行って、隔壁24により形成されてなるガス導出部
31より流出し、ガス導出口29から導出される。さら
に、ガス導出側ポート33を覆うように、上述した加温
装置1が装着されている。この加温装置1により、隔壁
24からガス導出口29のガス流路を覆って、特にウエ
ットラング現象の起こり易いガス導出部31の温度を一
定に保っている。
More specifically, the hollow fiber membrane-type artificial lung 2 is housed in a housing 21 having a blood inlet 26, a blood outlet 27, and a restraining portion 34 at an intermediate portion, and is housed in the housing 21 in the axial direction. And a partition wall 23, 24 that holds both ends of the hollow fiber membrane in the housing 21 in a liquid-tight manner. The inside of the housing 21 is divided into a gas chamber and a blood chamber. A cap-shaped gas introduction port 32 having a gas introduction port 28 communicating with a gas chamber which is an internal space of the hollow fiber membrane 22 is provided above the partition wall 23 on one side which is an end of the housing 21, and the other side. A cap-shaped gas lead-out port 33 having a gas lead-out port 29 that is provided below the partition wall 24 and communicates with the internal space of the hollow fiber membrane 22 is attached. Then, the gas introduced from the gas introduction port 28 flows into the gas chamber from the gas introduction part 30 formed by the partition wall 23, exchanges gas with the blood in the blood chamber 25, and is formed by the partition wall 24. It flows out from the gas outlet 31 and is led out from the gas outlet 29. Further, the heating device 1 described above is mounted so as to cover the gas outlet port 33. The heating device 1 covers the gas flow path of the gas outlet 29 from the partition wall 24 to keep the temperature of the gas outlet 31 where the wet rung phenomenon is likely to be constant.

【0026】中空糸膜22としては、多孔質膜、拡散膜
(例えば、シリコン)のいずれでもよいが、好ましくは
多孔質膜である。多孔質中空糸膜としては、内径100
〜1000μm、好ましくは10〜300μm、空孔率
は、20〜80%、好ましくは30〜60%、また、細
孔径は、0.05〜5μm、好ましくは0.01〜1μ
mのものが好ましく使用できる。さらに、多孔質膜に使
用される材質としては、ポリプロピレン、ポリエチレ
ン、ポリスルホン、ポリアクリルニトリル、ポリテトラ
フルオロエチレン、セルロースアセテート等の疎水性高
分子材料が用いられ、好ましくは、ポリオレフィン系樹
脂であり、特に好ましくは、ポリプロピレンであり、延
伸法又は固液相分離法により壁に微細孔が形成されたも
のが好ましい。
The hollow fiber membrane 22 may be either a porous membrane or a diffusion membrane (eg, silicon), but is preferably a porous membrane. The inner diameter of the porous hollow fiber membrane is 100
˜1000 μm, preferably 10 to 300 μm, porosity 20 to 80%, preferably 30 to 60%, and pore size 0.05 to 5 μm, preferably 0.01 to 1 μm.
Those of m can be preferably used. Furthermore, as the material used for the porous film, a hydrophobic polymer material such as polypropylene, polyethylene, polysulfone, polyacrylonitrile, polytetrafluoroethylene, or cellulose acetate is used, and preferably a polyolefin resin, Particularly preferred is polypropylene, which has fine pores formed in the wall by a stretching method or a solid-liquid phase separation method.

【0027】ハウジング21は、例えば、内部の確認が
容易である透明体により形成され、ハウジング21内に
は、軸方向に向けて並列に約1,000〜50,000
本の多数の中空糸膜22が収納されており、さらに、中
空糸膜22は、ハウジング21にそれぞれの端部が開放
された状態で、隔壁23,24により液密状態にて固定
されて、ガス導入部30及びガス導出部31を形成して
いる。また、隔壁23,24は、ポリウレタン、シリコ
ーンゴム等のポッティング剤で形成され、ハウジング2
1内の隔壁23,24ではさまれた部分は、中空糸膜2
2の内部側のガス室と、中空糸膜22の外部側の血液室
25とに仕切られている。
The housing 21 is formed of, for example, a transparent body whose inside can be easily confirmed. Inside the housing 21, approximately 1,000 to 50,000 are arranged in parallel in the axial direction.
A large number of hollow fiber membranes 22 of a book are accommodated, and further, the hollow fiber membranes 22 are fixed in a liquid-tight state by partition walls 23 and 24 in a state where each end is opened in the housing 21, The gas introduction part 30 and the gas derivation part 31 are formed. The partition walls 23 and 24 are made of a potting agent such as polyurethane or silicone rubber, and are used for the housing 2
The part sandwiched by the partition walls 23 and 24 in 1 is the hollow fiber membrane 2
2 is divided into a gas chamber on the inner side and a blood chamber 25 on the outer side of the hollow fiber membrane 22.

