JPH08139060A - Method of manufacturing semiconductor device and chemical machine polisher - Google Patents

Method of manufacturing semiconductor device and chemical machine polisher

Info

Publication number
JPH08139060A
JPH08139060A JP29558294A JP29558294A JPH08139060A JP H08139060 A JPH08139060 A JP H08139060A JP 29558294 A JP29558294 A JP 29558294A JP 29558294 A JP29558294 A JP 29558294A JP H08139060 A JPH08139060 A JP H08139060A
Authority
JP
Japan
Prior art keywords
polishing
insulating film
metal film
film
wafer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29558294A
Other languages
Japanese (ja)
Inventor
Akihiro Fuse
晃広 布施
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP29558294A priority Critical patent/JPH08139060A/en
Publication of JPH08139060A publication Critical patent/JPH08139060A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To bury a metal in a connecting hole for flattening the surface of an insulating film using a chemomechanical polishing step comprising a series of processes. CONSTITUTION: An interlayer insulating film 3 is formed on a metallic wiring 2 formed on a semiconductor substrate 1 and after the formation of a connecting hole in the interlayer insulating film 3, a metallic film 6 is formed on the interlayer insulating film 3. This metallic film 6 is polished using an acid polishing solution in a chemomechanical polishing process. In this chemomechanical polishing process, the surface exposed time point of the surface of the interlayer insulating film 3 to the polished surface is detected by the change of revolving torque of a carrier head or the conductivity in the wafer thickness direction to continue the polishing of the metallic film as it is assuming the detection time as the terminal time. Later, the feeding of the polishing solution is stopped to be substituted for pure water for linsing step and then substituting for alkalic polishing solution for insulating film for polishing the interlayer insulating film 3 for flattening the surface. In the polishing step, the metal 6 buried in the connecting hole 4 is used as the polishing stopper of the interlayer insulating film 3.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は半導体装置の製造方法と
それに用いる化学的機械研磨装置に関し、特にウエハプ
ロセスのうち多層配線を形成する工程で接続孔(コンタ
クトホールとヴィアホールの両方を含む)に金属を埋め
込むとともに、その接続孔が形成されている絶縁膜表面
を平坦にするプロセスに特徴を有する製造方法とそれに
用いる装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a semiconductor device and a chemical mechanical polishing apparatus used for the same, and more particularly to a connection hole (including both a contact hole and a via hole) in a step of forming a multilayer wiring in a wafer process. The present invention relates to a manufacturing method characterized by the process of burying a metal in a metal and flattening the surface of the insulating film in which the connection hole is formed, and an apparatus used therefor.

【0002】[0002]

【従来の技術】最近、半導体装置の微細化と集積化が進
むにつれて多層配線は必要不可欠な技術となってきてい
る。しかし、従来の技術の延長では、絶対段差が厳しく
なり、フォトリソグラフィのマージンが確保できなくな
ったり、層間絶縁膜や配線用金属膜のカバレッジが十分
に確保できないという問題が生じ、金属配線を形成する
絶縁膜表面を平坦化することが強く求められている。そ
こで、これらの問題を解決する1つの手法として、絶縁
膜の成膜プロセス側からのアプローチも行なわれている
が、その手法では部分的な平坦化は実現できるものの、
完全平坦化は極めて困難な状況である。
2. Description of the Related Art Recently, with the progress of miniaturization and integration of semiconductor devices, multilayer wiring has become an indispensable technique. However, with the extension of the conventional technology, the absolute step becomes stricter, the margin of photolithography cannot be secured, and the problem that the coverage of the interlayer insulating film and the metal film for wiring cannot be sufficiently secured occurs, and the metal wiring is formed. There is a strong demand for flattening the surface of the insulating film. Therefore, as one method for solving these problems, an approach from the film forming process side of the insulating film is also performed, but although this method can realize partial planarization,
Complete flattening is an extremely difficult situation.

【0003】最近積極的に検討されているのが化学的機
械研磨(Chemical Mechanical Polishing;CMP)技
術である。この化学的機械研磨では従来の単純な機械研
磨技術に加えて、研磨対象物がシリコン酸化膜のような
絶縁物の場合にはアルカリ性に調製した研磨液(スラリ
ー)を使用し、研磨対象物が金属膜の場合には酸性に調
製した研磨液を用いる。このように、化学的機械研磨で
は研磨対象物に従って研磨液を選択することにより、化
学的な研磨も同時に行なわせて絶縁物と金属との間での
研磨速度の選択性を利用する。
Recently, a chemical mechanical polishing (CMP) technique has been actively studied. In this chemical mechanical polishing, in addition to the conventional simple mechanical polishing technique, when the object to be polished is an insulating material such as a silicon oxide film, a polishing liquid (slurry) prepared to be alkaline is used, and the object to be polished is In the case of a metal film, an acidic polishing liquid is used. As described above, in the chemical mechanical polishing, the polishing liquid is selected according to the object to be polished, so that the chemical polishing is simultaneously performed and the selectivity of the polishing rate between the insulator and the metal is utilized.

【0004】具体的に化学的機械研磨を利用した方法と
して、接続孔に金属を埋め込む技術が提案されている。
そこでは、絶縁膜に設けた接続孔に埋め込むための金属
膜を形成した後、絶縁膜よりも金属膜の研磨速度が大き
くなる研磨液を用いて金属膜を化学的機械研磨し、絶縁
膜をストッパとして金属膜を接続孔に埋め込むことが紹
介されている(「日経マイクロデバイス」誌、1992
年6月号、66〜67頁参照)。また、そこでは金属膜
パターンを形成し、それを被う絶縁膜を形成した後、絶
縁膜研磨用の研磨液を用いて金属膜をストッパとして絶
縁膜の研磨を行なうことも紹介されている。
As a concrete method utilizing chemical mechanical polishing, a technique of embedding a metal in a connection hole has been proposed.
Here, after forming a metal film to be embedded in a connection hole provided in an insulating film, the metal film is chemically mechanically polished with a polishing liquid that has a polishing rate of the metal film higher than that of the insulating film to form the insulating film. Embedding a metal film in the connection hole as a stopper has been introduced ("Nikkei Microdevice", 1992).
June issue, pp. 66-67). It is also introduced therein that a metal film pattern is formed, an insulating film that covers the metal film pattern is formed, and then the insulating film is polished with a polishing liquid for polishing the insulating film using the metal film as a stopper.

【0005】[0005]

【発明が解決しようとする課題】上記の文献に紹介され
ているような化学的機械研磨では、絶縁膜形成後に絶縁
膜用の化学的機械研磨を行なうか、又は金属膜形成後に
金属膜用の化学的機械研磨を行なうというように、それ
ぞれ化学的機械研磨プロセスを行なうものである。その
ため、例えば金属膜を研磨して接続孔に金属を埋め込む
方法では、研磨後の絶縁膜表面の平坦性はその絶縁膜の
当初の平坦性に大きく依存し、金属膜形成前の絶縁膜表
面の凹凸が金属膜の化学的機械研磨後にも残ることにな
る。もし、接続孔に金属を埋め込み、かつ絶縁膜表面も
平坦にしようとすれば、金属膜形成前にいったん絶縁膜
を化学的機械研磨により平坦化した後、接続孔を形成
し、金属膜形成後に再び金属膜用の化学的機械研磨を行
なうというように、結果的に2度の化学的機械研磨を行
なう必要があり、工程数が増え、プロセスが複雑にな
り、製造コストの上昇を招くという問題がある。
In the chemical mechanical polishing as introduced in the above documents, chemical mechanical polishing for the insulating film is performed after the insulating film is formed, or the chemical mechanical polishing for the metal film is performed after the metal film is formed. A chemical mechanical polishing process is performed, such as a chemical mechanical polishing. Therefore, for example, in the method of polishing a metal film and embedding a metal in the connection hole, the flatness of the insulating film surface after polishing largely depends on the initial flatness of the insulating film, and the flatness of the insulating film surface before forming the metal film is large. The unevenness remains even after the chemical mechanical polishing of the metal film. If the contact hole is filled with metal and the insulating film surface is also to be flattened, the insulating film is first planarized by chemical mechanical polishing before forming the metal film, then the connecting hole is formed, and then the metal film is formed. As a result, it is necessary to perform chemical mechanical polishing twice, such as performing chemical mechanical polishing for the metal film again, which increases the number of steps, complicates the process, and raises the manufacturing cost. There is.