【0028】そして、一方側の隔壁23の外側にはガス
流入口28を有するガス導入側ポート32、他方側の隔
壁24の外側にはガス流出口29を有するガス導出側ポ
ート33が取り付けられており、これらは、締め付けリ
ング又は、締め付けリングを用いずに各ポート32,3
3をハウジング21に超音波、高周波等を用いて融着、
接着剤を用いて接着又は、機械的に嵌合されることによ
り取り付けられている。
A gas inlet port 32 having a gas inlet 28 is attached to the outside of the partition wall 23 on one side, and a gas outlet port 33 having a gas outlet 29 is attached to the outside of the partition wall 24 on the other side. These are the tightening ring or each port 32, 3 without using the tightening ring.
3 is fused to the housing 21 using ultrasonic waves, high frequency waves, etc.,
It is attached by adhesion using an adhesive or by mechanical fitting.

【0029】(実施例1)図3に示す中空糸膜型人工肺
2(加温装置を装着していない。)を用いて、実験用回
路を作製し、炭酸ガス除去能とガス導入圧力の経時変化
について測定を行った。
(Example 1) An experiment circuit was prepared using the hollow fiber membrane-type artificial lung 2 shown in FIG. 3 (without a heating device attached) to determine the carbon dioxide gas removal ability and the gas introduction pressure. The change with time was measured.

【0030】本実施例では、中空糸膜として、内径が約
200μm、空孔率が約40%、細孔径が約0.1μm
のポリプロピレン製の中空糸を2000本用いた。ま
た、ヘモグロビン濃度が12g/dl、温度37℃であ
る牛血液を使用し、通常は、血液流量4.0l/min、
ガス流量2.0l/minで実験用回路内を循環させ、測
定直前からガスを含炭酸ガス窒素に変更し血液を静脈血
化して、流量を4.0l/minとした。また、室温は一
定温度(25℃)に保った。
In this embodiment, the hollow fiber membrane has an inner diameter of about 200 μm, a porosity of about 40%, and a pore diameter of about 0.1 μm.
2000 polypropylene hollow fibers were used. Also, using bovine blood having a hemoglobin concentration of 12 g / dl and a temperature of 37 ° C., the blood flow rate is usually 4.0 l / min,
The gas was circulated in the experimental circuit at a flow rate of 2.0 l / min, the gas was changed to carbon dioxide containing nitrogen immediately before measurement, and the blood was converted into venous blood to a flow rate of 4.0 l / min. The room temperature was maintained at a constant temperature (25 ° C).

【0031】そして、循環開始直後、6時間後及び11
時間後に、炭酸ガス除去能及びガス導入圧力の測定を行
った。この結果を表1に示す。
Immediately after the start of circulation, 6 hours later, and 11
After a lapse of time, the carbon dioxide gas removing ability and the gas introduction pressure were measured. Table 1 shows the results.

【0032】[0032]

【表1】 [Table 1]

【0033】表1から、中空糸膜型人工肺は経時的に炭
酸ガス除去能が低下することが解る。また、炭酸ガス除
去能が低下するにしたがって、ガス導入圧力が増加して
いることが解る。これは、中空糸膜型人工肺のガス導出
部において、ウエットラング現象により、中空糸内部に
結露水が滞留したことに起因すると考えられる。
From Table 1, it can be seen that the hollow fiber membrane type artificial lung has a decreased ability to remove carbon dioxide over time. Further, it can be seen that the gas introduction pressure increases as the carbon dioxide gas removal ability decreases. It is considered that this is because the dew condensation water was retained inside the hollow fiber due to the wet rung phenomenon in the gas outlet of the hollow fiber membrane-type artificial lung.

【0034】(実施例2)図3に示す本発明の加温装置
を備えた中空糸膜型人工肺4を用いて、実験用回路を作
製し、ガス導入圧力の経時変化について測定を行った。
Example 2 An experimental circuit was prepared using the hollow fiber membrane-type artificial lung 4 equipped with the heating device of the present invention shown in FIG. 3 and the time-dependent change of gas introduction pressure was measured. .

【0035】本実施例では、中空糸膜型人工肺2とし
て、実施例1で用いた人工肺と同様なものを使用し、ま
た、加温装置1として、図1に示すような、アルミニウ
ム製の肉厚が2.0mmの伝熱部材11と、電源供給部
14を介して温度制御装置に接続されておりシリコンラ
バーヒーターからなる加熱部材12と、発泡ポリエチレ
ン製の肉厚が5.0mmの断熱部材13とからなるもの
を使用した。なお、加熱部材12の温度は、37℃に設
定した。また、血液よりも飽和水蒸気となり易い蒸留水
を循環液として使用し、血液側に温度37℃、流量4.
0l/minで循環させ、ガス側には空気を流量4.0l
/minで循環させた。また、室温は一定温度(25℃)
に保った。
In this embodiment, the same hollow fiber membrane-type artificial lung 2 as the artificial lung used in Example 1 is used, and the heating device 1 is made of aluminum as shown in FIG. Has a thickness of 2.0 mm, a heating member 12 connected to the temperature control device through a power supply unit 14 and made of a silicone rubber heater, and a foamed polyethylene having a thickness of 5.0 mm. A heat insulating member 13 was used. The temperature of the heating member 12 was set to 37 ° C. In addition, distilled water, which is more likely to become saturated steam than blood, is used as a circulating fluid, and the temperature is 37 ° C. on the blood side and the flow rate is 4.
Circulate at 0 l / min and flow air on the gas side at 4.0 l
It was circulated at a speed of / min. Also, the room temperature is a constant temperature (25 ° C)
Kept at.

【0036】そして、循環開始直後及び6時間後に、ガ
ス導入圧力の測定を行った。この結果を表2に示す。
Immediately after the start of circulation and 6 hours later, the gas introduction pressure was measured. The results are shown in Table 2.

【0037】(比較例)図4及び図5に示す中空糸膜型
人工肺5,6を用いて、実施例2と同様な条件で、ガス
導入圧力の経時変化について測定を行った。
(Comparative Example) Using the hollow fiber membrane-type artificial lungs 5 and 6 shown in FIGS. 4 and 5, the changes in gas introduction pressure with time were measured under the same conditions as in Example 2.

【0038】ここで、図4及び図5を参照して、比較例
の中空糸膜型人工肺について説明する。図4は、本発明
の比較例に係る断熱部材のみを備えた中空糸膜型人工肺
の断面図であり、図5は、本発明の比較例に係る加熱部
材及び断熱部材を備えた中空糸膜型人工肺の断面図であ
る。
Here, a hollow fiber membrane type artificial lung of a comparative example will be described with reference to FIGS. 4 and 5. FIG. 4 is a cross-sectional view of a hollow fiber membrane-type artificial lung including only a heat insulating member according to a comparative example of the present invention, and FIG. 5 is a hollow fiber including a heating member and a heat insulating member according to a comparative example of the present invention. It is a sectional view of a membrane oxygenator.