【0006】本発明は化学的機械研磨を用いて接続孔に
金属を埋め込むとともに絶縁膜表面も平坦化し、しかも
その化学的機械研磨を一連のプロセスにより行なえるよ
うにすることによって、工程数を減らし製造コストの上
昇を抑え、高い安定性と再現性をもって平坦化する方法
を提供することを目的とするものである。本発明はま
た、そのような方法を実施するのに適した化学的機械研
磨装置を提供することを目的とするものである。
According to the present invention, the number of steps is reduced by embedding a metal in the connection hole by using chemical mechanical polishing, flattening the surface of the insulating film, and further enabling the chemical mechanical polishing by a series of processes. It is an object of the present invention to provide a method for suppressing an increase in manufacturing cost and flattening with high stability and reproducibility. The present invention also aims to provide a chemical mechanical polishing apparatus suitable for carrying out such a method.

【0007】[0007]

【課題を解決するための手段】本発明では、半導体基板
ウエハ上に絶縁膜を形成し、その絶縁膜の所定の位置に
接続孔を形成した後、その絶縁膜上から金属膜を形成
し、ウエハの裏面側をキャリアヘッドにより保持し、ウ
エハの表面側を研磨パッドに押しつけながら回転させて
研磨を行なうが、その研磨は次の工程(A)から(C)
を含む一連の化学的機械研磨である。(A)ウエハ表面
と研磨パッドの間に、研磨材を含み金属に対する研磨速
度を高めるように調製された金属膜用研磨液を供給し
て、絶縁膜が露出し、接続孔以外の部分には金属膜が残
らないようになるまで金属膜を研磨する工程、(B)そ
の後、ウエハ表面と研磨パッドの間に供給するのを金属
膜用研磨液から水に切り換えて研磨面をリンスする工
程、(C)その後、ウエハ表面と研磨パッドの間に供給
するのを、水から、研磨材を含み絶縁物に対する研磨速
度を高めるように調製された絶縁膜用研磨液に切り換
え、接続孔に埋め込まれた金属膜をストッパとして絶縁
膜を研磨し、絶縁膜表面を平坦化する工程。金属膜用研
磨液は酸性に調製された酸性研磨液や金属の研磨を促進
する促進剤を添加した研磨液である。絶縁膜用研磨液は
アルカリ性に調製されたアルカリ性研磨液や絶縁物の研
磨を促進する促進剤を添加した研磨液である。
According to the present invention, an insulating film is formed on a semiconductor substrate wafer, a connection hole is formed at a predetermined position of the insulating film, and then a metal film is formed on the insulating film. The back side of the wafer is held by a carrier head, and the front side of the wafer is rotated while being pressed against a polishing pad to perform polishing. The polishing is performed in the following steps (A) to (C).
Is a series of chemical mechanical polishing including. (A) A metal film polishing liquid containing a polishing agent and prepared to increase the polishing rate for metal is supplied between the wafer surface and the polishing pad to expose the insulating film, and to the portion other than the connection hole. A step of polishing the metal film until no metal film remains, (B) a step of rinsing the polishing surface by switching the supply between the wafer surface and the polishing pad from the metal film polishing liquid to water, (C) After that, the supply between the wafer surface and the polishing pad is switched from water to a polishing liquid for an insulating film which contains a polishing agent and is prepared to increase the polishing rate for an insulator, and is embedded in a connection hole. The step of polishing the insulating film by using the metal film as a stopper to flatten the surface of the insulating film. The metal film polishing liquid is an acidic polishing liquid prepared to be acidic or a polishing liquid to which a promoter for promoting metal polishing is added. The insulating film polishing liquid is an alkaline polishing liquid prepared to be alkaline or a polishing liquid to which a promoter for promoting polishing of an insulating material is added.

【0008】好ましい態様では、金属膜を研磨する工程
(A)では、キャリアヘッドの回転トルクから金属膜研
磨の終点を検知する。終点検知は回転トルクが所定の大
きさ以上に増大した時点、又はさらにその変化率が所定
の条件を満たした時点を検出して終点とし、その終点検
知後さらに所定量の研磨を続ける。他の好ましい態様で
は、金属膜を研磨する工程(A)では、ウエハの表面側
と裏面側との間でのそのウエハの厚さ方向の導電率から
金属膜研磨の終点を検知する。終点検知は導電率が所定
の大きさ以下に低下した時点、又はさらにその変化率が
所定の条件を満たした時点を検出して終点とし、その終
点検知後さらに所定量の研磨を続ける。金属膜の好まし
い例としては、タングステン膜、アルミニウム膜もしく
はアルミニウム合金膜、又は銅膜を用いることができ
る。
In a preferred mode, in the step (A) of polishing the metal film, the end point of the metal film polishing is detected from the rotation torque of the carrier head. In the end point detection, a time point when the rotational torque increases to a predetermined magnitude or more, or a time point when the rate of change thereof satisfies a predetermined condition is detected as an end point, and a predetermined amount of polishing is continued after the end point is detected. In another preferred embodiment, in the step (A) of polishing the metal film, the end point of the metal film polishing is detected from the conductivity in the thickness direction of the wafer between the front surface side and the back surface side of the wafer. In the end point detection, the time point when the conductivity falls below a predetermined magnitude, or the time point when the change rate satisfies a predetermined condition is detected as the end point, and a predetermined amount of polishing is continued after the end point is detected. As a preferable example of the metal film, a tungsten film, an aluminum film or an aluminum alloy film, or a copper film can be used.

【0009】本発明の研磨装置は、上面が水平面とな
り、その水平面に研磨パッドを有し、水平面内で回転す
る研磨定盤と、ウエハ基板の裏面を保持し、そのウエハ
基板の表面を前記研磨パッドに押しあて、荷重をかけて
水平面内で回転させるヘッド機構と、ある研磨工程の終
点を検知する測定系と、研磨パッド上へ金属膜用研磨
液、絶縁膜用研磨液及び純水を切り換えて供給できる研
磨液供給部とを備えている。ある研磨工程の終点を検知
する測定系は、ヘッド機構の回転トルクを検出し、その
検出した回転トルクが予め設定された参照レベルに達し
た時点、もしくはさらに回転トルクの変化率が所定の条
件を満たした時点を検出して終点とする回転トルク測定
系、又はウエハ基板の厚さ方向の導電率を検出し、その
検出した導電率が予め設定された参照レベル以下に低下
した時点、もしくはさらに導電率の変化率が所定の条件
を満たした時点を検出してその研磨工程の終点とする導
電率測定系である。
In the polishing apparatus of the present invention, an upper surface is a horizontal surface, a polishing pad is provided on the horizontal surface, a polishing surface plate that rotates in the horizontal surface and a back surface of a wafer substrate are held, and the front surface of the wafer substrate is polished. A head mechanism that presses against the pad and rotates it in a horizontal plane by applying a load, a measurement system that detects the end point of a certain polishing process, and a polishing liquid for the metal film, a polishing liquid for the insulating film, and pure water are switched onto the polishing pad. And a polishing liquid supply unit that can supply the polishing liquid. The measurement system that detects the end point of a certain polishing process detects the rotational torque of the head mechanism, and when the detected rotational torque reaches a preset reference level, or when the rotational torque change rate reaches a predetermined condition. The rotational torque measurement system that detects the time point when the condition is satisfied and determines the end point, or the conductivity in the thickness direction of the wafer substrate is detected, and the time when the detected conductivity falls below a preset reference level, or further conductivity is detected. This is a conductivity measuring system that detects the time point when the rate of change of the rate satisfies a predetermined condition and sets it as the end point of the polishing step.

【0010】図1を参照して本発明の化学的機械研磨プ
ロセスの一例を説明する。 (A)半導体基板1上に形成された金属配線2の上に層
間絶縁膜3を形成する。 (B)フォトグラフィ工程とエッチング工程により接続
孔4を形成する。 (C)層間絶縁膜3上から金属膜6を形成する。このと
き、必要があれば金属膜の形成に先立って密着層5を形
成する。ここまでの工程は全て既知の工程である。
An example of the chemical mechanical polishing process of the present invention will be described with reference to FIG. (A) The interlayer insulating film 3 is formed on the metal wiring 2 formed on the semiconductor substrate 1. (B) The connection hole 4 is formed by the photography process and the etching process. (C) A metal film 6 is formed on the interlayer insulating film 3. At this time, if necessary, the adhesion layer 5 is formed prior to the formation of the metal film. All the steps up to this point are known steps.