【0039】比較例1の人工肺は、実施例1の人工肺2
と同様なもので、図3に示す中空糸膜型人工肺(加温装
置を装着していない。)である。このため、比較例1に
ついては、特に詳しく説明をしない。次いで、比較例2
の断熱部材のみを備えた中空糸膜型人工肺5は、図4に
示すように、断熱部材51のみを実施例1の人工肺2に
装着したものである。そして、断熱部材51は、実施例
2の断熱部材13と同様、発泡ポリエチレン製で肉厚が
5.0mmのものであり、人工肺2のガス導出側ポート
33を覆うように装着されている。次いで、比較例3の
加熱部材及び断熱部材を備えた中空糸膜型人工肺6は、
図5に示すように、加熱部材61及び断熱部材62を実
施例1の人工肺2に装着したものである。そして、加熱
部材61は、ガス導出部31側の隔壁24の周囲を覆う
ようにして人工肺2に装着され、外部から供給された電
流によりガス導出部31を加熱する。また、断熱部材6
2は、実施例2の断熱部材13及び比較例2の断熱部材
51と同様なもので、人工肺2のガス導出側ポート33
を覆うように装着され、加熱部材61が発熱した熱を断
熱する。また、加熱部材61としては、フィルム型ヒー
ターを用いて温度を42℃に設定した。
The oxygenator of Comparative Example 1 was the oxygenator 2 of Example 1.
The hollow fiber membrane oxygenator (without a heating device) shown in FIG. Therefore, Comparative Example 1 will not be described in detail. Then, Comparative Example 2
As shown in FIG. 4, the hollow fiber membrane-type artificial lung 5 including only the heat insulating member is obtained by attaching only the heat insulating member 51 to the artificial lung 2 of the first embodiment. The heat insulating member 51 is made of foamed polyethylene and has a thickness of 5.0 mm, and is mounted so as to cover the gas outlet port 33 of the artificial lung 2 as in the heat insulating member 13 of the second embodiment. Then, the hollow fiber membrane type artificial lung 6 including the heating member and the heat insulating member of Comparative Example 3
As shown in FIG. 5, the heating member 61 and the heat insulating member 62 are attached to the artificial lung 2 of the first embodiment. The heating member 61 is attached to the oxygenator 2 so as to cover the partition wall 24 on the gas outlet 31 side and heats the gas outlet 31 with an electric current supplied from the outside. Also, the heat insulating member 6
No. 2 is the same as the heat insulating member 13 of Example 2 and the heat insulating member 51 of Comparative Example 2, and the gas outlet port 33 of the artificial lung 2
Is mounted so as to cover the heating member 61, and heat generated by the heating member 61 is insulated. As the heating member 61, a film type heater was used and the temperature was set to 42 ° C.

【0040】そして、比較例1、比較例2及び比較例3
に係る中空糸膜型人工肺を用いて、実施例2と同様にし
て、ガス導入圧力の経時的に測定を行った。この結果を
実施例2と共に、表2に示す。
Then, Comparative Example 1, Comparative Example 2 and Comparative Example 3
Using the hollow fiber membrane-type artificial lung of the present invention, the gas introduction pressure was measured with time in the same manner as in Example 2. The results are shown in Table 2 together with Example 2.

【0041】[0041]

【表2】 [Table 2]

【0042】表2からも明らかなように、実施例2の中
空糸膜型人工肺4は、循環開始直後と循環開始6時間後
との圧力差がないことから、本発明の加温装置及びそれ
を備えた中空糸膜型人工肺4は、ガス交換能の経時的な
低下がなく、長時間ウエットラング現象を防止できるこ
とがわかる。一方、比較例1の加温装置を装着していな
い人工肺2は、30mmH2Oの圧力が増加しているこ
とから、ガス交換能が経時的に低下していることは明ら
かである。また、比較例2の断熱部材のみを備えた人工
肺5においても、16mmH2Oの圧力増加が確認でき
ることから、断熱部材のみでは長時間ウエットラング現
象を防止することは困難であることがわかる。また、比
較例3の加熱部材及び断熱部材を備えた人工肺6は、加
熱部材61の温度を循環液の温度よりも5℃高く設定し
たにもかかわらず、8mmH2Oの圧力増加が確認され
た。これにより、比較例3の人工肺6においては、加熱
部材の位置が適所でなく、また伝熱部材を用いていない
ため、加熱部材で発熱した熱が効果的にガス導出部に伝
わらなかったことがわかる。
As is clear from Table 2, the hollow fiber membrane-type artificial lung 4 of Example 2 has no pressure difference immediately after the start of circulation and 6 hours after the start of circulation. It can be seen that the hollow fiber membrane-type artificial lung 4 provided with the same can prevent the wet rung phenomenon for a long time without a decrease in gas exchange capacity over time. On the other hand, in the artificial lung 2 not equipped with the heating device of Comparative Example 1, the pressure of 30 mmH 2 O is increasing, and it is clear that the gas exchange capacity is decreasing with time. Also, in the artificial lung 5 provided with only the heat insulating member of Comparative Example 2, a pressure increase of 16 mmH 2 O can be confirmed, so it is understood that it is difficult to prevent the wet rung phenomenon for a long time only with the heat insulating member. Further, in the artificial lung 6 including the heating member and the heat insulating member of Comparative Example 3, the pressure increase of 8 mmH 2 O was confirmed even though the temperature of the heating member 61 was set to 5 ° C. higher than the temperature of the circulating fluid. It was As a result, in the artificial lung 6 of Comparative Example 3, since the position of the heating member was not in the proper position and the heat transfer member was not used, the heat generated by the heating member was not effectively transferred to the gas outlet. I understand.

【0043】[0043]

【発明の効果】以上説明したように、本発明の加温装置
及びそれを備えた中空糸膜型人工肺によれば、本発明の
加温装置を中空糸膜型人工肺のガス導出部側の底面部に
装着することにより、加熱部材により発熱した熱が伝熱
部材により、効果的に人工肺のガス導出部に伝熱され、
一方、加熱部材により発熱した熱が断熱部材により、効
果的に断熱されるので、ガス交換能の経時的な低下を回
避でき、長時間ウエットラング現象を防止できる。ま
た、本発明の加温装置は、ディスポーザブルである中空
糸膜型人工肺から取り外して、複数回にわたって使用す
ることができるので、人工肺に取り付けられたものと比
較するとコストが低減できる。
As described above, according to the heating device of the present invention and the hollow fiber membrane-type artificial lung including the heating device, the heating device of the present invention can be used in the gas outlet side of the hollow fiber membrane-type artificial lung. By mounting on the bottom part of the, the heat generated by the heating member is effectively transferred to the gas outlet of the artificial lung by the heat transfer member,
On the other hand, since the heat generated by the heating member is effectively insulated by the heat insulating member, it is possible to avoid a decrease in gas exchange capacity over time and prevent the wet rung phenomenon for a long time. Further, since the heating device of the present invention can be detached from the hollow fiber membrane type artificial lung which is disposable and can be used for a plurality of times, the cost can be reduced as compared with the device attached to the artificial lung.

【0044】また、本発明の加温装置は、伝熱部材、加
熱部材及び断熱部材が積層されてなる有底筒状の形状で
あることにより、より効果的に伝熱及び断熱できるの
で、長時間ウエットラング現象を防止できる。
Further, since the heating device of the present invention has a bottomed cylindrical shape in which a heat transfer member, a heating member and a heat insulating member are laminated, heat transfer and heat insulation can be performed more effectively. Time wet rung phenomenon can be prevented.

【0045】さらに、本発明の加温装置は、伝熱部材及
び断熱部材が有底筒状の形状であり、加熱部材が一方面
が断熱部材の内底面に接して位置し、他方面が伝熱部材
の外底面に接して位置することにより、より効果的に伝
熱及び断熱できるので、長時間ウエットラング現象を防
止できる。
Further, in the heating device of the present invention, the heat transfer member and the heat insulating member have a bottomed cylindrical shape, and one surface of the heating member is positioned in contact with the inner bottom surface of the heat insulating member and the other surface is transferred. By being in contact with the outer bottom surface of the heat member, heat transfer and heat insulation can be performed more effectively, so that the wet rung phenomenon can be prevented for a long time.

【0046】また、本発明の加温装置は、人工肺の隔壁
及びガス導出部を覆うように人工肺に装着するための人
工肺装着部及び人工肺のガス導出口を装着するためのガ
ス導出口装着部を備えることにより、より効果的に伝熱
及び断熱できるので、長時間ウエットラング現象を防止
できる。
The warming device of the present invention is also equipped with an artificial lung attachment portion for attaching to the artificial lung so as to cover the partition wall and the gas outlet portion of the artificial lung, and a gas guide for attaching the gas outlet port of the artificial lung. By providing the outlet mounting portion, heat transfer and heat insulation can be performed more effectively, so that the wet rung phenomenon can be prevented for a long time.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例に係る加温装置の外観図であ
る。
FIG. 1 is an external view of a heating device according to an embodiment of the present invention.