【0011】(D)半導体基板1のウエハの裏面側を研
磨装置のキャリアヘッドにより保持し、ウエハの表面側
を研磨パッドに押しつけながら回転させて、化学的機械
研磨プロセスにより金属膜6(密着膜5が形成されてい
るときは密着膜5も金属膜6と同時に研磨する。以下に
おいても同じ。)を研磨する。この化学的機械研磨の研
磨液としては金属膜用に酸性に調製された研磨液を用い
る。
(D) The back side of the wafer of the semiconductor substrate 1 is held by a carrier head of a polishing apparatus, the front side of the wafer is rotated while being pressed against a polishing pad, and a metal film 6 (adhesion film) is formed by a chemical mechanical polishing process. 5 is formed, the adhesion film 5 is also polished at the same time as the metal film 6. The same applies to the following). As the polishing liquid for this chemical mechanical polishing, a polishing liquid prepared to be acidic for the metal film is used.

【0012】研磨面に層間絶縁膜3の表面が露出した時
点を、キャリアヘッドの回転トルクの変化やウエハの厚
さ方向の導電率の変化から検知し、その時点を終点とす
る。終点では図に示されるように、層間絶縁膜3の表面
が金属配線2間で落ち込んだ部分にはまだ金属膜の一部
7が残った状態である。
The time when the surface of the interlayer insulating film 3 is exposed on the polished surface is detected from the change of the rotation torque of the carrier head and the change of the conductivity in the thickness direction of the wafer, and the time is taken as the end point. At the end point, as shown in the drawing, a part 7 of the metal film still remains in the portion where the surface of the interlayer insulating film 3 is depressed between the metal wirings 2.

【0013】(E)研磨面に層間絶縁膜表面が露出した
後もそのまま金属膜の研磨をある量継続することによ
り、工程(D)で残っていた金属膜の一部7を完全に除
去する。しかし、この時点では層間絶縁膜3の表面の平
坦性はそれほど実現されていない。キャリアヘッドの回
転を続けながら、この時点で金属膜用の研磨液の供給を
停止し、それに代えて純水を研磨面に供給することによ
りリンスを行ない、研磨面での金属膜用の研磨液を純水
に置換する。
(E) Even after the surface of the interlayer insulating film is exposed on the polished surface, the polishing of the metal film is continued for a certain amount to completely remove the part 7 of the metal film remaining in the step (D). . However, at this point, the flatness of the surface of the interlayer insulating film 3 has not been realized so much. While continuing the rotation of the carrier head, at this point the supply of the polishing liquid for the metal film is stopped, and instead pure water is supplied to the polishing surface for rinsing to perform the polishing liquid for the metal film on the polishing surface. Is replaced with pure water.

【0014】(F)その後、純水の供給からアルカリ性
に調製された絶縁膜用の研磨液に切り換えて供給し、層
間絶縁膜を研磨して層間絶縁膜3の表面を平坦化する。
このときの研磨の終点検知は不要であり、接続孔4に埋
め込まれた金属6が層間絶縁膜3の研磨のストッパとな
る。そのため、この研磨プロセスの安定性や再現性は容
易に得られる。
(F) Thereafter, the supply of pure water is switched and supplied to a polishing liquid for an insulating film which is adjusted to be alkaline, and the interlayer insulating film is polished to flatten the surface of the interlayer insulating film 3.
At this time, it is not necessary to detect the polishing end point, and the metal 6 embedded in the connection hole 4 serves as a stopper for polishing the interlayer insulating film 3. Therefore, the stability and reproducibility of this polishing process can be easily obtained.

【0015】本発明の化学的機械研磨は研磨液の切換え
を含む一連の化学的機械研磨である。その特徴は次のよ
うに整理することができる。 金属膜用の研磨液を用いて金属膜を研磨し、金属膜
の研磨の終点を検知し、金属膜研磨の終点検知後も所定
量の金属研磨を継続する。 リンス工程を経て研磨液を絶縁膜用の研磨液に切り
換え、金属をストッパとして絶縁膜を研磨する。
The chemical mechanical polishing of the present invention is a series of chemical mechanical polishing including switching of a polishing liquid. The features can be organized as follows. The metal film is polished using a polishing liquid for a metal film, the end point of the metal film polishing is detected, and a predetermined amount of metal polishing is continued even after the end point of the metal film polishing is detected. After the rinsing step, the polishing liquid is switched to the polishing liquid for the insulating film, and the insulating film is polished using the metal as a stopper.

【0016】金属膜研磨の終点検知について説明する。
一般に、化学的機械研磨プロセスにおいてその終点検知
は、終点となる研磨面が被研磨物の領域内に現れた時点
を終点とするものであるが、キャリアヘッドと研磨定盤
との位置関係や容量など、連続的に変化する量をもとに
して検知しようとすると、検知精度や再現性に問題があ
る。しかし、本発明のように金属膜と絶縁膜の界面に研
磨の終点を求めるというように、異種材料間の界面に研
磨の終点を求める場合にはそのように問題はなく、比較
的容易に研磨の終点を求めることができる。特に、金属
膜と絶縁膜との界面の検出に関しては、キャリアヘッド
の回転トルクの変化量や半導体基板ウエハの導電率の変
化量は有効な情報となる。本発明ではこれらの情報をも
とに研磨の終点を求めることにより、プロセスの安定性
に優れ、再現性の良好な制御が可能となる。
The detection of the end point of polishing the metal film will be described.
Generally, in the chemical mechanical polishing process, the end point is detected when the polishing surface, which is the end point, appears in the area of the object to be polished, but the positional relationship between the carrier head and the polishing surface plate and the capacity For example, when trying to detect based on the amount that changes continuously, there is a problem in detection accuracy and reproducibility. However, when the end point of polishing is found at the interface between different materials, such as when the end point of polishing is found at the interface between the metal film and the insulating film as in the present invention, such a problem does not occur, and polishing is relatively easy. You can find the end point of. In particular, regarding the detection of the interface between the metal film and the insulating film, the amount of change in the rotation torque of the carrier head and the amount of change in the conductivity of the semiconductor substrate wafer are effective information. In the present invention, by obtaining the polishing end point based on these pieces of information, it becomes possible to perform control with excellent process stability and good reproducibility.

【0017】金属膜研磨の終点検知後もある量の研磨を
継続するのは以下の理由からである。一般に、層間絶縁
膜の段差被覆形状は下地の金属配線パターンを反映し、
配線パターン間上の層間絶縁膜の表面は落ち込んだ形と
なっている。層間絶縁膜の成膜プロセスに工夫を加える
ことにより、この落ち込んだ形状はいくらか解消するこ
とができる。これがいわゆる部分的平坦化と称されてい
るものであるが、完全平坦化は不可能である。そこで、
この状態の層間絶縁膜上に金属膜を形成し、化学的機械
研磨により金属膜の研磨を行ない、層間絶縁膜の一部が
露出した時点で研磨を中止すると、層間絶縁膜表面の落
ち込んだ領域上に形成された金属膜は研磨の終点時にお
いても一部が残った状態となる。この状態のまま半導体
装置の製造工程を続行すると、この残った一部の金属膜
が配線間のショートの原因になり、信頼性及び歩留まり
の低下を招く。そこで、本発明においては金属膜の終点
検知後も所定の量の研磨を継続することにより、層間絶
縁膜表面の落ち込み領域に残った一部の金属膜を除去す
る。その結果、本発明では層間絶縁膜の表面を敢えて平
坦にするための複雑な部分的平坦化プロセスは必要では
なく、層間絶縁膜の成膜工程の自由度を広げるのに寄与
する。
The reason why a certain amount of polishing is continued after the end point of the polishing of the metal film is continued is as follows. Generally, the step coverage shape of the interlayer insulating film reflects the underlying metal wiring pattern,
The surface of the interlayer insulating film between the wiring patterns has a depressed shape. By modifying the film forming process of the interlayer insulating film, the depressed shape can be somewhat eliminated. This is so-called partial flattening, but complete flattening is impossible. Therefore,
If a metal film is formed on the interlayer insulating film in this state and the metal film is polished by chemical mechanical polishing, and polishing is stopped when a part of the interlayer insulating film is exposed, the depressed area of the interlayer insulating film surface A part of the metal film formed above remains even at the end of polishing. If the manufacturing process of the semiconductor device is continued in this state, the remaining part of the metal film causes a short circuit between the wirings, leading to a decrease in reliability and yield. Therefore, in the present invention, by polishing a predetermined amount even after the end point of the metal film is detected, a part of the metal film remaining in the depressed region on the surface of the interlayer insulating film is removed. As a result, the present invention does not require a complicated partial planarization process for intentionally flattening the surface of the interlayer insulating film, and contributes to widening the degree of freedom in the step of forming the interlayer insulating film.

【0018】金属膜研磨用の研磨液から純水に切り換え
るリンス工程は、金属膜用研磨液として酸性研磨液を使
用していた場合に、それからからいきなり絶縁膜用の研
磨液としてアルカリ性研磨液に切り換えると発熱したり
生成物が発生するので、それを防ぐのが主な目的であ
り、また、研磨の終点を明確にし、再現性を向上させる
のにも役立つ。絶縁膜用の研磨液を用いて層間絶縁膜を
研磨する場合、一般にはその終点検知が大きな課題であ
るが、本発明においては接続孔にすでに埋込みがなされ
ている金属をストッパとして研磨できるため、プロセス
の安定性や再現性が向上する。
The rinsing step of switching from the polishing liquid for polishing the metal film to the pure water, when the acidic polishing liquid is used as the polishing liquid for the metal film, is suddenly changed to the alkaline polishing liquid as the polishing liquid for the insulating film. The main purpose is to prevent the generation of heat and products generated by switching, and it is also useful for clarifying the polishing end point and improving reproducibility. When polishing an interlayer insulating film using a polishing liquid for an insulating film, the end point detection is generally a big problem, but in the present invention, since the metal already embedded in the connection hole can be polished as a stopper, Improves process stability and reproducibility.

【0019】[0019]

【実施例】図2(A)は本発明を実施するための化学的
機械研磨装置の第1の例を示したものである。21は研
磨定盤であり、その上面が水平面となり、回転軸22に
よって水平面内で回転する。その水平面の上面には研磨
パッド23が貼りつけられている。被研磨物である半導
体ウエハ24はその裏面側がキャリアヘッド25によっ
て吸着されて保持される。キャリアヘッド25にはウエ
ハ24の表面を研磨パッド23に押しつけるように荷重
がかけられ、ヘッド25はモータ26によって回転させ
られてウエハ24の表面を研磨する。
EXAMPLE FIG. 2A shows a first example of a chemical mechanical polishing apparatus for carrying out the present invention. Reference numeral 21 is a polishing platen, the upper surface of which is a horizontal plane, and is rotated in the horizontal plane by a rotating shaft 22. A polishing pad 23 is attached to the upper surface of the horizontal surface. The back side of the semiconductor wafer 24, which is the object to be polished, is adsorbed and held by the carrier head 25. A load is applied to the carrier head 25 so as to press the surface of the wafer 24 against the polishing pad 23, and the head 25 is rotated by a motor 26 to polish the surface of the wafer 24.

【0020】キャリアヘッド25の回転軸にはキャリア
ヘッド25の回転トルクを検出し、その検出した回転ト
ルクが予め設定された参照レベルに達したときをその研
磨工程の終点として検知する回転トルク測定系27が設
けられている。回転トルク測定系27は、キャリアヘッ
ド25の回転軸に設けられキャリアヘッド25の回転数
をエンコーダなどにより検出する回転モニタ35と、回
転モニタ35の検出信号を入力し、電源37からモータ
26に通ずる電流を負帰還制御してキャリアヘッド25
の回転数を一定に保つ駆動制御部36と、キャリアヘッ
ド25の回転速度を一定に保つためにモータ26へ通ず
る電流に対応したトルク信号S1を例えば電圧値として
検出し、金属膜研磨の終点に対応した回転トルクの参照
信号レベルL1と比較してバルブ駆動部39を介して研
磨液の種類の切換えを行なわせる比較部38aとを含ん
でいる。
A rotary torque measuring system that detects the rotary torque of the carrier head 25 on the rotary shaft of the carrier head 25 and detects when the detected rotary torque reaches a preset reference level as the end point of the polishing process. 27 are provided. The rotation torque measuring system 27 inputs a rotation monitor 35 which is provided on the rotation shaft of the carrier head 25 and detects the number of rotations of the carrier head 25 by an encoder or the like, and a detection signal of the rotation monitor 35, and communicates from the power supply 37 to the motor 26. Negative feedback control of the current to control the carrier head 25
Drive control unit 36 that keeps the rotation speed constant, and a torque signal S 1 that corresponds to the current flowing to the motor 26 to keep the rotation speed of the carrier head 25 constant is detected as a voltage value, for example, and the end point of the metal film polishing is detected. And a comparison unit 38a for switching the type of polishing liquid via the valve drive unit 39 in comparison with the reference signal level L 1 of the rotation torque corresponding to the above.

【0021】研磨パッド23上に研磨液を供給するため
に、金属膜用研磨液を供給する金属膜用研磨液供給装置
28、リンス用の純水を供給するリンス液供給装置2
9、及び絶縁膜用研磨液を供給する絶縁膜用研磨液供給
装置30が設けられており、それぞれの供給装置28,
29,30はそれぞれの出口に設けられたバルブ31,
32,33により選択されて供給されるようになってい
る。バルブ31,32,33は比較部38aの出力に応
じてバルブ駆動部39により開閉が制御される。
In order to supply the polishing liquid onto the polishing pad 23, the metal film polishing liquid supply device 28 for supplying the metal film polishing liquid, and the rinse liquid supply device 2 for supplying the pure water for rinsing.
9, and an insulating-film polishing liquid supply device 30 for supplying the insulating-film polishing liquid.
29 and 30 are valves 31 provided at respective outlets,
32 and 33 are selected and supplied. Opening and closing of the valves 31, 32, 33 are controlled by a valve driving unit 39 according to the output of the comparing unit 38a.

【0022】図2(A)の装置を用いて図1に示された
プロセスを実施する実施例を説明する。既知の技術によ
り層間絶縁膜にヴィアホールを開口したサンプルに対し
て、密着層としてリアクティブスパッタリング法を用い
てTiN膜を約500Åの厚さに成膜した後、そのヴィ
アホールを埋め込むための金属としてWF6ガスを用い
たCVD法によりタングステン膜を約8000Åの厚さ
に成膜した。このサンプルを図2(A)の化学的機械研
磨装置のキャリアヘッド25にセットした。
An embodiment for carrying out the process shown in FIG. 1 using the apparatus shown in FIG. 2A will be described. For the sample in which the via hole is opened in the interlayer insulating film by the known technique, a TiN film having a thickness of about 500 Å is formed as an adhesion layer by the reactive sputtering method, and then a metal for filling the via hole. As a result, a tungsten film was formed to a thickness of about 8000Å by the CVD method using WF 6 gas. This sample was set on the carrier head 25 of the chemical mechanical polishing apparatus shown in FIG.

【0023】バルブ31を開けて金属膜用研磨液を金属
膜用研磨液供給装置28から研磨パッド23上に供給
し、タングステン膜の研磨を行なった。このときの条件
を以下に示す。 研磨液流量: 250ml/分 定盤回転数: 18rpm キャリアヘッド回転数: 700rpm キャリアヘッド圧力: 5psi
The valve 31 was opened and the metal film polishing liquid was supplied from the metal film polishing liquid supply device 28 onto the polishing pad 23 to polish the tungsten film. The conditions at this time are shown below. Polishing liquid flow rate: 250 ml / min Surface plate rotation speed: 18 rpm Carrier head rotation speed: 700 rpm Carrier head pressure: 5 psi

【0024】キャリアヘッド25の回転トルクを回転ト
ルク測定系27でモニタしながら予め行なった予備実験
において、図2(B)に示されるような回転トルクの変
化曲線が得られた。矢印で示されるように回転トルクS
1が参照信号レベルL1まで増大する時点は、研磨面に現
れた層間絶縁膜の面積が一定になった時点であり、その
点を金属膜研磨の終点とし、その時点からさらに3分間
研磨を継続し、ここまでを金属膜の研磨工程とした。や
はり、同条件での予備実験の結果、この時点でのサンプ
ル表面の顕微鏡観察により、層間絶縁膜の落ち込み領域
にはタングステン膜が残っていないことを確認した。
In a preliminary experiment conducted in advance while monitoring the rotational torque of the carrier head 25 with the rotational torque measuring system 27, a rotational torque change curve as shown in FIG. 2B was obtained. Rotation torque S as indicated by the arrow
The time when 1 increases to the reference signal level L 1 is the time when the area of the interlayer insulating film that appears on the polished surface becomes constant, and that point is taken as the end point of the metal film polishing, and polishing is continued for another 3 minutes from that point. Continuing, the process up to this point was the polishing process for the metal film. Again, as a result of the preliminary experiment under the same conditions, it was confirmed by microscopic observation of the sample surface at this point that no tungsten film remained in the depressed region of the interlayer insulating film.

【0025】バルブ31を閉じて金属膜用研磨液の供給
をやめ、金属膜の研磨を終了させるとともに、バルブ3
2を開けてリンス液供給装置29から純水を300ml
/分の流量で流してリンス工程を2分間行なった。リン
ス工程でもキャリアヘッド25は回転させておく。
The valve 31 is closed to stop the supply of the polishing liquid for the metal film, the polishing of the metal film is completed, and the valve 3
2 is opened and 300 ml of pure water is supplied from the rinse liquid supply device 29.
The rinse step was performed for 2 minutes by flowing at a flow rate of / minute. The carrier head 25 is also rotated in the rinse step.

【0026】次に、バルブ32を閉じてリンス工程を終
了させるとともに、バルブ33を開けて絶縁膜用研磨液
供給装置30から絶縁膜用研磨液を供給し、絶縁膜の研
磨を行なった。絶縁膜の研磨の条件は以下に示す通りで
ある。 研磨液流量: 200ml/分 定盤回転数: 12rpm キャリアヘッド回転数: 500rpm キャリアヘッド圧力: 8psi
Next, the valve 32 was closed to complete the rinse step, and the valve 33 was opened to supply the insulating film polishing liquid from the insulating film polishing liquid supply device 30 to polish the insulating film. The conditions for polishing the insulating film are as follows. Polishing liquid flow rate: 200 ml / min Surface plate rotation speed: 12 rpm Carrier head rotation speed: 500 rpm Carrier head pressure: 8 psi

【0027】研磨時間を4分間、5分間、6分間と変化
させて層間絶縁膜を研磨し、その表面及び断面を観察し
たところ、4分間の研磨ですでに層間絶縁膜と接続孔に
埋め込まれたタングステンの表面がほぼ同一面になり、
平坦化が十分になされていた。6分間研磨した場合は、
タングステンの表面が少し落ち込む、いわゆるディッシ
ングが見られたが、その量は許容できるものであった。
また4分間、5分間、6分間の何れの研磨においても層
間絶縁膜の厚さは殆ど変わらなかった。このことから、
上記の絶縁膜研磨条件では層間絶縁膜の研磨に対してタ
ングステンがストッパとして有効に作用していることが
分かる。所定時間の絶縁膜研磨の後、バルブ33を閉じ
て絶縁膜用研磨液の供給をやめ、絶縁膜の研磨を終了さ
せるとともに、バルブ32を開けてリンス液供給装置2
9から純水を300ml/分の流量で流してリンスを行
ない、研磨面から研磨液を除去する。
The interlayer insulating film was polished by changing the polishing time to 4 minutes, 5 minutes, and 6 minutes, and the surface and cross section thereof were observed. The surface of tungsten is almost the same,
It was flattened sufficiently. If you polish for 6 minutes,
There was some so-called dishing, in which the surface of the tungsten dropped slightly, but the amount was acceptable.
Further, the thickness of the interlayer insulating film was hardly changed by polishing for 4 minutes, 5 minutes, or 6 minutes. From this,
It is understood that under the above insulating film polishing conditions, tungsten effectively acts as a stopper for polishing the interlayer insulating film. After polishing the insulating film for a predetermined time, the valve 33 is closed to stop the supply of the insulating film polishing liquid, the insulating film polishing is completed, and the valve 32 is opened to rinse the liquid supply device 2.
Rinsing is performed by flowing pure water from No. 9 at a flow rate of 300 ml / min to remove the polishing liquid from the polishing surface.

【0028】(実施例2)図3(A)は化学的機械研磨
装置の他の例を示したものである。図2(A)の装置と
比較すると、金属膜研磨の終点を検知するための測定系
として、回転トルク測定系27に代えて、ウエハ24の
厚さ方向の導電率を検出し、その検出した導電率が予め
設定された参照レベル以下に低下したときをその研磨工
程の終点として検知する導電率測定系40を設けている
点で主として異なる。モータ26は電源部37aにより
一定速度で回転するように制御される。
(Embodiment 2) FIG. 3A shows another example of the chemical mechanical polishing apparatus. As compared with the apparatus shown in FIG. 2A, as a measurement system for detecting the end point of metal film polishing, instead of the rotation torque measurement system 27, the conductivity in the thickness direction of the wafer 24 is detected and detected. The main difference is that a conductivity measuring system 40 is provided to detect when the conductivity falls below a preset reference level as the end point of the polishing process. The motor 26 is controlled by the power supply unit 37a so as to rotate at a constant speed.

【0029】導電率測定系40は、キャリアヘッド25
から半導体ウエハ24、研磨定盤21を経てグラウンド
に電流を流す電源部41と、電源部41から流される電
流又は印加電圧から半導体ウエハ24の導電率に対応し
た信号S2を例えば電圧値として検出し、金属膜研磨の
終点に対応した導電率の参照信号レベルL2と比較して
バルブ駆動部39を介して研磨液の種類の切換えを行な
わせる比較部38bとを含んでいる。研磨液を供給する
機構は図2(A)のものと同じである。
The conductivity measuring system 40 includes a carrier head 25.
From the semiconductor wafer 24, the polishing platen 21, and the power supply unit 41 for flowing a current to the ground, and the signal S 2 corresponding to the conductivity of the semiconductor wafer 24 is detected as a voltage value from the current or the applied voltage supplied from the power supply unit 41. It also includes a comparison unit 38b for switching the type of polishing liquid via the valve drive unit 39 in comparison with the reference signal level L 2 of the conductivity corresponding to the end point of the metal film polishing. The mechanism for supplying the polishing liquid is the same as that shown in FIG.

【0030】図3(A)の装置を用いて図1に示された
プロセスを実施する実施例を説明する。既知の技術を用
いて層間絶縁膜にヴィアホールを開口したサンプルに対
して、密着層としてコリメートスパッタリング法を用い
てTi膜を約500Åの厚さに成膜した後、ヴィアホー
ルに埋め込む金属として純アルミニウムをターゲットと
するスパッタリング法によりアルミニウム膜を約900
0Åの厚さに成膜し、その後真空中で約450℃に加熱
してリフローを行ない、ヴィアホールにアルミニウムを
埋め込んだ。
An embodiment for carrying out the process shown in FIG. 1 using the apparatus shown in FIG. 3A will be described. Using a known technique, a Ti film with a thickness of about 500 Å was formed as an adhesion layer using a collimated sputtering method on a sample in which a via hole was opened in the interlayer insulating film, and then a pure metal was used as a metal to be embedded in the via hole. Approximately 900 aluminum film was formed by sputtering method using aluminum as a target.
A film was formed to a thickness of 0 Å, and then heated in vacuum to about 450 ° C. for reflow to embed aluminum in the via hole.

【0031】このサンプルに対し、実施例1と同じ条件
でアルミニウムを研磨して平坦化を行なった。ただし、
このときのアルミニウム膜研磨の終点検知の手段として
は、図3(A)に示す如く、導電率測定系40によりサ
ンプルのウエハ24の厚さ方向の導電率の変化を測定
し、その変化から終点を求めた。
With respect to this sample, aluminum was polished and flattened under the same conditions as in Example 1. However,
As a means for detecting the end point of the aluminum film polishing at this time, as shown in FIG. 3A, a change in the conductivity of the sample wafer 24 in the thickness direction is measured by the conductivity measuring system 40, and the end point is determined from the change. I asked.

【0032】導電率の変化を測定した予備実験の結果、
図3(B)に示すような結果が得られた。図3(B)に
矢印で示されるように、導電率が参照信号レベルL2
で低下した時点は研磨面に現れた層間絶縁膜の面積が一
定になった時点であり、その時点を金属膜研磨の終点と
し、その時点からさらに2分間研磨を継続し、ここまで
を金属膜の研磨工程とした。やはり、同条件での予備実
験の結果、この時点でのサンプル表面の顕微鏡観察によ
り層間絶縁膜の落ち込み領域にはアルミニウム膜が残っ
ていないことを確認した。
As a result of a preliminary experiment for measuring the change in conductivity,
The results shown in FIG. 3 (B) were obtained. As shown by the arrow in FIG. 3B, the time when the conductivity decreases to the reference signal level L 2 is the time when the area of the interlayer insulating film appearing on the polished surface becomes constant, and the time is when the metal film The polishing end point was set, and polishing was continued for another 2 minutes from that point, and the steps up to this point were used as the polishing step for the metal film. Again, as a result of a preliminary experiment under the same conditions, it was confirmed by microscopic observation of the sample surface at this point that no aluminum film remained in the depressed region of the interlayer insulating film.

【0033】その後、実施例1と同様の工程でリンス工
程と層間絶縁膜研磨を行なって十分な埋込み平坦化を実
現した。図2と図3に示した実施例における研磨液の切
り切換え動作を図4のタイムチャートにまとめて示す。
この動作はバルブ駆動部39に格納されたプログラムに
したがって自動的に実行することができる。ヴィアホー
ルを埋め込むために、この実施例では純アルミニウム膜
を用いたが、AlSiCu(Si1%、Cu0.5%)
などのようなアルミニウム合金を用いても同様の効果が
得られる。
After that, a rinsing step and an interlayer insulating film polishing were carried out in the same steps as in Example 1 to realize sufficient buried flattening. The cutting liquid switching operation in the embodiment shown in FIGS. 2 and 3 is collectively shown in the time chart of FIG.
This operation can be automatically executed according to the program stored in the valve drive unit 39. In this embodiment, a pure aluminum film is used to fill the via hole, but AlSiCu (Si 1%, Cu 0.5%) is used.
The same effect can be obtained by using an aluminum alloy such as the above.

【0034】なお、上記の実施例1及び2において、金
属研磨の終点検知後も2〜3分間の金属研磨を継続して
いるが、金属研磨の終点検知の時点で層間絶縁膜の表面
上に金属が全く残らない程度の平坦性が得られるような
層間絶縁膜の形成プロセスを採用している場合には、金
属研磨の終点検知後の金属膜の研磨は必要ないことはい
うまでもない。
In Examples 1 and 2 described above, the metal polishing is continued for 2 to 3 minutes after the end point of the metal polishing is detected. However, when the end point of the metal polishing is detected, the metal polishing is performed on the surface of the interlayer insulating film. Needless to say, the polishing of the metal film is not necessary after the end point of the metal polishing is detected when the process of forming the interlayer insulating film is used so as to obtain the flatness to the extent that no metal remains.

【0035】(実施例3)図3(A)の装置を用いて行
なった他の実施例を説明する。実施例2と同様に既知の
技術により層間絶縁膜にヴィアホールを開口したサンプ
ルに対して、まず下地メタル膜としてスパッタリング法
によりタングステン膜を約500Åの厚さに成膜し、そ
の後ヴィアホールを埋め込む金属膜としてスパッタリン
グ法によりCu膜を約8000Åの厚さに成膜し、その
まま真空中で約450℃のアニールを20分間行ない、
ヴィアホールにCuを埋め込んだ。このサンプルに対
し、実施例2と同様の条件でCuを研磨し、平坦化を行
なった。
(Embodiment 3) Another embodiment using the apparatus of FIG. 3A will be described. Similar to the second embodiment, for a sample in which a via hole is opened in an interlayer insulating film by a known technique, a tungsten film is first formed as a base metal film by a sputtering method to a thickness of about 500 Å, and then the via hole is buried. A Cu film was formed as a metal film by a sputtering method to a thickness of about 8000Å, and then annealed at about 450 ° C. in vacuum for 20 minutes,
Cu was embedded in the via hole. For this sample, Cu was polished and flattened under the same conditions as in Example 2.

【0036】Cuの研磨条件は次の通りである。 研磨液流量: 300ml/分 定盤回転数: 10rpm キャリアヘッド回転数: 600rpm キャリアヘッド圧力: 5psiThe polishing conditions for Cu are as follows. Polishing liquid flow rate: 300 ml / min Surface plate rotation speed: 10 rpm Carrier head rotation speed: 600 rpm Carrier head pressure: 5 psi

【0037】銅膜研磨の終点検知は実施例2と同様に導
電率測定系40によるウエハ24の厚さ方向の導電率の
変化から行なった。この実施例においても実施例2と同
様に終点からさらに2分間研磨を継続し、ここまでを金
属の研磨工程とした。やはり、同条件での予備実験の結
果、この時点でのサンプル表面の顕微鏡観察により、層
間絶縁膜の落ち込み領域には銅膜が残っていないことを
確認した。
The detection of the end point of the copper film polishing was carried out by the change in the conductivity of the wafer 24 in the thickness direction by the conductivity measuring system 40 as in the second embodiment. In this example as well, as in Example 2, the polishing was continued for another 2 minutes from the end point, and the process up to this point was taken as the metal polishing step. Again, as a result of a preliminary experiment under the same conditions, it was confirmed by microscopic observation of the sample surface at this point that no copper film remained in the depressed region of the interlayer insulating film.

【0038】これ以降の工程は実施例1と同じ内容及び
条件であり、その結果十分な埋込み平坦化を実現した。
この実施例では銅の成膜手法としてスパッタリング法を
用いているが、接続孔への埋込みが十分になされるもの
であれば、別の手法、例えばECR−CVD法などを用
いても同様の結果が得られる。
The subsequent steps have the same contents and conditions as in Example 1, and as a result, sufficient buried flattening was realized.
In this embodiment, the sputtering method is used as the copper film forming method, but if the filling into the connection hole is sufficiently performed, another method such as the ECR-CVD method may be used to obtain the same result. Is obtained.

【0039】[0039]

【発明の効果】本発明の製造方法では金属膜研磨工程、
リンス工程及び層間絶縁膜研磨工程を一連の化学的機械
研磨プロセスで行なえるため、工程数を増加させること
なく、埋込み平坦化を実現することができる。そして、
金属膜研磨の工程において、金属膜研磨の終点検知後も
所定量の金属膜研磨を継続することにより、層間絶縁膜
表面の落ち込み領域に金属が残らないようにすることが
できて、上層金属配線間のショートなどの発生しない信
頼性の高い半導体装置を得ることができる。埋込み用金
属としてタングステンを用いると、タングステンは段差
被覆性に優れ、微細な溝や接続穴を確実に埋め込むこと
ができ、高い信頼性を得ることができる。また、埋込み
用金属としてアルミニウムやアルミニウム合金を使用す
れば、多層配線部分のコストが低下する。埋込み用金属
として銅を用いれば、銅は低抵抗材料であり、高速動作
に適した半導体装置を得ることができる。金属膜研磨の
終点を求めるのにキャリアヘッドの回転トルクの変化や
半導体基板ウエハの厚さ方向の導電率の変化を用いる
と、終点検知の安定性や再現性を高めることができる。
According to the manufacturing method of the present invention, the metal film polishing step,
Since the rinsing step and the interlayer insulating film polishing step can be performed by a series of chemical mechanical polishing steps, the buried planarization can be realized without increasing the number of steps. And
In the step of polishing the metal film, by continuing the polishing of the metal film by a predetermined amount after the end point of the metal film polishing is detected, the metal can be prevented from remaining in the depressed region of the surface of the interlayer insulating film, and the upper metal wiring can be formed. It is possible to obtain a highly reliable semiconductor device in which a short circuit between them does not occur. When tungsten is used as the burying metal, tungsten has excellent step coverage and can reliably fill fine grooves and connection holes, resulting in high reliability. Further, if aluminum or an aluminum alloy is used as the burying metal, the cost of the multi-layer wiring portion is reduced. If copper is used as the burying metal, copper is a low resistance material and a semiconductor device suitable for high speed operation can be obtained. The stability and reproducibility of the end point detection can be improved by using the change of the rotation torque of the carrier head and the change of the conductivity in the thickness direction of the semiconductor substrate wafer to determine the end point of the metal film polishing.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の製造方法を示す工程断面図である。FIG. 1 is a process sectional view showing a manufacturing method of the present invention.

【図2】(A)は化学的機械研磨装置の一実施例を示す
概略構成図であり、(B)はその化学的機械研磨装置を
用いて金属膜を研磨する際の回転トルクの変化を示す図
である。
FIG. 2A is a schematic configuration diagram showing an embodiment of a chemical mechanical polishing apparatus, and FIG. 2B shows a change in rotational torque when polishing a metal film using the chemical mechanical polishing apparatus. FIG.

【図3】(A)は化学的機械研磨装置の他の実施例を示
す概略構成図であり、(B)はその化学的機械研磨装置
を用いて金属膜を研磨する際の導電率の変化を示す図で
ある。
FIG. 3A is a schematic configuration diagram showing another embodiment of a chemical mechanical polishing apparatus, and FIG. 3B is a change in conductivity when polishing a metal film using the chemical mechanical polishing apparatus. FIG.

【図4】実施例の動作をまとめて示すタイムチャート図
である。
FIG. 4 is a time chart diagram collectively showing the operation of the embodiment.

【符号の説明】[Explanation of symbols]

1 半導体基板 2 金属配線 3 層間絶縁膜 4 接続孔 5 金属膜 21 定盤 23 研磨パッド 24 ウエハ 25 キャリアヘッド 27 回転トルク測定系 28 金属膜用研磨液供給装置 29 リンス液供給装置 30 絶縁膜用研磨液供給装置 31,32,33 バルブ 40 導電率測定系 1 Semiconductor Substrate 2 Metal Wiring 3 Interlayer Insulation Film 4 Connection Hole 5 Metal Film 21 Surface Plate 23 Polishing Pad 24 Wafer 25 Carrier Head 27 Rotational Torque Measuring System 28 Metal Film Polishing Liquid Supply Device 29 Rinsing Liquid Supply Device 30 Insulating Film Polishing Liquid supply device 31, 32, 33 Valve 40 Conductivity measurement system

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 半導体基板ウエハ上に絶縁膜を形成し、
その絶縁膜の所定の位置に接続孔を形成した後、その絶
縁膜上から金属膜を形成し、前記ウエハの裏面側をキャ
リアヘッドにより保持し、前記ウエハの表面側を研磨パ
ッドに押しつけながら回転させ、以下の工程(A)から
(C)を含む一連の化学的機械研磨により前記金属膜を
接続孔に埋め込むことを特徴とする半導体装置の製造方
法。 (A)ウエハ表面と研磨パッドの間に、研磨材を含み金
属に対する研磨速度を高めるように調製された金属膜用
研磨液を供給して、絶縁膜が露出し、接続孔以外の部分
には金属膜が残らないようになるまで金属膜を研磨する
工程、(B)その後、ウエハ表面と研磨パッドの間に供
給するのを金属膜用研磨液から水に切り換えて研磨面を
リンスする工程、(C)その後、ウエハ表面と研磨パッ
ドの間に供給するのを、水から、研磨材を含み絶縁物に
対する研磨速度を高めるように調製された絶縁膜用研磨
液に切り換え、接続孔に埋め込まれた金属膜をストッパ
として絶縁膜を研磨し、絶縁膜表面を平坦化する工程。
1. An insulating film is formed on a semiconductor substrate wafer,
After forming a connection hole at a predetermined position of the insulating film, a metal film is formed on the insulating film, the back side of the wafer is held by a carrier head, and the front side of the wafer is pressed against a polishing pad to rotate. Then, the method for manufacturing a semiconductor device is characterized in that the metal film is embedded in the connection hole by a series of chemical mechanical polishing including the following steps (A) to (C). (A) A metal film polishing liquid containing a polishing agent and prepared to increase the polishing rate for metal is supplied between the wafer surface and the polishing pad to expose the insulating film, and to the portion other than the connection hole. A step of polishing the metal film until no metal film remains, (B) a step of rinsing the polishing surface by switching the supply between the wafer surface and the polishing pad from the metal film polishing liquid to water, (C) After that, the supply between the wafer surface and the polishing pad is switched from water to a polishing liquid for an insulating film which contains a polishing agent and is prepared to increase the polishing rate for an insulator, and is embedded in a connection hole. The step of polishing the insulating film by using the metal film as a stopper to flatten the surface of the insulating film.
【請求項2】 金属膜を研磨する前記工程(A)では、
キャリアヘッドの回転トルクの変化から金属膜研磨の終
点を検知し、その終点検知後さらに所定量の研磨を続け
る請求項1に記載の半導体装置の製造方法。
2. In the step (A) of polishing a metal film,
2. The method of manufacturing a semiconductor device according to claim 1, wherein the end point of the metal film polishing is detected from the change in the rotation torque of the carrier head, and after the end point is detected, a predetermined amount of polishing is continued.
【請求項3】 金属膜を研磨する前記工程(A)では、
前記ウエハの表面側と裏面側との間でのそのウエハの厚
さ方向の導電率の変化から金属膜研磨の終点を検知し、
その終点検知後さらに所定量の研磨を続ける請求項1に
記載の半導体装置の製造方法。
3. In the step (A) of polishing a metal film,
Detecting the end point of the metal film polishing from the change in conductivity in the thickness direction of the wafer between the front surface side and the back surface side of the wafer,
The method of manufacturing a semiconductor device according to claim 1, wherein a predetermined amount of polishing is continued after the end point is detected.
【請求項4】 前記金属膜がタングステン膜である請求
項1〜3に記載の半導体装置の製造方法。
4. The method of manufacturing a semiconductor device according to claim 1, wherein the metal film is a tungsten film.
【請求項5】 前記金属膜がアルミニウム膜又はアルミ
ニウム合金膜である請求項1〜3に記載の半導体装置の
製造方法。
5. The method of manufacturing a semiconductor device according to claim 1, wherein the metal film is an aluminum film or an aluminum alloy film.
【請求項6】 前記金属膜が銅膜である請求項1〜3に
記載の半導体装置の製造方法。
6. The method of manufacturing a semiconductor device according to claim 1, wherein the metal film is a copper film.
【請求項7】 上面が水平面となり、その水平面に研磨
パッドを有し、水平面内で回転する研磨定盤と、 ウエハ基板の裏面を保持し、そのウエハ基板の表面を前
記研磨パッドに押しあて、荷重をかけて水平面内で回転
させるヘッド機構と、 ヘッド機構の回転トルクを検出し、その検出した回転ト
ルクからその研磨工程の終点を検知する回転トルク測定
系と、 研磨パッド上へ金属膜用研磨液、絶縁膜用研磨液及び純
水を切り換えて供給できる研磨液供給部と、を備えたこ
とを特徴とする研磨装置。
7. An upper surface is a horizontal surface, a polishing pad is provided on the horizontal surface, a polishing surface plate that rotates in the horizontal surface, and a back surface of a wafer substrate are held, and the front surface of the wafer substrate is pressed against the polishing pad, A head mechanism that applies a load to rotate in a horizontal plane, a rotation torque measurement system that detects the rotation torque of the head mechanism and detects the end point of the polishing process from the detected rotation torque, and polishing of a metal film on a polishing pad A polishing apparatus comprising: a polishing liquid supply unit that can selectively supply a liquid, a polishing liquid for an insulating film, and pure water.
【請求項8】 上面が水平面となり、その水平面に研磨
パッドを有し、水平面内で回転する研磨定盤と、 ウエハ基板の裏面を保持し、そのウエハ基板の表面を前
記研磨パッドに押しあて、荷重をかけて水平面内で回転
させるヘッド機構と、 ウエハ基板の厚さ方向の導電率を検出し、その検出した
導電率からその研磨工程の終点を検知する導電率測定系
と、 研磨パッド上へ金属膜用研磨液、絶縁膜用研磨液及び純
水を切り換えて供給できる研磨液供給部と、を備えたこ
とを特徴とする研磨装置。
8. An upper surface is a horizontal surface, a polishing pad is provided on the horizontal surface, a polishing surface plate that rotates in the horizontal surface, and a back surface of a wafer substrate are held, and the front surface of the wafer substrate is pressed against the polishing pad, A head mechanism that applies a load to rotate in the horizontal plane, a conductivity measuring system that detects the conductivity in the thickness direction of the wafer substrate, and detects the end point of the polishing process from the detected conductivity, and a polishing pad A polishing apparatus comprising: a polishing solution supply unit capable of selectively supplying a polishing solution for a metal film, a polishing solution for an insulating film, and pure water.
JP29558294A 1994-11-04 1994-11-04 Method of manufacturing semiconductor device and chemical machine polisher Pending JPH08139060A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29558294A JPH08139060A (en) 1994-11-04 1994-11-04 Method of manufacturing semiconductor device and chemical machine polisher

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29558294A JPH08139060A (en) 1994-11-04 1994-11-04 Method of manufacturing semiconductor device and chemical machine polisher

Publications (1)

Publication Number Publication Date
JPH08139060A true JPH08139060A (en) 1996-05-31

Family

ID=17822502

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29558294A Pending JPH08139060A (en) 1994-11-04 1994-11-04 Method of manufacturing semiconductor device and chemical machine polisher

Country Status (1)

Country Link
JP (1) JPH08139060A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000301454A (en) * 1999-02-11 2000-10-31 Applied Materials Inc Chemical-mechanical polishing process and constituting element thereof
US6190494B1 (en) * 1998-07-29 2001-02-20 Micron Technology, Inc. Method and apparatus for electrically endpointing a chemical-mechanical planarization process
JP2001176967A (en) * 1999-12-21 2001-06-29 Nec Corp Semiconductor device and producing method therefor
US6316364B1 (en) 1999-02-15 2001-11-13 Nec Corporation Polishing method and polishing solution
US6361708B1 (en) 1997-05-14 2002-03-26 Nec Corporation Method and apparatus for polishing a metal film
KR100359070B1 (en) * 1998-10-13 2002-11-04 닛본 덴기 가부시끼가이샤 Method of fabricating a semiconductor device
JP2003517720A (en) * 1999-03-29 2003-05-27 スピードファム−アイピーイーシー コーポレイション Two-step CMP for damascene structures on semiconductor wafers
WO2003064108A1 (en) * 2002-01-28 2003-08-07 Mitsubishi Materials Corporation Polishing head, polishing device and polishing method
US6609950B2 (en) 2000-07-05 2003-08-26 Ebara Corporation Method for polishing a substrate
KR100404436B1 (en) * 1995-09-06 2004-03-20 가부시끼가이샤 도시바 Polishing apparatus
US6746962B2 (en) 2000-10-26 2004-06-08 Matsushita Electric Industrial Co., Ltd. Method for fabricating a semi-conductor device having a tungsten film-filled via hole
US7101801B2 (en) 2002-11-12 2006-09-05 Kabushiki Kaisha Toshiba Method of manufacturing semiconductor device using chemical mechanical polishing
JP2006261261A (en) * 2005-03-16 2006-09-28 Renesas Technology Corp Apparatus and method for chemical mechanical polishing
KR100709447B1 (en) * 2001-06-29 2007-04-18 주식회사 하이닉스반도체 A method for forming a semiconductor device

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100404436B1 (en) * 1995-09-06 2004-03-20 가부시끼가이샤 도시바 Polishing apparatus
US6361708B1 (en) 1997-05-14 2002-03-26 Nec Corporation Method and apparatus for polishing a metal film
US6190494B1 (en) * 1998-07-29 2001-02-20 Micron Technology, Inc. Method and apparatus for electrically endpointing a chemical-mechanical planarization process
US6319420B1 (en) 1998-07-29 2001-11-20 Micron Technology, Inc. Method and apparatus for electrically endpointing a chemical-mechanical planarization process
KR100359070B1 (en) * 1998-10-13 2002-11-04 닛본 덴기 가부시끼가이샤 Method of fabricating a semiconductor device
JP2000301454A (en) * 1999-02-11 2000-10-31 Applied Materials Inc Chemical-mechanical polishing process and constituting element thereof
JP4575539B2 (en) * 1999-02-11 2010-11-04 アプライド マテリアルズ インコーポレイテッド Chemical mechanical polishing process and its components
US6316364B1 (en) 1999-02-15 2001-11-13 Nec Corporation Polishing method and polishing solution
JP2003517720A (en) * 1999-03-29 2003-05-27 スピードファム−アイピーイーシー コーポレイション Two-step CMP for damascene structures on semiconductor wafers
JP4750948B2 (en) * 1999-03-29 2011-08-17 スピードファム−アイピーイーシー コーポレイション Two-step CMP for damascene structures on semiconductor wafers
JP2001176967A (en) * 1999-12-21 2001-06-29 Nec Corp Semiconductor device and producing method therefor
US6609950B2 (en) 2000-07-05 2003-08-26 Ebara Corporation Method for polishing a substrate
US7291057B2 (en) 2000-07-05 2007-11-06 Ebara Corporation Apparatus for polishing a substrate
US6746962B2 (en) 2000-10-26 2004-06-08 Matsushita Electric Industrial Co., Ltd. Method for fabricating a semi-conductor device having a tungsten film-filled via hole
KR100709447B1 (en) * 2001-06-29 2007-04-18 주식회사 하이닉스반도체 A method for forming a semiconductor device
WO2003064108A1 (en) * 2002-01-28 2003-08-07 Mitsubishi Materials Corporation Polishing head, polishing device and polishing method
US7101801B2 (en) 2002-11-12 2006-09-05 Kabushiki Kaisha Toshiba Method of manufacturing semiconductor device using chemical mechanical polishing
JP2006261261A (en) * 2005-03-16 2006-09-28 Renesas Technology Corp Apparatus and method for chemical mechanical polishing

Similar Documents

Publication Publication Date Title
US5676587A (en) Selective polish process for titanium, titanium nitride, tantalum and tantalum nitride
US5272117A (en) Method for planarizing a layer of material
US5321304A (en) Detecting the endpoint of chem-mech polishing, and resulting semiconductor device
US6423640B1 (en) Headless CMP process for oxide planarization
JPH08139060A (en) Method of manufacturing semiconductor device and chemical machine polisher
US8048756B2 (en) Method for removing metal layers formed outside an aperture of a BPSG layer utilizing multiple etching processes including electrochemical-mechanical polishing
EP0871214B1 (en) Process for polishing dissimilar conductive layers in a semiconductor device
US6184141B1 (en) Method for multiple phase polishing of a conductive layer in a semidonductor wafer
US6051500A (en) Device and method for polishing a semiconductor substrate
JPH0955362A (en) Manufacture of integrated circuit for reduction of scratch
JP2002528928A (en) Use of zeta potential for endpoint detection during chemical buffing
WO2002061824A2 (en) Slurry and method for chemical mechanical polishing of copper
US20070105247A1 (en) Method And Apparatus For Detecting The Endpoint Of A Chemical-Mechanical Polishing Operation
US20060172527A1 (en) Method for forming a defined recess in a damascene structure using a CMP process and a damascene structure
US6146250A (en) Process for forming a semiconductor device
JPH10189505A (en) Polishing device and polishing method
US10875148B2 (en) Apparatus and methods for chemical mechanical polishing
JP2000208516A (en) Semiconductor device having multilayer wiring structure and manufacture thereof
JPH08222630A (en) Multilayer interconnection forming method
US6436832B1 (en) Method to reduce polish initiation time in a polish process
US6809032B1 (en) Method and apparatus for detecting the endpoint of a chemical-mechanical polishing operation using optical techniques
US6403468B1 (en) Method for forming embedded metal wiring
US7413989B2 (en) Method of manufacturing semiconductor device
JPH06216095A (en) Apparatus and method for detecting wafer polishing amount
US7232362B2 (en) Chemical mechanical polishing process for manufacturing semiconductor devices