【図2】本発明の実施例に係る加温装置の断面図であ
る。
FIG. 2 is a sectional view of a heating device according to an embodiment of the present invention.

【図3】本発明の実施例に係る加温装置を備えた中空糸
膜型人工肺の断面図である。
FIG. 3 is a cross-sectional view of a hollow fiber membrane-type artificial lung provided with a heating device according to an embodiment of the present invention.

【図4】本発明の比較例に係る断熱部材のみを備えた中
空糸膜型人工肺の断面図である。
FIG. 4 is a cross-sectional view of a hollow fiber membrane-type artificial lung including only a heat insulating member according to a comparative example of the present invention.

【図5】本発明の比較例に係る断熱部材及び加熱部材を
備えた中空糸膜型人工肺の断面図である。
FIG. 5 is a cross-sectional view of a hollow fiber membrane-type artificial lung including a heat insulating member and a heating member according to a comparative example of the present invention.

【符号の説明】[Explanation of symbols]

1 加温装置 11 伝熱部材 12 加熱部材 13 断熱部材 14 電源供給部 15 人工肺装着部 16 ガス導入口装着部 2 中空糸膜型人工肺 21 ハウジング 22 中空糸膜 23,24 隔壁 25 血液室 26 血液流入口 27 血液流出口 28 ガス導入口 29 ガス導出口 30 ガス導入部 31 ガス導出部 32 ガス導入側ポート 33 ガス導出側ポート 34 拘束部 4 加温装置を備えた中空糸膜型人工肺 5 断熱部材のみを備えた中空糸膜型人工肺 6 加熱部材及び断熱部材を備えた中空糸膜型人工肺 DESCRIPTION OF SYMBOLS 1 Heating device 11 Heat transfer member 12 Heating member 13 Thermal insulation member 14 Power supply part 15 Artificial lung attachment part 16 Gas introduction port attachment part 2 Hollow fiber membrane type artificial lung 21 Housing 22 Hollow fiber membrane 23, 24 Partition wall 25 Blood chamber 26 Blood inlet 27 Blood outlet 28 Gas inlet 29 Gas outlet 30 Gas inlet 31 Gas outlet 31 Gas inlet port 33 Gas outlet port 34 Restraint portion 4 Hollow fiber membrane type artificial lung equipped with heating device 5 Hollow fiber membrane type artificial lung provided only with heat insulating member 6. Hollow fiber membrane type artificial lung provided with heating member and heat insulating member

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】中空糸膜型人工肺に装着し、該人工肺のガ
ス導出部を一定温度に保持するための加温装置であっ
て、 該ガス導出部付近を覆って、伝熱する伝熱部材と、 該伝熱部材に接して設けられ、前記伝熱部材を加熱する
加熱部材と、 該加熱部材に電力を供給するための電源供給部と、 前記加熱部材に接して設けられ、前記加熱部材に発生し
た温度を保持するための断熱部材とからなることを特徴
とする加温装置。
1. A heating device, which is attached to a hollow fiber membrane-type artificial lung, for maintaining the gas outlet of the oxygenator at a constant temperature, the heat transfer device covering the vicinity of the gas outlet and transferring heat. A heat member, a heating member provided in contact with the heat transfer member to heat the heat transfer member, a power supply unit for supplying electric power to the heating member, a heat supply member provided in contact with the heating member, A heating device comprising: a heat insulating member for holding the temperature generated in the heating member.
【請求項2】ハウジングと、該ハウジング内に収納され
た多数の多孔質中空糸膜と、該中空糸膜の両端部を前記
ハウジングの両端部に液密に固定する隔壁と、該隔壁と
前記中空糸膜の外面と前記ハウジングの内壁とにより形
成された血液室に連通する血液流入口及び血液流出口
と、前記ハウジングの一端側に設けられ前記中空糸膜の
内部と連通するガス導入口と、前記ハウジングの他端側
に設けられ前記中空糸膜の内部と連通するガス導出口と
からなる中空糸膜型人工肺であって、 前記ハウジングの該ガス導出口側端部に、請求項1に記
載の加温装置を備えることを特徴とする中空糸膜型人工
肺。
2. A housing, a large number of porous hollow fiber membranes housed in the housing, partition walls for fixing both ends of the hollow fiber membranes to both ends of the housing in a liquid-tight manner, the partition wall and the partition wall. A blood inlet and a blood outlet that communicate with a blood chamber formed by the outer surface of the hollow fiber membrane and the inner wall of the housing, and a gas inlet that is provided at one end of the housing and that communicates with the inside of the hollow fiber membrane. A hollow fiber membrane type artificial lung comprising a gas outlet provided at the other end of the housing and communicating with the inside of the hollow fiber membrane, wherein the gas outlet side end portion of the housing comprises: A hollow fiber membrane-type artificial lung, comprising the heating device according to 1.
JP28310094A 1994-11-17 1994-11-17 Heating device and hollow fiber membrane-type artificial lung provided with the same Expired - Fee Related JP3601861B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28310094A JP3601861B2 (en) 1994-11-17 1994-11-17 Heating device and hollow fiber membrane-type artificial lung provided with the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28310094A JP3601861B2 (en) 1994-11-17 1994-11-17 Heating device and hollow fiber membrane-type artificial lung provided with the same

Publications (2)

Publication Number Publication Date
JPH08141073A true JPH08141073A (en) 1996-06-04
JP3601861B2 JP3601861B2 (en) 2004-12-15

Family

ID=17661223

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28310094A Expired - Fee Related JP3601861B2 (en) 1994-11-17 1994-11-17 Heating device and hollow fiber membrane-type artificial lung provided with the same

Country Status (1)

Country Link
JP (1) JP3601861B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104114205A (en) * 2012-02-15 2014-10-22 美敦力公司 De-airing oxygenator for treating blood in an extracorporeal blood circuit
JP2016067547A (en) * 2014-09-29 2016-05-09 テルモ株式会社 Oxygenator
CN115624664A (en) * 2022-11-10 2023-01-20 江苏赛腾医疗科技有限公司 Miniaturized membrane oxygenator

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104114205A (en) * 2012-02-15 2014-10-22 美敦力公司 De-airing oxygenator for treating blood in an extracorporeal blood circuit
JP2016067547A (en) * 2014-09-29 2016-05-09 テルモ株式会社 Oxygenator
CN115624664A (en) * 2022-11-10 2023-01-20 江苏赛腾医疗科技有限公司 Miniaturized membrane oxygenator
CN115624664B (en) * 2022-11-10 2024-01-30 江苏赛腾医疗科技有限公司 Miniaturized membrane oxygenator

Also Published As

Publication number Publication date
JP3601861B2 (en) 2004-12-15

Similar Documents

Publication Publication Date Title
CA1260788A (en) Oxygenator
US6367472B1 (en) Respiration humidifier
US4709135A (en) Device to heat infusion and transfusion solutions
Iwahashi et al. Development of the oxygenator: past, present, and future
AU562663B2 (en) Rigid shell expansible blood reservoir for oxygenator
JPS632632B2 (en)
JPH0833707A (en) Blood temperature control device
WO2003099366A1 (en) Device for heating and moistening breathing air
JPH0416184B2 (en)
JPH08141073A (en) Warming device and hollow fiber membrane type artificial lung having the same
JPH10511578A (en) Heatable respiratory treatment humidifier
JP2002516726A (en) Humidifier
EP1278561A2 (en) Fluid oxygenator with access port
US11701457B2 (en) Ultra low-leakage silicone-based heater thermally coupled to a heat transfer body
CN218979961U (en) Thermal insulation device for blood perfusion
JP2007143572A (en) Instillation fluid heating device
JP3597892B2 (en) Artificial lung and artificial lung with heat exchanger
JPS6237994B2 (en)
JPH06237993A (en) Fluid supply device
JP2000005302A (en) Gas exchanging method
JPS5957661A (en) Hollow yarn type artificial lung
JPH0342928Y2 (en)
JP7129164B2 (en) heating device
JP2000107282A (en) Device for treating blood
JPS594726Y2 (en) Separation device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040401

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040831

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040921

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081001

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081001

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091001

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101001

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees